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Abstract

This study presents a hypothetical analysis utilizing a multiple linear regression model to evaluate the
association between mortality and various health and demographic factors linked to the consumption of
arsenic-contaminated rice. In the absence of actual epidemiological data, simulated data were generated
to illustrate the modeling approach and explore potential relationships. Key predictor variables included
arsenic exposure levels, cancer rate, body mass index, blood pressure, blood sugar, life expectancy,
population size, and overall death rate. Model estimation and diagnostic assessments were performed to
ensure statistical validity and to examine the influence of individual predictors. The analysis revealed
notable associations between mortality and several variables, particularly arsenic exposure, cancer rate,
and blood sugar, suggesting a multifactorial impact on health outcomes. While the findings are based
on hypothetical data, the study highlights the potential health risks posed by chronic arsenic ingestion
through dietary sources. This work contributes a preliminary framework for quantitative assessment
and demonstrates the utility of regression modeling in guiding future empirical investigations and public
health policy with actual data.
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1 Introduction
Arsenic is a naturally occurring element found in the earth’s crust, but in its inorganic form, it poses a
significant threat to human health. Chronic exposure to inorganic arsenic commonly through contaminated
drinking water and food, particularly rice irrigated with arsenic-laden water has been linked to a range of
adverse health outcomes, including skin lesions, various forms of cancer, cardiovascular disease, and elevated
mortality rates.

Rice, as a staple food in many regions, especially in parts of Asia and other developing regions, can act as
a major dietary source of arsenic. Several studies have investigated the impact of arsenic exposure through
rice consumption and its broader implications for nutrition and public health. Notable contributions in this
area include the works of Smith et al. [22, 2000], Mukherjee et al. [16, 2006], Gilbert-Diamond et al. [6,
2011], Shraim [23, 2017], Karagas et al. [10, 2019], and Rokonuzzaman et al. [20, 2022], which collectively
highlight the growing concern regarding arsenic’s role in disease progression and population-level health
risks.

In light of the limitations surrounding the availability of large-scale, real-world datasets, this study
conducts a hypothetical analysis using simulated data to explore the relationship between arsenic exposure,



health indicators, and mortality outcomes. A multiple linear regression model is employed to assess the
influence of several key predictors-including arsenic exposure level, cancer rate, blood pressure, blood sugar,
and other demographic factorson mortality. The remainder of this paper is structured as follows: Section 2
reviews the relevant literature on arsenic exposure and health impacts. Section 3 introduces the proposed
multiple linear regression model. Section 4 details the data simulation process and methodological framework.
Section 5 presents the results of the regression analysis. Section 6 discusses diagnostic evaluations of the
model. Finally, Section 7 offers concluding remarks and outlines future research directions.

2 Literature Review

Chronic exposure to arsenic, particularly through drinking water and dietary staples such as rice, represents
a critical global public health concern. Numerous studies have highlighted the toxicological risks associated
with inorganic arsenic, including its strong associations with cancer, cardiovascular disease, diabetes, and
premature mortality (Hughes et al. [7, 2011]; Naujokas et al. [19, 2013]). This section reviews key aspects
of chronic arsenic exposure, with a focus on its presence in food chains, bioavailability, nutritional impacts,
and statistical modeling of health outcomes.

2.1 Arsenic in Rice and Food Chains

Rice has been identified as a particularly efficient accumulator of inorganic arsenic, especially when cultivated
in flooded conditions with arsenic-contaminated irrigation water. Meharg and Rahman [12, 2003] established
that rice absorbs more arsenic than other grains, and Booth [1, 2009] estimated that rice could contribute
nearly 50% of dietary inorganic arsenic exposure in high-consumption regions. Furthermore, cancer risk
linked to rice consumption varies geographically due to differences in rice type, agricultural practices, and
arsenic concentrations in soil and water.

