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Abstract

We consider the thermo-solutal magneto-convection in a horizontal anisotropic porous medium,
saturated with viscoelastic fluid, which is heated and salted from below. Here, the chemical equilibrium
is on the bounding surfaces, and the solubility of the dissolved components depends on temperature.
The aim is to determine the criteria for the onset of magneto-convection by finding the critical Rayleigh
number and wave number. Also, heat and mass transfer phenomena are captured by studying Nusselt and
Sherwood numbers. The extended Darcy model is used to express the momentum equation for Oldroyd-
type viscoelastic fluid with an externally imposed vertical magnetic field. Due to viscoelastic behaviour
of the fluid, the convection is set in through oscillatory rather than stationary. An entire investigation
has been done in two parts: (i) linear stability analysis and (ii) weakly non-linear stability analysis. The
effect of main controlling parameters, such as the magnetic field parameter (Chandrashekhar number Q),
viscoelastic parameters (relaxation (λ1) and retardation (λ2) parameters), and effective chemical reaction
(i.e. Damköhler number, (χ)), on the stability of the system are investigated. Q, λ2 are found to delay
the oscillatory convection whereas λ1 and χ speed up the onset of oscillatory convection. The non-linear
theory based on the truncated representation of the Fourier series method predicts the occurrence of sub-
critical instability in the form of finite amplitude motion. The effect of the above-mentioned parameters
on heat and mass transfer is also discussed.
2020 Mathematical Sciences Classification: 12E20; 94A60
Keywords and Phrases: Anisotropy porous medium, Darcy model, external Magnetic field, Rayleigh
Number, Chemical reaction, Viscoelastic fluid.

1 Introduction
Viscoelastic fluid, a non-Newtonian fluid, has the interesting ability to develop both viscous and elastic
properties under the same conditions. Due to these properties, it can be visualized in different types of
liquids, colloids, polymers, organic and polymer alloys, and a number of biological materials. These non-
Newtonian fluids retain stress even in the absence of a gradient of velocity and the ensuing ability to produce
highly non-linear behaviour, regardless of the considered the specific chemical composition. Its molecules
are also showing deformation (evolving with a characteristic time that does not match that of the main
flow), while its initial flow can produce long-chain stretched molecules and can cause secondary flows, which
further stretch them, thereby allowing the amplification of an initial small disturbance through an iterative
cause-and-effect coupling mechanism. These fluids have a large number of technological applications in
the chemical, cosmetic, pharmaceutical, materials, energy, and food industries. These applications are well
mentioned in the research work of [1, 2, 5, 7, 21, 26, 27, 37]. Thermal convection in saturated porous media
is significant in a wide range of technological applications, and it is becoming more interesting in geothermal
energy [28] and astrophysical problems [3]. Theoretically, different mathematical models have been used to
study the behavior of thermal convection in viscoelastic fluid saturated porous medium. Recently, many
studies have examined the rheological characteristics associated with viscoelastic flow in porous media.
Herbert [9] and Green [8] were the first, who investigated oscillatory convection problem in a viscoelastic
fluid of the Oldroyd type under the condition of infinitesimal perturbations. Using linear stability theory,
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Yoon et al. [41] examined the onset of oscillatory convection in a horizontal porous layer saturated with
viscoelastic fluid. Laroze et al. [14] found that the nature of convection solution depends on viscoelastic
parameter after studying the effect of viscoelastic fluids on bifurcations of convective instabilities. The
stability of Maxwell fluid in a porous medium using Darcy-Brinkman-Maxwell model is examined by Tan
and Masuoka [38] and they found the criteria for the onset of oscillatory convection. Stability criteria for
both stationary and oscillatory convection in viscoelastic liquid saturated anisotropic porous layer is analysed
by [17]. Sheu et al. [15] studied the chaotic convection of viscoelastic fluids in porous media and found that
the flow behavior may be stationary, periodic, or chaotic.
All above mentioned research was carried out for one-component, i.e. a pure fluid. However, several
applications are known in which the fluid has to be treated as a binary mixture consisting of fluid and solute
(see, for example [22]). Extension of the Hortan-Rogers-Lapwood problem for double diffusive convection
in a porous layer with Newtonian fluid was initialized by [19]. In his work, he has used the linear theory of
stability analysis and considered the iso-advective transport. For the classical Rayleigh-Benard system with
and without porous medium, there has been a large amount of work dealing with binary mixtures and it is
well documented in the book written by Nield and Bejan [20].
Initially, the effect of the chemical reaction on the double-diffusive convection in porous medium was
introduced by Steinberg and Brand [30, 31] while studying the stability of the flow in a horizontal layer
under free-free boundary conditions. In this paper, flow was induced by chemical reaction as well as thermal
and concentration gradients applied to the boundaries of the system. They considered the regime where
the reaction rate was so fast that solutal diffusion could be neglected. Pritchard and Richardson [23] have
investigated the stability of flow under fast as well as slow reaction rates. They reported the effect of solutal
diffusion on the stability of flow. According to their study, the reactive term stabilizes oscillatory convection
when the solutal Darcy-Rayleigh number is positive. Wang and Tan [39] studied the onset of double-
diffusive (thermo-solutal) convection with a reaction term in a horizontal sparsely packed porous medium,
based on Brinkman model. They analysed that the Darcy number destabilizes the flow in stationary as
well as oscillatory modes; however, the effects of Lewis number and reaction term depend on the values
of the solutal Rayleigh number. All these studies were restricted to isotropic porous media. However, the
influence of the chemical reaction on double-diffusive convection in an anisotropic porous layer is reported
in the work of [18]. They have reported that the effect of the chemical reaction, as well as the anisotropy of
the medium, may be stabilizing or destabilizing. Most of the work related to convection reaction is related
to Newtonian fluid. In 2013, Srivastava and Bera [32], extended the work of [18], for non-Newtonian fluid,
especially couple-stress fluid, for different boundary conditions (such as free-free, rigid-rigid, and rigid-free).
They have reported that increasing the couple stress parameter increases flow stability in all three cases, but
among all cases, its stabilization effect for rigid-rigid is maximum. Also, the chemical reaction stabilizes the
flow for all three cases.
It should be noted that most of the above-mentioned research work has been done without external forces
or with external forces such as coriolis force. But less attention is paid towards the onset of double-diffusive
convection in viscoelastic fluid saturated porous medium under the influence of a magnetic field. Magneto-
hydrodynamics is a branch of geophysics that studies and measures the velocities and positions of frames
of reference on the earth’s surface as they rotate towards the frame of inertia in the presence of a magnetic
field. It is useful in the commercial production of the magnetic fluids, in chemical engineering, and in the
performance of petroleum reservoirs, where the geothermal areas are influenced by the magnetic field of
the earth [40]. Using linear and nonlinear stability analysis, [24] investigated the problem of establishing
convection currents in a layer of viscous, electrically conducting fluid in the presence of a magnetic field.
The stability of finite-amplitude and overstable convection of a conducting fluid through a fixed porous
bed was examined by [29, 33]. Desaive et al. [6] investigated the thermo convection in a ferro-fluid
saturating a rotating porous layer. Magneto-double diffusive convection in an electrically conducting fluid-
saturated porous medium with temperature modulation of the boundaries is investigated by [4]. They
reported the effect of frequency of temperature modulation, solute Rayleigh number (solutal effect), and
Darcy Chandrasekhar number (magnetic field effect), mainly. In 2012, Srivastava et al. [34] examined the
magneto-double-diffusive convection under the Soret effect. It is found that the magnetic field parameter,
solutal Rayleigh number, delays the onset of magneto-double diffusive convection. Siddique et al. [35]
investigated the unsteady free convection flow, with heat and mass transfer, of an electrically conducting
viscoelastic fluid through a porous medium of variable permeability. The flow domain is a half-space bounded
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by a vertical porous plate, with a constant heat flux, constant concentration, and a rectilinear translation
in its plane with constant velocity. The unsteady MHD flow in a porous medium past an inclined plate in a
thermally stratified fluid flow under the impact of the Dufour and Soret effects was recently studied by Nidhi
and Priyanka [25]. To put numerical solutions into practice, they employed the finite difference technique.
They found that the fluid flow’s velocity drops as the magnetic field is increased. Thermal convection of
a magneto-hydrodynamic (MHD) micropolar fluid flow in a porous nonlinear media stretching sheet with
thermal radiation was studied by Amrita and Bhupander [11]. They also came to the conclusion in their
investigation that when the magnetic field gets stronger, the flow velocity of the fluid drops.
Here we focus on magneto-double diffusive convection in a viscoelastic fluid-saturated anisotropic porous
layer with the influence of chemical reaction on the boundaries. The multi-fold intention of this work is: (i)
to enrich the existing literature on the oscillatory states for viscoelastic fluids; (ii) the magnetic field effect
on double diffusive convection reaction; and (iii) weakly non-linear stability analysis of magneto-convection
in viscoelastic fluid saturated by an anisotropic layer in the presence of chemical reaction. This will give new
fundamental knowledge about the possible convective phenomena in some technological processes, free-free
surfaces, and binary viscoelastic liquids with positive reactions on boundaries.
The structure of the paper is organized as follows: Section 2 introduces the mathematical formulation of
the physical problem. Section 3 focuses on the linear stability analysis, considering both stationary and
oscillatory modes of convection. In Section 4, the weakly nonlinear theory is developed to explore the effects
of heat and mass transfer. Section 5 presents and discusses the key results, while Section 6 concludes the
paper by summarizing the main findings and their significance.

