

Jñānābha, Vol. 55(2) (2025), 90-95

**FIXED POINTS THEOREMS USING SPECIAL TYPES OF CONTRACTIONS IN
MULTIPLICATIVE METRIC SPACES**

Parmila Kumari¹, Parveen Kumar^{2*}, Rajesh Kumar³ and Satish Kumar⁴

¹Department of Mathematics, Chhotu Ram Arya College Sonipat, Haryana, India-131001

²Department of Mathematics, Tau Devi Lal Government College for Women, Murthal Sonipat, Haryana, India-131027

³Department of Mathematics, BPSIHL, BPS Mahila Vishwavidyalaya Khanpur Kalan, Sonipat, Haryana, India-131305

⁴Department of Mathematics, GCW Sampla, Haryana, India-124501

Email: Kparmila778@gmail.com, parveenkarwal21@gmail.com, rkdubaldhania@gmail.com, kumarged@gmail.com *Corresponding Author

(Received: April 20, 2024; In format: May 14, 2024; Revised: October 09, 2025;

Accepted: October 10, 2025)

DOI: <https://doi.org/10.58250/jnanabha.2025.55211>

Abstract

In this work, we construct fixed point theorems utilizing the extendibility of the Banach iteration approach to specific special contraction mappings with changes in domains has been studied. More precisely, we study an expanding sequence of subsets of a complete multiplicative metric space such that one item of the sequence is mapped into the next member by a map such that a contraction condition is fulfilled. Additionally, multiple fixed point findings are derived for different multiplicative contraction maps with multiplicative closed graphs.

2020 Mathematical Sciences Classification: 47H10, 54H25

Keywords and Phrases: Multiplicative metric spaces, Multiplicative closed graphs, Iteration technique.

1 Introduction and Preliminaries

Kirk *et al.* [8] proposed using a cycle of domains to develop distinct fixed point theorems for metric spaces. A metric space (Ω, Θ) including progressively more subsets $\Omega_1 \subseteq \Omega_2 \subseteq \dots$ and a map $\Delta : \Omega \rightarrow \Omega$ that meets a contraction requirement, such that $\Delta(\Omega_i) \subseteq \Omega_{i+1}, \forall i$, and $\Omega = \bigcup_{j=1}^{\infty} \Omega_j$ were investigated by Moorthy and Raj in [9]. Furthermore, some works [15, 17] broaden the fixed point conclusions of [9]. The set of positive real numbers \mathbb{R}^+ is incomplete in standard metrics. In order to overcome this challenge, multiplicative metric spaces were first proposed in the following way by Bashirov *et al.* [2] in 2008.

Definition 1.1 ([2, 13]). *Given a function Θ and a non-empty set Ω , let $\Theta : \Omega \times \Omega \rightarrow \mathbb{R}^+$ completing the requirements listed below:*

- (i) $\Theta(\zeta, \eta) \geq 1$ for all $\zeta, \eta \in \Omega$ and $\Theta(\zeta, \eta) = 1$ if and only if $\zeta = \eta$;
- (ii) $\Theta(\zeta, \eta) = \Theta(\eta, \zeta)$ for all $\zeta, \eta \in \Omega$;
- (iii) $\Theta(\zeta, \eta) \leq \Theta(\zeta, z) \cdot \Theta(z, \eta)$ for all $\zeta, \eta, z \in \Omega$ (multiplicative triangle inequality).

Θ is called a multiplicative metric on Ω and (Ω, Θ) is a multiplicative metric space.

Example 1.1 ([10]). Suppose \mathbb{R}^{n+} be the collection of all n -tuples of positive real numbers. Suppose $\Theta^* : \mathbb{R}^n \times \mathbb{R}^n \rightarrow \mathbb{R}$ be defined as follows:

$$\Theta^*(\zeta, \eta) = \left(\left| \frac{\zeta_1}{\eta_1} \right|^* \cdot \left| \frac{\zeta_2}{\eta_2} \right|^* \cdots \left| \frac{\zeta_n}{\eta_n} \right|^* \right),$$

where $\zeta = (\zeta_1, \dots, \zeta_n), \eta = (\eta_1, \dots, \eta_n) \in \mathbb{R}^{n+}$ and $\|\cdot\| : \mathbb{R}_+ \rightarrow \mathbb{R}_+$ is defined by

$$|a|^* = \begin{cases} a & \text{if } a \geq 1 \\ \frac{1}{a} & \text{if } a < 1 \end{cases}.$$

This makes it clear that the multiplicative metric's constraints are all fulfilled.

Example 1.2 ([14]). Suppose $\Theta : \mathbb{R} \times \mathbb{R} \rightarrow [1, \infty)$ be defined as $\Theta(\zeta, \eta) = a^{|\zeta - \eta|}$, where $\zeta, \eta \in \mathbb{R}$ and $a > 1$. Then $\Theta(\zeta, \eta)$ is referred to as a multiplicative metric space, and (Ω, Θ) is a multiplicative metric. These may be referred to as the usual multiplicative metric spaces.

