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Abstract

Water scarcity poses a significant challenge, particularly in regions affected by drought or inherently
dry conditions, leading to a stark imbalance between the availability and demand for fresh water. This
situation underscores the necessity for water conservation, purification for reuse, and desalination.
Among the various strategies employed for desalination, utilizing marsh plants is one of the most
cost-effective approaches. This paper focuses on enhancing the availability of potable water through
economical methods, specifically the use of marsh plants within water reservoirs. We introduce a nonlinear
mathematical model to examine the process of desalinating saline water in a reservoir environment,
considering the interplay between soil properties and marsh plants growth, which is influenced by the
salinity levels in both water and soil. Our study involves four nonlinearly interacting variables: salt
concentration in the water, biomass density of marsh plants, soil concentration, and salt concentration
in the soil. We have established the existence of an equilibrium point through isocline analysis.
The analytical exploration of the model includes determining the local and global stability of the
equilibria. The validity of our findings is further corroborated through numerical simulations for graphical
representations and sensitivity analysis of the system with respect to key parameters.
2020 Mathematical Sciences Classification: 34D20, 34D23, 34A34.
Keywords and Phrases: Desalination, Marsh plants, Soil salinization, Sensitivity.

1 Introduction

Over the past century, the demand for freshwater has surged on a global scale, and this trend shows no signs
of slowing down, with an annual growth rate of approximately 1% [23]. The projections from the Water
Resource Group 2030 indicate that by 2030, the world’s population will grapple with a staggering 40% deficit
in potable water[13]. At least 1.7 billion people consume contaminated water in water-stressed countries and
face water-borne diseases like diarrhoea, cholera, dysentery, etc [18]. Industrial development and various
other economic activities heavily rely (approximately 75%) on a sustainable water supply. Sustainable water
management in mining industries reduces freshwater use through recycling and efficient practices, helping to
ease existing water scarcity [17]. Shockingly, projections by the World Bank suggest that by 2050, GDP in
water-stressed regions could plummet by 6% due to the adverse impacts of water scarcity on health, income,
and agricultural production [3].

The majority of Earth’s water resources are saline, rendering them unsuitable for agricultural use and
other purposes, thereby hampering agricultural productivity [22]. Given that, nearly 97.5% of the world’s
total water exists in oceans as saline water, desalination emerges as a pivotal solution to alleviate water
stress [8]. Desalination, the process of obtaining pure, potable water by removing salt and impurities from
available water sources, is facilitated by various technologies globally, including reverse osmosis, multi-effect-
distillation, and multi-stage flash desalination plants [5]. With approximately 19,744 desalination plants
worldwide having a capacity of 99.7 million m3 per day production, they cater to the needs of over 300
million people across 150 countries [2, 25].

However, the desalination process poses environmental challenges, including marine pollution from brine
extraction, groundwater contamination, noise pollution, air pollution, and energy loss [7]. To mitigate these
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adverse impacts, the adoption of greener desalination approaches such as gas hydrate-based desalination
and the utilization of renewable energy sources like geothermal energy, solar water evaporation desalination
and hybrid desalination systems is imperative [6, 11, 12]. It is crucial to prioritize technologies that yield
water with low salinity, minimal environmental footprint, and optimal operational costs [28]. Policymakers’
focus in the current landscape is on attaining fresh water through cost-effective and environmentally friendly
desalination processes, with a notable emphasis on leveraging natural solutions like marsh plants and salt-
tolerant organisms, which offer cost-effective alternatives already present in nature [1, 21]. Marsh plants
exhibit robust growth in response to salinity levels of up to 200 mol /m3, demonstrating remarkable tolerance
to high salinity conditions [20].

Furthermore, numerous studies have explored aerobic and anaerobic environments for the biological
treatment of saline water [4, 14, 15, 19, 24, 26, 27]. A non-linear mathematical model has been proposed to
remove the inorganic pollutants from the water body by the biosorption procedure using fungal inhabitants
[9]. Using the concept of prey-predator modelling, Shukla et al. [21] have proposed a mathematical model
in which marsh plant and halophile bacteria have been considered as predators and saline water as prey for
the desalination process via Michaelis Menten kinetics [21]. Goyal et al. [9] have also proposed and analyzed
a predator-prey model system for desalinization as well as the removal of pollutants from the water using
halophiles [10].