2 Mathematical model
2.1 The physical domain
We consider viscoelastic binary fluid saturated anisotropic porous layer of depth d, and confined between two
parallel horizontal planes at z = 0 and z = d. A constant magnetic field Hb = Hbk̂ is maintained externally
in the vertical upward direction, and a Cartesian frame of reference is chosen with the origin in the lower
boundary; the horizontal component x and vertical component z increases upwards as shown in Fig. 5.1.
The surfaces are stretched indefinitely in both x and y directions while maintaining a consistent temperature
gradient ∆T and salinity gradient ∆S are maintained across the porous layer. We are assuming that chemical
equilibrium is maintained at the boundaries. We assume that the Oberbeck-Boussinesq approximation is
applied to account for the effect of density variations.
2.2 Governing equations
The modified Darcy law for viscoelastic fluid of the Oldroyd type is used to model the momentum equation
[12]. The balance equations for mass, momentum, and energy can be cast in dimensional form as(

1 + λ1
∂

∂t

)(
ρ0

ε

∂q

∂t
− µm(H.∇)H

)
+

(
1 + λ2

∂

∂t

)
µK−1.q =

(
1 + λ1

∂

∂t

)
(−∇P + ρg) , (2.1)

γ
∂T

∂t
+ q.∇T = ∇(κT∇T ), (2.2)

∂H

∂t
+ q.∇H−H.∇q = Λ∇2H, (2.3)

ε
∂S

∂t
+ (q.∇)S = εκS∇2S + k(Seq(T )− S), (2.4)

∇ · q = 0, (2.5)

∇ ·H = 0. (2.6)

Here q = (u, v, w) is velocity of the fluid, H = (Hx, Hy, Hz) is magnetic field, µm is magnetic permeability,
λ1 is relaxation time, λ2 is retardation time, P is pressure, ρ is fluid density, ε is porosity, T is temperature,
S is solute, κT is thermal diffusivity, κS is solutal diffusivity and k is lumped effect reaction, respectively.
The relation between the reference density, temperature and salinity is given by

ρ = ρ0 [1− βT (T − T0) + βS(S − S0)] . (2.7)
The appropriate boundary conditions for temperature, solute, and magnetic field are:

T = T0 + ∆T at z = 0 and T = T0 at z = d. (2.8)

S = S0 + ∆S at z = 0 and S = S0 at z = d. (2.9)

H× k̂ = 0 at z = 0, d. (2.10)
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2.3 Basic state
Following [23], we have considered the equilibrium solute concentration as a linear function of temperature
i.e. Seq(T ) = S0 + ϕ (T − T0), where ϕ = Sl−Su