Example 1.3 ([14]). Suppose (Ω, Θ) be a multiplicative metric space. Define a mapping Θ_a on Ω by $\Theta_a(\zeta, \eta) = a^{\Theta(\zeta, \eta)}$, where $a > 1$ is a real number and

$$\Theta_a(\zeta, y) = a^{\Theta(\zeta, y)} = \begin{cases} 1 & \text{if } \zeta = y \\ a & \text{if } \zeta \neq y. \end{cases} \quad \text{When } \Omega \text{ and } \Theta_a \text{ are combined then } \Theta_a(\zeta, \eta) \text{ becomes a discrete multiplicative metric space.}$$

Example 1.4 ([1]). Assume that all real-valued multiplicative continuous functions over $[a, b] \subseteq \mathbb{R}^+$ are collected in $\Omega = C^*[a, b]$. Then, for each $f, g \in \Omega$, $\Theta(f, g) = \sup_{x \in [a, b]} \left| \frac{f(x)}{g(x)} \right|$ is a multiplicative metric space with Θ specified. For a thorough explanation of multiplicative metric topology, see ([10]).

Definition 1.2 ([2]). Let (Ω, Θ) be a metric space that is multiplicative. A sequence $\{\zeta_n\}$ in Ω is said to be a (i) multiplicative convergent sequence to ζ , if, for any multiplicative open ball

$B_\epsilon(\zeta) = \{\eta \mid \Theta(\zeta, \eta) < \epsilon\}$, $\epsilon > 1$, there exists a natural number N such that $\zeta_n \in B_\epsilon(\zeta)$ for all $n \geq N$, i. e., $\Theta(\zeta_n, \zeta) \rightarrow 1$ as $n \rightarrow \infty$.

(ii) multiplicative Cauchy sequence if for all $\epsilon > 1$, there exists $N \in \mathbb{N}$ such that

$\Theta(\zeta_n, \zeta_m) < \epsilon$ for all $m, n > N$ i. e., $\Theta(\zeta_n, \zeta_m) \rightarrow 1$ as $n \rightarrow \infty$.

(iii) If all multiplicative Cauchy sequences in Ω are multiplicatively convergent to $\zeta \in \Omega$, then Ω is the complete multiplicative metric spaces.

The notion of multiplicative contraction mapping was introduced and various fixed point theorems for these mappings in complete multiplicative metric spaces were shown by Ozavsar [10] in 2012.

Definition 1.3 ([8]). Suppose (Ω, Θ) be a multiplicative metric space. The map $f : \Omega \rightarrow \Omega$ is called a multiplicative contraction if there exists a real constant $\lambda \in [0, 1)$ such that

$$\Theta(f(\zeta_1), f(\zeta_2)) \leq \Theta(\zeta_1, \zeta_2)^\lambda \text{ for all } \zeta, \eta \in \Omega.$$

Definition 1.4 ([10]). Suppose that $\Delta : (\Omega, \Theta, s) \rightarrow (\Omega, \Theta, s)$ is a self-mapping on a b- multiplicative metric space (Ω, Θ, s) . If whenever $\kappa_n \rightarrow \kappa_0$ and $\Delta\kappa_n \rightarrow \iota_0$ for some sequence $\{\kappa_n\}$ in Ω and some κ_0, ι_0 in Ω , we have $\iota_0 = \Delta\kappa_0$, then Δ is said to have a multiplicative closed graph.

2 Main Results

Theorem 2.1. Let (Ω, Θ) be a complete multiplicative metric space and suppose that the multiplicative closed graph of $\Delta : \Omega \rightarrow \Omega$ exists. Let $\Omega_1 \subseteq \Omega_2 \subseteq \dots$ be subsets of Ω such that $\Omega = \bigcup_{j=1}^{\infty} \Omega_j$, $\Delta(\Omega_i) \subseteq \Omega_{i+1}$, for all i , and

$$\Theta(\Delta\kappa, \Delta z) \leq \Theta(\kappa, z)^{a_i} \cdot (\Theta(\Delta z, t))^{b_i} \cdot (\Theta(\Delta\kappa, z))^{c_i} \cdot (\Theta(\Delta z, z))^{d_i} \cdot \left[\frac{\Theta(z, \Delta z) \Theta(\kappa, \Delta\kappa)}{\Theta(\kappa, z)} \right]^{e_i} \cdot \left[\frac{\Theta(z, \Delta\kappa) \Theta(\kappa, \Delta\kappa)}{\Theta(\kappa, z) \Theta(z, \Delta z)} \right]^{f_i}$$

for all $\kappa, z \in \Omega_i$, for all i , where $a_i, b_i, c_i, d_i, e_i, f_i \in (0, \frac{1}{2})$ are real positive constants such that $a_i + 2b_i + 2c_i + d_i + e_i + f_i < 1$, for all i , and $\sum_{n=1}^{\infty} p_1 p_2 \dots p_n < \infty$, where $p_i = \frac{a_{n+1} + c_{n+1} + d_{n+1} - f_{n+1}}{1 - c_{n+1} - e_{n+1} - 2f_{n+1}}$, for all i .

Then Δ has a unique fixed point in Ω .

Moreover, for any fixed $\kappa_1 \in \Omega$, $\{\Delta^n \kappa_1\}$ multiplicative converges to the unique fixed point.

