
ISSN 0304-9892 (Print) ISSN 2455-7463 (Online)

www.vijnanaparishadofindia.org/jnanabha
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Abstract

Water scarcity poses a significant challenge, particularly in regions affected by drought or inherently
dry conditions, leading to a stark imbalance between the availability and demand for fresh water. This
situation underscores the necessity for water conservation, purification for reuse, and desalination.
Among the various strategies employed for desalination, utilizing marsh plants is one of the most
cost-effective approaches. This paper focuses on enhancing the availability of potable water through
economical methods, specifically the use of marsh plants within water reservoirs. We introduce a nonlinear
mathematical model to examine the process of desalinating saline water in a reservoir environment,
considering the interplay between soil properties and marsh plants growth, which is influenced by the
salinity levels in both water and soil. Our study involves four nonlinearly interacting variables: salt
concentration in the water, biomass density of marsh plants, soil concentration, and salt concentration
in the soil. We have established the existence of an equilibrium point through isocline analysis.
The analytical exploration of the model includes determining the local and global stability of the
equilibria. The validity of our findings is further corroborated through numerical simulations for graphical
representations and sensitivity analysis of the system with respect to key parameters.
2020 Mathematical Sciences Classification: 34D20, 34D23, 34A34.
Keywords and Phrases: Desalination, Marsh plants, Soil salinization, Sensitivity.

1 Introduction
Over the past century, the demand for freshwater has surged on a global scale, and this trend shows no signs
of slowing down, with an annual growth rate of approximately 1% [23]. The projections from the Water
Resource Group 2030 indicate that by 2030, the world’s population will grapple with a staggering 40% deficit
in potable water[13]. At least 1.7 billion people consume contaminated water in water-stressed countries and
face water-borne diseases like diarrhoea, cholera, dysentery, etc [18]. Industrial development and various
other economic activities heavily rely (approximately 75%) on a sustainable water supply. Sustainable water
management in mining industries reduces freshwater use through recycling and efficient practices, helping to
ease existing water scarcity [17]. Shockingly, projections by the World Bank suggest that by 2050, GDP in
water-stressed regions could plummet by 6% due to the adverse impacts of water scarcity on health, income,
and agricultural production [3].

The majority of Earth’s water resources are saline, rendering them unsuitable for agricultural use and
other purposes, thereby hampering agricultural productivity [22]. Given that, nearly 97.5% of the world’s
total water exists in oceans as saline water, desalination emerges as a pivotal solution to alleviate water
stress [8]. Desalination, the process of obtaining pure, potable water by removing salt and impurities from
available water sources, is facilitated by various technologies globally, including reverse osmosis, multi-effect-
distillation, and multi-stage flash desalination plants [5]. With approximately 19,744 desalination plants
worldwide having a capacity of 99.7 million m3 per day production, they cater to the needs of over 300
million people across 150 countries [2, 25].

However, the desalination process poses environmental challenges, including marine pollution from brine
extraction, groundwater contamination, noise pollution, air pollution, and energy loss [7]. To mitigate these
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adverse impacts, the adoption of greener desalination approaches such as gas hydrate-based desalination
and the utilization of renewable energy sources like geothermal energy, solar water evaporation desalination
and hybrid desalination systems is imperative [6, 11, 12]. It is crucial to prioritize technologies that yield
water with low salinity, minimal environmental footprint, and optimal operational costs [28]. Policymakers’
focus in the current landscape is on attaining fresh water through cost-effective and environmentally friendly
desalination processes, with a notable emphasis on leveraging natural solutions like marsh plants and salt-
tolerant organisms, which offer cost-effective alternatives already present in nature [1, 21]. Marsh plants
exhibit robust growth in response to salinity levels of up to 200 mol/m3, demonstrating remarkable tolerance
to high salinity conditions [20].

Furthermore, numerous studies have explored aerobic and anaerobic environments for the biological
treatment of saline water [4, 14, 15, 19, 24, 26, 27]. A non-linear mathematical model has been proposed to
remove the inorganic pollutants from the water body by the biosorption procedure using fungal inhabitants
[9]. Using the concept of prey-predator modelling, Shukla et al. [21] have proposed a mathematical model
in which marsh plant and halophile bacteria have been considered as predators and saline water as prey for
the desalination process via Michaelis Menten kinetics [21]. Goyal et al. [9] have also proposed and analyzed
a predator-prey model system for desalinization as well as the removal of pollutants from the water using
halophiles [10].