In light of escalating global population growth and the pressing water crisis, this study introduces a novel
non-linear mathematical model for desalination. Specifically, we integrate soil factors to simulate the growth
of marsh plants in reservoirs containing saline water, a concept hitherto unexplored in existing literature.
The growth of marsh plants depends upon the concentration of salt in water. The proposed model accounts
for soil salinization dynamics, where both marsh plants and soil absorb salt from water, thereby reducing its
salinity. By using this innovative approach, optimal results for desalination can be achieved in a cost-effective
and environmentally sustainable manner, devoid of adverse ecological impacts.

1.1 Comparison with Previous Models

Several researchers have previously employed mathematical modelling techniques to investigate the potential
of halophytes and halophytic plants as natural systems for desalinating saline water. In contrast, our proposed
model uniquely captures not only the role of halophytic marsh plants in the desalination process but also
treats soil salinity as a dynamic variable, offering a novel perspective on the systems behavior. Below, we
compare our work with key previous studies:

1. Shukla et al. [21] proposed a nonlinear mathematical model in which marsh plants and halophiles
were treated as predators and saline water as prey. However, their study concentrated primarily on
desalination and did not account for the role of soil or the dynamics of soil salinity [21].

2. Ashish Goyal et al. [9] developed a nonlinear mathematical model that explores the removal of inorganic
pollutants from water through the bio-absorption process mediated by fungi [9].

3. Ashish Goyal et al. [10] proposed a two-prey, one-predator model in which halophiles play a central
role in reducing both salinity and pollutants [10].

4. Our study builds upon earlier work by incorporating soil dynamics, which not only aid in reducing salt
content from water but also support the growth of marsh plants. Distinct from previous models, we
focus exclusively on halophytic marsh plants while considering soil salinity as a mediating factor in the
desalination of saline water.

2 Model Formulation
To formulate the model for the desalination of saline water using marsh plants in a reservoir, we consider
four non-linearly interacting variables listed as follows:

(i.)  The concentration of salt in water at time ¢ denoted by s(¢) (in g/L),
(ii.) The biomass density of marsh plants at time ¢ denoted by M(t) (in g per square m),
(

ili.) The concentration of soil in the reservoir at time ¢ denoted by S(¢) (in kg/L), and
iv.) The concentration of salt in soil due to soil salinization at time ¢ denoted by s.(t) (in mg/L).

Here, we consider the desalination of saline water within a reservoir containing soil and marsh plants. Both
marsh plants and soil extract the salt from the saline water. We assume that the rate of growth for the
concentration of salt in water is proportional to the difference of its equilibrium concentration sy and its
concentration s at time ¢ that is (sp — s) and marsh plants take the salt from saline water for its growth,
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so [ is the depletion rate coefficient for the salt concentration due to salt extraction for growth of marsh
plants. Now, the depletion rate of salt from seawater due to absorption by soil is denoted by (5. Thus, the
dynamics of concentration of salt in water is given by the following differential equation:

ds

i B(so — 8) — B1sM — BasS.

We assume that the growth of marsh plants follows the logistic model with intrinsic growth rate coefficient
~v and 7y represents its natural depletion. The plant growth equation incorporates both direct growth and
salt-mediated contributions. This reflects the behaviour of halophytic marsh plants, which are known to
tolerate and even thrive under moderate-to-high salinity levels [20]. Hence, the growth rate of marsh plants
in the reservoir is given by the following differential equation:

2
dCTM =y(M - %) =Y%M +7181sM + Y201 5. M.