Proof. Fix $\kappa_1 \in \Omega_1$, and set $\kappa_{n+1} = \Delta\kappa_n = \Delta^n \kappa_1$, $\forall n = 1, 2, 3, \dots$ Then we have

$$\begin{aligned} \Theta(\Delta^{n+1} \kappa_1, \Delta^n \kappa_1) &\leq \Theta(\Delta^n \kappa_1, \Delta^{n-1} \kappa_1)^{a_{n+1}} \cdot (\Theta(\Delta^n \kappa_1, \Delta^n \kappa_1))^{b_{n+1}} \\ &\quad \cdot (\Theta(\Delta^{n+1} \kappa_1, \Delta^{n-1} \kappa_1))^{c_{n+1}} \cdot (\Theta(\Delta^n \kappa_1, \Delta^{n-1} \kappa_1))^{d_{n+1}} \cdot \\ &\quad \left[\frac{\Theta(\Delta^{n-1} \kappa_1, \Delta^n \kappa_1) \Theta(\Delta^n \kappa_1, \Delta^{n+1} \kappa_1)}{\Theta(\Delta^n \kappa_1, \Delta^{n-1} \kappa_1)} \right]^{e_{n+1}} \cdot \left[\frac{\Theta(\Delta^{n-1} \kappa_1, \Delta^{n+1} \kappa_1) \Theta(\Delta^n \kappa_1, \Delta^{n+1} \kappa_1)}{\Theta(\Delta^n \kappa_1, \Delta^{n-1} \kappa_1) \Theta(\Delta^{n-1} \kappa_1, \Delta^n \kappa_1)} \right]^{f_{n+1}}. \end{aligned}$$

Since $\Theta(\Delta^n \kappa_1, \Delta^n \kappa_1) = 1$, we get

$$\begin{aligned}
\Theta(\Delta^{n+1} \kappa_1, \Delta^n \kappa_1) &\leq \Theta(\Delta^n \kappa_1, \Delta^{n-1} \kappa_1)^{a_{n+1}} \cdot (\Theta(\Delta^{n+1} \kappa_1, \Delta^{n-1} \kappa_1))^{c_{n+1}} \\
&\quad \cdot (\Theta(\Delta^n \kappa_1, \Delta^{n-1} \kappa_1))^{d_{n+1}} \cdot \\
[\Theta(\Delta^n \kappa_1, \Delta^{n+1} \kappa_1)]^{e_{n+1}} \cdot &\left[\frac{\Theta(\Delta^{n+1} \kappa_1, \Delta^n \kappa_1) \Theta(\Delta^n \kappa_1, \Delta^{n-1} \kappa_1) \Theta(\Delta^n \kappa_1, \Delta^{n+1} \kappa_1)}{\Theta(\Delta^n \kappa_1, \Delta^{n-1} \kappa_1) \Theta(\Delta^{n-1} \kappa_1, \Delta^n \kappa_1)} \right]^{f_{n+1}} \\
\Theta(\Delta^{n+1} \kappa_1, \Delta^n \kappa_1) &\leq \Theta(\Delta^n \kappa_1, \Delta^{n-1} \kappa_1)^{a_{n+1}} \cdot (\Theta(\Delta^{n+1} \kappa_1, \Delta^n \kappa_1) \Theta(\Delta^n \kappa_1, \Delta^{n-1} \kappa_1))^{c_{n+1}} \\
&\quad (\Theta(\Delta^n \kappa_1, \Delta^{n-1} \kappa_1))^{d_{n+1}} \cdot \\
[\Theta(\Delta^n \kappa_1, \Delta^{n+1} \kappa_1)]^{e_{n+1}} \cdot &\left[\frac{(\Theta(\Delta^n \kappa_1, \Delta^{n+1} \kappa_1))^2}{\Theta(\Delta^{n-1} \kappa_1, \Delta^n \kappa_1)} \right]^{f_{n+1}}
\end{aligned}$$

Now, we get

$$\begin{aligned}
\Theta(\Delta^{n+1} \kappa_1, \Delta^n \kappa_1) &\leq \Theta(\Delta^n \kappa_1, \Delta^{n-1} \kappa_1)^{\left(\frac{a_{n+1}+c_{n+1}+d_{n+1}-f_{n+1}}{1-c_{n+1}-e_{n+1}-2f_{n+1}}\right)} \\
\text{i.e. } \Theta(\Delta^n \kappa_1, \Delta^{n-1} \kappa_1)^{p_{n+1}} &\leq \Theta(\Delta \kappa_1, \kappa_1)^{p_{n+1}p_n p_{n-1} \dots p_2}.
\end{aligned}$$

Further, for $1 \leq n < m$, we have

$$\begin{aligned}
\Theta(\Delta^m \kappa_1, \Delta^n \kappa_1) &\leq \Theta(\Delta^m \kappa_1, \Delta^{m-1} \kappa_1)^{m-1} \Theta(\Delta^{m-1} \kappa_1, \Delta^{m-2} \kappa_1)^{m-2} \dots \Theta(\Delta^{n+1} \kappa_1, \Delta^n \kappa_1)^n \\
&\leq \Theta(\Delta \kappa_1, \kappa_1) \left(\sum_{i=n}^{m-1} p_2 p_3 \dots p_{i+1} \right).
\end{aligned}$$

Therefore, $\Theta(\Delta^m \kappa_1, \Delta^n \kappa_1) \rightarrow 1 (m, n \rightarrow \infty)$. Then $\{\Delta^m \kappa_1\}_{m=1}^{\infty}$ is an multiplicative Cauchy Sequence in Ω . Consider that $\{\Delta^m \kappa_1\}_{m=1}^{\infty}$ in Ω , which is multiplicative complete,multiplicative convergence to κ^* .In addition, the multiplicative Cauchy sequence $\{\Delta^{m+1} \kappa_1\}_{m=1}^{\infty}$ multiplicative converges to κ^* in Ω .

