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Abstract

Integral inequalities are becoming more popular because they are useful in many areas. The researchers
have studied integral inequalities using various methods. In this paper, we want to create new integral
inequalities such as Grüss type inequalities, and other similar ones, for the fractional integral operator
that uses the multivariate Mittag-Leffler function. We look at how the Riemann-Liouville integral, the
Prabhakar integral, and the generalized fractional integral are related to make specific conclusions. We
support our findings by giving additional details.
2020 Mathematical Sciences Classification: 26A33, 26D10.
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1 Introduction
Fractional calculus is the area of study that looks at integrals and derivatives of any number. We can
use differential equations with fractional derivatives to solve various problems in statistics, mathematics,
engineering, chemistry, and biology. Riemann, Liouville, Caputo, Riesz, Hilfer, Hardmard, Erdélyi-Kober,
Saigo-Maeda, and others have researched different kinds of fractional integrals. The idea of fractional
conformable derivative operators was proposed by Khalil et al. [11]. The feature of the fractional conformable
derivative operators was given by Abdeljawad and Baleanu [2]. The fractional conformable integral and
derivative operator was suggested by Jarad et al. [9]. Atangana and Baleanu, along with other researchers,
studied various types of fractional derivative operators. Researchers in fractional calculus have recently
created and explored new fractional integral and derivative operators.

Studying inequalities is an important area of research in mathematical analysis. The inequality method
is a helpful tool for studying special functions and approximation theory. Fractional integral inequalities
are useful in numerical methods, transform theory, and tasks related to probability and statistics. Recently,
many researchers have studied these inequalities, leading to various generalizations, extensions, and versions
in several works [1, 3, 7, 8, 12, 17, 18, 19, 23].

Grüss [5] proved an important and recognized inequality that connects the integral of the product of two
functions with the product of their individual integrals. The Grüss inequality [5] is given as follows:

Let f1 and f2 be two continuous functions defined on [r, s] such that m ≤ f1(t) ≤M and n ≤ f2(t) ≤ N
for all t ∈ [r, s] and some real constants M,m,N, n ∈ R. Then the following inequality is true:∣∣∣∣

1

(s− r)

∫ s

r

f1(t)f2(t) dt− 1

(s− r)2

∫ s

r

f1(t) dt

∫ s

r

f2(t) dt

∣∣∣∣ ≤
1

4
(M −m)(N − n). (1.1)

Here, 1
4 is the best constant for making the inequality as precise as possible.

Definition 1.1 ([10, 25]). A function f1(t) is in the space Lp,r[0,∞) if the following condition holds: The
norm of f1 in this space, denoted as ‖f1‖Lp,r[0,∞), is defined as:

Lp,r[0,∞) =

{
f1 : ‖f1‖Lp,r[0,∞) =

(∫ s

r

|f1(t)|ptr dt
)1/p

<∞, 1 ≤ p <∞, r ≥ 0

}
. (1.2)
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If we use (1.2) for r = 0, we get the following: The set of functions f1 belongs to the space Lp[0,∞) if
the p-norm of f1 is finite. This means that:

Lp[0,∞) =

{
f1 : ‖f1‖Lp[0,∞) =

(∫ s

0

|f1(t)|p dt
)1/p

<∞, 1 ≤ p <∞
}
.

Definition 1.2 ([16]). Prabhakar presented the three-parameter Mittag-Leffler function in the following
form:

Eγσ,ζ(z) =

∞∑

n=0

(γ)nz
n

Γ(σn+ ζ)n!
,

where n ∈ N and γ, σ, ζ ∈ C such that <(ζ) > 0, <(σ) > 0, <(γ) > 0.
Definition 1.3 ([6]). Gurjar and others created a version of the Mittag-Leffler function that can handle
multiple variables, and they described it as follows:

E(γj ,lj ,pj)

(σj ,ζ,qj)
(z1, . . . , zm) = E γ1,...,γm; l1,...,lm; p1,...,pm

σ1,...,σm; ζ; q1,...,qm
(z1, . . . , zm)

=

∞∑

r1,...,rm=0

(γ1)p1r1 · · · (γm)pmrm
Γ
(
ζ +

∑m
j=1 σjrj

) zr11 · · · zrmm
(l1)q1r1 · · · (lm)qmrm

.
(1.3)

Here γj , σj , ζ, lj ∈ C with

min
1≤j≤m

{<(ζ),<(σj),<(γj),<(lj)} > 0, pj , qj > 0, pj < qj + <(σj), j = 1, 2, . . . ,m.

Definition 1.4 ([13, 20]). Let f ∈ L[a, b]. The left-sided and right-sided RiemannLiouville fractional integrals
of order α > 0 with a ≥ 0 are defined by

(Iαa+f)(x) =
1

Γ(α)

∫ x

a

(x− t)α−1f(t) dt, x > a,

and

(Iαa−f)(x) =
1

Γ(α)

∫ a

x

(t− x)α−1f(t) dt, x < a.

Definition 1.5 ([16]). The Prabhakar type fractional integral is defined as

(aI
γ,λ
σ,ζ f)(x) =

∫ x

a

(x− t)ζ−1Eγσ,ζ
(
λ(x− t)σ

)
f(t) dt.

