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Abstract
Integral inequalities are becoming more popular because they are useful in many areas. The researchers
have studied integral inequalities using various methods. In this paper, we want to create new integral
inequalities such as Griiss type inequalities, and other similar ones, for the fractional integral operator
that uses the multivariate Mittag-Leffler function. We look at how the Riemann-Liouville integral, the
Prabhakar integral, and the generalized fractional integral are related to make specific conclusions. We
support our findings by giving additional details.
2020 Mathematical Sciences Classification: 26A33, 26D10.
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1 Introduction

Fractional calculus is the area of study that looks at integrals and derivatives of any number. We can
use differential equations with fractional derivatives to solve various problems in statistics, mathematics,
engineering, chemistry, and biology. Riemann, Liouville, Caputo, Riesz, Hilfer, Hardmard, Erdélyi-Kober,
Saigo-Maeda, and others have researched different kinds of fractional integrals. The idea of fractional
conformable derivative operators was proposed by Khalil et al. [11]. The feature of the fractional conformable
derivative operators was given by Abdeljawad and Baleanu [2]. The fractional conformable integral and
derivative operator was suggested by Jarad et al. [9]. Atangana and Baleanu, along with other researchers,
studied various types of fractional derivative operators. Researchers in fractional calculus have recently
created and explored new fractional integral and derivative operators.

Studying inequalities is an important area of research in mathematical analysis. The inequality method
is a helpful tool for studying special functions and approximation theory. Fractional integral inequalities
are useful in numerical methods, transform theory, and tasks related to probability and statistics. Recently,
many researchers have studied these inequalities, leading to various generalizations, extensions, and versions
in several works [1, 3, 7, 8, 12, 17, 18, 19, 23].

Grtss [5] proved an important and recognized inequality that connects the integral of the product of two
functions with the product of their individual integrals. The Griiss inequality [5] is given as follows:

Let f1 and f2 be two continuous functions defined on [r, s] such that m < f1(¢t) < M and n < fo(t) < N
for all t € [r, 5] and some real constants M, m, N,n € R. Then the following inequality is true:

(£) o (#) dt — s—r)z/ fl(t)dt/ fg(t)dt‘§4(M—m)(N—n). (1.1)

Here, % is the best constant for making the inequality as precise as possible.

Definition 1.1 ([10, 25]). A function fi1(t) is in the space Ly .[0,00) if the following condition holds: The
norm of f1 in this space, denoted as || f1l|L, .[0,00), 15 defined as:

1/p
Lyr[0,00) = {fl il 0,000 = (/ |fi()[Pt" dt) <oo, 1<p<oo, r> 0}- (1.2)
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If we use (1.2) for r =0, we get the following: The set of functions f1 belongs to the space L,[0,00) if
the p-norm of f1 is finite. This means that:

s 1/p
Lp[07OO) = {fl : ||f1||Lp[O,oo) = (A |f1(t)|pdt) <oo, 1<p< OO} .

Definition 1.2 ([16]). Prabhakar presented the three-parameter Mittag-Leffler function in the following
form:

(D"
£rcl) = Z% L(on + Qnl’

where n € N and v, 0, € C such that £(¢) > 0, (o) >0, R(vy) >0
Definition 1.3 ([6]). Gurjar and others created a version of the Mittag-Leffler function that can handle
multiple variables, and they described it as follows:

(v3:l5-p5)

5717 SYmilseeslms Py Pm
(05,¢,a5)

(217"'727”) ..... 0m;Ciq1ye s qm (Zl7-~-azm)

- i (Y)pirs (V) pmrm 2T g (1.3)

F(C + 27:1 Ujrj) Wars W) gmrm

T1yeeeym =0
Here v;,04,(,1; € C with
lgglm{%(C),%(Jj),m(’Yj),?R(lj)}>0, Pj, 45 >0, Dpj <(]j+§R(0'j), 7=12,...,m.