t K
Here, 1 and 5 both are proportionality constants, 0 < 71,72 < 1. The terms involving ~y; 51 s M and v261 5. M
represent the positive influence of dissolved and soil-bound salts within the physiologically relevant salinity
range. Although at very high concentrations salinity becomes inhibitory, Our model aims to capture the
initial positive response typical of halophytes, making them suitable candidates for cost-effective desalination.
In the present model, S(¢) is interpreted not as the entire soil mass but as the effective concentration of
active soil sites or suspended particles that participate in salt absorption. Now, we assume that the rate of
growth of soil concentration is directly proportional to the difference of its equilibrium concentration Sy and
its concentration S at time ¢ with growth rate coefficient § and a decrease in S(t) represents the temporary
reduction in the effective availability of absorption sites under salinity stress, rather than literal soil depletion
with its depletion rate coefficient S2. Now, the rate of change of soil concentration is given by the differential
equation:

% =(Sp — S) — PasS.

Here, The interaction term [sS therefore, captures the finite salt-buffering capacity of soil. The
replenishment term §(Sy — S) accounts for natural processes such as leaching, sediment turnover, and
microbial action that restore soil buffering capacity over time. This abstraction allows us to highlight
the essential role of soil as a dynamic regulator in the desalination process.

Let us assume that the rate of growth of concentration of salt in the soil is equal to the amount of soil obtained
after soil-buffering capacity of soil, that is 03285, where 6 is the proportionality constant 0 < 6 < 1. Also, the
concentration of salt in the soil depletes naturally due to leaching, climate, some microorganism and fungi
etc [16]. The natural depletion coefficient is 0y and depletion due to marsh plant consumption is 61s.M,
where 6; is depletion rate coefficient due to M. Thus, we get the following differential equation:

ds.
dt

Now, combining the above four equations, the system showing interrelation of four variables is depicted in
Figure 2.1 and the model system for desalination is as follows:

= 002585 — Oys. — O15.M.

O Blso — 5) — BusM — s,
% = 6(So — 5) - BasS,
OZC = 00285 — Ogs. — 015.M,

where, s(0) > 0, M(0) >0, S(0) > 0, s.(0) > 0. All the parameters are taken to be positive for the system.
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6051'

Figure 2.1: Schematic representation of interrelation among variables

3 Bounds of variable
Variables of the system (2.1) remain bounded inside the region of attraction. The following lemma defines
the region of attraction and provides the bounds of variables.

Lemma 3.1. The set F:{(S;M7S; Sc)e Ri 0 <5< 5maz; 0 <M < Mgz, 0<S < Sz, 0 <50 <

Scmam}7
— Y +Y1P180 + QﬁsmazK 0825050
where, Smaz = S0, Moz = [’7 il 2 61 2715 ] ’ Smaz = SO; Stmaz — ﬁe—
0

v
region of attraction for the dynamical system (2.1) which brings inside all solutions starting in the interior
of the positive orthant.

represents the

Proof. From first equation of the system (2.1) we get,

= lim sups(t) < so = Smax (52Y).
t—00

Again, from second equation we obtain,

% <yM(1- %) — %M +71B18M + Y2b15.M

— Jim supM (1) < Y=ot nbis+yabhse Mo (s2y).

Further, from the third equation, we get

B b5 - 9)

— Jim supS(t) < So = Spmax (say).

Now, from the fourth equation, we get

e < 08255 s,

= tlirgo sups.(t) < % = S¢,... (sQY).

Hence, the proof. O

4 Equilibrium Analysis

In this section, we analyze the proposed non-linear system (2.1). The equilibrium point of the system can
be obtained by equating the growth rate of variables to zero. Here, we get two equilibrium points for the
proposed dynamical system, one without the biomass density of marsh plants (M = 0) and another point in
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which all the variables are non-zero. These equilibrium points are listed as follows:
(l> F0(§’0’ §a§0)7
(ii.) F*(s*,M*,S*, s%).