In light of escalating global population growth and the pressing water crisis, this study introduces a novel
non-linear mathematical model for desalination. Specifically, we integrate soil factors to simulate the growth
of marsh plants in reservoirs containing saline water, a concept hitherto unexplored in existing literature.
The growth of marsh plants depends upon the concentration of salt in water. The proposed model accounts
for soil salinization dynamics, where both marsh plants and soil absorb salt from water, thereby reducing its
salinity. By using this innovative approach, optimal results for desalination can be achieved in a cost-effective
and environmentally sustainable manner, devoid of adverse ecological impacts.
1.1 Comparison with Previous Models
Several researchers have previously employed mathematical modelling techniques to investigate the potential
of halophytes and halophytic plants as natural systems for desalinating saline water. In contrast, our proposed
model uniquely captures not only the role of halophytic marsh plants in the desalination process but also
treats soil salinity as a dynamic variable, offering a novel perspective on the systems behavior. Below, we
compare our work with key previous studies:

1. Shukla et al. [21] proposed a nonlinear mathematical model in which marsh plants and halophiles
were treated as predators and saline water as prey. However, their study concentrated primarily on
desalination and did not account for the role of soil or the dynamics of soil salinity [21].

2. Ashish Goyal et al. [9] developed a nonlinear mathematical model that explores the removal of inorganic
pollutants from water through the bio-absorption process mediated by fungi [9].

3. Ashish Goyal et al. [10] proposed a two-prey, one-predator model in which halophiles play a central
role in reducing both salinity and pollutants [10].

4. Our study builds upon earlier work by incorporating soil dynamics, which not only aid in reducing salt
content from water but also support the growth of marsh plants. Distinct from previous models, we
focus exclusively on halophytic marsh plants while considering soil salinity as a mediating factor in the
desalination of saline water.

2 Model Formulation
To formulate the model for the desalination of saline water using marsh plants in a reservoir, we consider
four non-linearly interacting variables listed as follows:

(i.) The concentration of salt in water at time t denoted by s(t) (in g/L),
(ii.) The biomass density of marsh plants at time t denoted by M(t) (in g per square m),
(iii.) The concentration of soil in the reservoir at time t denoted by S(t) (in kg/L), and
(iv.) The concentration of salt in soil due to soil salinization at time t denoted by sc(t) (in mg/L).

Here, we consider the desalination of saline water within a reservoir containing soil and marsh plants. Both
marsh plants and soil extract the salt from the saline water. We assume that the rate of growth for the
concentration of salt in water is proportional to the difference of its equilibrium concentration s0 and its
concentration s at time t that is (s0 − s) and marsh plants take the salt from saline water for its growth,
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so β1 is the depletion rate coefficient for the salt concentration due to salt extraction for growth of marsh
plants. Now, the depletion rate of salt from seawater due to absorption by soil is denoted by β2. Thus, the
dynamics of concentration of salt in water is given by the following differential equation:

ds

dt
= β(s0 − s)− β1sM − β2sS.

We assume that the growth of marsh plants follows the logistic model with intrinsic growth rate coefficient
γ and γ0 represents its natural depletion. The plant growth equation incorporates both direct growth and
salt-mediated contributions. This reflects the behaviour of halophytic marsh plants, which are known to
tolerate and even thrive under moderate-to-high salinity levels [20]. Hence, the growth rate of marsh plants
in the reservoir is given by the following differential equation:

dM

dt
= γ(M − M2

K
)− γ0M + γ1β1sM + γ2θ1scM.

Here, γ1 and γ2 both are proportionality constants, 0 < γ1, γ2 < 1. The terms involving γ1β1sM and γ2θ1scM
represent the positive influence of dissolved and soil-bound salts within the physiologically relevant salinity
range. Although at very high concentrations salinity becomes inhibitory, Our model aims to capture the
initial positive response typical of halophytes, making them suitable candidates for cost-effective desalination.
In the present model, S(t) is interpreted not as the entire soil mass but as the effective concentration of
active soil sites or suspended particles that participate in salt absorption. Now, we assume that the rate of
growth of soil concentration is directly proportional to the difference of its equilibrium concentration S0 and
its concentration S at time t with growth rate coefficient δ and a decrease in S(t) represents the temporary
reduction in the effective availability of absorption sites under salinity stress, rather than literal soil depletion
with its depletion rate coefficient β2. Now, the rate of change of soil concentration is given by the differential
equation:

dS

dt
= δ(S0 − S)− β2sS.

Here, The interaction term β2sS therefore, captures the finite salt-buffering capacity of soil. The
replenishment term δ(S0 − S) accounts for natural processes such as leaching, sediment turnover, and
microbial action that restore soil buffering capacity over time. This abstraction allows us to highlight
the essential role of soil as a dynamic regulator in the desalination process.
Let us assume that the rate of growth of concentration of salt in the soil is equal to the amount of soil obtained
after soil-buffering capacity of soil, that is θβ2sS, where θ is the proportionality constant 0 < θ < 1. Also, the
concentration of salt in the soil depletes naturally due to leaching, climate, some microorganism and fungi
etc [16]. The natural depletion coefficient is θ0 and depletion due to marsh plant consumption is θ1scM ,
where θ1 is depletion rate coefficient due to M . Thus, we get the following differential equation:

dsc
dt

= θβ2sS − θ0sc − θ1scM.