Definition 1.4 ([13, 20]). Let f € L[a,b]. The left-sided and right-sided RiemannLiouville fractional integrals
of order o > 0 with a > 0 are defined by

2N = | w0 fydt, @ >a,

and
1

@ — ¢ _ a—1
(Io_f)(z) = (o) A (t—z)* L f(t)dt, z<a.
Definition 1.5 ([16]). The Prabhakar type fractional integral is defined as

WE2DE@) = [ 0L 0w - 7).

a
Definition 1.6. The one-sided Prabhakar type fractional integral is expressed as

2D = [ o= (M= 7)) (1.4)

Definition 1.7 ([15, 21]). The Prabhakar type fractional integral operator having a multivariate Mittag-
Leffler function in the kernel is defined as

(A yeens ALy
(L0 &7 D) = LG O f) (@)

:/w(m ) 15((:’ ’3; AM(@ =07 Nj(@ =)} f(t) dt

where ¢, 04, i, € C with R(¢) > 0, R(oy) >0, R(v;) >0fori=1,2,...,7.
Definition 1.8. The one-sided Prabhakar type fractional integral with a multivariate Mittag-Leffler function
in its kernel is defined as

Ay i) = a2 &) piay
’ (1.5)
:/0 (w = DT Dl = )7 Ai(w = )7 (1) dt,

where ¢, 0;, \i,vi € C with R(¢) >0, R(o;) >0, N(ys) >0fori=1,2,...,j
Definition 1.9 [6]. The integral operator having a multivariable Mittag-Leffler function in the kernel is
defined by

’Y77 J:Pj ( vvvvv m), (1, lm),(P1,-- m)
(ZL’ G5, Cq7 >‘ f)( ) (I (Ziwuxzvn)vgf((h7-~~;Q7n§7;1(>‘1)?-a/\m)f)(x)

¢ (1.6)
:/ (:C,t)f 15(71, Ym), (L1, 7771)(1717 J)m){)\ xft) Aj(I*t)aj}f(t)dt

(015--,0m),¢,(q155qm)
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where (,0j,\j,7j,1; € C,
lgglm{%(oﬁ(gj),g&(%),S‘E(lj)} >0, pj,q >0, pj<qg+R(oy), j=12,...,m.

Definition 1.10. The one-sided integral operator of (1.6) having a multivariate Mittag-Leffler function in
the kernel is defined by

3513 Pj yeees¥m)s (U see sl )y (P15 5P
(I’Y p)\jf>(x):( I("/l Ym)y (L1 slm) s (P15, Pm) Hlx)

704,¢,q55 T2 (015--50m) 6 (@150 5@m )5 (A15ee 0, Am)

(1.7)

(0150+,0m),C,(q15e+5qm)

_ / (33 _ t)C*lg('Yl7~~~;'Y7n)7(l1,~..7lr,n)7(p17"~)p1n){A1(x _ t)al . /\J(x _ t)aj }f(t) dt.
0

2 The Griiss Type Generalized Fractional Integral Inequality
In this section, we present the Griiss type and several other related inequalities involving multivariate Mittag-
Leffler function by utilizing the generalized fractional integral operator (1.7).

Theorem 2.1. Let the function hy be integrable on [0,00). If the two functions Xy and Ny can be integrated
over the range [0,00) and satisfy

then for £ >0 and v;,15,05,05,45,m,¢ > 0 with j =1,2,...,m, we have
I(’Yjvljvpj§>‘j)N2(§) I(”/jfljapﬁ)‘j)hl(g) _"_I(“/jﬁljapj;)‘j)hl(g) I('Yjaljvpji)‘j)Nl(f)

(05:¢:95) (05,m,45) (05,¢:q5) (05,m,45)

(2.2)
irlipiiAg DI DY DY
Z I((;/JvC#qZJ)) )N2(§> I((Zj’n’qi) )Nl(g) + I((;Y]Vn#qzj)') )hl (6) I((;Yj»Cqu;) )hl (6)
Proof. From (2.1), for all p > 0 and v > 0, we have
(Ra(p) = ha(p)) (ha(v) = Ri(v)) >0,
or equivalently,
Ra ()1 () + Ra (W) (p) = Na(p)Rs () + ha ()ha (v). (2.3)

Multiplying (2.3) by
_ e Ymoll s sl s P1yeosPm o1 o
(€= p)STrErramitm P P g (6= p)Tr (€ — p) )
and integrating with respect to p from 0 to &, we obtain
3 3
hl(V)/O (€= p) T ERa(p) dp + Nl(V)/O (&= p) € ha(p)dp
3 ) 13 .
>800) [ (€= ) Nalp)do+ () [ (€ p) e (o),
0 0
which by the definition of the generalized fractional integral (1.7) gives
3:L35P3i N 3543 sPgi N 3543 sP3i N 3213 P3N
() L7 3™ Ne(©) + Ra) 12 3™ (€) 2 R 12 3™ Mal€) + ) I 8 5™ i (©)- - (2.4
Finally, multiplying (2.4) by
- oo Ymslls s bm P P o o;
(§ —w) TR e T e e P P O (€ = 1) A (€ = )T}

and integrating with respect to v from 0 to &, we arrive at the desired result (2.2). O