Definition 1.6. The one-sided Prabhakar type fractional integral is expressed as

(Iγ,λσ,ζ f)(x) =

∫ x

0

(x− t)ζ−1Eγσ,ζ
(
λ(x− t)σ

)
f(t) dt. (1.4)

Definition 1.7 ([15, 21]). The Prabhakar type fractional integral operator having a multivariate Mittag-
Leffler function in the kernel is defined as

(aI
(γ)j ,(λ)j
(σ)j ,ζ

f)(x) = (aI
(γ1,...,γj),(λ1,...,λj)

(σ1,...,σj),ζ
f)(x)

=

∫ x

a

(x− t)ζ−1E(γ1,...,γj)

(σ1,...,σj),ζ

{
λ1(x− t)σ1 · · ·λj(x− t)σj

}
f(t) dt,

where ζ, σi, λi, γi ∈ C with <(ζ) > 0, <(σi) > 0, <(γi) > 0 for i = 1, 2, . . . , j.
Definition 1.8. The one-sided Prabhakar type fractional integral with a multivariate Mittag-Leffler function
in its kernel is defined as

(I
(γ)j ,(λ)j
(σ)j ,ζ

f)(x) = (I
(γ1,...,γj),(λ1,...,λj)

(σ1,...,σj),ζ
f)(x)

=

∫ x

0

(x− t)ζ−1E(γ1,...,γj)

(σ1,...,σj),ζ

{
λ1(x− t)σ1 · · ·λj(x− t)σj

}
f(t) dt,

(1.5)

where ζ, σi, λi, γi ∈ C with <(ζ) > 0, <(σi) > 0, <(γi) > 0 for i = 1, 2, . . . , j.
Definition 1.9 [6]. The integral operator having a multivariable Mittag-Leffler function in the kernel is
defined by

(xI
γj ,lj ,pj
σj ,ζ,qj ;λj

f)(x) = (xI
(γ1,...,γm),(l1,...,lm),(p1,...,pm)
(σ1,...,σm),ζ,(q1,...,qm);(λ1,...,λm)f)(x)

=

∫ ξ

x

(x− t)ζ−1E(γ1,...,γm),(l1,...,lm),(p1,...,pm)
(σ1,...,σm),ζ,(q1,...,qm)

{
λ1(x− t)σ1 · · ·λj(x− t)σj

}
f(t) dt,

(1.6)
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where ζ, σj , λj , γj , lj ∈ C,

min
1≤j≤m

{<(ζ),<(σj),<(γj),<(lj)} > 0, pj , qj > 0, pj < qj + <(σj), j = 1, 2, . . . ,m.

Definition 1.10. The one-sided integral operator of (1.6) having a multivariate Mittag-Leffler function in
the kernel is defined by

(xI
γj ,lj ,pj
σj ,ζ,qj ;λj

f)(x) = (xI
(γ1,...,γm),(l1,...,lm),(p1,...,pm)
(σ1,...,σm),ζ,(q1,...,qm);(λ1,...,λm)f)(x)

=

∫ x

0

(x− t)ζ−1E(γ1,...,γm),(l1,...,lm),(p1,...,pm)
(σ1,...,σm),ζ,(q1,...,qm)

{
λ1(x− t)σ1 · · ·λj(x− t)σj

}
f(t) dt.

(1.7)

2 The Grüss Type Generalized Fractional Integral Inequality
In this section, we present the Grüss type and several other related inequalities involving multivariate Mittag-
Leffler function by utilizing the generalized fractional integral operator (1.7).

Theorem 2.1. Let the function h1 be integrable on [0,∞). If the two functions ℵ1 and ℵ2 can be integrated
over the range [0,∞) and satisfy

ℵ1(ξ) ≤ h1(ξ) ≤ ℵ2(ξ), ξ ∈ [0,∞), (2.1)

then for ξ ≥ 0 and γj , lj , pj , σj , qj , η, ζ > 0 with j = 1, 2, . . . ,m, we have

I
(γj ,lj ,pj ;λj)

(σj ,ζ,qj)
ℵ2(ξ) I

(γj ,lj ,pj ;λj)

(σj ,η,qj)
h1(ξ) + I

(γj ,lj ,pj ;λj)

(σj ,ζ,qj)
h1(ξ) I

(γj ,lj ,pj ;λj)

(σj ,η,qj)
ℵ1(ξ)

≥ I(γj ,lj ,pj ;λj)

(σj ,ζ,qj)
ℵ2(ξ) I

(γj ,lj ,pj ;λj)

(σj ,η,qj)
ℵ1(ξ) + I

(γj ,lj ,pj ;λj)

(σj ,η,qj)
h1(ξ) I

(γj ,lj ,pj ;λj)

(σj ,ζ,qj)
h1(ξ).