Now, combining the above four equations, the system showing interrelation of four variables is depicted in
Figure 2.1 and the model system for desalination is as follows:

ds

dt
= β(s0 − s)− β1sM − β2sS,

dM

dt
= γ(M − M2

K
)− γ0M + γ1β1sM + γ2θ1scM,

dS

dt
= δ(S0 − S)− β2sS,

dsc
dt

= θβ2sS − θ0sc − θ1scM,





(2.1)

where, s(0) ≥ 0, M(0) ≥ 0, S(0) ≥ 0, sc(0) ≥ 0. All the parameters are taken to be positive for the system.
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Figure 2.1: Schematic representation of interrelation among variables

3 Bounds of variable
Variables of the system (2.1) remain bounded inside the region of attraction. The following lemma defines
the region of attraction and provides the bounds of variables.

Lemma 3.1. The set Γ={(s,M ,S, sc)∈ R4
+: 0 ≤ s ≤ smax, 0 ≤ M ≤ Mmax, 0 ≤ S ≤ Smax, 0 ≤ sc ≤

scmax},
where, smax = s0, Mmax =

[γ − γ0 + γ1β1s0 + γ2θ1scmax ]K

γ
, Smax = S0, scmax =

θβ2s0S0

θ0
represents the

region of attraction for the dynamical system (2.1) which brings inside all solutions starting in the interior
of the positive orthant.

Proof. From first equation of the system (2.1) we get,
ds

dt
≤ β(s0 − s)

=⇒ lim
t→∞

sups(t) ≤ s0 = smax (say).

Again, from second equation we obtain,
dM

dt
≤ γM(1− M

K
)− γ0M + γ1β1sM + γ2θ1scM

=⇒ lim
t→∞

supM(t) ≤ Kγ − γ0 + γ1β1s+ γ2θ1sc
γ

= Mmax (say).

Further, from the third equation, we get
dS

dt
≤ δ(S0 − S)

=⇒ lim
t→∞

supS(t) ≤ S0 = Smax (say).

Now, from the fourth equation, we get
dsc
dt
≤ θβ2sS − θ0sc

=⇒ lim
t→∞

supsc(t) ≤
θβ2s0S0

θ0
= scmax (say).

Hence, the proof.

4 Equilibrium Analysis
In this section, we analyze the proposed non-linear system (2.1). The equilibrium point of the system can
be obtained by equating the growth rate of variables to zero. Here, we get two equilibrium points for the
proposed dynamical system, one without the biomass density of marsh plants (M = 0) and another point in
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which all the variables are non-zero. These equilibrium points are listed as follows:

(i.) F0(ŝ, 0, Ŝ, ŝc),
(ii.) F ∗(s∗,M∗, S∗, s∗c).

Existence of F0(ŝ, 0, Ŝ, ŝc)
Considering the case without biomass density of marsh plant, taking M = 0, we have the following equations:

β(s0 − s)− β2sS = 0, (4.1)

δ(S0 − S)− β2sS = 0, (4.2)

θβ2sS − θ0sc = 0. (4.3)

Solving equations (4.1) and (4.2), we get a quadratic equation in s as follows:

ββ2s
2 + (δβ2S0 + δβ − ββ2s0)s− δβs0 = 0. (4.4)

The above equation (4.4) has one positive root provided, δS0 − βs0 > 0.
Take A1 = ββ2, A2 = δβ2S0 + δβ − ββ2s0 and A3 = δβs0.
Now,

ŝ =
−A2 +

√
A2

2 + 4A1A3

A1
.

Again,

Ŝ =
β(s0 − ŝ)
β2ŝ

,

and

ŝc =
θβ2ŝŜ

θ0
.