Tl−Tu = 4S
4T . The value of ϕ may be positive i.e. the solubility

increases with temperature (i.e. ϕ > 0) or negative i.e. the solubility decreases with temperature (i.e. ϕ < 0).
Here, we have taken the case ( ϕ > 0).
The basic state of the fluid is assumed to be quiescent, and is given by

qb = (0, 0, 0) , P = Pb(z), T = Tb(z), S = Sb(z) = Seq(Tb), ρ = ρb(z), Hb = Hbk̂. (2.11)

Using Eq. (2.11) in Eqs. (2.1)− (2.7) yield

dpb
dz

= −ρbg,
d2Tb
dz2

= 0,
d2Sb
dz2

= 0. (2.12)

ρb = ρ0 [1− βT (Tb − T0) + βS(Sb − S0)] . (2.13)

The basic state solution for temperature and solutal fields are given by

Tb(z) = Tl −∆T
z

d
, Sb(z) = Sl −∆S

z

d
. (2.14)

In the basic state Sb=Seq(Tb). As mentioned above that Seq is linear in T , this allows the existence of
a steady basic state in which the solute is everywhere in chemical equilibrium with the solid matrix and
therefore the vertical flux of solute is constant in space.
2.4 Perturbed state
On the basic state, we superpose a perturbation in the form

q = q′(x, y, z, t), T = Tb(z) + T ′(x, y, z, t), S = Sb(z) + S′(x, y, z, t), P = Pb(z) + P ′(x, y, z, t),

ρ = ρb(z) + ρ′(x, y, z, t),H = Hb + H′(x, y, z, t), (2.15)

where primes indicate perturbations. Introducing Eq. (2.15) in Eqs. (2.1)− (2.6), and using basic state from
Eq. (2.12), we obtain

(
1 + λ1

∂

∂t

)[ρ0

ε

∂q′

∂t
− µmHb

∂H′

∂z
+∇P ′ − ρ0g [T ′βT − S′βS ]

]
+

(
1 + λ2

∂

∂t

)
µK−1 · q′ = 0, (2.16)

γ
∂T ′

∂t
+ (q′ · ∇)T ′ − w′∆T

d
= (η∇2

1 +
∂2

∂z2
)T ′, (2.17)

∂H′

∂t
+ (q′ · ∇) H′ −

(
H′ · ∇

)
q′ −Hb

∂q′

∂z
= Λ∇2H, (2.18)

ε
∂S′

∂t
+ (q′ · ∇)S′ − w′∆S

d
= εκs∇2S′ + k(Seq(T

′)− S′), (2.19)

∇ · q′ = 0, (2.20)

∇ ·H′ = 0. (2.21)

Using the following transformations

(x′, y′, z′) = d(x∗, y∗, z∗), t′ =
d2

κTz
t∗,q′ = (u′, v′, w′) =

εκTz
d

(u∗, v∗, w∗) , P ′ =
µκTz
Kz

P ∗,

λ1 =
d2

κTz
λ∗1, λ2 =

d2

κTz
λ∗2,H

′ = HbH
∗, T

′
= (∆T )T ∗, S

′
= (∆S)S∗, (2.22)

we non-dimensionalized the Eqs. (2.16) − (2.21), and obtained the non-dimensional governing equations
(after dropping the asterisks for simplicity) as

(
1 + λ1

∂

∂t

)[ 1

V a

∂q

∂t
−QPm

∂H

∂z
+
∇P
ε
−RaTT k̂ +RaSSk̂

]
+

(
1 + λ2

∂

∂t

)
qa = 0, (2.23)

γ
∂T

∂t
+ ε(q · ∇)T − εw =

(
η∇2

1 +
∂2

∂z2

)
T, (2.24)

∂S

∂t
+ (q · ∇)S − w =

1

Le
∇2S + χ(T − S), (2.25)

99



1

ε

∂H

∂t
+ (q · ∇) H− (H · ∇) q− ∂q

∂z
= Pm∇2H, (2.26)

with ∇.q =∇.H = 0, where the non-dimensional parameters, V a = εPr
Da is Vadasz number, RaT = βT g∆TKz

νκTz

is Rayleigh number, RaS = βSg∆SKz
νκTz

is solutal Rayleigh number, Q =
µmH

2
bKz

ρ0νΛ is Chandershekhar number,

Pm = λ
κTz

is magnetic Prandtl number, χ = kd2

εκTz
is Damköhler number, Le =

κTz
κs

is Lewis number and

qa =
(

1
ξu,

1
ξ v, w

)
is the anisotropic modified velocity vector. Eliminating the pressure term from Eq. (2.23)

by applying the curl operator twice, we obtain
(

1 + λ1
∂

∂t

)[ 1

V a

∂(∇2q)

∂t
−QPm∇2

(
∂H

∂z

)
− îRaT

∂2T

∂y∂z
− ĵRaT

∂2T

∂x∂z
+ k̂RaT∇2

1T

+îRaS
∂2S

∂y∂z
+ ĵRaS

∂2S

∂x∂z
− k̂RaS∇2

1T
]

+

(
1 + λ2

∂

∂t

)
C = 0, (2.27)

where C = (C1, C2, C3), C1 = 1
ξ
∂2v
∂y∂x + ∂2w

∂x∂z − 1
ξ

(
∂2v
∂y2 + ∂2u

∂z2

)
, C2 = 1

ξ
∂2u
∂x∂y + ∂2w

∂y∂z − 1
ξ

(
∂2v
∂x2 + ∂2v

∂z2

)

C3 = −
(
∇2

1 + 1
ξ
∂2

∂z2

)
w.