(2.2)

Proof. From (2.1), for all ρ ≥ 0 and ν ≥ 0, we have(
ℵ2(ρ)− h1(ρ)

)(
h1(ν)− ℵ1(ν)

)
≥ 0,

or equivalently,
ℵ2(ρ)h1(ν) + ℵ1(ν)h1(ρ) ≥ ℵ2(ρ)ℵ1(ν) + h1(ρ)h1(ν). (2.3)

Multiplying (2.3) by

(ξ − ρ)ζ−1E(γ1,...,γm,l1,...,lm,p1,...,pm)
(σ1,...,σm,ζ,q1,...,qm) {λ1(ξ − ρ)σ1 , . . . , λj(ξ − ρ)σj}

and integrating with respect to ρ from 0 to ξ, we obtain

h1(ν)

∫ ξ

0

(ξ − ρ)ζ−1E··· ℵ2(ρ) dρ+ ℵ1(ν)

∫ ξ

0

(ξ − ρ)ζ−1E··· h1(ρ) dρ

≥ ℵ1(ν)

∫ ξ

0

(ξ − ρ)ζ−1E··· ℵ2(ρ) dρ+ h1(ν)

∫ ξ

0

(ξ − ρ)ζ−1E··· h1(ρ) dρ,

which by the definition of the generalized fractional integral (1.7) gives

h1(ν) I
(γj ,lj ,pj ;λj)

(σj ,ζ,qj)
ℵ2(ξ) + ℵ1(ν) I

(γj ,lj ,pj ;λj)

(σj ,ζ,qj)
h1(ξ) ≥ ℵ1(ν) I

(γj ,lj ,pj ;λj)

(σj ,ζ,qj)
ℵ2(ξ) + h1(ν) I

(γj ,lj ,pj ;λj)

(σj ,ζ,qj)
h1(ξ). (2.4)

Finally, multiplying (2.4) by

(ξ − ν)η−1E(γ1,...,γm,l1,...,lm,p1,...,pm)
(σ1,...,σm,η,q1,...,qm) {λ1(ξ − ν)σ1 , . . . , λj(ξ − ν)σj}

and integrating with respect to ν from 0 to ξ, we arrive at the desired result (2.2).

Corollary 2.1. Let the function h1 be defined and integrable on ξ ∈ [0,∞) and satisfying m ≤ h1(ξ) ≤M ,
ξ ∈ [0,∞). Then for ξ ≥ 0 and pj , qj , η, λj , γj , σj , ζ, lj > 0, j = 1, 2, . . . ,m, we have

M ξζ E(γj ;lj ;pj)

(σj ;ζ+1;qj)

(
λ1ξ

σ1 , . . . , λjξ
σj
)
I

(γj ,lj ,pj ;λj)

(σj ,η,qj)
h1(ξ) +mξη E(γj ;lj ;pj)

(σj ;η+1;qj)

(
λ1ξ

σ1 , . . . , λjξ
σj
)
I

(γj ,lj ,pj ;λj)

(σj ,ζ,qj)
h1(ξ)

≥ mM ξζ+η E(γj ;lj ;pj)

(σj ;ζ+1;qj)

(
λ1ξ

σ1 , . . . , λjξ
σj
)
E(γj ;lj ;pj)

(σj ;η+1;qj)

(
λ1ξ

σ1 , . . . , λjξ
σj
)

+ I
(γj ,lj ,pj ;λj)

(σj ,η,qj)
h1(ξ)I

(γj ,lj ,pj ;λj)

(σj ,ζ,qj)
h1(ξ).

Theorem 2.2. Let the two functions h1 and h2 be positive and integrable on [0,∞). Assume that (2.1)
holds and the two functions Y1 and Y2 be integrable on [0,∞) such that

Y1(ξ) ≤ h2(ξ) ≤ Y2(ξ), ξ ∈ [0,∞). (2.5)

Then, for ξ ≥ 0 and pj , qj , η, λj , γj , σj , ζ, lj > 0; j = 1, 2, . . . ,m, the following four inequalities hold:

I
(γj ,lj ,pj ;λj)

(σj ,ζ,qj)
ℵ2(ξ)I

(γj ,lj ,pj ;λj)

(σj ,η,qj)
h2(ξ) + I

(γj ,lj ,pj ;λj)

(σj ,ζ,qj)
h1(ξ)I

(γj ,lj ,pj ;λj)

(σj ,η,qj)
Y1(ξ)
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≥ I(γj ,lj ,pj ;λj)

(σj ,ζ,qj)
ℵ2(ξ)I

(γj ,lj ,pj ;λj)

(σj ,η,qj)
Y1(ξ) + I

(γj ,lj ,pj ;λj)

(σj ,ζ,qj)
h1(ξ)I

(γj ,lj ,pj ;λj)

(σj ,η,qj)
h2(ξ), (2.6)

I
(γj ,lj ,pj ;λj)

(σj ,η,qj)
ℵ1(ξ)I

(γj ,lj ,pj ;λj)

(σj ,ζ,qj)
h2(ξ) + I

(γj ,lj ,pj ;λj)

(σj ,ζ,qj)
Y2(ξ)I

(γj ,lj ,pj ;λj)

(σj ,η,qj)
h1(ξ)

≥ I(γj ,lj ,pj ;λj)

(σj ,η,qj)
ℵ1(ξ)I

(γj ,lj ,pj ;λj)

(σj ,ζ,qj)
Y2(ξ) + I

(γj ,lj ,pj ;λj)

(σj ,η,qj)
h1(ξ)I

(γj ,lj ,pj ;λj)

(σj ,ζ,qj)
h2(ξ), (2.7)

I
(γj ,lj ,pj ;λj)

(σj ,ζ,qj)
ℵ2(ξ)I

(γj ,lj ,pj ;λj)

(σj ,η,qj)
Y2(ξ) + I

(γj ,lj ,pj ;λj)

(σj ,ζ,qj)
h1(ξ)I

(γj ,lj ,pj ;λj)

(σj ,η,qj)
h2(ξ)

≥ I(γj ,lj ,pj ;λj)