Existence of F ∗(s∗,M∗, S∗, s∗c)
In the case when M 6= 0, we solve the following equations:

β(s0 − s)− β1sM − β2sS = 0, (4.5)

γ(1− M

K
)− γ0 + γ1β1s+ γ2θ1sc = 0, (4.6)

δ(S0 − S)− β2sS = 0, (4.7)

θβ2sS − θ0sc − θ1scM = 0. (4.8)

Simplifying, we get the following two isoclines in s and M :

β(s0 − s)− β1sM − β2s
δS0

(β2s+ δ)
= 0, (4.9)

γ(1− M

K
)− γ0 + γ1β1s+

γ2θ1θβ2δsS0

(θ0 + θ1M)(β2s+ δ)
= 0. (4.10)

We notice following points from isocline (4.9),

(i.) For M = 0, we get quadratic equation

ββ2s
2 + (δβ2S0 + δβ − ββ2s0)s− δβs0 = 0,

which has one positive root.
(ii.) s→ 0 as M →∞,

(iii.)
dM

ds
=
−(βs0δ + (ββ2 + β1β2M)s2)

(β2s+ δ)β1s2
< 0.
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Again, we notice following points from isocline (4.10),

(i.) we get a quadratic equation in s as follows having both negative roots for M = 0,

γ1β1β2θ0s
2 + (γ − γ0)θβ2 + γ1β1θ0δ + γ2θ1θβ2δS0s+ (γ − γ0)θδ = 0,

(ii.) s = 0 for M =
(γ − γ0)K

γ
,

(iii.)
dM

ds
=
{γ1β1(β2s+ θ)2(θ0 + θ1M) + γ1θ1θβ2δS0θ}(θ0 + θ1M)K

{γ(β2s+ θ)(θ0 + θ1M)2 + γ2θ1θβ2δS0sθ1}(β2s+ θ)
> 0.

Hence, from above it is clear that two isoclines (4.9) and (4.10) intersect each other and their intersection
point (s∗,M∗) is depicted in Figure 4.1 After knowing the value of s∗ and M∗, we can easily find the value
of S∗ and s∗c also. The values of S∗ and s∗c are as follows:

S∗ =
δS0

(δ + β2s∗)
, (4.11)

s∗c =
θβ2s

∗δS0

(δ + β2s∗)(θ0 + θ1M∗)
. (4.12)

Thus, F ∗ exists provided (δS0 − βs0) > 0.

Remark 4.1. The inequality (δS0 − βs0) > 0 can be interpreted ecologically. Here, δS0 represents the
replenishment capacity of the soil system, while βs0 denotes the effective pressure exerted by incoming salinity.
For the system to reach a sustainable equilibrium, the soils ability to buffer and restore absorption sites must
exceed the salinity inflow. If this condition is not met, salt accumulates uncontrollably, preventing marsh
plants from surviving. In contrast, when the inequality holds, the soil functions as a stabilizing buffer,
enabling the persistence of halophytes and ensuring steady desalination.

Figure 4.1: Plot for the existence of equilibrium point F ∗

5 Stability analysis
We evaluate the local and global stability of the system in this section.
Local stability of F0

(i) To check the local stability of F0(ŝ, 0, Ŝ, ŝc), we find the Jacobian matrix J0 corresponding to F0 which
is as follows:

J0 =




−(β + β2Ŝ) −β1ŝ −β2ŝ 0
0 γ − γ0 + γ1β1ŝ+ γ2θ1ŝc 0 0

−β2Ŝ 0 −(δ + β2ŝ) 0

θβ2Ŝ −θ1ŝc θβ2ŝ −θ0


.
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It is noted that one of the eigen value of J0 is (γ − γ0 + γ1β1ŝ + γ2θ1ŝc) > 0. Hence, F0 is a saddle point
and it is unstable in M − direction.
Now, we determine the local stability of F ∗ by Lyapunov’s method. The condition obtained for the local
stability of F ∗ is stated in the following theorem:

Theorem 5.1. The Equilibrium F ∗(s∗,M∗, S∗, s∗c) is locally stable provided these two conditions are
satisfied:

γ2

s∗c
(θβ2S

∗)2 <
4

9

γ1

s∗
(θ0 + θ1M

∗)(β + β1M
∗ + β2S

∗), (5.1)

γ2

s∗c
(θβ2s

∗)2(γ1β2 + β2S
∗)2 <

4

9

γ1

s∗
(β + β1M

∗ + β2S
∗)(δ + β2s

∗)2(θ0 + θ1M
∗). (5.2)

Proof. To prove this theorem first, we linearize the system (2.1) about F ∗(s∗,M∗, S∗, s∗c) by using the
transformations

s = s∗ + s1,M = M∗ +m,S = S∗ + s2, sc = s∗c + s3, (5.3)

where, s1, m, s2 and s3 are small perturbation around F ∗.
Take a positive definite function about F ∗

V =
m1

2
s2

1 +
m2

2

m2

M∗
+
m3

2
s2

2 +
m4

2
s2

3, (5.4)

where, m1 > 0, m2 > 0, m3 > 0, m4 > 0 to be chosen properly.
Now, differentiating (5.4) with respect to t yields,

dV

dt
= m1s1

ds1

dt
+m2

m

M∗
dm

dt
+m3s2

ds2

dt
+m4s3

ds3

dt
. (5.5)