Existence of Fy(s,0, S, Se)
Considering the case without biomass density of marsh plant, taking M = 0, we have the following equations:

B(so — s) — 285 =0, (4.1)
5(50—5)—628520, .
0B28S — Oys. = 0. (4.3)

Solving equations (4.1) and (4.2), we get a quadratic equation in s as follows:

BBas® + (65250 + 68 — BBaso)s — 6 sy = 0. (4.4)

The above equation (4.4) has one positive root provided, Sy — 8sg > 0.
Take A1 = ﬁﬂQ, A2 = (55250 + (55 — ﬁBQSO and A3 = 5680

Now,
. Ay + A3+ 44, A3
§= .
Ay
Again,
S = ﬁ(so T S)a
B2
and R
6 _ 03285
c — 90 .

Existence of F*(s*, M*,S*,s¥)

(&
In the case when M # 0, we solve the following equations:

B(sg — 8) — B1sM — B285 =0, (4.5)
M
(1 - f) =% +MB15 + ebhis. =0, (4.6)
(5(50 - S) — 6285 = 0, (47)
0B28S — Oys. — O15.M = 0. (4.8)
Simplifying, we get the following two isoclines in s and M:
050

—5) — BusM — —0, 4.9
B(so — s) — Pr1s 525<525 ) (4.9)

M 72010826550
1——)—7+ + =0. 4.10
V=) =0t b+ G R s £ 0) (4.10)

We notice following points from isocline (4.9),

(i.) For M =0, we get quadratic equation

BB25* + (68250 + 38 — BB2s0)s — 6Bso = 0,

which has one positive root.
(ii.) s—0as M — oo,
dM _ —(Bsod + (862 + B1B2M)s?)

ds (B2s + 0)F182 <0
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Again, we notice following points from isocline (4.10),

(i.) we get a quadratic equation in s as follows having both negative roots for M = 0,
Y181B2005" + (v — 70)0B2 + 1151000 + 72010826505 + (v — 70)08 = 0,

(i) s =0 for M= LZWE

(i) dM {71 B1(B2s + 93/2(00 + 01 M) + 71610820500} (09 + 01 M) K

ds — {y(Bas +0)(00 + 01M)? + 7260,052550501 } (B2 + 0)

Hence, from above it is clear that two isoclines (4.9) and (4.10) intersect each other and their intersection
point (s*, M*) is depicted in Figure 4.1 After knowing the value of s* and M*, we can easily find the value
of §* and s} also. The values of S* and s} are as follows:

> 0.

)
g =20 411
G fos") (.10
st = 6525”050 (4.12)

(0 + Bas*) (0o + 01 M*)
Thus, F* exists provided (6Sy — Bso) > 0.

Remark 4.1. The inequality (659 — Bsg) > 0 can be interpreted ecologically. Here, Sy represents the
replenishment capacity of the soil system, while Ssg denotes the effective pressure exerted by incoming salinity.
For the system to reach a sustainable equilibrium, the soils ability to buffer and restore absorption sites must
exceed the salinity inflow. If this condition is not met, salt accumulates uncontrollably, preventing marsh
plants from surviving. In contrast, when the inequality holds, the soil functions as a stabilizing buffer,
enabling the persistence of halophytes and ensuring steady desalination.

105 ) T T T T
*, |+ Isocline 10
i "" | Isocline 11
4 ",
- ‘*
f = *
K "k
Q *
< 100+ " o
e *
© *
£ e
S .
= (s*,M7) *x
$ o5- - i
w0 '.
@ %y
£ *
Al *
m *
%
Tk
90 | | L | | L 1 L |
35 36 37 38 39 40 41 42 43 44

Concentration of salt in water s(t)

Figure 4.1: Plot for the existence of equilibrium point F*

5 Stability analysis

We evaluate the local and global stability of the system in this section.

Local stability of Fj

(i) To check the local stability of Fy(§,0, S, $c), we find the Jacobian matrix Jy corresponding to Fy which
is as follows:

—(B + B25) —p18 —fB28 0
Jo = 0 Y= + 71618 + 20 8e 0 0
—BaS 0 —(64528) 0

05,5 —0,5, 0543 —6
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It is noted that one of the eigen value of Jy is (v — v0 + 71518 + 12015.) > 0. Hence, Fj is a saddle point
and it is unstable in M — direction.