The boundaries of the porous medium can be considered as either free or rigid. Although free-free surfaces
are artificial as they cannot be realized in laboratory, but in real situations like geothermal regions, one
cannot avoid the penetration of the fluid into porous medium; so it is appropriate to take free-free surfaces.
Therefore, Eqs. (2.24)-(2.27) are solved for stress-free, isothermal, impermeable boundary conditions

w =
∂2w

∂z2
=
∂Hz

∂z
= T = S = 0 at z = 0, 1. (2.28)

3 Linear Stability Analysis
Taking vertical component and eliminating non-linear terms from Eqs. (2.24)-(2.27), we get linear form as:
(

1 + λ1
∂

∂t

)[ 1

V a

∂(∇2w)

∂t
−QPm∇2 ∂Hz

∂z
−RaT∇2

1T +RaS∇2
1S
]

+

(
1 + λ2

∂

∂t

)(
∇2

1 +
1

ξ

∂2

∂z2

)
w = 0,(3.1)

(
γ
∂

∂t
− η∇2

1 −
d2

dz2

)
T − wε = 0, (3.2)

(
∂

∂t
− 1

Le
∇2 + χ

)
S − χT − w = 0, (3.3)

(
1

ε

∂

∂t
− Pm∇2

)
Hz =

∂w

∂z
. (3.4)

Combining Eqs. (3.1) and (3.4), we get
(

1 + λ1
∂

∂t

)[ 1

V a

(
1

ε

∂

∂t
− Pm∇2

)
∂(∇2w)

∂t
−QPm∇2 ∂

2w

∂z2

]
−
(

1

ε

∂

∂t
− Pm∇2

)
(RaT∇2

1T −

RaS∇2
1S) +

(
1 + λ2

∂

∂t

)(
1

ε

∂

∂t
− Pm∇2

)(
∇2

1 +
1

ε

∂2

∂z2

)
w = 0. (3.5)

We seek a normal mode technique for the linear stability of the basic flow, which is of the form;


w
T
S


 =




W (z)
Θ (z)
Φ (z)


 ei(lx+my)+σt, (3.6)

where l and m are horizontal wave numbers and σ(a complex quantity) is the growth rate. W , Θ and Φ are
the amplitudes of the stream function, temperature, and concentration field, respectively. Substituting Eq.
(3.6) in Eqs. (3.5), (3.3), and (3.4), we get

[ σ
V a

(D2 − a2)− QPm(D2 − a2)D2

σ
ε − Pm(D2 − a2)

+
(1 + σλ2)

(1 + σλ1)

(
D2

ξ
− a2

)]
W +RaTa

2Θ−RaSa2Φ = 0, (3.7)

−εW + (γσ + ηa2 −D2)Θ = 0, (3.8)
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−W − χΘ +

(
σ − (D2 − a2)

Le
+ χ

)
Φ = 0, (3.9)

where D= d
dz and a2=l2 +m2. The corresponding boundary condition (2.28) will be of the form:

W = D2W = Θ = Φ = 0 at z = 0, 1, (3.10)

We consider the solution of Eqs. (3.7)(3.9) that satisfies the boundary conditions corresponding to the
free-free case.

[W (z),Θ(z),Φ(z)] = [W0,Θ0,Φ0] sin(nπz), (n = 1, 2, 3, ...). (3.11)

Substituting Eq. (3.11) into Eqs. (3.7)-(3.9), we obtain a matrix equation considering n = 1



σδ2

V a + QPmδ
2π2

σ
ε +Pmδ2

+ (1+λ2σ)
(1+λ1σ)δ

2
1 −a2RaT a2RaS

−ε γσ + δ2
2 0

−1 −χ σ + δ2
3 + χ






W0

Θ0

Φ0


 =




0
0
0


 . (3.12)

where δ2 = a2 + π2, δ2
1 = a2 + π2

ξ , δ2
2 = ηa2 + π2 and δ2

3 = δ2

Le .
For non-trivial solution of W , Θ and Φ, we need to make the determinant of the above matrix as zero, we
get

RaT =
RaS(εχ+ δ2

2 + γσ)

ε(σ + δ2
3 + χ)

+

(
γσ + δ2

2

εa2

)[
σδ2

V a
+
QPmδ

2π2

σ
ε + Pmδ2

+
(1 + λ2σ)

(1 + λ1σ)
δ2
1

]
. (3.13)

3.1 Stationary state
For the direct bifurcation (i.e., steady onset), we have σ = 0 at the the margin of stability. Then, the
Rayleigh number at which marginally stable steady mode exists, becomes

RastT =

(
Qπ2

εa2
+

δ2
1

εa2

)
δ2
2 +RaS

εχ+ δ2
2

ε(δ2
3 + χ)

. (3.14)

In the absence of Q = 0 the Eq. (3.14) reduces to

RastT =
δ2
1δ

2
2

εa2
+RaS

εχ+ δ2
2

ε(δ2
3 + χ)

. (3.15)

For the case of single component fluid saturated anisotropic porous media i.e. when RaS = 0, Eq. (3.15)
reduces to

RastT =
π2

a2
(ηa2 + 1)

(
a2 +

1

ξ

)
. (3.16)

Eq. (3.16) con-sides with that of Storesletten [36]. Further if porous media is isotropic in mechanical and
thermal properties, i.e. η=ξ = 1, then Eq. (3.16) becomes

RastT =
π2
(
a2 + 1

)2

a2
, (3.17)

which has the critical value RastT,c = 4π2 for ac = π, as obtained by Horton and Rogers [10] and Lapwood
[16].
3.2 Oscillatory motion
The growth rate σ is in general a complex quantity such that σ = σr + iω. The system with σr < 0 is always
stable, while for σr > 0 it will become unstable. For neutral stability state σr = 0 .
We put σ = iω(ω is real) in Eq. (3.13) and obtain

RaT = Π1 + (iω) Π2. (3.18)

The expression for Π1 is given by
Π1 = D1 +D2 +D3 +D4,

where D1 =
RaS(δ23εχ+Qχ2+δ22δ

2
3+χδ22−ω

2γ)
ε((δ2+χ)2+ω2) , D2 = − ω2δ2γ

εV aa2 , D3 =
QP 2

mεπ
2δ4γ−δ22QPmπ

2δ2

ε2P 2
mδ

4a2+ω2a2 ,

D4 =
δ21δ

2
2ω

2λ1λ2+δ22δ
2
3−ω

2δ21γ(λ2−λ1)

εa2(1+ω2λ2
1)

.