(σj ,ζ,qj)
ℵ2(ξ)I

(γj ,lj ,pj ;λj)

(σj ,η,qj)
h2(ξ) + I

(γj ,lj ,pj ;λj)

(σj ,ζ,qj)
h1(ξ)I

(γj ,lj ,pj ;λj)

(σj ,η,qj)
Y2(ξ), (2.8)

I
(γj ,lj ,pj ;λj)

(σj ,ζ,qj)
ℵ1(ξ)I

(γj ,lj ,pj ;λj)

(σj ,η,qj)
Y1(ξ) + I

(γj ,lj ,pj ;λj)

(σj ,ζ,qj)
h1(ξ)I

(γj ,lj ,pj ;λj)

(σj ,η,qj)
h2(ξ)

≥ I(γj ,lj ,pj ;λj)

(σj ,ζ,qj)
ℵ1(ξ)I

(γj ,lj ,pj ;λj)

(σj ,η,qj)
h2(ξ) + I

(γj ,lj ,pj ;λj)

(σj ,ζ,qj)
h1(ξ)I

(γj ,lj ,pj ;λj)

(σj ,η,qj)
Y1(ξ). (2.9)

Proof. To find (2.6), we use (2.1) and (2.5) for all ρ, υ ∈ [0,∞), and we have

(ℵ2(ρ)− h1(ρ))(h2(υ)− Y1(υ)) ≥ 0.

It follows that
ℵ2(ρ)h2(υ) + h1(ρ)Y1(υ) ≥ ℵ2(ρ)Y1(υ) + h1(ρ)h2(υ). (2.10)

Multiplying (ξ − ρ)ζ−1E(γj ,lj ,pj)

(σj ,ζ;qj)
(λ1(ξ − ρ)σ1 , . . . , λj(ξ − ρ)σj ) with (2.10) and integrating with respect to ρ

from 0 to ξ, we get

h2(υ)

∫ ξ

0

(ξ − ρ)ζ−1E(γ1,...,γm;l1,...,lm,p1,...,pm)
(σ1,...,σm,ζ;q1,...,qm) (λ1(ξ − ρ)σ1 , . . . , λj(ξ − ρ)σj )ℵ2(ρ)dρ

+ Y1(υ)

∫ ξ

0

(ξ − ρ)ζ−1E(γ1,...,γm;l1,...,lm,p1,...,pm)
(σ1,...,σm,ζ;q1,...,qm) (λ1(ξ − ρ)σ1 , . . . , λj(ξ − ρ)σj )h1(ρ)dρ

≥ Y1(υ)

∫ ξ

0

(ξ − ρ)ζ−1E(γ1,...,γm;l1,...,lm,p1,...,pm)
(σ1,...,σm,ζ;q1,...,qm) (λ1(ξ − ρ)σ1 , . . . , λj(ξ − ρ)σj )ℵ2(ρ)dρ

+ h2(υ)

∫ ξ

0

(ξ − ρ)ζ−1E(γ1,...,γm;l1,...,lm,p1,...,pm)
(σ1,...,σm,ζ;q1,...,qm) (λ1(ξ − ρ)σ1 , . . . , λj(ξ − ρ)σj )h1(ρ)dρ.

In view of (1.7), this gives

h2(υ)I
(γj ,lj ,pj ;λj)

(σj ,ζ,qj)
ℵ2(ξ) + Y1(υ)I

(γj ,lj ,pj ;λj)

(σj ,ζ,qj)
h1(ξ) ≥ Y1(υ)I

(γj ,lj ,pj ;λj)

(σj ,ζ,qj)
ℵ2(ξ) + h2(υ)I

(γj ,lj ,pj ;λj)

(σj ,ζ,qj)
h1(ξ). (2.11)

Again, multiplying (ξ−υ)η−1E(γ1,...,γm;l1,...,lm,p1,...,pm)
(σ1,...,σm,η;q1,...,qm) (λ1(ξ−υ)σ1 , . . . , λj(ξ−υ)σj ) with (2.11) and integrating

with respect to υ from 0 to ξ and using (1.7), we get the required inequality (2.6).
Similarly, inequalities (2.7)–(2.9) can be proved by utilizing the following results:

(Y2(ρ)− h2(ρ))(h1(υ)− ℵ1(υ)) ≥ 0,

(ℵ2(ρ)− h1(ρ))(h2(υ)− Y2(υ)) ≤ 0,

(ℵ1(ρ)− h1(ρ))(h2(υ)− Y1(υ)) ≤ 0.

Corollary 2.2. Let the functions h1 and h2 be integrable and positive on [0,∞) and satisfying

m ≤ h1(ξ) ≤M and n ≤ h2(ξ) ≤ N, ξ ∈ [0,∞).