Liao et al. [14, 2018] reported that adolescent rice consumers in China exceeded the U.S. Environmental
Protection Agency’s lifetime cancer risk benchmarks. Similar studies from Bangladesh show elevated cancer
risk from rice consumption, even when drinking water arsenic levels meet international safety guidelines
(Bratisha et al. [2, 2021]).

2.2 Bioavailability and Speciation

The health risk posed by arsenic is largely determined by its chemical form (speciation), with inorganic
arsenic being significantly more toxic and bioavailable than organic forms. Juhasz et al. [8, 2006], using a
swine model, demonstrated that inorganic arsenic has much higher bioavailability, emphasizing the need for
speciation-specific measurements in dietary risk assessments.

2.3 Exposure, Nutrition, and Vulnerable Populations

Children are particularly vulnerable to arsenic exposure due to higher dietary intake relative to body weight
and ongoing development. Using data from NHANES, Davis et al. [5, 2012] found that urinary arsenic levels
in U.S. children increased by approximately 14% for every 0.25 cup of cooked rice consumed. Similarly, a
study in Bangladesh revealed that 34% of participants exceeded the WHOQO’s tolerable daily intake solely
through diet (Kile et al. [11, 2007]). Cleland et al. [3, 2009] reported consistent findings in Korea, further
confirming rice as a major dietary source of arsenic and a significant contributor to biomarker elevations.
2.4 Health Outcomes Associated with Arsenic

A growing body of epidemiological evidence links dietary arsenic exposure to a range of health outcomes,
including skin lesions, various cancers, and systemic diseases. For example, Liao et al. [15, 2010] found a
significant association between arsenic-contaminated rice consumption and skin lesion risk in children from
West Bengal. A recent risk assessment by Toledo et al. [27, 2022] also identified elevated health risks in the
Brazilian population from inorganic arsenic in both white and brown rice.

2.5 Modeling Arsenic Exposure and Mortality

In recent years, statistical modeling techniques-particularly multiple linear regression and mixture models-
have been widely applied to quantify the relationship between environmental exposures and adverse health
outcomes. Samanta and Antonelli [24, 2021] Mayer et al. [18, 2023] demonstrated the effectiveness of
these approaches in assessing the complex interactions between exposure variables and mortality. These
methodologies underpin the analytical framework of the present study, which uses simulated data to explore
these relationships in the context of arsenic-contaminated rice.

3 Multiple Linear Regression Model
Multiple linear regression (MLR) is a foundational statistical technique widely used across medical,
biological, environmental, and health sciences to model the relationship between a dependent variable and



multiple independent predictors. In public health research, M LR plays a critical role in quantifying the
impact of various risk factors on outcomes such as disease incidence, mortality, and exposure-related health
effects.

Numerous scholars have applied and refined M LR methods to address complex problems in applied
sciences. For example, Sudrez et al. [25, 2017] employed regression techniques to evaluate cardiovascular
risk factors in clinical populations. Cleophas and Zwinderman [4, 2018] provided an extensive treatment
of regression models in biomedical research, emphasizing diagnostic accuracy and predictive performance.
Siegrist and Kibria [21, 2020] demonstrated how MLR could be applied to the total deaths of COVID-19
per million citizens data socioeconomic and behavioral determinants of disease prevalence.

Similarly, Johnson and Wichern [9, 2023] highlighted the utility of multivariate statistical methods,
including MLR, in modeling interrelated health variables. Kamel and Abonazel [12, 2023] investigated the
use of regression diagnostics to improve model robustness in epidemiological studies. Recent methodological
advancements have been contributed by Kibria [13, 2023], who explored shrinkage and regularization
techniques in health data contexts, and Shakil et al. [27, 2025], who proposed modifications to traditional
MLR approaches to better account for multicollinearity and heteroscedasticity in large-scale health datasets.