Since RaT is a physical quantity, it must be real. Hence, from Eq. (3.18) it follows that either ω = 0 (steady
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onset) or Π2 = 0 (ω 6= 0, oscillatory onset). For oscillatory onset Π2 = 0(ω 6= 0) and this gives a dispersion
relation of the form

G1

(
ω2
)3

+G2

(
ω2
)2

+G3

(
ω2
)

+G4 = 0, (3.19)

where the constants G1 = M1M7εa
2 + M5εa

2, G2 = M1M3M7ε + M1M6εa
2 + M1M7M9a

2 + M2M7ε +
M5M9a

2+M4εa
2+M3M5ε+M7M8a

2, G3 = M1M3M6ε+M1M3M7M9+M1M6M9a
2+M2M6ε+M2M7M9+

M4M9a
2 +M3M5M9 +M3M4ε+M6M8a

2andG4 = M1M3M6M9 +M2M6M9 +M3M4M9 +M3M6M8

Now Eq. (3.18) with Π2 = 0, gives oscillatory Rayleigh number RaoscT at the margin of stability as

RaoscT = Π1. (3.20)

Also for the oscillatory convection to occur, ω2 must be positive. The symbols M1,M2,
M3,M4,M5,M6,M7,M8,M9 and Π2 are defined below in Appendix-I.

Appendix-I

M1 =
δ2δ22
εa2V a , M2 = QP 2

mεπ
2δ4γ − δ2

2QPmπ
2δ2, M3 = a2ε2P 2

mδ
4, M4 = δ2

1δ
2
2(λ2 − λ1) + γδ2

1 , M5 = δ2
1δ1δ2γ,

M6 = εa2, M7 = εa2λ2
1, M8 = −RaS(γδ2

3 +γχ+δ2
2 +Qχ), M9 = ε(δ2

3 +χ)2, Π2 = M1+ M2

M3+a2ω2 +M4+M5ω2

M6+M7ω2 +
M8

M9+εω2 .

4 A weak nonlinear theory
In this section, we consider the nonlinear analysis using a truncated representation of Fourier series
considering two terms. Although the linear stability analysis is sufficient for obtaining the stability condition
of the motionless solution and the corresponding eigen-functions describing qualitatively the convective flow,
it cannot provide information about the values of the convection amplitudes, nor regarding the rate of heat
and mass transfer. In order to obtain this additional information, we perform the non-linear analysis, which
is useful to understand the physical mechanism with minimum amount of mathematical analysis and is a
step forward toward understanding full non-linear problem.
Introducing stream function ψ and φ as u = ∂ψ

∂z , w = −∂ψ∂x and Hx = ∂φ
∂z , Hz = −∂φ∂x into vertical component

of Eqs. (2.24)-(2.27), we obtain
(

1 + λ1
∂

∂t

)[ 1

V a

∂

∂t

(
∂2

∂x2
+

∂2

∂z2

)
ψ −QPm

∂

∂z

(
∂2

∂x2
+

∂2

∂z2

)
φ+RaT

∂T

∂x
RaS

∂S

∂x

]

+

(
1 + λ2

∂

∂t

)(
∂2

∂x2
+

1

ξ

∂2

∂z2

)
ψ = 0, (4.1)

ε
∂ψ

∂x
+

(
γ
∂

∂t
− η ∂

2

∂x2
− ∂2

∂z2

)
T − ε∂ (ψ, T )

∂ (x, z)
= 0, (4.2)

∂ψ

∂x
+

(
∂

∂t
− 1

Le

(
∂2

∂x2
+

∂2

∂z2

)
+ χ

)
S − χT − ∂(ψ, S)

∂(x, z)
= 0, (4.3)

1

ε

∂φ

∂t
− ∂ (ψ, φ)

∂ (x, z)
− ∂ψ

∂z
− Pm

(
∂2

∂x2
+

∂2

∂z2

)
φ = 0. (4.4)

A minimal double Fourier series which describes the finite amplitude steady-state convection is given by

ψ = A1(t) sin(πax) sin (πz) , (4.5)

T = B1 (t) cos (πax) sin (πz) +B2 (t) sin (2πz) , (4.6)

S = C1 (t) cos (πax) sin (πz) + C2 (t) sin (2πz) , (4.7)

φ = D1(t) sin (πax) cos (πz) +D2(t) sin (2πax) , (4.8)

where the amplitudes A1(t), B1(t), B2(t), C1(t), C2(t), D1(t) and D2(t) are to be determined from the
dynamics of the system. Substituting Eqs. (4.5) − (4.8) into Eqs. (4.1)-(4.4) and equating the coefficients
of like terms, we obtain the following non-linear autonomous system of differential equations

M ′1λ1
dE1

dt
= F1E1 + F2A1 + F3B1 + F4C1 + F5D1 + F6A1B2 + F7A1C2 + F8A1D2, (4.9)

dA1

dt
= E1, (4.10)
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dB1

dt
= −

(
πεa

γ

)
A1 −

(
η(π2a2 + π2)

γ

)
B1 −

2πεa

γ
A1B2, (4.11)

dB2

dt
= −

(
4π2

γ

)
B2 +

επ2a

2γ
A1B1, (4.12)

dC1

dt
= χB1 − 2π2aA1C2 −

(
π2a2 + π2

Le
+ χ

)
C1 − πaA1, (4.13)

dC2

dt
= −

(
4π2

Le
+ χ

)
C2 +

(
π2a

2

)
A1C1 + χB2, (4.14)

dD1

dt
= −εPm

(
π2a2 + π2

)
D1 + επ2aA1D2 + πεA1, (4.15)

dD2

dt
= −4εPmπ

2a2D2 −
επ2a

2
A1D1, (4.16)

where, M ′1 =
(
π2a2+π2

V a

)
, F1 = −

(
π2a2+π2

V a

)
−
(
π2

ξ + π2a2
)
λ2, F2 = −π2ε2λ1QPm(π2a2 + π2) −

(
π2

ξ + π2a2
)