Then for ξ ≥ 0 and pj , qj , η, λj , γj , σj , ζ, lj > 0; j = 1, 2, . . . ,m, we have

MξζE(γj ,lj ,pj)

(σj ,ζ+1,qj)
(λ1ξ

σ1 , . . . , λjξ
σj )I

(γj ,lj ,pj ;λj)

(σj ,η,qj)
h2(ξ)

+ nξηE(γj ,lj ,pj)

(σj ,η+1,qj)
(λ1ξ

σ1 , . . . , λjξ
σj )I

(γj ,lj ,pj ;λj)

(σj ,ζ,qj)
h1(ξ)

≥Mnξζ+ηE(γj ,lj ,pj)

(σj ,ζ+1,qj)
(λ1ξ

σ1 , . . . , λjξ
σj )E(γj ,lj ,pj)

(σj ,η+1,qj)
(λ1ξ

σ1 , . . . , λjξ
σj )

+ I
(γj ,lj ,pj ;λj)

(σj ,ζ,qj)
h1(ξ)I

(γj ,lj ,pj ;λj)

(σj ,η,qj)
h2(ξ),

mξηE(γj ,lj ,pj)

(σj ,η+1,qj)
(λ1ξ

σ1 , . . . , λjξ
σj )I

(γj ,lj ,pj ;λj)

(σj ,ζ,qj)
h2(ξ)
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+NξζE(γj ,lj ,pj)

(σj ,ζ+1,qj)
(λ1ξ

σ1 , . . . , λjξ
σj )I

(γj ,lj ,pj ;λj)

(σj ,η,qj)
h1(ξ)

≥ mNξζ+ηE(γj ,lj ,pj)

(σj ,ζ+1,qj)
(λ1ξ

σ1 , . . . , λjξ
σj )E(γj ,lj ,pj)

(σj ,η+1,qj)
(λ1ξ

σ1 , . . . , λjξ
σj )

+ I
(γj ,lj ,pj ;λj)

(σj ,η,qj)
h1(ξ)I

(γj ,lj ,pj ;λj)

(σj ,ζ,qj)
h2(ξ),

MNξζ+ηE(γj ,lj ,pj)

(σj ,ζ+1,qj)
(λ1ξ

σ1 , . . . , λjξ
σj )E(γj ,lj ,pj)

(σj ,η+1,qj)
(λ1ξ

σ1 , . . . , λjξ
σj )

+ I
(γj ,lj ,pj ;λj)

(σj ,η,qj)
h1(ξ)I

(γj ,lj ,pj ;λj)

(σj ,ζ,qj)
h2(ξ)

≥MξζE(γj ,lj ,pj)

(σj ,ζ+1,qj)
(λ1ξ

σ1 , . . . , λjξ
σj )I

(γj ,lj ,pj ;λj)

(σj ,η,qj)
h2(ξ)

+ nξηE(γj ,lj ,pj)

(σj ,η+1,qj)
(λ1ξ

σ1 , . . . , λjξ
σj )I

(γj ,lj ,pj ;λj)

(σj ,ζ,qj)
h1(ξ),

mnξζ+ηE(γj ,lj ,pj)

(σj ,ζ+1,qj)
(λ1ξ

σ1 , . . . , λjξ
σj )E(γj ,lj ,pj)

(σj ,η+1,qj)
(λ1ξ

σ1 , . . . , λjξ
σj )

+ I
(γj ,lj ,pj ;λj)

(σj ,ζ,qj)
h1(ξ)I

(γj ,lj ,pj ;λj)

(σj ,η,qj)
h2(ξ)

≥ mξζE(γj ,lj ,pj)

(σj ,ζ+1,qj)
(λ1ξ

σ1 , . . . , λjξ
σj )I

(γj ,lj ,pj ;λj)

(σj ,η,qj)
h2(ξ)

+ nξηE(γj ,lj ,pj)

(σj ,η+1,qj)
(λ1ξ

σ1 , . . . , λjξ
σj )I

(γj ,lj ,pj ;λj)

(σj ,ζ,qj)
h1(ξ).

Theorem 2.3. Let the functions h1 and h2 be positive and integrable on [0,∞). If r1, s1 > 1 are such that
1/r1 + 1/s1 = 1, then for ξ ≥ 0, we have

1

r1
I

(γj ,lj ,pj ;λj)

(σj ,ζ,qj)
hr11 (ξ)I

(γj ,lj ,pj ;λj)

(σj ,η,qj)
hr12 (ξ) +

1

s1
I

(γj ,lj ,pj ;λj)

(σj ,ζ,qj)
hs12 (ξ)I

(γj ,lj ,pj ;λj)

(σj ,η,qj)
hs11 (ξ)

≥ I(γj ,lj ,pj ;λj)

(σj ,ζ,qj)
h1(ξ)h2(ξ)I

(γj ,lj ,pj ;λj)

(σj ,η,qj)
h1(ξ)h2(ξ), (2.12)

1

r1
I

(γj ,lj ,pj ;λj)

(σj ,ζ,qj)
hr11 (ξ)I

(γj ,lj ,pj ;λj)

(σj ,η,qj)
hs12 (ξ) +

1

s1
I

(γj ,lj ,pj ;λj)

(σj ,ζ,qj)
hs12 (ξ)I

(γj ,lj ,pj ;λj)

(σj ,η,qj)
hr11 (ξ)

≥ I(γj ,lj ,pj ;λj)

(σj ,η,qj)
hs1−1

2 (ξ)hr1−1
1 (ξ)I

(γj ,lj ,pj ;λj)

(σj ,ζ,qj)
h1(ξ)h2(ξ), (2.13)

1

r1
I

(γj ,lj ,pj ;λj)

(σj ,ζ,qj)
hr11 (ξ)I

(γj ,lj ,pj ;λj)

(σj ,η,qj)
h2

2(ξ) +
1

s1
I

(γj ,lj ,pj ;λj)