Further, $\Delta \kappa^* = \kappa^*$ is obtained from the multiplicative closed graph of Δ

Thus, κ^* represents a fixed point for Δ .

The general scenario, where $\kappa_1 \in \Omega_n$, for some n , may be handled by these procedures.

If $\Delta \kappa^* = \kappa^*, \Delta z^* = z^*$ in Δ , then let $\kappa^*, z^* \in \Omega_n$, for some n , so we have

$$\begin{aligned}
1 &\leq \Theta(\kappa^*, z^*) = \Theta(\Delta \kappa^*, \Delta z^*) \leq \Theta(\kappa^*, z^*)^{a_i} \cdot (\Theta(\Delta z^*, \kappa^*))^{b_i} \cdot \\
&\quad (\Theta(\Delta \kappa^*, z^*))^{c_i} \cdot (\Theta(\Delta z^*, z^*))^{d_i} \\
&\quad \left[\frac{\Theta(z^*, \Delta z^*) \Theta(\kappa^*, \Delta \kappa^*)}{\Theta(\kappa^*, z^*)} \right]^{e_i} \cdot \left[\frac{\Theta(z^*, \Delta \kappa^*) \Theta(\kappa^*, \Delta \kappa^*)}{\Theta(\kappa^*, z^*) \Theta(z^*, \Delta z^*)} \right]^{f_i} \\
&= \Theta(\kappa^*, z^*)^{a_n} \cdot (\Theta(z^*, \kappa^*))^{b_n} \cdot \\
&\quad (\Theta(\kappa^*, z^*))^{c_n} \cdot (\Theta(z^*, z^*))^{d_n} \\
&\quad \left[\frac{\Theta(z^*, z^*) \Theta(\kappa^*, \kappa^*)}{\Theta(\kappa^*, z^*)} \right]^{e_n} \cdot \left[\frac{\Theta(z^*, \kappa^*) \Theta(\kappa^*, \kappa^*)}{\Theta(\kappa^*, z^*) \Theta(z^*, z^*)} \right]^{f_n} \\
&\leq \Theta(\kappa^*, z^*)^{(a_n+b_n+c_n-e_n)}.
\end{aligned}$$

Then, $\Theta(\kappa^*, z^*) \leq \Theta(\kappa^*, z^*)^{(a_n+b_n+c_n-e_n)^m}$, $\forall m \in \mathbb{N}$. Since $(a_n+b_n+c_n-e_n)^m \rightarrow 0$ as $m \rightarrow \infty$, $\Theta(\kappa^*, z^*) = 1$ and $\kappa^* = z^*$. Hence, Δ has a unique fixed point. \square

Corollary 2.1. *Putting $b_i = c_i = d_i = e_i = f_i = 0$ in Theorem 2.1 gives Banach-contraction [11] in the sense of multiplicative metric spaces. Suppose that (Ω, Θ) is a complete multiplicative metric space, and $\Delta : \Omega \rightarrow \Omega$ have a multiplicative closed graph. Let $\Omega_1 \subseteq \Omega_2 \subseteq \dots$ be subsets of Ω such that $\Omega = \bigcup_{j=1}^{\infty} \Omega_j$, $\Delta(\Omega_i) \subseteq \Omega_{i+1}$, $\forall i$, and $\Theta(\Delta \kappa, \Delta z) \leq \Theta(\kappa, z)^{a_i}$ for all $x, y \in \Omega$. for all $\kappa, z \in \Omega_i$, for all i , where $a_i \in (0, 1)$ and $\sum_{n=1}^{\infty} p_1 p_2 \dots p_n < \infty$. Then Δ has a unique fixed point in Ω .*

Moreover, for any fixed $\kappa_1 \in \Omega$, $\{\Delta^n \kappa_1\}$ multiplicative converges to the unique fixed point.

Corollary 2.2. *Putting $b_i = c_i = d_i = f_i = 0, a_i = e_i$ in Theorem 2.1 gives Kannan-contraction [11] in the sense of multiplicative metric spaces. Suppose that (Ω, Θ) is a complete multiplicative metric space, and $\Delta : \Omega \rightarrow \Omega$ have a multiplicative closed graph. Let $\Omega_1 \subseteq \Omega_2 \subseteq \dots$ be subsets of Ω such that $\Omega = \bigcup_{j=1}^{\infty} \Omega_j, \Delta(\Omega_i) \subseteq \Omega_{i+1}$, for all i , and $\Theta(\Delta\kappa, \Delta z) \leq (\Theta(\Delta\kappa, \kappa)\Theta(\Delta z, z))^{a_i}$, for all $\kappa, z \in \Omega_i$, for all i , where $a_i \in (0, 1)$ are real positive constants such that $\sum_{n=1}^{\infty} p_1 p_2 \dots p_n < \infty$, where $p_i = \frac{a_i}{1-a_i}, \forall i$.*

Then Δ has a unique fixed point in Ω .

Moreover, for any fixed $\kappa_1 \in \Omega, \{\Delta^n \kappa_1\}$ multiplicative converges to the unique fixed point.