Now, we determine the local stability of F* by Lyapunov’s method. The condition obtained for the local
stability of F'* is stated in the following theorem:

Theorem 5.1. The Equilibrium F*(s*,M*,S*, s%) is locally stable provided these two conditions are
satisfied:

22 (06,5%)2 < 5 2 (B0 + LM)(B + M + 5257, (5.1)
22 0625" 2 + 525" < 5 L1 (B 4 BM” 4 52875+ Bas”) (0 + 1 M), (5:2)

C

Proof. To prove this theorem first, we linearize the system (2.1) about F™*(s*, M*,S*, s¥) by using the
transformations

s=8"+s;,M=M"+m,S =5+ s3,s. = s + s3, (5.3)

where, s1, m, sy and s3 are small perturbation around F™.
Take a positive definite function about F*

- m1 2 mao m @ 2 2
V= 2 1+2M*+2 2+2$3, (54)
where, mqy > 0, my > 0, mg > 0, myq > 0 to be chosen properly.
Now, differentiating (5.4) with respect to t yields,
dv dsy m dm dss dss
E =MmMi181—— ar =+ Mo e dt + ms3So—— 0 + myS3—— a (55)
Using the model equations in (5.5) and after simplification, we get
dV * * m2 *
P —my (B + BLM* + 325%)s7 — mﬂK — m3 (6 + Pas™)s3
— my (6o + 01 M%)s3 + (may1B1 — mafrs™)sim — (m1fBas™ + m3BaS*)s152
+ (may26y — mybyst)mss + mabB25% 5183 + mabBas™ s359. (5.6)
av
Now, the sufficient conditions for 4 come out to be negative definite are given below:
2 * *
(may1B1 — mafrs*)? < 3 (5+ﬁ1M + B257), (5.7)
2
(m1fBas™ +m3BaS*)? < §m1m3(ﬂ + BiM* + B257)(6 + B25”), (5.8)
2
(mg"}/291 — m401s ) < 3m2m4 (00 + 01M ), (59)
4
m4(9525'*)2 < §m1(90 + 91M*)(ﬂ + B M* + 625*)7 (510)
and
2
ma(0B2s*)? < 3ms (60 + M) (8 + Bys"). (5.11)
Take my = %mg and my = gmg in above inequalities we get following three inequalities as follows:
* 2 * *
(may1 Bo + m3B2S*)? < gl*mzmg(ﬁ + BIM* + B2S*) (5 + Bos™), (5.12)
72 *\2 2 * *
mgs—*(ﬁﬁzs ) < §m3(90 + 6. M )((5+ﬁ28 ), (513)

C
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lf(aﬂgs*ﬁ < gﬂ(ﬂo+91M*)(6+ﬂ1M* + B25%). (5.14)

*
sk s

Combining equations (5.12) and (5.13), then take mg = m3 = 1, we get the required inequalities

Z%(HBQS*)Q < g£(90+01M*)(6+51M*+625*), (5.15)
and
%(9528*)2(’)’152 +B25%)* < gg(ﬁ + BLM* + B25)(6 + Bas™) (80 + 61 M™). (5.16)

If the above conditions (5.15) and (5.16) are satisfied then we can say system is locally stable and the
interior equilibrium F* is locally stable. O

Global stability:
To investigate global stability, we use Lyapunov’s stability theory. The results regarding the global stability
of the interior equilibrium F* are stated in the following theorem:

Theorem 5.2. Equilibrium point F*(s*, M*,S*,s%) is globally asymptotically stable inside the region of
attraction T if the following two conditions hold:

4
007208250 < 571(‘90 +0LM*)(B 4 LM + B257), (5.17)
and
0o~y20 P52 4
(1 + Aol 2T < S0 (5 B + BaS")(6 + Bas” (60 + 010"). (5.18)

Proof. Take a positive definite function

k Mk k
W:%(sfs*)2+k2(MfM*fM*ln )+?3(57S*)2+f4(56—52)2, (5.19)

M* 2
where, k1 > 0, k2 > 0, k3 > 0, k4 > 0 to be chosen properly. Now, differentiating equation (5.19) of function
W with respect to t, we get