Corollary 2.1. Let the function hy be defined and integrable on & € [0,00) and satisfying m < hy(§) < M,
€ €10,00). Then for & >0 and pj,qj,m,\j,vi,05,C,l; >0, 5=1,2,....,m, we have

Mé—ﬁ E(Wﬁlj;l]j) ()\150'17 o )\jgo’j)I(’YjvljvijAj)hl(g) + mé—'r] 5(’Yj§lj§pj) (Algol’ . )\jé-aj)]'("/jvljvpﬁ)\j)hl (é—)

(05;¢+1;95) (o5.m,45) (5im+1;45) (95,¢,95)
S M EPTEQEED (a6 MEEGL M6 )+ 1P I (),

Theorem 2.2. Let the two functions hy and hy be positive and integrable on [0,00). Assume that (2.1)
holds and the two functions Y1 and Ya be integrable on [0,00) such that

Yi(€) < ha(€) < Ya(§), € €[0,00). (2.5)
Then, for £ > 0 and pj,q;,m,Aj,7Vj,05,Cl; > 0; 5=1,2,...,m, the following four inequalities hold:

I('Yj’lj >pj§>‘j)N2 (5)[(’7.7’7l.7' vpj§>‘j)h2 (é—) + I(’Yjvlj vpj§)‘j)h1 (é—)[('}/] il an?)‘j)Yl (5)

(05,¢,95) (05:m,45) (05:¢,q5) (05,m,45)
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> I(“rj,lj,pj;Aj)NQ(g)I(“/j,lj,pj;kj)yl(g) + I(“rjJj,pj;Aj)hl(g)l(w,lj,pjw)hz(f)’ (2.6)

(05,6,45) (05.m,45) (05:¢,95) (05:m,45)

I('Yj7lj>p_7‘7)\j)N1(é—)](’)’jyl_j7pj§>\j)h2(§) + I('Yj7ljvpj§>\j)y'2(£)l('¥_7‘vlj 717.7%)\.7‘)]11(5)

(05,m,45) (05,¢,95) (05,¢,a5) (05,m,45)

QN O L YO + I MO e 2

oy RO ™ Yl + T ™ 15 ™ hal)

2 I((;j:éj,;;fj)’AJ)NQ (E)I(’ijlj iji)\j)hZ (6) + I(’ijlj ’pj;)‘j)hl (g)I(WJ’lj »Pﬁ)\j)yz (é)’ (28)

(05,m,45) (05,¢,q5) (05:m,95)

I(’Yjalj vpji)‘j)Nl(f)I(’Yj’lj ’Pﬁ)‘j)y'l (5) + I('Yjalj vpﬁ)‘j)hl (g)]('ijlj’Pj?)‘j)h2 (5)

(95,¢,q5) (05:m,45) (05:¢,95) (05,m,45)

Z I("/j*lj 719.7?)\_7‘)NI (é—)[(’h il 72‘7.7?)‘.7‘)h2 (é—) + I('YJ‘ by 47.7’§)‘.7‘)h1 (5)[(7.7’*l.7‘vpj?>‘_7‘)yl (é—) (29)

(05:¢,q5) (o5,m:45) (05,¢,a5) (o5.m:q5)
Proof. To find (2.6), we use (2.1) and (2.5) for all p,v € [0,00), and we have
(R2(p) = h(p))(ha(v) = Y1(v)) = 0.
It follows that
Ra(p)ha(v) + hi(p)Yi(v) = Ra(p)Y1(v) + ha(p)ha(v). (2.10)

Multiplying (£ — p)C’lg((Zj’éféfg)(Al(f —p)7, . A (€ — p)?7) with (2.10) and integrating with respect to p
from 0 to &, we get

&
— s Ymil e lm Py Pm o1 o
h2('U)/ (E_p)c 18((2117,zm,cl,q1,,qil) i )()‘l(g_p) aa)‘](g_p) 7)N2(p)dp
0
&
— s s Ymil e s lm D15y Dm o o
V) [ (€= I € = 7 A€ = )" ()
¢
— s Ymil1 e s lm D1y s Pm o o
> Yl(v)/0 (€= p)ergfmmmitm PPl (3 (6 — p)™ N (€ = p)7 Ra(p)dp

¢
— TreesYmil1 s slm,P1se e Pm o o
HLQ(U)/O (€-n) 15& o) A€ =)7L N (€ = p)7)ha(p)dp.