Corollary 2.3. *Putting $a_i = d_i = e_i = f_i = 0, b_i = c_i$ in Theorem 2.1 gives Chatterjea-contraction [11] in the sense of multiplicative metric spaces. Suppose that (Ω, Θ) is a complete multiplicative metric space, and $\Delta : \Omega \rightarrow \Omega$ have a multiplicative closed graph. Let $\Omega_1 \subseteq \Omega_2 \subseteq \dots$ be subsets of Ω such that $\Omega = \bigcup_{j=1}^{\infty} \Omega_j, \Delta(\Omega_i) \subseteq \Omega_{i+1}$, for all i , and $\Theta(\Delta\kappa, \Delta z) \leq (\Theta(\Delta\kappa, z)\Theta(\Delta z, \kappa))^{b_i}, \forall \kappa, z \in \Omega_i$, for all i , where $b_i \in (0, \frac{1}{2})$ are real positive constants such that $\sum_{n=1}^{\infty} p_1 p_2 \dots p_n < \infty$, where $p_i = \frac{b_i}{1-b_i}$, for all i .*

Then Δ has a unique fixed point in Ω .

Moreover, for any fixed $\kappa_1 \in \Omega, \{\Delta^n \kappa_1\}$ multiplicative converges to the unique fixed point.

Corollary 2.4. *Putting $b_i = c_i = f_i = 0$ in Theorem 2.1 gives Kholi results [7] in the sense of multiplicative metric spaces as follows: Suppose that (Ω, Θ) is a complete multiplicative metric spaces, and $\Delta : \Omega \rightarrow \Omega$ have a multiplicative closed graph. Let $\Omega_1 \subseteq \Omega_2 \subseteq \dots$ be subsets of Ω such that $\Omega = \bigcup_{j=1}^{\infty} \Omega_j, \Delta(\Omega_i) \subseteq \Omega_{i+1}$, for all i , and $\Theta(\Delta\kappa, \Delta z) \leq \Theta(\kappa, z)^{a_i} (\Theta(\Delta z, z))^{d_i} \left[\frac{\Theta(z, \Delta z) \Theta(\kappa, \Delta \kappa)}{\Theta(\kappa, z)} \right]^{e_i}$, for all $\kappa, z \in \Omega_i$, for all i , where $a_i, d_i, e_i \in (0, 1)$ are real positive constants such that $a_i + d_i + e_i < 1, \forall i$, and $\sum_{n=1}^{\infty} p_1 p_2 \dots p_n < \infty$, where $p_i = \frac{a_{n+1} + d_{n+1}}{1 - e_{n+1}}, \forall i$.*

Then Δ has a unique fixed point in Ω .

Moreover, for any fixed $\kappa_1 \in \Omega, \{\Delta^n \kappa_1\}$ multiplicative converges to the unique fixed point.

Corollary 2.5. *Putting $d_i = e_i = f_i = 0$ in Theorem 2.1 gives Isufati results [5] in the sense of multiplicative metric spaces as follows: Suppose that (Ω, Θ) is a complete multiplicative metric spaces, and $\Delta : \Omega \rightarrow \Omega$ have a multiplicative closed graph. Let $\Omega_1 \subseteq \Omega_2 \subseteq \dots$ be subsets of Ω such that $\Omega = \bigcup_{j=1}^{\infty} \Omega_j, \Delta(\Omega_i) \subseteq \Omega_{i+1}$, for all i , and $\Theta(\Delta\kappa, \Delta z) \leq \Theta(\kappa, z)^{a_i} (\Theta(\Delta z, t))^{b_i} (\Theta(\Delta \kappa, z))^{c_i}$, for all $\kappa, z \in \Omega_i$, for all i , where $a_i, b_i, c_i \in (0, 1)$ are real positive constants such that $a_i + 2b_i + 2c_i < 1$, for all i , and $\sum_{n=1}^{\infty} p_1 p_2 \dots p_n < \infty$, where $p_i = \frac{a_{n+1} + c_{n+1}}{1 - c_{n+1}}, \forall i$.*

Then Δ has a unique fixed point in Ω .

Moreover, for any fixed $\kappa_1 \in \Omega, \{\Delta^n \kappa_1\}$ multiplicative converges to the unique fixed point.

Corollary 2.6. *Putting $b_i = c_i = d_i = f_i = 0$ in Theorem 2.1 gives Jaggi results [6] in the sense of multiplicative metric spaces as follows: Suppose that (Ω, Θ) is a complete multiplicative metric spaces, and $\Delta : \Omega \rightarrow \Omega$ have a multiplicative closed graph. Let $\Omega_1 \subseteq \Omega_2 \subseteq \dots$ be subsets of Ω such that $\Omega = \bigcup_{j=1}^{\infty} \Omega_j, \Delta(\Omega_i) \subseteq \Omega_{i+1}$, for all i , and $\Theta(\Delta\kappa, \Delta z) \leq \Theta(\kappa, z)^{a_i} \left[\frac{\Theta(z, \Delta z) \Theta(\kappa, \Delta \kappa)}{\Theta(\kappa, z)} \right]^{e_i}$, for all $\kappa, z \in \Omega_i$, for all i , where $a_i, e_i \in (0, 1)$ are real positive constants such that $a_i + e_i < 1$, for all i , and $\sum_{n=1}^{\infty} p_1 p_2 \dots p_n < \infty$, where $p_i = \frac{a_{n+1}}{1 - e_{n+1}}, \forall i$.*

Then Δ has a unique fixed point in Ω .

Moreover, for any fixed $\kappa_1 \in \Omega, \{\Delta^n \kappa_1\}$ multiplicative converges to the unique fixed point.