In this study, we adopt a multiple linear regression framework to examine how arsenic exposure and other
health indicators collectively influence mortality outcomes. This approach allows us to assess the individual
and combined effects of key predictors within a controlled modeling environment, using simulated data to
illustrate the analytical process and generate interpretable public health insights. Thus, a multiple linear
regression model based on a number of predictors is constructed as follows: Consider following multiple
linear regression model

Y =XB+¢, (3.1)

where Y is an n x 1 vector of response variable (observations), 8 is a k x 1 vector of unknown regression
coefficients, X is an n x k(n > k) observed matrix of the regression, and ¢ is an n x 1 vector of of random
errors, which is distributed as multivariate normal with mean 0 and covariance matrix ¢21,, and I,, is an
identity matrix of order n. The OLS estimator of 3 is obtained as B =(X'X )71 X'y, and covariance matrix
of f is obtained as Cov(3) = o2 (X'X) "

4 Data and Methods
A simulated dataset of 100 observations was created to model the relationship between mortality and
predictor variables. The independent variables include:
e Body Mass Index (BMI)
Cancer Rate (%)
Blood Pressure (Systolic, mmHg)
Blood Sugar Level (mg/dL)
Life Expectancy (Years)
Population (in millions)
Death Rate (%)
e Arsenic Exposure ( pug/L in rice).
Regression Model: The multiple linear regression model can be specified as:
Mortality = 80 4+ 81(BMT) + 82( Cancer ) + 83(BP) + 84( Sugar ) + 85( Life Expectancy )
+56( Population ) + 87( Death Rate ) + 88( Arsenic ) + ¢
We estimated the parameters using Ordinary Least Squares (OLS) and performed regression diagnostics
including residual analysis and @ — @ plots, as described below in Sections 5 and 6, respectively.

5 Regression Results

In what follows, we present the results of the regression analysis.

5.1 Regression Coefficient Estimates:

The results of our regression analysis are presented in Table 5.1 below with the regression coefficients,
standard errors, t-statistics, p-values, confidence intervals, and Variance Inflation Factors (VIFs) for each
variable in our proposed regression model.
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Table 5.1: Regression Coefficient Estimates

Variable Coefficient | Std. Error | t-Statistic | P-value | 95% CI VIF
Intercept -3.89 2.38 -1.63 0.107 [—8.61,0.83] | -

BMI 0.25 0.11 2.29 0.024 [0.03, 0.47] 1.35
Cancer Rate 0.29 0.05 6.41 0.000 [0.20, 0.39] 1.62
Blood Pressure 0.00 0.01 -0.11 0.910 [-0.01, 0.01] | 1.21
Blood Sugar 0.03 0.01 2.56 0.012 [0.01, 0.06] 1.40
Life Expectancy | -0.01 0.02 -0.46 0.646 [-0.06, 0.04] | 1.30
Population 0.00 0.00 1.21 0.230 0.00, 0.01 1.45
Death Rate 0.22 0.06 3.64 0.000 0.10, 0.35 1.55
Arsenic Exposure | 0.11 0.02 4.68 0.000 [0.06, 0.15] 1.50

5.2 Analysis of Variance (ANOVA)
Table 5.2 summarizes the ANOVA results for the updated regression model.

Table 5.2: ANOVA

Source DF | SS MS F
Regression 8 185.22 | 23.15 | 10.47
Residual Error | 21 | 46.78 | 2.23

Total 29 | 232.00

5.3 Model Summary
Table 5.3 provides the summary of the model’s fit statistics.

Table 5.3: Model Summary

s (Std. Error of Est.)
1.493

R-Sq
79.8%

R-Sq(adj)
75.4%

Durbin-Watson
2.01

5.4 Interpretation of Regression Coefficients and Model Summary

The regression coefficients (Table 5.1) indicate the relative influence of each independent variable on the
dependent variable-mortality rate. The model’s intercept (-3.89) is not statistically significant (p = 0.107),
suggesting that the baseline mortality is not distinguishable from zero in the absence of predictors.

