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Abstract

This study aims to determine the vertex cohesive number and edge cohesive number of hesitant fuzzy
graph structures derived from Gear and Bipartite graphs. The Gear and Bipartite graphs are transformed
into hesitant fuzzy graphs by assigning hesitant fuzzy membership functions to both vertices and edges.
Similar hesitant fuzzy membership functions are grouped to form cohesive hesitant fuzzy structures. The
vertex and edge cohesive numbers for these structures are then computed. These findings provide insights
into the cohesiveness of vertices and edges within hesitant fuzzy graphs. The approach can be applied
in organizational contexts, where employees are modeled as vertices. By analyzing the coordination
between employees using hesitant fuzzy graph structures, it becomes possible to gain valuable insights
into group dynamics and improve team efficiency. This study utilizes vertex and edge cohesive numbers
in hesitant fuzzy graphs to optimize transportation networks under uncertain conditions.
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1 Introduction

Graph theory originated from the Konigsberg bridge problem, which laid the foundation for its development
into a widely applicable field across disciplines such as social networks and computer systems, Harary
[6]. The introduction of fuzzy sets by Zadeh [21,1965] marked a turning point in mathematics, enabling
the development of fuzzy graph theory. Rosenfeld formalized the concept of fuzzy graphs in 1973, with
refinements appearing in [15, 1975]. These advancements provided a foundation for further research on fuzzy
graphs, leading to significant developments in fuzzy graph structures and their applications, Zimmermann
[22]. Fuzzy graph structures evolved from Rosenfeld’s work were extended to specific graphs such as star,
wheel, and helm graphs [1]. These structures are now widely applied in areas like computer science and
social network analysis [5]. Notable advancements in this area include generalized fuzzy graph structures,
which have been studied extensively [12, 16]. Hesitant fuzzy sets, introduced by Torra [19, 2010], addressed
limitations in traditional fuzzy sets by allowing multiple membership values for each element, enhancing the
modeling of uncertainty. This concept was further applied to hesitant fuzzy graphs, which provide a flexible
framework for modeling complex systems characterized by inherent uncertainty due to Pathinathan et al.
[14]. These graphs have been utilized in decision-making processes where relationships between vertices
and edges exhibit vagueness [11, 18]. Theoretical advancements in hesitant fuzzy graphs include the study
of degree, order, and size in intuitionistic fuzzy graphs [3], as well as the introduction of double-layered
fuzzy graphs to capture more complex relationships [13]. Pathinathan and colleagues have also significantly
contributed to the study of hesitant fuzzy graphs, exploring their properties and applications in various fields
[14, 17]. Hesitant fuzzy graphs are particularly valuable in transportation problems, where mixed constraints
and uncertainty are inherent. Researchers, [2, 8] have developed fuzzy approaches to optimize transportation
networks and improve reliability. This paper introduces the Interval Valued Intuitionistic Trapezoidal
Neutrosophic Fuzzy Graph for the Shortest Path Problem [10]. These graphs also find applications in
organizational dynamics and social network analysis, providing robust solutions for modeling real-world
problems [4, 7].
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2 Preliminary
Definition 2.1. ([5]). The cohesive number of a graph is defined as the maximum number of vertex-disjoint
cycles in the graph. A cycle is a path of edges and vertices wherein a vertex is reachable from itself.

Definition 2.2. ([9]). Fuzzy Vertex and Edge in a fuzzy graph G = (V,u,0),u : V. — [0,1] assigns a
membership degree to each vertez, and o : V x V — [0,1] assigns a membership degree to each edge.

Definition 2.3. ([15]). A fuzzy cycle is a sequence of vertices vy, va, ..., v such that v; is connected to v; 41
with a non-zero membership degree, and vy is connected back to vy.

Definition 2.4. ([5]). Two cycles are vertez-disjoint if they do not share any vertices. In a fuzzy graph,
this means no vertex has a positive membership degree in more than one cycle in the set of vertex-disjoint
cycles.

To calculate the cohesive number in a fuzzy graph:

1. Identify Fuzzy Cycles: Determine all possible fuzzy cycles in the graph. This involves finding
sequences of vertices where the fuzzy membership degrees of the edges form cycles.

2. Maximize Vertex-Disjoint Cycles: Identify the maximum set of fuzzy cycles that do not share
any vertices. This involves considering the membership degrees and ensuring no vertex is part of more
than one cycle in the set.

Example 2.1. Consider a fuzzy graph with vertices V = {vy,v2,v3,v4} and fuzzy membership degrees on
edges such that:

o(vi,v2) = 0.8,
o(ve,v3) = 0.7,
o(vs,v1) = 0.9, (2.1)
o(vs,vq) = 0.5,
o(vg,v1) = 0.6.

In this fuzzy graph, one possible fuzzy cycle is v1 — vo — v3 — v1 with the minimum membership degree
being 0.7.

Another v3 — v4 — v; — v3 potential fuzzy cycle could be with the minimum membership degree being 0.5.
To determine the cohesive number, we would look for the maximum number of these fuzzy cycles that do
not share vertices.

Gear Graph (G,): A Gear graph G,, is derived from a wheel graph by adding an additional vertex to
the center of the cycle and connecting it to all other vertices. The Gear graph structure is as follows:
Vertices:

e (57, consists of n vertices.

e n — 1 vertices form a cycle (e.g., a pentagon for n =6 ).

e 1 central vertex is connected to all the vertices of the cycle.

Edges:
e Cycle edges connect adjacent vertices in the cycle.
e Spoke edges connect the central vertex to all the vertices of the cycle.