Corollary 2.7. *Putting $d_i = e_i = f_i = 0, b_i = c_i$ in Theorem 2.1 gives Reich results [12] in the sense of multiplicative metric spaces as follows: Suppose that (Ω, Θ) is a complete multiplicative metric spaces, and $\Delta : \Omega \rightarrow \Omega$ have a multiplicative closed graph. Let $\Omega_1 \subseteq \Omega_2 \subseteq \dots$ be subsets of Ω such that $\Omega = \bigcup_{j=1}^{\infty} \Omega_j, \Delta(\Omega_i) \subseteq \Omega_{i+1}$, for all i , and $\Theta(\Delta\kappa, \Delta z) \leq \Theta(\kappa, z)^{a_i} (\Theta(\Delta z, t)\Theta(\Delta \kappa, z))^{b_i}$, for all $\kappa, z \in \Omega_i$, for all i , where $a_i, b_i \in (0, 1)$ are real positive constants such that $a_i + 2b_i < 1$, for all i , and $\sum_{n=1}^{\infty} p_1 p_2 \dots p_n < \infty$. Then Δ has a unique fixed point in Ω .*

Moreover, for any fixed $\kappa_1 \in \Omega, \{\Delta^n \kappa_1\}$ multiplicative converges to the unique fixed point.

Theorem 2.2. *Suppose that (Ω, Θ) is a complete multiplicative metric space, and $\Delta : \Omega \rightarrow \Omega$ have a multiplicative closed graph. Let $\Omega_1 \subseteq \Omega_2 \subseteq \dots$ be subsets of Ω such that $\Omega = \bigcup_{j=1}^{\infty} \Omega_j, \Delta(\Omega_i) \subseteq \Omega_{i+1}$, for all i , and $\Theta(\Delta\kappa, \Delta z) \leq [\Theta(t, \Delta\kappa) \cdot \Theta(z, \Delta z)]^{a_i} \cdot [\Theta(t, \Delta z) \cdot \Theta(z, \Delta \kappa)]^{b_i} \cdot [\Theta(t, z)]^{c_i} \cdot \left[\frac{\Theta(t, \Delta\kappa) \Theta(z, \Delta z)}{\Theta(t, z)} \right]^{d_i}$.*

$\left\{ \max \left\{ \Theta(t, \Delta\kappa), \Theta(z, \Delta z), \Theta(t, \Delta z), \Theta(z, \Delta\kappa), \frac{\Theta(t, \Delta\kappa) \cdot \Theta(z, \Delta z) \cdot \Theta(z, \Delta\kappa)}{\Theta(t, z)} \right\} \right\}^{e_i}$, for all $\kappa, z \in \Omega_i$, for all i , where $a_i, b_i, c_i, d_i, e_i \in (0, \frac{1}{2})$ are real positive constants such that $2a_i + 2b_i + c_i + d_i + 3e_i < 1$, for all i , and $\sum_{n=1}^{\infty} p_1 p_2 \dots p_n < \infty$, where $p_i = \frac{a_i + b_i + c_i + e_i}{1 - a_i - b_i - d_i - 2e_i}$, for all i . Then Δ has a unique fixed point in Ω . Moreover, for any fixed $\kappa_1 \in \Omega$, $\{\Delta^n \kappa_1\}$ multiplicative converges to the unique fixed point.

Proof. Fix $\kappa_1 \in \Omega_1$, and set $\kappa_{n+1} = \Delta \kappa_n = \Delta^n \kappa_1$, for all $n = 1, 2, 3, \dots$. Then we have

$$\begin{aligned} & \Theta(\Delta^{n+1} \kappa_1, \Delta^n \kappa_1) \leq \\ & [\Theta(\Delta^n \kappa_1, \Delta^{n+1} \kappa_1) \cdot \Theta(\Delta^{n-1} \kappa_1, \Delta^n \kappa_1)]^{a_{n+1}} \cdot [\Theta(\Delta^n \kappa_1, \Delta^n \kappa_1) \cdot \Theta(\Delta^{n-1} \kappa_1, \Delta^{n+1} \kappa_1)]^{b_{n+1}} \cdot \\ & [\Theta(\Delta^n \kappa_1, \Delta^{n-1} \kappa_1)]^{c_{n+1}} \cdot \left[\frac{\Theta(\Delta^n \kappa_1, \Delta^{n+1} \kappa_1) \Theta(\Delta^{n-1} \kappa_1, \Delta^n \kappa_1)}{\Theta(\Delta^n \kappa_1, \Delta^{n-1} \kappa_1)} \right]^{d_{n+1}} \cdot \\ & \left[\max \left\{ \frac{\Theta(\Delta^n \kappa_1, \Delta^{n+1} \kappa_1), \Theta(\Delta^{n-1} \kappa_1, \Delta^n \kappa_1), \Theta(\Delta^n \kappa_1, \Delta^n \kappa_1), \Theta(\Delta^{n-1} \kappa_1, \Delta^{n+1} \kappa_1)}{\Theta(\Delta^n \kappa_1, \Delta^{n+1} \kappa_1) \cdot \Theta(\Delta^{n-1} \kappa_1, \Delta^n \kappa_1) \cdot \Theta(\Delta^{n-1} \kappa_1, \Delta^{n+1} \kappa_1)} \right\} \right]^{e_{n+1}}. \end{aligned}$$