+ επ2a2λ1RaT
γ − π2a2λ1RaS , F3 = −πaRaT + η(π2a2+π2)λ1πaRaT

γ + χλ1πaRaS , F4 = πaRaS −
πaλ1RaS

(
π2a2+π2

Le + χ
)

, F5 = P 2
mεQπλ1(π2a2 + π2)2 − QPmπ(π2a2 + π2), F6 = 2π2a2εRaTλ1

γ , F7 =

−2π3a2λ1RaS , F8 = −QPmπ3aελ1(π2a2 + π2).
Qualitative predictions of above autonomous differential equations are discussed and stated as. Eqs.
(4.9) − (4.16) represent a system which is uniformly bounded in time and possesses many properties of
the full problem. They are same as the original Eqs. (2.16)− (2.21), and therefore Eqs. (4.9)− (4.16) must
be dissipative. This shows that volume in the phase space must contract. For proving this statement that,
the volume contraction, it is necessary to show that velocity field has a constant negative divergence. Indeed,

∇.V =
∂Ȧ1

∂A1
+
∂Ḃ1

∂B1
+
∂Ḃ2

∂B2
+
∂Ċ1

∂C1
+
∂Ċ2

∂C2
+
∂Ḋ1

∂D1
+
∂Ḋ2

∂D2
+
∂Ė1

∂E1

= −
[ηP1

γ
+

4π2

γ
+ P3 + P4 + εPmP1 + 4εPmπ

2a2 +
1

λ1
+
P2λ2V a

P1λ1

]
, (4.17)

where, P1 = π2a2 + π2;P2 =
(
π2

ξ + π2a2
)

;P3 =
(
π2a2+π2

Le + χ
)

;P4 =
(

4π2

Le + χ
)

.

Here dot represent a time derivative. All physical parameter used in above expression inside the square
bracket is non-negative therefore overall right hand quantity is negative and therefore system is bounded
and dissipative. So the trajectories are attracted to a set of measure zero in the phase space, or anyone say
that they may be attracted to a fixed point, a limit cycle or, a strange attractor.
4.1 Heat and mass transports
It is known fact that for higher value of Rayleigh number the onset of convection is generally governed by
heat and mass transfer within system. Consequently, here we are defining the Nusselt number and Sherwood
number( following Srivastava and Bera [32]) as below The Nusselt number and Sherwood number is defined
by,

Nu =
h

κTz∆T/d
= (1− 2πB2), (4.18)

Sh =
J

κS∆S/d
= (1− 2πC2) , (4.19)

where B2, C2 are found in terms of A1. Calculating B2 and C2, in the steady case, which is independent of
viscoelastic parameters, so complete calculation is not given in this paper.

5 Result and Discussion
Using linear and weakly non-linear theory of stability analysis, we have trying to draw a sketch that how
magnetic field and temperature-dependent mineral solubility (i.e. chemical reaction) affects the onset of
thermal convection in viscoelastic fluid saturated porous medium. The porous medium is assumed to be
both hydro-dynamically and thermally anisotropic. Expressions for the stationary and oscillatory Rayleigh
numbers are obtained in terms of the non-dimensional parameters Q, λ1, λ2, χ, and RaS in linear stability
theory. The non-linear theory, which is based on the Fourier series minimal representation, quantifies heat
and mass transports and explains the possibility of finite amplitude motions.
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5.1 Linear Stability Analysis
Linear stability analysis is divided into two subsections: The first part is dedicated to a comparative study
of stationary and oscillatory cases for different values of χ, and in the second part, we focus on oscillatory
cases for the F/F boundary conditions.
5.1.1 Comparison Between Stationary (limiting case) and Oscillatory Convection
The impact of the chemical reaction parameter (χ) on the evolution of the stationary (limiting case-absence
of viscoelastic behavior) and oscillatory neutral stability curves for Le = 100, V a = 100, RaS = 50, Pm = 0.4,
λ1 = 0.8, λ2 = 0.4, ξ = 1.5, η = 0.3, φ = 0.4, γ = 1.0 and Q = 10 is depicted in Figures 5.3 (a)(b). It
is found that a single critical Rayleigh number is sufficient to fully indicate the instability of the system
and that the oscillatory neutral curve is beneath the stationary neutral curve. Additionally, these figures
demonstrate that when χ increases, the minimum of the critical Rayleigh number falls, indicating that χ
advances the beginning of both stationary and oscillatory convection. This can be explained with a quick
glance at the solute equation, which now includes an extra reaction term. The solute concentration of a
displaced fluid particle will shift and swiftly equilibrate with the surrounding fluid as a result of raising the
value of chemical processes. Thus, it diminishes and finally removes the energy source needed for oscillatory
and stationary instability to start.
5.1.2 Oscillatory Convection
An attempt is made to present comparative stability criteria for Maxwell and Oldroyd B -fluids through
Table 5.1 and Table 5.2. The critical Rayleigh number and critical frequency are calculated for various
values of Chandrashekhar number Q in the absence and presence of Damköhler number (χ) in Table 5.1 and
Table 5.2 for the oscillatory state. RaTC is observed to be positive or negative for the considered governing
parameters, indicating a stabilizing or destabilizing influence on the viscoelastic fluid-saturated porous layer.
In the case of Oldroyd-B fluids, the Chandrashekhar number can either stabilize or destabilize the porous
layer. For Maxwell fluids, the porous layer is always destabilizing.
Figs.5.3(a)-(b) illustrate how the critical Rayleigh number varies with relaxation parameter (λ1) in the
(λ2, RaT ) and (a, RaT ) planes, respectively. It is observed that with an increase in the value of relaxation
parameter (λ1), the critical oscillatory Rayleigh number decreases. Additionally, it is clear from Figure 5.3(a)
that, compared to its absence, the values of RaT are lower when the Damköhler number (χ) is present.
Increasing the relaxation and retardation parameters results in a faster and slower commencement of
oscillatory convection, respectively. It can be seen from Fig. 5.3(b) that for the same values of the relaxation
parameter and fixed values of the other parameters chosen for this figure, the curves corresponding to the
anisotropic case lie below the curves corresponding to the isotropic case.
Figs. 5.4(a)–(c) depict neutral curves for various controlling parameters in (a,RaT ) plane for oscillatory
convection. Fig. 5.4(a) depicts the influence of Chandrashekhar number (Q) on the stability of the system.
The minimum of the Rayleigh number increases when, Q is increased, suggesting that increasing the value
of Q, amplifies the stability of the system. This can be explained as, when the magnetic field strength
permeating the medium is considerably strong, it induces viscosity into the fluid, and the magnetic lines
are distorted by convection. Then these magnetic lines hinder the growth of disturbances, leading to the
delay in the onset of instability. From this figure, it is also seen that for the same values of the Q and fixed
values of the other parameters, the curves corresponding to the anisotropic case lie above the curves to the