Using the model equations in (5.5) and after simplification, we get

dV

dt
= −m1(β + β1M

∗ + β2S
∗)s2

1 −m2
γm2

K
−m3(δ + β2s

∗)s2
2

−m4(θ0 + θ1M
∗)s2

3 + (m2γ1β1 −m1β1s
∗)s1m− (m1β2s

∗ +m3β2S
∗)s1s2

+ (m2γ2θ1 −m4θ1s
∗
c)ms3 +m4θβ2S

∗s1s3 +m4θβ2s
∗s3s2. (5.6)

Now, the sufficient conditions for
dV

dt
come out to be negative definite are given below:

(m2γ1β1 −m1β1s
∗)2 <

2

3
m1m2

γ

K
(β + β1M

∗ + β2S
∗), (5.7)

(m1β2s
∗ +m3β2S

∗)2 <
2

3
m1m3(β + β1M

∗ + β2S
∗)(δ + β2s

∗), (5.8)

(m2γ2θ1 −m4θ1s
∗
c)

2 <
2

3
m2m4

γ

K
(θ0 + θ1M

∗), (5.9)

m4(θβ2S
∗)2 <

4

9
m1(θ0 + θ1M

∗)(β + β1M
∗ + β2S

∗), (5.10)

and

m4(θβ2s
∗)2 <

2

3
m3(θ0 + θ1M

∗)(δ + β2s
∗). (5.11)

Take m1 =
γ1

s∗
m2 and m4 =

γ2

s∗c
m2 in above inequalities we get following three inequalities as follows:

(m2γ1β2 +m3β2S
∗)2 <

2

3

γ1

s∗
m2m3(β + β1M

∗ + β2S
∗)(δ + β2s

∗), (5.12)

m2
γ2

s∗c
(θβ2s

∗)2 <
2

3
m3(θ0 + θ1M

∗)(δ + β2s
∗), (5.13)
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γ2

s∗c
(θβ2S

∗)2 <
4

9

γ1

s∗
(θ0 + θ1M

∗)(β + β1M
∗ + β2S

∗). (5.14)

Combining equations (5.12) and (5.13), then take m2 = m3 = 1, we get the required inequalities

γ2

s∗c
(θβ2S

∗)2 <
4

9

γ1

s∗
(θ0 + θ1M

∗)(β + β1M
∗ + β2S

∗), (5.15)

and
γ2

s∗c
(θβ2s

∗)2(γ1β2 + β2S
∗)2 <

4

9

γ1

s∗
(β + β1M

∗ + β2S
∗)(δ + β2s

∗)2(θ0 + θ1M
∗). (5.16)

If the above conditions (5.15) and (5.16) are satisfied then we can say system is locally stable and the
interior equilibrium F ∗ is locally stable.

Global stability:
To investigate global stability, we use Lyapunov’s stability theory. The results regarding the global stability
of the interior equilibrium F ∗ are stated in the following theorem:

Theorem 5.2. Equilibrium point F ∗(s∗,M∗, S∗, s∗c) is globally asymptotically stable inside the region of
attraction Γ if the following two conditions hold:

θ0γ2θβ2S0 <
4

9
γ1(θ0 + θ1M

∗)(β + β1M
∗ + β2S

∗), (5.17)

and

(γ1β2 + β2S0)2 θ0γ2θβ2s
∗2

S0
<

4

9
γ1(β + β1M

∗ + β2S
∗)(δ + β2s

∗)2(θ0 + θ1M
∗). (5.18)

Proof. Take a positive definite function

W =
k1

2
(s− s∗)2 + k2(M −M∗ −M∗ ln

M

M∗
) +

k3

2
(S − S∗)2 +

k4

2
(sc − s∗c)2, (5.19)

where, k1 > 0, k2 > 0, k3 > 0, k4 > 0 to be chosen properly. Now, differentiating equation (5.19) of function
W with respect to t, we get

Ẇ = k1(s− s∗)ds
dt

+ k2(1− M∗

M
)
dM

dt
+ k3(S − S∗)dS

dt
+ k4(sc − s∗c)

dsc
dt
. (5.20)

Using model system (2.1) equations in the above equation (5.20) we get,

Ẇ = −k1(β + β1M
∗ + β2S

∗)(s− s∗)2 − k2
γ

K
(M −M∗)2 − k3(δ + β2s

∗)(S − S∗)2

− k4(θ0 + θ1M
∗)(sc − s∗c)2 + (k2γ1β1 − k1β1s)(M −M∗)(s− s∗)