(σj ,ζ,qj)
hs12 (ξ)I

(γj ,lj ,pj ;λj)

(σj ,η,qj)
h2

1(ξ)

≥ I(γj ,lj ,pj ;λj)

(σj ,η,qj)
h

2/s1
1 (ξ)h

2/r1
2 (ξ)I

(γj ,lj ,pj ;λj)

(σj ,ζ,qj)
h1(ξ)h2(ξ), (2.14)

1

r1
I

(γj ,lj ,pj ;λj)

(σj ,ζ,qj)
h2

1(ξ)I
(γj ,lj ,pj ;λj)

(σj ,η,qj)
hs12 (ξ) +

1

s1
I

(γj ,lj ,pj ;λj)

(σj ,ζ,qj)
h2

2(ξ)I
(γj ,lj ,pj ;λj)

(σj ,η,qj)
hr11 (ξ)

≥ I(γj ,lj ,pj ;λj)

(σj ,η,qj)
hr1−1

1 (ξ)hs1−1
2 (ξ)I

(γj ,lj ,pj ;λj)

(σj ,ζ,qj)
h

2/r1
1 (ξ)h

2/s1
2 (ξ). (2.15)

Proof. To prove (2.12), we use Young’s inequality [14]:

1

r1
ur1 +

1

s1
vs1 ≥ uv, u, v > 0,

1

r1
+

1

s1
= 1. (2.16)

Substituting u = h1(ρ)h2(υ) and v = h1(υ)h2(ρ) for all ρ, υ > 0 in (2.16), we have

1

r1
(h1(ρ)h2(υ))r1 +

1

s1
(h1(υ)h2(ρ))s1 ≥ (h1(ρ)h2(υ))(h1(υ)h2(ρ)). (2.17)

Multiplying (2.17) by (ξ − ρ)ζ−1E(γ1,...,γm;l1,...,lm;p1,...,pm)
(σ1,...,σm,ζ;q1,...,qm) (λ1(ξ − ρ)σ1 , . . . , λj(ξ − ρ)σj ) and integrating ρ

from 0 to ξ gives

hr12 (υ)

r1
I

(γj ,lj ,pj ;λj)

(σj ,ζ,qj)
hr11 (ξ) +

hs11 (υ)

s1
I

(γj ,lj ,pj ;λj)

(σj ,ζ,qj)
hs12 (ξ)

≥ h1(υ)h2(υ)I
(γj ,lj ,pj ;λj)

(σj ,ζ,qj)
h1(ξ)h2(ξ). (2.18)

Multiplying (2.18) by (ξ − υ)η−1E(γ1,...,γm;l1,...,lm;p1,...,pm)
(σ1,...,σm,η;q1,...,qm) (λ1(ξ − υ)σ1 , . . . , λj(ξ − υ)σj ) and integrating

with respect to υ from 0 to ξ gives inequality (2.12).

62



The inequalities (2.13), (2.14), and (2.15) follow by substituting in (2.16) the respective identities:

u =
h1(ρ)

h1(υ)
, v =

h2(ρ)

h2(υ)
, h1(υ), h2(υ) 6= 0, (2.19)

u = h1(ρ)h
2/r1
2 (υ), v = h

2/s1
1 (υ)h2(ρ), (2.20)

u = h
2/r1
1 (ρ) h1(υ), v = h

2/s1
2 (ρ) h2(υ), (2.21)

where pj , qj , η, λj , γj , σj , ζ, lj > 0, j = 1, 2, . . . ,m.

Theorem 2.4. Let the functions h1 and h2 be positive and integrable on [0,∞). If r1, s1 > 1 be such that
1/r1 + 1/s1 = 1, then for ξ ≥ 0 and pj , qj , η, λj , γj , σj , ζ, lj > 0; j = 1, 2, . . . ,m, the following inequalities
hold:

r1I
(γj ,lj ,pj ;λj)

(σj ,ζ,qj)
h1(ξ)I

(γj ,lj ,pj ;λj)

(σj ,η,qj)
h2(ξ) + s1I

(γj ,lj ,pj ;λj)

(σj ,ζ,qj)
h2(ξ)I

(γj ,lj ,pj ;λj)

(σj ,η,qj)
h1(ξ)

≥ I(γj ,lj ,pj ;λj)

(σj ,ζ,qj)

(
hr11 (ξ)hs12 (ξ)

)
I

(γj ,lj ,pj ;λj)

(σj ,η,qj)

(
hs11 (ξ)hr12 (ξ)

)
, (2.22)

r1I
(γj ,lj ,pj ;λj)

(σj ,ζ,qj)
hr1−1

1 (ξ)I
(γj ,lj ,pj ;λj)

(σj ,η,qj)

(
h1(ξ)hs12 (ξ)

)
+ s1I

(γj ,lj ,pj ;λj)

(σj ,η,qj)
hs1−1

2 (ξ)I
(γj ,lj ,pj ;λj)

(σj ,ξ,qj)

(
hr11 (ξ)h2(ξ)

)

≥ I(γj ,lj ,pj ;λj)

(σj ,ζ,qj)
hs12 (ξ)I

(γj ,lj ,pj ;λj)

(σj ,ζ,qj)
hr11 (ξ), (2.23)

r1I
(γj ,lj ,pj ;λj)

(σj ,ζ,qj)
h1(ξ)I

(γj ,lj ,pj ;λj)