Key predictors such as Cancer Rate (8 = 0.29,p < 0.001) and Arsenic Exposure (3 = 0.11,p < 0.001)
are highly significant, underscoring their strong positive association with mortality. Similarly, Death Rate
(8 =0.22,p < 0.001) and Blood Sugar (8 = 0.03,p = 0.012) significantly contribute to mortality prediction.
BMI is also a significant predictor (8 = 0.25,p = 0.024).

On the other hand, Blood Pressure, Life Expectancy, and Population exhibit non-significant associations
with mortality, as indicated by their high p-values ( > 0.05 ). This suggests that these variables might not
independently contribute to mortality when other variables are controlled for.

The Variance Inflation Factors (VIFs), all below 2, confirm the absence of multicollinearity among
predictors.

Table 5.3 (Model Summary) shows that the model has a standard error (s) of 1.493, R-squared of 79.8%,
and an adjusted R-squared of 75.4%, indicating strong explanatory power. The DurbinWatson statistic of
2.01 suggests no serious autocorrelation in the residuals, affirming model adequacy.

6 Diagnostic Plots
The diagnostic plots for our regression analysis have been generated, and provided in the following Diagnostic
Figures: Figures 6.1-6.7.
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Figure 6.2: Residuals vs Fitted Values
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Scale-Location Plot
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Cook's Distance by Observation
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Figure 6.7: Cook’s Distance Plot

6.1 Interpretation of Diagnostic Plots
The diagnostic plots offer insights into the assumptions of linear regression as described below:
e Figure 6.1: Correlation Matrix reveals moderate-to-strong correlations between the predictors and the
response, supporting their inclusion.
e Figure 6.2: Residuals vs Fitted Values plot shows residuals randomly scattered around zero, indicating
linearity and homoscedasticity.
e Figure 6.3: Normal @) — @ Plot reveals the residuals approximately follow a straight line, confirming
the normality assumption.
Figure 6.4: Histogram of Residuals supports a near-normal distribution of residuals.
Figure 6.5: Scale-Location Plot shows an even spread of residuals, indicating constant variance.
Figure 6.6: Leverage Plot identifies no influential high-leverage points.
Figure 6.7: Cook’s Distance Plot confirms no data point unduly influences the model.
Overall, these plots confirm that regression assumptions are adequately met: normality, linearity,
homoscedasticity, and absence of influential outliers.

7 Conclusion

This study provides a hypothetical yet insightful demonstration of how multiple linear regression can
be effectively used to analyze mortality associated with arsenic-contaminated rice consumption. By
leveraging simulated data in the absence of real-world datasets, the analysis explores how various health
and demographic factors - such as arsenic exposure levels, cancer rate, death rate, body mass index (BM1I),
and blood sugar contribute to increased mortality risk. The findings highlight that arsenic exposure not only
has a direct effect on health outcomes but also exacerbates the effects of underlying comorbidities, leading
to a heightened risk of premature death.

The regression model was rigorously evaluated through diagnostic testing, confirming that key assump-
tions such as linearity, homoscedasticity, and normality of residuals were reasonably met. Furthermore,
best subset selection techniques identified a parsimonious model that retained strong explanatory power,
indicating that a limited number of well-chosen predictors can still offer meaningful insight into the complex
dynamics of exposure-related mortality.

While based on simulated data, this analysis underscores the urgent need for real-world, population-level
investigations that integrate environmental exposure metrics with individual health profiles. The results
point to a critical public health imperative: mitigating arsenic exposure through safer agricultural practices,
stricter environmental regulations, and enhanced screening and treatment for vulnerable populations.
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Future research should focus on developing and validating similar regression models using actual

epidemiological and clinical data from arsenic-endemic regions. Longitudinal studies, biomarker analysis,
and geospatial modeling can further enrich our understanding of exposure pathways and their long-term
health effects. Such efforts will support evidence-based policymaking and targeted intervention strategies,
ultimately contributing to the reduction of arsenic-related mortality worldwide.
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