Since $\Theta(\Delta^n \kappa_1, \Delta^n \kappa_1) = 1$, we get

$$\begin{aligned} & \Theta(\Delta^{n+1} \kappa_1, \Delta^n \kappa_1) \leq [\Theta(\Delta^n \kappa_1, \Delta^{n+1} \kappa_1) \cdot \Theta(\Delta^{n-1} \kappa_1, \Delta^n \kappa_1)]^{a_{n+1}} \cdot \\ & [\Theta(\Delta^{n+1} \kappa_1, \Delta^n \kappa_1) \cdot \Theta(\Delta^n \kappa_1, \Delta^{n-1} \kappa_1)]^{b_{n+1}} \cdot [\Theta(\Delta^n \kappa_1, \Delta^{n-1} \kappa_1)]^{c_{n+1}} \cdot [\Theta(\Delta^n \kappa_1, \Delta^{n+1} \kappa_1)]^{d_{n+1}} \cdot \\ & \left[\max \left\{ \frac{\Theta(\Delta^n \kappa_1, \Delta^{n+1} \kappa_1), \Theta(\Delta^{n-1} \kappa_1, \Delta^n \kappa_1), 1,}{\Theta(\Delta^{n+1} \kappa_1, \Delta^n \kappa_1) \cdot \Theta(\Delta^n \kappa_1, \Delta^{n-1} \kappa_1),} \right\} \right]^{e_{n+1}}. \end{aligned}$$

Now, we get

$$\begin{aligned} & \Theta(\Delta^{n+1} \kappa_1, \Delta^n \kappa_1) \leq \Theta(\Delta^n \kappa_1, \Delta^{n-1} \kappa_1)^{\left(\frac{a_{n+1} + b_{n+1} + c_{n+1} + e_{n+1}}{1 - a_{n+1} - b_{n+1} - d_{n+1} - 2e_{n+1}} \right)} \\ & \Theta(\Delta^n \kappa_1, \Delta^{n-1} \kappa_1)^{p_{n+1}} \leq \Theta(\Delta \kappa_1, \kappa_1)^{p_{n+1} p_n p_{n-1} \dots p_2}. \end{aligned}$$

Further, for $1 \leq n < m$, we have

$$\begin{aligned} \Theta(\Delta^m \kappa_1, \Delta^n \kappa_1) & \leq \Theta(\Delta^m \kappa_1, \Delta^{m-1} \kappa_1)^{m-1} \Theta(\Delta^{m-1} \kappa_1, \Delta^{m-2} \kappa_1)^{m-2} \dots \Theta(\Delta^{n+1} \kappa_1, \Delta^n \kappa_1)^n \\ & \leq \Theta(\Delta \kappa_1, \kappa_1) \left(\sum_{i=n}^{m-1} p_2 p_3 \dots p_{i+1} \right). \end{aligned}$$

Therefore, $\Theta(\Delta^m \kappa_1, \Delta^n \kappa_1) \rightarrow 1 (m, n \rightarrow \infty)$. Then $\{\Delta^m \kappa_1\}_{m=1}^{\infty}$ is an multiplicative Cauchy Sequence in Ω . Let $\{\Delta^m \kappa_1\}_{m=1}^{\infty}$ multiplicative converge to κ^* in Ω , which is multiplicative complete. Also, $\{\Delta^{m+1} \kappa_1\}_{m=1}^{\infty}$ is an multiplicative Cauchy Sequence and it multiplicative converges to κ^* in Ω . Also, multiplicative closed graph of Δ gives $\Delta \kappa^* = \kappa^*$. Hence, we obtained a fixed point κ^* of Δ . These processes can be extended to the general case: $\kappa_1 \in \Omega_n$, for some n .

If $\Delta \kappa^* = \kappa^*, \Delta z^* = z^*$ in Δ , then let $\kappa^*, z^* \in \Omega_n$, for some n , so we have

$$\begin{aligned} 1 & \leq \Theta(\kappa^*, z^*) = \Theta(\Delta \kappa^*, \Delta z^*) \leq [\Theta(t, \Delta \kappa^*) \cdot \Theta(z^*, \Delta z^*)]^{a_i} \\ & \cdot [\Theta(t, \Delta z^*) \cdot \Theta(z^*, \Delta \kappa^*)]^{b_i} \cdot [\Theta(t, z^*)]^{c_i} \cdot \left[\frac{\Theta(t, \Delta \kappa^*) \Theta(z^*, \Delta z^*)}{\Theta(t, z^*)} \right]^{d_i} \cdot \\ & \left[\max \left\{ \Theta(t, \Delta \kappa^*), \Theta(z^*, \Delta z^*), \Theta(t, \Delta z^*), \Theta(z^*, \Delta \kappa^*), \frac{\Theta(t, \Delta \kappa^*) \cdot \Theta(z^*, \Delta z^*) \cdot \Theta(z^*, \Delta \kappa^*)}{\Theta(t, z^*)} \right\} \right]^{e_i}. \end{aligned}$$

Then, $\Theta(\kappa^*, z^*) \leq \Theta(\kappa^*, z^*)^{(2b_n + c_n - d_n + e_n)^m}$, for all $m \in \mathbb{N}$.

Since $(2b_n + c_n - d_n + e_n)^m \rightarrow 0$ as $m \rightarrow \infty$, $\Theta(\kappa^*, z^*) = 1$ and $\kappa^* = z^*$.

Hence, Δ has a unique fixed point. \square

Corollary 2.8. Putting $b_i = c_i = d_i = e_i = 0$ in Theorem 2.2 gives Kannan-contraction [11] in the sense of multiplicative metric spaces.