(σj ,η,qj)
h

2/r1
2 (ξ) + s1I

(γj ,lj ,pj ;λj)

(σj ,η,qj)
hs12 (ξ)I

(γj ,lj ,pj ;λj)

(σj ,ξ,qj)
h

2/s1
1 (ξ)

≥ I(γj ,lj ,pj ;λj)

(σj ,ξ,qj)

(
hr11 (ξ)hs12 (ξ)

)
I

(γj ,lj ,pj ;λj)

(σj ,ζ,qj)

(
hs22 (ξ)h2

1(ξ)
)
, (2.24)

r1I
(γj ,lj ,pj ;λj)

(σj ,ζ,qj)
h

2/r1
1 (ξ)hs12 (ξ)I

(γj ,lj ,pj ;λj)

(σj ,η,qj)
hr1−1

2 (ξ)

+ s1I
(γj ,lj ,pj ;λj)

(σj ,ζ,qj)
hs1−1

2 (ξ)I
(γj ,lj ,pj ;λj)

(σj ,η,qj)
h

2/s1
1 (ξ)hr12 (ξ) ≥ I(γj ,lj ,pj ;λj)

(σj ,η,qj)
h2

1(ξ)I
(γj ,lj ,pj ;λj)

(σj ,ζ,qj)
h2

1(ξ). (2.25)

Proof. From the arithmetic mean–geometric mean (A.M.-G.M.) inequality, we know

r1u+ s1v ≥ ur1vs1 , u, v > 0, r1 + s1 = 1. (2.26)

Substituting u = h1(ρ)h2(υ) and v = h1(υ)h2(ρ), ∀ρ, υ > 0 in (2.26), we obtain

r1h1(ρ)h2(υ) + s1h1(υ)h2(ρ) ≥
(
h1(ρ)h2(υ)

)r1(
h1(υ)h2(ρ)

)s1
. (2.27)

Multiplying (2.27) by (ξ − ρ)ζ−1E(γ1,...,γm;l1,...,lm;p1,...,pm)
(σ1,...,σm,ζ;q1,...,qm) (λ1(ξ − ρ)σ1 , . . . , λj(ξ − ρ)σj ) and integrating with

respect to ρ from 0 to ξ, we get

r1h2(υ)I
(γj ,lj ,pj ;λj)

(σj ,ζ,qj)
h1(ξ) + s1h1(υ)I

(γj ,lj ,pj ;λj)

(σj ,ζ,qj)
h2(ξ)

≥ hr12 (υ)hs11 (υ)I
(γj ,lj ,pj ;λj)

(σj ,ζ,qj)

(
hr11 (ξ)hs12 (ξ)

)
. (2.28)

Multiplying (2.28) by (ξ − υ)η−1E(γ1,...,γm;l1,...,lm;p1,...,pm)
(σ1,...,σm,η;q1,...,qm) (λ1(ξ − υ)σ1 , . . . , λj(ξ − υ)σj ) and integrating with

respect to υ from 0 to ξ gives inequality (2.22).
Inequalities (2.23), (2.24), and (2.25) can be obtained by replacing the identities in (2.26) as follows:

u =
h1(υ)

h1(ρ)
, v =

h2(ρ)

h2(υ)
, h1(ρ), h2(υ) 6= 0, (2.29)

u = h1(ρ)h
2/r1
2 (υ), v = h

2/s1
1 (υ)h2(ρ), (2.30)

u =
h

2/r1
1 (ρ)

h2(υ)
, v =

h
2/s1
1 (υ)

h2(ρ)
, h2(ρ), h2(υ) 6= 0. (2.31)

Theorem 2.5. Suppose the functions h1 and h2 are both positive and integrable over the interval [0,∞). If
r1, s1 > 1 such that

1

r1
+

1

s1
= 1, (2.32)

define

K = min
0≤ρ≤ξ

h1(ρ)

h2(ρ)
, H = max

0≤ρ≤ξ

h1(ρ)

h2(ρ)
. (2.33)
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Then, for ξ ≥ 0, the following inequalities hold:

0 ≤ I(γj ,lj ,pj ;λj)

(σj ,ζ,qj)
h2

1(ξ) I
(γj ,lj ,pj ;λj)

(σj ,ζ,qj)
h2

2(ξ) ≤ (K +H)2

4KH
(
I

(γj ,lj ,pj ;λj)

(σj ,ζ,qj)
h1(ξ)h2(ξ)

)2

, (2.34)

0 ≤
√
I

(γj ,lj ,pj ;λj)

(σj ,ζ,qj)
h2

1(ξ) I
(γj ,lj ,pj ;λj)

(σj ,ζ,qj)
h2

2(ξ)− I(γj ,lj ,pj ;λj)

(σj ,ζ,qj)
h1(ξ)h2(ξ)

≤
√
H−

√
K

2
√
KH

(
I

(γj ,lj ,pj ;λj)

(σj ,ζ,qj)
h1(ξ)h2(ξ)

)
, (2.35)

0 ≤ I(γj ,lj ,pj ;λj)

(σj ,ζ,qj)
h2

1(ξ) I
(γj ,lj ,pj ;λj)

(σj ,ζ,qj)
h2

2(ξ)−
(
I

(γj ,lj ,pj ;λj)

(σj ,ζ,qj)
h1(ξ)h2(ξ)