In view of (1.7), this gives

ha(0)1) ™ e €) + AW ™ i (€) 2 Vi) ™ Ne(€) + ha(0)I ) ™ (). (2:11)

Again, multiplying (£ —v)"‘lé’((jll’jjj’Zj:;ﬁ;,’q‘i‘ﬁfTéfj)""”’m)(Al(§—v)01, -, Aj(6—v)79) with (2.11) and integrating

with respect to v from 0 to £ and using (1.7), we get the required inequality (2.6).
Similarly, inequalities (2.7)—(2.9) can be proved by utilizing the following results:

(Ya(p) — ha(p))(ha (v) = Ri (v) > 0,
(Ra(p) — 1 (p)) (ha(v) — Ya(v)) < 0,
(R1(p) — ha (p))(ha(v) — Y (v)) < 0.

Corollary 2.2. Let the functions hy and hs be integrable and positive on [0,00) and satisfying
m<hi(§) <M and n<hy(§) <N, £€]0,00).
Then for £ > 0 and pj,q;,1, A\j,7j,05,Cl; >0; 7=1,2,...,m, we have
MESET T (€™, NI s (€)

(0,¢+1,q5) 05,71,45)
+n£n5(7jxljapj) (A €71 )\faj)l(%',lj,pj;&)h (©)
(05 m+1,g) VS o0 (05,6,a5) 1
( j7lj7 j) o1 o; ( jvlj! _‘i) o1 o
> Mn§<+"5(gj7c+ﬁ7qj)()\1£ s NE J)e(gj,nj;,qj)(hg yee ey NETT)
iliapiiA WIRIDY
gy MO L T ha(6),

(v5,L5,p5) o1 o\ 7(05:15P5iN5)
mETE Yy ET s N ETT T s (€)
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+ Ng{g(%"ljapj) ()\1501 N Ajgoj')I(’Yj7lj7pj§/\j)h1(€)

(0,¢+1,q5) (05,m,95)

> mNETIEQ I ET - AEECT I ET - A7)
LG I OIG E™ ha(©)

MNEEQ AN (ET - MENEQ I g 067
gy MO ™ hal)

= MESE ) ™o AT ™ ha(€)
FnEIE I ) €T NEI Y (©)

g IE L NET AETE I (T AE)
g Gy O ha(6)

2 mECE T gy €T NE I ()
QL MET L AT I (©).

Theorem 2.3. Let the functions hy and he be positive and integrable on [0,00). If r1,s1 > 1 are such that
1/r1 +1/s1 =1, then for £ > 0, we have

1 3lisPiiAg) pr 3:LiPisAG) pr 1 3obiPiiAG) s 3:liPiiAi) s
7[(7 p )hll (5)](7 P )h21 (g) + 71(7 P )h21 (5)[(7 P )hll (5)

71 (G'j’(7qj) (Ujﬂhlh') S1 (Uj7C:Qj) (o'j;"];Qj)
LD\ Lipiih
> 105y (©ha ()17 hy (€)ha(€), (2.12)

1 3lisPiiAg) pr DI 1 3biPiiAG) s 3:LiPisAg) pr
7](7 p )hll(f)l(’y p )h21 (g) + 87](7 p )h21(€)1(7 p )hll (g)

ry (93:6:45) (05,m,45) 1 (95:6,45) (o5,m,45)
isliDiiNj) 1 81— ry— LD
> I g T R T LG i (§)ha (), (2.13)
]. ,,7lv7 7A .7[.7 7)\ ]_ .,l.7 7)\ ,,7lv7 7)\
oy ™ R QG ™ R T ™ g i)
il i) 1.2/ 2/r D2
> 100 PR Ry T ()1 N ha (€)ha(€), (2.14)

71'('71% vpav/\J)h% (g)](%vlj 7p17)‘3)h§1 (g) 4 g[("/yvla 1p11>‘1)h3 (g)](’hvl] vpav/\J)hql (g)

ry (95:6:45) (05.m,95) (05,6,45) (05,m,95)
55l ) 1 — S1— 55biPiiNG) 2/ 2/s
> 1P R hg T I E R (RS (). (2.15)
Proof. To prove (2.12), we use Young’s inequality [14]:
1 1 1 1
—u" + —0%t >uv, uw,v>0, — 4+ —=1 (2.16)
71 S1 T1 S1
Substituting u = hy(p)ha(v) and v = hy(v)ha(p) for all p,v > 0 in (2.16), we have
1 1 .
E(}M(P)hz(v)) t+ g(hl(v)hQ(P)) ' 2 (ha(p)h2(v))(h1(v)ha(p))- (2.17)