isotropic case. It can be understood by the fact that Chandrasekhar number (Q=
(
µmH

2
bKz

ρ0νΛ

)
) is inversely

proportional to thermal diffusivity. A decrease in thermal diffusivity implies an increase in buoyancy, which
implies an increase in the Rayleigh number. Furthermore, we discover that as, Q increases, the minimum
Rayleigh number shifts toward larger wave number values, indicating that the cell width decreases.
The effect of the retardation parameter (λ2) on the stability is shown in Fig. 5.4(b). The minimum of the
Rayleigh number increases when the retardation parameter λ2 is increased, suggesting that increasing λ2

amplifies the stability of the system. The behaviour of viscoelastic parameter is evident and similar to that
reported by [13].
In Fig. 5.4(c), the effect of Damköhler number (χ) on the oscillatory Rayleigh number is demonstrated.
The minimum of the Rayleigh number decreases as χ increases, indicating that χ, advances the onset

of oscillatory convection. The physics behind this behaviour, is that increasing the value of χ=
(
kd2

εκTz

)

increases the chemical reaction rate, and because of that, the Rayleigh number decreases. It is also observed
that for the same values of χ and fixed values of the other parameters chosen, the curves corresponding to
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the anisotropic case lie above the curves corresponding to the isotropic case.
5.2 Weakly Nonlinear Stability Analysis
5.2.1 Unsteady Case
The transient behaviour of heat and mass transfer is investigated numerically by solving an autonomous
system of differential equations using the RungeKutta method with appropriate initial conditions. The
Nusselt and Sherwood numbers are then calculated as a function of time.
The Figs. 5.4(a) − (d), Table 5.3 and Figs. 5.4 (a1)-(d1), Table 5.3, show the response of the time t
corresponding to the Nusselt number (Nu) and Sherwood number (Sh) by varying in one of the parameters,
while the others are held constant at their respective values: Q = 20.0, λ1 = 0.8, λ2 = 0.3, χ = 0.7, ξ = 1.5,
η = 0.5, γ = 0.5, Pm = 0.4, Rat = 1000, RaS = 10.0, V a = 100.0 and Le = 10. The figures show that the
initial value of the Nusselt number (Nu) is 1 at t = 0. It rises and oscillates at an intermediate value of time
t, then becomes nearly constant and approaches the steady state with increasing value of time. The effects
of various parameters on the Nu and Sh in the unsteady case are found to be identical to those in the linear
stability analysis.
Table 5.4 and Table 5.6 illustrate the variation in Nusselt and Sherwood numbers for Maxwell, Oldroyd-
B, and Rivlin-Ericksen fluids for different values of Chandrashekhar number Q, both in the presence and
absence of Damköhler number (χ). We can infer from these tables that, in the case of Oldroyd-B fluid, there
is higher mass and heat transport, respectively. Additionally, in increasing order variation of Nu and Sh is
as follows:
(Nu)Oldroyd−B > (Nu)Maxwell > (Nu)Rivlin−Ericksen,
(Sh)Oldroyd−B > (Sh)Maxwell > (Sh)Rivlin−Ericksen.
Figs. 5.6 − 5.9 are drawn to explain how the pattern of streamlines, isotherms, isohalines, and magnetic
streamlines changes for unsteady cases over various short times (0.01,0.006, 0.001). The streamlines pattern
is shown in Figs. 5.6(a)− (c) for various times. It is shown from the figure that, how streamlines do not have
contours for a short period of time before developing as the passage of time does. The spread of streamlines
with time also shows an improvement in convection. The isotherms are shown in Figs. 5.7(a) − (c) for
various times. These figures make it quite evident that as time goes on, the convection state manifests
itself as a contour. Figs. 5.8(a)− (c) displays the isohalines for various time periods. These figures exhibit
isothermal behaviour. The magnetic streamlines for the unsteady case are displayed at various times in Figs.
5.9(a)− (c).

Table 5.1: Comparisons between critical frequency and critical Rayleigh numbers for viscoelastic fluids for
different values of Chandrashekhar number Q when χ = 0.

oscillatory onset
Maxwell fluid (λ1 = 2, λ2 = 0) OldroydB fluid (λ1 = 2, λ2 = 1)
Q ωc RaTC Q ωc RaTC
0 42.8275 -250.0138 0 20.1725 -120.1958
5 49.5483 -237.7710 5 23.4025 -72.8240

10 55.3606 -225.7247 10 26.2380 -26.3292
20 65.7084 -201.8833 20 31.1440 65.4473
30 74.5609 -178.1899 30 35.3761 156.77
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Table 5.2: Comparisons between critical frequency and critical Rayleigh numbers for viscoelastic fluids for
different values of Chandrashekhar number Q when χ = 0.7.

oscillatory onset
Maxwell fluid (λ1 = 2, λ2 = 0) OldroydB fluid (λ1 = 2, λ2 = 1)
Q ωc RaTC Q ωc RaTC
0 44.0747 -256.9995 0 20.7619 -119.3270
5 55.7516 -283.0433 5 26.3708 -82.0305

10 65.3749 -309.1726 10 30.9794 -45.1103
20 81.2718 -361.5081 20 38.5784 28.3950
30 94.5321 -413.8788 30 44.9093 101.7442