Corollary 2.9. Putting $b_i = d_i = e_i = 0$ in Theorem 2.2 gives Fisher-contraction [4] in the sense of multiplicative metric spaces.

Corollary 2.10. Putting $a_i = c_i = d_i = e_i = 0$ in Theorem 2.2 gives Chatterjea-contraction [11] in the sense of multiplicative metric spaces.

Corollary 2.11. Putting $a_i = b_i = d_i = e_i = 0$ in Theorem 2.2 gives Banach-contraction [11] in the sense of multiplicative metric spaces.

Corollary 2.12. Putting $d_i = e_i = 0$ in Theorem 2.2 gives Cirić-contraction [3] in the sense of multiplicative metric spaces.

Corollary 2.13. Putting $a_i = d_i = e_i = 0$ in Theorem 2.2 gives Reich-contraction [12] in the sense of multiplicative metric spaces.

Corollary 2.14. Putting $a_i = b_i = e_i = 0$ in Theorem 2.2 gives Jaggi-contraction [6] in the sense of multiplicative metric spaces.

Example 2.1. Let $\Xi = [\frac{1}{4}, \infty)$ and $\Theta(\zeta, \eta) = a^{|\zeta - \eta|}$, where $\zeta, \eta \in \mathbb{R}$ and $a > 1$. Then $\Theta(\zeta, \eta)$ is referred to as a multiplicative metric space, and (Ξ, Θ) is a complete multiplicative metric. Assuming that $\Xi_n = [\frac{1}{4}, n]$, and $\xi_n = \frac{n^2}{(n+1)^2} \in [\frac{1}{4}, 1)$, for $n = 1, 2, 3, \dots$. Then $\sum_{n=1}^{\infty} \xi_1 \xi_2 \dots \xi_n < \infty$. Define $P : \Xi \rightarrow \Xi$ by $Pu = u^{\frac{1}{4}}$, if $u \in \Xi_n$, for $n \in \mathbb{N}$. Then all hypotheses of Theorem 2.1 and Theorem 2.2 are satisfied. Moreover, Δ has a unique fixed point 1.

3 Conclusion

Equations like differential, integral and algebraic equations are typically solved using fixed point iteration techniques. Thus, with relation to fixed point iteration techniques, we must discover all possible fixed point results.

References

- [1] M. Abbas, B. Ali and Y. I. Suleiman, Common Fixed Points of Locally Contractive Mappings in Multiplicative Metric Spaces with Application, *Hindawi Publishing Corporation, International Journal of Mathematics and Mathematical Sciences*, **3** (2015), Article ID **218683**, 1-7.
- [2] A. E. Bashirov, E. M. Kurplnara and A. Ozyapici, Multiplicative calculus and its Applications, *J. Math. Anal. Appl.*, **337** (2008), 36-48.
- [3] L. B. Cirić, A generalization of Banach contraction Principle, *Proc. Amer. Math. Soc.*, **25** (1974), 267-273.
- [4] B. Fisher, A fixed point theorem for compact metric space, *Publ. Inst. Math.*, **25** (1976), 193-194.
- [5] A. Isufati, Fixed point theorem in dislocated quasi metric spaces. *Appl. Math. Sci.*, **4** (2010), 217-223.
- [6] D. S. Jaggi, Some unique fixed point Theorems, *I. J. P. Appl.*, **8** (1977), 223-230.
- [7] M. Kohli, R. Shrivastava and M. Sharma, Some results on fixed point theorems in dislocated quasi metric space, *Int. J. Theoret. Appl. Sci.*, **2** (2010), 27-28.
- [8] W. A. Kirk, P. S. Srinivasan and P. Veeramani, Fixed points for mappings satisfying cyclical conditions, *Fixed point Theory*, **4** (2003), 78-89.
- [9] C. G. Moorthy and P. X. Raj, Contraction mappings with variations in domain, *Journal of Analysis*, **16** (2008), 53-58.
- [10] M. Ozavşar and A. C. Cevikel, *Fixed point of multiplicative contraction mappings on multiplicative metric space*, (2012), 1-14. *arXiv:1205.5131v1*.
- [11] S. Reich, Some remarks concerning contraction mapping, *Canada. Math. Bull.*, **14** (1971), 121-124.
- [12] M. Sarwar, R. Badshah-e, Some unique fixed point Theorems in multiplicative metric space, (2014), 1-19. *arXiv:1410.3384v2*.
- [13] A. S. Saluja, Jyoti Jhade, Common Fixed Point Theorems For Commutative, Weakly Commutative and Compatible Mappings In Multiplicative Cone Metric Space, *Jñānābha*, **52** (2022), 93-105.
- [14] G. Siva, Fixed point theorems of contraction mappings with variations in cone metric space domains, *Asian European Journal of Mathematics*, **16**(1) (2023), 2350010.
- [15] G. Siva, Fixed points of contraction mappings with variations in *S*-metric space domains, *The Mathematics Student*, **91** (2022), 173-185.
- [16] G. Siva, Fixed points of closed graph operators on *N*-cone metric spaces, *Indian Journal of Mathematics*, **65** (2023), 53-71.
- [17] G. Siva, Fixed Points of Multiplicative Closed Graph Operators on B-Multiplicative Metric Spaces, *Malaya Journal of Matematik*, **12** (2024), 21-30.