Multiplying (2.17) by (£ — p)C—lg((;/i;’mlClqllmqpl) """ pm>(>\1(§ —p)7, ..., (€ = p)?9) and integrating p
from 0 to & gives

hrl(U) LipiiN) g hsl(U) iLiDiiA) 1 81
- loday A€ + S I ™ A (@

> by (0)ha (V) I8 P2y (€)y (€). (2.18)

(05,¢,a5)
Multiplying (2.18) by (£ — U)”_15((;11,’_‘::7’;/:ii}l;;l”,’ili’_’:;f:)"”’pm)()\1(§ — )7, ..., (€ —v)9) and integrating

with respect to v from 0 to £ gives inequality (2.12).
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The inequalities (2.13), (2.14), and (2.15) follow by substituting in (2.16) the respective identities:

hi(p) ha(p)
= = h h 2.1
u hl(U>7 v hg(’U), 1(”)’ Q(U) #Oa ( 9)
u=hi(p)h3' " (v), v =hY" (V)ha(p), (2.20)
u=h"(p) hi(v), v="h3'""(p) ha(v), (2.21)
where p;, q;,1m,2j,75,05,(0; >0,5=1,2,...,m. O

Theorem 2.4. Let the functions hy and hy be positive and integrable on [0,00). If r1,s1 > 1 be such that
1/r +1/s1 =1, then for & > 0 and pj,q;,1,\j,7,05,C,1; > 055 = 1,2,...,m, the following inequalities
hold:

7,1](%‘713 7pj?)\j)h1(§)l("/jvlj an?Aj)hQ () + sll(w»lj 7Pj;>\j)h2 (g)I(’Yij vpj§>\j)h1 (€)

(05.¢,95) (o5,m,95) (05.,¢,q5) (o5.:m,45)

o lipiihs r s LD s r
> 10y ™ (B ©OR5 O)Iy™ (i (Oh3 (6)). (222)

3513 PiAG) 1 — N ZEY] s 5ob5P5iNG) g 81— 3oliP5iNG) (37
P s I T O ™ (©RSH€) + s RSO ™ (W (©)ha(€)

3:lisPiiNi) s 5biPisAG) T
ZI((;ijqu;) )h21(£)1((;/j7(,qi) )hll(g)’ (2.23)

TII(’YJ‘JJ‘ ,P.f;Aj)hl(5)1(“/]‘»17‘117.1:)\.7‘)]13/7“1 (€) + SII(’YJ‘JJ‘ 1p.7§)‘j)hgl (f)I(’Yj’lj 7Pj%>\j)hf/81 (€)

(05,6,95) (o5,m,95) (05,m,q5) (05.€,q5)

> 100N (R (©hS () I ™) (h2 ()R (), (2.24)

Lipiih) g2 s LN g —
I O I e @

3903 P5iAG) s — 3:liPiiAG) 12/ s r DI 2R
ol ™ TN OLE I W O € 2 I RO RN ). (229)

Proof. From the arithmetic mean—geometric mean (A.M.-G.M.) inequality, we know
ru+sv>u" v, w,v>0, r1+s =1 (2.26)
Substituting u = h1(p)he(v) and v = hq(v)ha(p), Yp,v > 0 in (2.26), we obtain
rih1(p)ha(v) + sihi(v)ha(p) = (k1 (p)ha(v))™ (h1(v)ha(p))™. (2.27)
Multiplying (2.27) by (£ — p)C’lé'((;i:Zélqllmqil)pm()\l(é“ —p)°t, ..., (€ — p)?7) and integrating with
respect to p from 0 to £, we get
rlhg(v)l(w’lj ’pj;)\j)hl () + slhl(v)l(%’lj ’pj;)‘j)hg(f)

(05,¢:q5) (05:¢:95)

r s 3:0iPi3AG) (171 s
> b (0)h3 ()T (R (€)h3 (€)). (2.28)

Multiplying (2.28) by (£ — v)”’lé'((%""’Wm;ll""’lm;pl’”"pm)()\1(§ — )7, ..., \j(§ —v)%) and integrating with