. Lds M* dM o dS o\ dSc
Using model system (2.1) equations in the above equation (5.20) we get,
W = —ky (B + BLM* + B257)(s — 57)2 — kQ%(M — M*)? = k(6 + Bos™)(S — S%)>
— k‘4(00 + 91M*)(Sc — 8:)2 + (k‘g’ylﬂl — klﬂls)(M - M*)(S — S*)
— (kl/BQS + kgﬁzs)(s — S*)(S — S*) + (k27291 — ]{349186)(M — M*>(Sc — SZ)
+ k40B25" (S — S*)(sc — $5) + ka0B2S(s — s¥)(sc — s2). (5.21)
W comes out to be negative definite if the following inequalities hold:
2
(ka1Br = k1Bismas)? < Shikago (84 BIM" + BoS"), (5.22)
2
(k1525mam + k3/82smam)2 < §k1k3(6 + ﬂlM* + 525*)(5 + BQS*)v (523)
2
(kay2by — kabyse, . )? < §k2k4%(00 +0.0M), (5.24)
4
ka (082S maz)” < §k1 (0o + 01 M*)(B + B1M* + B257), (5.25)
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and

2
k4(0B95™)* < §k3(90 + 0, M*) (3 + Bas™). (5.26)
After putting maximum values in the L.H.S of the above inequalities and take k; = 52% = @ and
max 0
ka2 ko260
kj = =
T Seren 0825050 we gt
2

(ka1 B + k3B250)% < §Z—;k2k3(ﬁ + BIM* + B257)(5 + Bas™), (5.27)

000PB2s? 2
k‘gm < *k‘3(90+91M*)((5+ﬁ28*), (528)

8050 3

4

00205250 < 5’71(90 + 1 M*)(B+ S1M* + B257). (5.29)

Combining equation (5.27) and (5.28), then take ko = ks = 1, we get the required inequalities.

4
007208250 < 671(90 + 0. M) (B4 BLM* + B257), (5.30)
and
0oy20 8252 4
(1 + BaSl2 P2 < S0 (5 B + BaS")(6 + Bas” (00 + O10"). (5:31)

aw
If the inequalities (5.30) and (5.31) holds then - is negative definite. Hence, the interior equilibrium
point F* is globally asymptotically stable inside 2. This is the complete proof of the Theorem 5.2. O

6 Numerical Simulation

To examine the validity of analytic solutions and the feasibility of the model system (2.1), we conduct the
simulation using MATLAB for the parameter values described in the Table 6.1. The equilibrium point F™*
is obtained numerically as:

s* =40.12, M* = 97.5748896, S* = 44.102073, s} = 89.7479.

In this section, plots showing the effect of different values of parameters on the state variables are illustrated
and we also investigate the global stability of the system.

We see that the first three Figures 6.1- 6.3 depict the effect of variation of 1, 51 and 5 on the concentration
of salt in water, respectively. It is observed from Figure 6.1 that as we increase the value of ~; there is a
decrease in the concentration of salt in the water due to an increase in biomass density of marsh plants. In
Figures. 6.2 - 6.3, we observe that the concentration of salt in water decreases with the increase in values
of both 81 and B5. Now, from Figure 6.4, we conclude that the biomass density of marsh plants increases
with the value of ;. It is noted from Figures 6.5- 6.6 that the growth of v; and (; affects positively, the
concentration of soil. From Figure 6.7 we analyze that the concentration of soil decreases with the increase
in value of 3. In Figures 6.8- 6.11, we see the plots showing the effect of parameters on the concentration
of salt in the soil. It is noticed from Figures 6.8 and 6.10 that the concentration of salt in soil decreases
with the increase in values of 1, 81 and 6; parameters but from Figures 6.9 and 6.11, we conclude that the
concentration of salt in the soil increases with an increase in parameters 83 and 6. Now, Figures 6.12- 6.14
show the global stability of the equilibrium F*. Figures 6.12 and 6.13 depict the two-dimensional global
stability plots, here all the solution paths starting anywhere inside the region of attraction converge towards
the equilibrium point F* in s — M-plane and s — S-plane respectively. Also, in Figure 6.14 all the solution
trajectories converge to the equilibrium point showing three-dimensional global stability in s — M — S-space.
In Figure 6.15, surface plots illustrate the concentration of salt in water and biomass density of marsh plants
with respect to [ i.e. depletion rate coefficient of concentration of salt in water and + i.e. intrinsic growth
rate of biomass density of marsh plant simultaneously. We observe from these plots that as the rate 5, and
~ increase, concentration of salt in water decreases and the biomass density of marsh plant increases.
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Table 6.1: Description table for various parameters and variables