Table 5.3: Variation of thermal Nusselt number with time t for different value of χ.

t Nu
χ = 0.7 χ = 7.0 χ = 70.0 χ = 700.0

0.002 1.00126 1.00126 1.00126 1.00126
0.008 1.03809 1.03809 1.03811 1.0382
0.014 1.39453 1.39462 1.39539 1.39823
0.02 3.57866 3.57918 3.58364 3.59891

0.026 4.82665 4.82642 4.82441 4.8176
0.032 3.33017 3.33012 3.32985 3.33129
0.038 3.88244 3.88307 3.88874 3.91082
0.044 4.19711 4.19686 4.19467 4.185
0.05 3.77111 3.77107 3.77082 3.77166

0.056 3.92736 3.92778 3.93158 3.94684
0.062 4.00189 4.00182 4.00138 3.99891
0.068 3.89735 3.89739 3.89772 3.89998
0.074 3.93049 3.93071 3.93273 3.94098
0.08 3.94254 3.94257 3.94296 3.94429

Table 5.4: Variation of thermal Sherwood number with time t for different value of χ.

t Sh
χ = 0.7 χ = 7.0 χ = 70.0 χ = 700.0

0.002 1.0001 1.0001 1.0001 1.0001
0.008 1.00378 1.00378 1.00378 1.00379
0.014 1.04389 1.0439 1.04399 1.04429
0.02 1.34375 1.34383 1.34452 1.3469

0.026 1.93063 1.93068 1.93104 1.93181
0.032 1.80913 1.80907 1.80853 1.80703
0.038 1.49082 1.49071 1.4897 1.48622
0.044 1.45057 1.45063 1.45115 1.45315
0.05 1.62115 1.62128 1.62261 1.6277

0.056 1.69147 1.69151 1.69184 1.69312
0.062 1.62667 1.62656 1.62548 1.62104
0.068 1.55461 1.55455 1.55391 1.55146
0.074 1.56729 1.56737 1.56812 1.57146
0.08 1.61536 1.61544 1.61632 1.61985
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Table 5.5: Comparisons between Nusselt and Sherwood numbers for viscoelastic fluids for different values
of Chandrashekhar number Q when χ = 0.

Maxwell fluid OldroydB fluid Rivlin-Ericksen fluid
Q Nu Sh Q Nu Sh Q Nu Sh
0 1.5814 2.6125 0 1.7428 2.8015 0 1.4621 2.3012
5 1.5911 2.6232 5 1.7599 2.8111 5 1.4761 2.3196

10 1.6082 2.6410 10 1.7628 2.9015 10 1.4888 2.3368
20 1.6321 2.6696 20 1.7795 2.9368 20 1.4967 2.5616
30 1.6596 2.6789 30 1.7901 2.9594 30 1.5628 2.5981

Table 5.6: Comparisons between Nusselt and Sherwood numbers for viscoelastic fluids for different values
of Chandrashekhar number Q when χ = 0.7.

Maxwell fluid OldroydB fluid Rivlin-Ericksen fluid
Q Nu Sh Q Nu Sh Q Nu Sh
0 1.3422 2.1159 0 1.4865 2.3980 0 1.2631 2.0065
5 1.3956 2.1369 5 1.4899 2.4678 5 1.2798 2.0196

10 1.5623 2.2617 10 1.5627 2.4955 10 1.2859 2.0280
20 1.7864 2.3498 20 1.5906 2.5849 20 1.2911 2.0308
30 1.8976 2.5321 30 1.6521 2.5997 30 1.3125 2.0397

T=T0     

T=T0+DT     

g

z

x

Anisotropic porous medium filled with 
viscoelastic binary fluid external
magnetic force

z=d

z=0

Vertical imposed magnetic field

Figure 5.1: Schematic of the problem considered.
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Figure 5.2: Oscillatory and Stationary Neutral stability curves for different values of χ on (a,RaT ) plane
for (a) Oscillatory convection, (b) Stationary convection.
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Figure 5.3: Oscillatory neutral stability curves for different values of (λ1) on (a) (λ2,RaT ) plane, (b)
comparative study in isotropic and anisotropic cases (a, RaT ) plane.
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Figure 5.4: Oscillatory neutral stability curves for different values of (a) Chandrashekhar number (Q), (b)
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Figure 5.5: Variation of Nusselt number (Nu) and Sherwood number (Sh) with time (t) for different values
of (a) Q, (b) λ1, (c) λ2, (d) RaS on (t,Nu) plane and (a1) Q, (b1) λ1, (c1) λ2, (d1) RaS on (t, Sh) plane.
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Figure 5.6: Unsteady streamlines for different small time (a)t = 0.01, (b) t = 0.006, (c) t = 0.001.
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Figure 5.7: Unsteady isotherms for different small time (a)t = 0.01, (b) t = 0.006, (c) t = 0.001.
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Figure 5.8: Unsteady isohalines for different small time (a)t = 0.01, (b) t = 0.006, (c) t = 0.001.
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Figure 5.9: Unsteady magnetic streamlines for different small time (a)t = 0.01, (b) t = 0.006, (c) t = 0.001.

6 Conclusion
Using linear and weakly non-linear stability analyses, we attempted to investigate the effect of the chemical
reaction on magneto-convection in viscoelastic fluid saturated anisotropic porous medium. For stationary
and oscillatory convection, the onset criterion has been calculated analytically. The following conclusions
are drawn:

1. It is obvious that RaoscT < RastT .
2. The Chandrashekhar number (Q) in Oldroyd-B fluids has the potential to either stabilize or destabilize

the porous layer for oscillatory convection. The porous layer is always destabilizing for Maxwell fluids.
3. The effect of increasing Q and λ2 is found to delay the onset of oscillatory convection.
4. On increasing the value of λ1 and χ, the value of the Rayleigh number corresponding to oscillatory

convection decreases, thus it advances the onset of convection.
5. These results are also verified by studying the effect of different controlling parameters on heat and

mass transfer.
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