O1seeesTmsT3q1 5+ 5qm )

respect to v from 0 to £ gives inequality (2.22).
Inequalities (2.23), (2.24), and (2.25) can be obtained by replacing the identities in (2.26) as follows:

_u(v) o ha(p) v
U = hl(ﬂ) ) - hQ(U)’ hl(p)a h2( ) 7é 07 (2'29)
u=hi(p)hy " (v), v =h"(V)ha(p), (2.30)

R ) I i O §
- () = OR ha(p), ha(v) # 0. (2.31)
O

Theorem 2.5. Suppose the functions hy and hy are both positive and integrable over the interval [0,00). If
r1,81 > 1 such that

— =1, 2.32
T1 + S1 ( )
define
hi(p) hi(p)
= = . 2.33
02p2e ha(p)’ 0p= ha(p) (2.33)
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Then, for & > 0, the following inequalities hold:

RUB IR SUEZIY K+H)? B IR 2
o<1 I e < S (1l mone) . e
5:l3Pgi A RIB IR RIB IR
0 <IN RO 10,2 ) — 10 b (©)ha(€)
VH - VK (¥3:L5:P5375)
< W (I(Uj’g’qj) hl(f)hﬂ(f)) ) (2'35)
RUB IRy RUE Y RUB Y 2
0 < Irg I 102 5 (&) — (10720 ™ i (©ha(€)
H-K RUB Y] 2
< T (e h©ha©) (2.36)
Proof. From (2.33), we have
hi(p) ) ( h1(P)> 2
-k |H- h >0, 0<p<g. 2.37
Ge ERYAE ’ (237
This implies
hi(p) + KHR3(p) < (K + H)h1(p)ha(p)- (2.38)

Multiplying (2.38) by
— . m;l 7~~-7l7n§ yeesPm g1 (o}
(g_p)g 18((311,“.73771,Cl;qh.“,qil) ! )(Al(g_p) ’7)\](£_p) J)
and integrating from 0 to &, using (1.7), we get

o ™ IR + KA ™ B(E) < (K AL ™ (Oha(6) (2:39

Since KH > 0 and

2
DA, P\
(VG e - e e ) 2o

it follows that

i:liPisA; ilipsiN; i:liPisA; jilisPiiAs
2RI O I O1G 2™ 3€) < 10780 3 + KHIG LM h3(e). (240)
Squaring both sides of (2.39) and using (2.40), we obtain
2
554 PN 5:LiPi3A 3L P3N
PCHI 2RI M) < (K + )P (17825 h(©ha(6)) (2:41)
Simplifying (2.41) gives (2.34). From (2.41), we have
(v5:l3:P5325) 12 (v3:l3P5325) 12 K+H 050)
VI e RO 2™ he < S T i @ (6). (2.42)
Subtracting I((Zj’éj;ﬁ;’\j)hl(f)hg(g) from (2.42) gives (2.35), and (2.36) follows directly from (2.34). O

Theorem 2.6. Consider the function hy, which is positive and integrable on [0, 00) and let the two functions
Ny and Ny be integrable on [0,00) such that

Ry(€) < hi(€) < Ro(€), € € [0,00). (2.43)
Then for £ >0 and o, \,v,l,p,q,( > 0, we have

NN DN RN PN
> 10PN (E) N1 (€) + 1) 8 ha(€) ha(§).
Corollary 2.3. Let the condition of Theorem 2.1 be satisfied withly = =l =D1 P =q1 " qm = 1,
then we get the known result:
YGA5) Vi N YA Vi, N
I(o]v ) R2(€) I(ajm)hl (&) + I(trij ha(€) I(ajﬂ?)Nl(g) (2.45)

2UCRY)]

VG2 ) Vi, A ViAj
Z Lo,y Re(&) L 3y R (&) + g (5 M€ T 5y (€)-
If we consider \; = 0, ¥j, then we get the known result derived by Tariboon et al. [24]. Several results of
Theorem 2.1 can be obtained in a similar manner by choosing certain specific values for the parameters.
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3 Conclusion

This paper presents findings on Griiss-type inequalities and similar inequalities using the generalized
fractional integral. We discussed some special situations as corollaries. These results help us better
understand fractional calculus and its applications in various areas. Moreover, our results reduce to some
classical results found in the work of Shao [22].

It is concluded that the results claimed in this work are general in character and provide contributions
to the theory of integral inequalities and fractional calculus. Furthermore, these results are expected to
lead to applications in establishing the uniqueness of solutions in fractional boundary value problems and in
fractional partial differential equations.
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