Description of parameter

Symbol  Units and values

Growth rate coefficient of concentration of salt in water
Equilibrium concentration of salt in water

depletion rate coefficient for salt using marsh plants
depletion rate coefficient for salt due to soil salination
Intrinsic growth rate of biomass density of marsh plants
Natural depletion in biomass density of marsh plants
Carrying capacity of the marsh plants biomass density
Proportionality constant

Proportionality constant

Growth rate coefficient of concentration of soil
Equilibrium concentration of soil

Proportionality constant for growth of concentration of salt in soil

Natural depletion in concentration of salt in soil

Depletion rate coefficient due to marsh plants in concentration of salt in soil 63

Time

Concentration of salt in water
Biomass density of marsh plants
Concentration of soil
Concentration of salt in soil

B 0.1 per day
S0 1000 g/L
B 0.02 square m per g per day
B2 0.01 L per kg per day
¥ 0.8 per day
Yo 0.1 per day
K 100 g per square m
Y1 0.1 L per square m
Y2 0.2m
) 3 per day
So 50 kg/L
[% 0.01 unit less quantity=0.001
) 0.00002 per day
0.00002 square m per g per day
t day
st g/l
M(t) g per square m
S(t) kg/L

se(t) mg/L
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7 Sensitivity analysis
In this section, basic differential sensitivity analysis considering Bortz and Nelson (2004) is carried out to
investigate out how sensitive the dependent variables s, M, S, s. of system (2.1) are corresponding to

0Z(t,v
change in prompting parameters v;, 81, 2. Considering the sensitivity function Z,(¢t,v) = (t,v)

can calculate semi-relative sensitivity solutions (i.e. vZ,(t,v)), where Z is the state variable and v is the

parameter. Here, these semi-relative sensitivity solutions represent the effect on the state variables as we
double prompting parameters.

Now, the semi- relative sensitivity solution for the variables with respect to parameter 7; is as follows:
Sy, (7)) = =By, (8 71) — Brsy, (6, 71) M (8, 71) — Brs(t, 1) My, (¢,71)

- /828V1 (t7 71)S(t771) - BZS(tv'VI)S’Yl (tv'yl)

M(t, y1) My, (£,
M’Y1 (tvryl) =7 <M"/1 (ta 71) -2 ( 1)K’Y ( 1)) - fYOM’Yl (t7’yl)

+ Bus(t, 1) M (1) + 1By, (8, 71) M (7)) + v Brs(t, 1) My, (8, 71) (7.1)

+Y2b15c,, (8 71)M(E,71) + v20180(t, 71) My, (5 71)
S‘y (tvfyl) = _65'}/1 (t,’)/l) - 523715(157 ’yl) - 528(t771)571 (’5»’?1)
Scy, (tm1) = 08254, (t,71)S(t,71) + 0B25(t,71) S5, (¢, 71)