− (k1β2s+ k3β2S)(S − S∗)(s− s∗) + (k2γ2θ1 − k4θ1sc)(M −M∗)(sc − s∗c)
+ k4θβ2s

∗(S − S∗)(sc − s∗c) + k4θβ2S(s− s∗)(sc − s∗c). (5.21)

Ẇ comes out to be negative definite if the following inequalities hold:

(k2γ1β1 − k1β1smax)2 <
2

3
k1k2

γ

K
(β + β1M

∗ + β2S
∗), (5.22)

(k1β2smax + k3β2Smax)2 <
2

3
k1k3(β + β1M

∗ + β2S
∗)(δ + β2s

∗), (5.23)

(k2γ2θ1 − k4θ1scmax)2 <
2

3
k2k4

γ

K
(θ0 + θ1M

∗), (5.24)

k4(θβ2Smax)2 <
4

9
k1(θ0 + θ1M

∗)(β + β1M
∗ + β2S

∗), (5.25)
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and

k4(θβ2s
∗)2 <

2

3
k3(θ0 + θ1M

∗)(δ + β2s
∗). (5.26)

After putting maximum values in the L.H.S of the above inequalities and take k1 =
k2γ1

smax
=

k2γ1

s0
and

k4 =
k2γ2

scmax
=

k2γ2θ0

θβ2s0S0
, we get

(k2γ1β2 + k3β2S0)2 <
2

3

γ1

s0
k2k3(β + β1M

∗ + β2S
∗)(δ + β2s

∗), (5.27)

k2
γ2θ0θβ2s

∗2

s0S0
<

2

3
k3(θ0 + θ1M

∗)(δ + β2s
∗), (5.28)

θ0γ2θβ2S0 <
4

9
γ1(θ0 + θ1M

∗)(β + β1M
∗ + β2S

∗). (5.29)

Combining equation (5.27) and (5.28), then take k2 = k3 = 1, we get the required inequalities.

θ0γ2θβ2S0 <
4

9
γ1(θ0 + θ1M

∗)(β + β1M
∗ + β2S

∗), (5.30)

and

(γ1β2 + β2S0)2 θ0γ2θβ2s
∗2

S0
<

4

9
γ1(β + β1M

∗ + β2S
∗)(δ + β2s

∗)2(θ0 + θ1M
∗). (5.31)

If the inequalities (5.30) and (5.31) holds then
dW

dt
is negative definite. Hence, the interior equilibrium

point F ∗ is globally asymptotically stable inside Ω. This is the complete proof of the Theorem 5.2.

6 Numerical Simulation
To examine the validity of analytic solutions and the feasibility of the model system (2.1), we conduct the
simulation using MATLAB for the parameter values described in the Table 6.1. The equilibrium point F ∗

is obtained numerically as:
s∗ = 40.12, M∗ = 97.5748896, S∗ = 44.102073, s∗c = 89.7479.
In this section, plots showing the effect of different values of parameters on the state variables are illustrated
and we also investigate the global stability of the system.
We see that the first three Figures 6.1- 6.3 depict the effect of variation of γ1, β1 and β2 on the concentration
of salt in water, respectively. It is observed from Figure 6.1 that as we increase the value of γ1 there is a
decrease in the concentration of salt in the water due to an increase in biomass density of marsh plants. In
Figures. 6.2 - 6.3, we observe that the concentration of salt in water decreases with the increase in values
of both β1 and β2. Now, from Figure 6.4, we conclude that the biomass density of marsh plants increases
with the value of γ1. It is noted from Figures 6.5- 6.6 that the growth of γ1 and β1 affects positively, the
concentration of soil. From Figure 6.7 we analyze that the concentration of soil decreases with the increase
in value of β2. In Figures 6.8- 6.11, we see the plots showing the effect of parameters on the concentration
of salt in the soil. It is noticed from Figures 6.8 and 6.10 that the concentration of salt in soil decreases
with the increase in values of γ1, β1 and θ1 parameters but from Figures 6.9 and 6.11, we conclude that the
concentration of salt in the soil increases with an increase in parameters β2 and θ. Now, Figures 6.12- 6.14
show the global stability of the equilibrium F ∗. Figures 6.12 and 6.13 depict the two-dimensional global
stability plots, here all the solution paths starting anywhere inside the region of attraction converge towards
the equilibrium point F ∗ in s−M -plane and s− S-plane respectively. Also, in Figure 6.14 all the solution
trajectories converge to the equilibrium point showing three-dimensional global stability in s−M −S-space.
In Figure 6.15, surface plots illustrate the concentration of salt in water and biomass density of marsh plants
with respect to β1 i.e. depletion rate coefficient of concentration of salt in water and γ i.e. intrinsic growth
rate of biomass density of marsh plant simultaneously. We observe from these plots that as the rate β1 and
γ increase, concentration of salt in water decreases and the biomass density of marsh plant increases.
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Table 6.1: Description table for various parameters and variables