)2

≤ H−K
4KH

(
I

(γj ,lj ,pj ;λj)

(σj ,ζ,qj)
h1(ξ)h2(ξ)

)2

. (2.36)

Proof. From (2.33), we have(
h1(ρ)

h2(ρ)
−K

)(
H− h1(ρ)

h2(ρ)

)
h2

2(ρ) ≥ 0, 0 ≤ ρ ≤ ξ. (2.37)

This implies
h2

1(ρ) +KHh2
2(ρ) ≤ (K +H)h1(ρ)h2(ρ). (2.38)

Multiplying (2.38) by

(ξ − ρ)ζ−1E(γ1,...,γm;l1,...,lm;p1,...,pm)
(σ1,...,σm,ζ;q1,...,qm)

(
λ1(ξ − ρ)σ1 , . . . , λj(ξ − ρ)σj

)

and integrating from 0 to ξ, using (1.7), we get

I
(γj ,lj ,pj ;λj)

(σj ,ζ,qj)
h2

1(ξ) +KHI(γj ,lj ,pj ;λj)

(σj ,ζ,qj)
h2

2(ξ) ≤ (K +H)I
(γj ,lj ,pj ;λj)

(σj ,ζ,qj)
h1(ξ)h2(ξ). (2.39)

Since KH > 0 and (√
I

(γj ,lj ,pj ;λj)

(σj ,ζ,qj)
h2

1(ξ)−
√
KHI(γj ,lj ,pj ;λj)

(σj ,ζ,qj)
h2

2(ξ)

)2

≥ 0,

it follows that

2
√
KHI(γj ,lj ,pj ;λj)

(σj ,ζ,qj)
h2

1(ξ)I
(γj ,lj ,pj ;λj)

(σj ,ζ,qj)
h2

2(ξ) ≤ I(γj ,lj ,pj ;λj)

(σj ,ζ,qj)
h2

1(ξ) +KHI(γj ,lj ,pj ;λj)

(σj ,ζ,qj)
h2

2(ξ). (2.40)

Squaring both sides of (2.39) and using (2.40), we obtain

4KHI(γj ,lj ,pj ;λj)

(σj ,ζ,qj)
h2

1(ξ)I
(γj ,lj ,pj ;λj)

(σj ,ζ,qj)
h2

2(ξ) ≤ (K +H)2
(
I

(γj ,lj ,pj ;λj)

(σj ,ζ,qj)
h1(ξ)h2(ξ)

)2

. (2.41)

Simplifying (2.41) gives (2.34). From (2.41), we have
√
I

(γj ,lj ,pj ;λj)

(σj ,ζ,qj)
h2

1(ξ)I
(γj ,lj ,pj ;λj)

(σj ,ζ,qj)
h2

2(ξ) ≤ K +H
2
√
KH

I
(γj ,lj ,pj ;λj)

(σj ,ζ,qj)
h1(ξ)h2(ξ). (2.42)

Subtracting I
(γj ,lj ,pj ;λj)

(σj ,ζ,qj)
h1(ξ)h2(ξ) from (2.42) gives (2.35), and (2.36) follows directly from (2.34).

Theorem 2.6. Consider the function h1, which is positive and integrable on [0,∞) and let the two functions
ℵ1 and ℵ2 be integrable on [0,∞) such that

ℵ1(ξ) ≤ h1(ξ) ≤ ℵ2(ξ), ξ ∈ [0,∞). (2.43)

Then for ξ ≥ 0 and σ, λ, γ, l, p, q, ζ > 0, we have{
Iγ,l,p;λσ,ζ,q ℵ2(ξ)h1(ξ) + Iγ,l,p;λσ,ζ,q h1(ξ)ℵ1(ξ)

≥ Iγ,l,p;λσ,ζ,q ℵ2(ξ)ℵ1(ξ) + Iγ,l,p;λσ,ζ,q h1(ξ)h1(ξ).
(2.44)

Corollary 2.3. Let the condition of Theorem 2.1 be satisfied with l1 = · · · = lm = p1 · · · pm = q1 · · · qm = 1,
then we get the known result:

I
γ(j,λj)

(σj ,ζ)
ℵ2(ξ) I

γj,λj
(σj ,η)h1(ξ) + I

γ(j,λj)

(σj ,ζ)
h1(ξ) I

γj,λj
(σj ,η)ℵ1(ξ)

≥ Iγ(j,λj)(σj ,ζ)
ℵ2(ξ) I

γj,λj
(σj ,η)ℵ1(ξ) + I

γ(j,λj)

(σj ,ζ)
h1(ξ) I

γj,λj
(σj ,η)h1(ξ).

(2.45)

If we consider λj = 0, ∀j, then we get the known result derived by Tariboon et al. [24]. Several results of
Theorem 2.1 can be obtained in a similar manner by choosing certain specific values for the parameters.
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3 Conclusion
This paper presents findings on Grüss-type inequalities and similar inequalities using the generalized
fractional integral. We discussed some special situations as corollaries. These results help us better
understand fractional calculus and its applications in various areas. Moreover, our results reduce to some
classical results found in the work of Shao [22].

It is concluded that the results claimed in this work are general in character and provide contributions
to the theory of integral inequalities and fractional calculus. Furthermore, these results are expected to
lead to applications in establishing the uniqueness of solutions in fractional boundary value problems and in
fractional partial differential equations.
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