= Oosec,, (t,71) = O18c,, (£, 71) M (t,71) — Orse(t, y1) My, (8, 71).
Similarly, we can find the semi-relative sensitive solution with respect to key parameters.
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Figure 7.1: Plots of semi-relative basic differential sensitivity taking parameters 1, 1, B2 for different
state variables
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Figure 7.1 contains the plots of semi-relative sensitivity of state variables s, M, S, s. with respect to
the key parameters 71, 81, B2. Here, in these plots, we observe the behaviour of variables corresponding to
the doubling of parameters. From Figure 7.la, we see that doubling of all parameters vy, 81, B2 lowering
the concentration of salt s(t) in water, because these parameters help reduce the concentration of salt in the
reservoir using marsh plants and soil salinization in time t= 5 days. Again, from Figure 7.1b we conclude
that doubling of two parameters ; and 8, has a positive impact on the growth of marsh plants because both
the parameters 7, and (31 are used to extract salt from water by marsh plant and salt exhibits the growth
of marsh plants. But, the parameter 85 has no impact on the growth of biomass of marsh plants M (t). It is
noticed from Figure 7.1c that doubling of parameter 5, has a positive impact on the concentration of soil
in the reservoir, it is increased by 4.265 kg/L in t= 5 days. However, the doubling of parameter +; has no
effect and parameter Py decrease the concentration of soil in the reservoir. From Figure 7.1d, we observe
that doubling of 35 has a positive impact on the concentration of salt in the soil and it is increased by 0.6761
mg/L in 5 days while the other parameter v; has no effect and S affects negatively the concentration of
salt in the soil. Table 7.1 shows the results of the plots of semi-relative basic differential sensitivity.

Table 7.1: Semi-relative sensitive analysis

Parameter  s(¢) M(t) S(t) Se(t)

o] negative effect positive effect  no effect no effect

51 negative effect positive effect  positive effect  negative effect
B2 negative effect negative effect negative effect positive effect

The sensitivity analysis highlights the parameters most influential in regulating the desalination process.
For instance, parameters «v; and f1, which govern salt uptake by marsh plants, strongly influence both plant
biomass and salt removal from water. This is consistent with the ecological observation that halophytes utilize
salt as a resource for growth up to a threshold. On the other hand, 82, which measures salt absorption through
soil buffering, primarily affects soil salinity but has little direct impact on plant biomass in the present model.
These outcomes underscore the different ecological roles of marsh plants and soil: the former act as active
salt consumers, while the latter serve as a buffering medium that stabilizes the system indirectly.

8 Results and Conclusion

The blue planet Earth is almost covered with water but fresh-water resources availability is rare due to
mismanagement and environmental changes. This perilous condition of freshwater crisis due to increasing
population, water pollution, and urbanization can be curbed by appropriate water management methods like
reusing and purifying wastewater. Desalination of saline water is considered as an enticing way to mitigate the
water stress. In the current predicament, our interest is to adopt a cheaper and more economically profitable
way for desalination like the use of halophytes (marsh plants) because these can resist high salinity medium
and absorb salt from saline water. Contemplating the above fact, we proposed and analyzed a non-linear
mathematical model with an interoperability of four variables namely, the concentration of salt in water s(t),
the biomass density of marsh plants M (t), the concentration of soil in the reservoir S(¢), the concentration
of salt in soil due to soil salinization s.(¢). In this paper, we attempt to desalinate saline water within a
reservoir containing marsh plants and soil, both marsh plants and soil soak up salt from the water and this
leads to a reduction of salt in the water. Here, we see in this process both marsh plants and soil work as
predators and saline water as prey, simultaneously we see that salty soil is also prey for marsh plants.

The present model makes simplifying but ecologically justified assumptions. Marsh plants are treated
as halophytes, a group known to respond positively to salinity within certain limits, which explains the
growth-promoting role of salt in the model. Soil dynamics are represented in terms of effective buffering
capacity, emphasizing its role as a stabilizing reservoir rather than as a nutrient source. While the model
does not explicitly include inhibitory effects of extreme salinity or nutrientplant feedbacks, it successfully
captures the qualitative interplay between water salinity, plant biomass, and soil buffering. This provides a
baseline mathematical framework for understanding halophyte-assisted desalination in reservoirs.

In this modelling study, it is assumed that marsh plants grow logistically, and a high saline medium
enhances their growth and carrying capacity. Also, soil salination occurs in this process and is accountable
for the abatement in the concentration of salt in water. The mathematical analysis shows that as the density
of marsh plants increases concentration of salt in water as well as in soil decreases. In this paper, the condition
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