Description of parameter Symbol Units and values

Growth rate coefficient of concentration of salt in water β 0.1 per day
Equilibrium concentration of salt in water s0 1000 g/L
depletion rate coefficient for salt using marsh plants β1 0.02 square m per g per day
depletion rate coefficient for salt due to soil salination β2 0.01 L per kg per day
Intrinsic growth rate of biomass density of marsh plants γ 0.8 per day
Natural depletion in biomass density of marsh plants γ0 0.1 per day
Carrying capacity of the marsh plants biomass density K 100 g per square m
Proportionality constant γ1 0.1 L per square m
Proportionality constant γ2 0.2 m
Growth rate coefficient of concentration of soil δ 3 per day
Equilibrium concentration of soil S0 50 kg/L
Proportionality constant for growth of concentration of salt in soil θ 0.01 unit less quantity=0.001
Natural depletion in concentration of salt in soil θ0 0.00002 per day
Depletion rate coefficient due to marsh plants in concentration of salt in soil θ1 0.00002 square m per g per day
Time t day
Concentration of salt in water s(t) g/L
Biomass density of marsh plants M(t) g per square m
Concentration of soil S(t) kg/L
Concentration of salt in soil sc(t) mg/L

Figure 6.1: Variation in concentration of salt
in water s(t) for distinct values of γ1.

Figure 6.2: Variation in concentration of salt
in water s(t) for distinct values of β1.

Figure 6.3: Variation in concentration of
salt in water s(t) for distinct values of β2.

Figure 6.4: Variation in biomass density
of marsh plants M(t) for distinct values of
γ1.
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Figure 6.5: Variation in concentration of
soil S(t) for distinct values of γ1.

Figure 6.6: Variation in concentration of
soil S(t) for distinct values of β1.

Figure 6.7: Variation in concentration of
soil S(t) for distinct values of β2.

Figure 6.8: Variation in concentration of
salt in soil sc(t) for distinct values of γ1.

(a) (b)

Figure 6.15: Surface plots of (a) concentration of salt in water, (b) biomass density of marsh plants with
respect to β1, γ at time t=5.
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Figure 6.9: Variation in concentration of
salt in soil sc(t) for distinct values of β2.

Figure 6.10: Variation in concentration
of salt in soil sc(t) for distinct values of θ1.

Figure 6.11: Variation in concentration
of salt in soil sc(t) for distinct values of θ.

Figure 6.12: Global stability of interior
equilibrium F ∗ in s−M -plane.

Figure 6.13: Global stability of interior
equilibrium F ∗ in s− S-plane.

Figure 6.14: Global stability of interior
equilibrium F ∗ in s−M − S-space.
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7 Sensitivity analysis
In this section, basic differential sensitivity analysis considering Bortz and Nelson (2004) is carried out to
investigate out how sensitive the dependent variables s, M , S, sc of system (2.1) are corresponding to

change in prompting parameters γ1, β1, β2. Considering the sensitivity function Zv(t, v) =
∂Z(t, v)

∂v
, we

can calculate semi-relative sensitivity solutions (i.e. vZv(t, v)), where Z is the state variable and v is the
parameter. Here, these semi-relative sensitivity solutions represent the effect on the state variables as we
double prompting parameters.
Now, the semi- relative sensitivity solution for the variables with respect to parameter γ1 is as follows:

˙sγ1(t, γ1) = −βsγ1(t, γ1)− β1sγ1(t, γ1)M(t, γ1)− β1s(t, γ1)Mγ1(t, γ1)

− β2sγ1(t, γ1)S(t, γ1)− β2s(t, γ1)Sγ1(t, γ1)

Ṁγ1(t, γ1) = γ

(
Mγ1(t, γ1)− 2

M(t, γ1)Mγ1(t, γ1)

K

)
− γ0Mγ1(t, γ1)

+ β1s(t, γ1)M(t, γ1) + γ1β1sγ1(t, γ1)M(t, γ1) + γ1β1s(t, γ1)Mγ1(t, γ1)

+ γ2θ1scγ1 (t, γ1)M(t, γ1) + γ2θ1sc(t, γ1)Mγ1(t, γ1)

˙Sγ1(t, γ1) = −δSγ1(t, γ1)− β2sγ1S(t, γ1)− β2s(t, γ1)Sγ1(t, γ1)

˙scγ1 (t, γ1) = θβ2sγ1(t, γ1)S(t, γ1) + θβ2s(t, γ1)Sγ1(t, γ1)

− θ0scγ1 (t, γ1)− θ1scγ1 (t, γ1)M(t, γ1)− θ1sc(t, γ1)Mγ1(t, γ1).





(7.1)

Similarly, we can find the semi-relative sensitive solution with respect to key parameters.

(a) (b)

(c) (d)

Figure 7.1: Plots of semi-relative basic differential sensitivity taking parameters γ1, β1, β2 for different
state variables
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Figure 7.1 contains the plots of semi-relative sensitivity of state variables s, M , S, sc with respect to
the key parameters γ1, β1, β2. Here, in these plots, we observe the behaviour of variables corresponding to
the doubling of parameters. From Figure 7.1a, we see that doubling of all parameters γ1, β1, β2 lowering
the concentration of salt s(t) in water, because these parameters help reduce the concentration of salt in the
reservoir using marsh plants and soil salinization in time t= 5 days. Again, from Figure 7.1b we conclude
that doubling of two parameters γ1 and β1 has a positive impact on the growth of marsh plants because both
the parameters γ1 and β1 are used to extract salt from water by marsh plant and salt exhibits the growth
of marsh plants. But, the parameter β2 has no impact on the growth of biomass of marsh plants M(t). It is
noticed from Figure 7.1c that doubling of parameter β1 has a positive impact on the concentration of soil
in the reservoir, it is increased by 4.265 kg/L in t= 5 days. However, the doubling of parameter γ1 has no
effect and parameter β2 decrease the concentration of soil in the reservoir. From Figure 7.1d, we observe
that doubling of β2 has a positive impact on the concentration of salt in the soil and it is increased by 0.6761
mg/L in 5 days while the other parameter γ1 has no effect and β1 affects negatively the concentration of
salt in the soil. Table 7.1 shows the results of the plots of semi-relative basic differential sensitivity.

Table 7.1: Semi-relative sensitive analysis

Parameter s(t) M(t) S(t) sc(t)
γ1 negative effect positive effect no effect no effect
β1 negative effect positive effect positive effect negative effect
β2 negative effect negative effect negative effect positive effect

The sensitivity analysis highlights the parameters most influential in regulating the desalination process.
For instance, parameters γ1 and β1, which govern salt uptake by marsh plants, strongly influence both plant
biomass and salt removal from water. This is consistent with the ecological observation that halophytes utilize
salt as a resource for growth up to a threshold. On the other hand, β2, which measures salt absorption through
soil buffering, primarily affects soil salinity but has little direct impact on plant biomass in the present model.
These outcomes underscore the different ecological roles of marsh plants and soil: the former act as active
salt consumers, while the latter serve as a buffering medium that stabilizes the system indirectly.

8 Results and Conclusion
The blue planet Earth is almost covered with water but fresh-water resources availability is rare due to
mismanagement and environmental changes. This perilous condition of freshwater crisis due to increasing
population, water pollution, and urbanization can be curbed by appropriate water management methods like
reusing and purifying wastewater. Desalination of saline water is considered as an enticing way to mitigate the
water stress. In the current predicament, our interest is to adopt a cheaper and more economically profitable
way for desalination like the use of halophytes (marsh plants) because these can resist high salinity medium
and absorb salt from saline water. Contemplating the above fact, we proposed and analyzed a non-linear
mathematical model with an interoperability of four variables namely, the concentration of salt in water s(t),
the biomass density of marsh plants M(t), the concentration of soil in the reservoir S(t), the concentration
of salt in soil due to soil salinization sc(t). In this paper, we attempt to desalinate saline water within a
reservoir containing marsh plants and soil, both marsh plants and soil soak up salt from the water and this
leads to a reduction of salt in the water. Here, we see in this process both marsh plants and soil work as
predators and saline water as prey, simultaneously we see that salty soil is also prey for marsh plants.

The present model makes simplifying but ecologically justified assumptions. Marsh plants are treated
as halophytes, a group known to respond positively to salinity within certain limits, which explains the
growth-promoting role of salt in the model. Soil dynamics are represented in terms of effective buffering
capacity, emphasizing its role as a stabilizing reservoir rather than as a nutrient source. While the model
does not explicitly include inhibitory effects of extreme salinity or nutrientplant feedbacks, it successfully
captures the qualitative interplay between water salinity, plant biomass, and soil buffering. This provides a
baseline mathematical framework for understanding halophyte-assisted desalination in reservoirs.

In this modelling study, it is assumed that marsh plants grow logistically, and a high saline medium
enhances their growth and carrying capacity. Also, soil salination occurs in this process and is accountable
for the abatement in the concentration of salt in water. The mathematical analysis shows that as the density
of marsh plants increases concentration of salt in water as well as in soil decreases. In this paper, the condition
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