A Gear graph G,, is defined as G,, = (V, E), where

V = {v1,v9,..05_1, 0.} is the set of vertices.

Here vy, v9,...0_1, v, forming a cycle C,_1, and v, is the central vertex connected to each v; for ¢ =
1,2,..,n— 1.

The edge set E consists of the edges forming the cycle C,,_1 and the edges connecting v, to each v;.

Thus, |E| =2(n —1).

3 Main Result

Definition in Hesitant Fuzzy Graphs

The cohesive number in a hesitant fuzzy graph is defined as the maximum number of vertex-disjoint cycles,
taking into account the hesitant fuzzy relationships between vertices.
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Hesitant Fuzzy Vertex and Edge: In a hesitant fuzzy graph G = (V,u,0),p : V. — H[0,1] and
o:V xV — H[0,1], where H[0,1] denotes the set of hesitant fuzzy values (i.e., finite sets of membership
degrees).

Hesitant Fuzzy Cycle: A hesitant fuzzy cycle is a sequence of vertices vy, v, ..., v such that each pair
of consecutive vertices v;and v; 11 (and vi, back to vy) is connected by an edge with non-zero hesitant fuzzy
membership degrees.

Vertex-Disjoint Cycles: Two cycles are vertex-disjoint if they do not share any vertices. In a hesitant fuzzy
graph, this means no vertex is part of more than one cycle in the set of vertex-disjoint cycles, considering
the hesitant fuzzy values.

Example 3.1. Consider a fuzzy graph with vertices V' = {v1, v2,v3,v4} and hesitant fuzzy membership
degrees on edges such that:

o(vy,v9) = {0.7,0.8},
o(va,v3) = {0.6,0.7},
o(vs,v1) = {0.8,0.9}, (3.1)
o(vs,vq) = {0.4,0.5},
o(vg,v1) = {0.5,0.6}

In this hesitant fuzzy graph, one possible hesitant fuzzy cycle is v;1 — v9 — v3 — v; with hesitant fuzzy
membership degrees.

Another possible cycle is v — v4 — v — v3, with their respective hesitant fuzzy membership degrees.

To determine the cohesive number, we would look for the maximum number of these hesitant fuzzy cycles
that do not share vertices.

Vertex Cohesive Number in Hesitant Fuzzy Graph

Vertex Cohesive Number v.(HG): These measures how strongly connected the vertices are in the
hesitant fuzzy graph. A vertex cohesive number of 2, v.(HG) = 2 would indicate that removing any single
vertex reduces the cohesion of the graph such that it becomes less connected, or the number of connected
components increases.

Edge Cohesive Number in Hesitant Fuzzy Graph

Edge Cohesive Number e.(HG)This quantifies the robustness of the graph with respect to its edges.
An edge cohesive number of 2, e.(HG) = 2, implies that the removal of any edge similarly affects the
graph’s cohesion, potentially leading to a disconnected structure or increasing the number of disconnected
components.

Hesitant Fuzzy Gear Graph: A hesitant fuzzy Gear graph is a fuzzy extension of the Gear graph
where the edges have membership degrees represented by hesitant fuzzy sets (multiple possible values). The
structure is similar to the Gear graph but includes hesitant fuzzy memberships for each edge.

A hesitant fuzzy Gear graph HFG,, = (V, E, n) is defined on the Gear graph G,, where:

Hesitant Fuzzy Membership Function:

For each edge e € E a hesitant fuzzy membership function p : E — 201\ {#} is defined, where is a
non-empty set of membership values, i.e., u(e) = pi(e), ua(e),, pr(e), pi(e) € [0,1] The set u(e) represents
the degrees of membership reflecting the hesitation in the strength of the connection between the vertices
connected by the edge e.
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Hesitant Fuzzy Degree of a Vertex: The hesitant fuzzy degree of a vertex v; € V', denoted by degp (v;),
is defined as the sum of the hesitant fuzzy membership degrees of all edges incident to v;:

degy (v;) = Z uie), (3.2)
e€EE(v;)
where F; is the set of edges incident to v;.

Hesitant Fuzzy Degree of the Graph:
e The hesitant fuzzy degree of the Gear graph HFG,, denoted by degy,(G.), is the sum of the hesitant
fuzzy degrees of all its vertices:

degy (Gp) = Z degr (v;). (3.3)
v; €V
e Vertices: Same as the Gear graph.
e Edges:
— Cycle edges with hesitant fuzzy memberships (e.g., edges might have memberships {0.7, 0.8}).
— Spoke edges with hesitant fuzzy memberships connecting the central vertex to the cycle vertices
(e.g., edges might have memberships {0.9, 1.0}).
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Figure 3.2: Hesitant Fuzzy Gear Graph Gg
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{0.6, 0.7}

Figure 3.3: Hesitant Fuzzy Gear Graph Gg with Membership Degrees

Hesitant Fuzzy Bipartite Graph: This graph has the same structure as a bipartite graph but with
hesitant fuzzy sets for vertices and edges. Example of a Hesitant Fuzzy Bipartite Graph: Vertex
Sets: Let the vertex sets be the same as before:

V1= {ul, U2}7

V2= {’Ul, ’Ug}.
Hesitant Membership Function (Vertices): The hesitant membership degrees for the vertices are as
follows:

(3.4)

hy(u1) = {0.7,0.8},
hy.(u2) = {0.5,0.6},
hy(v1) = {0.6,0.7}, (8:5)
hu(vz) = {0.8,0.9}.

Hesitant Edge Weights (Edges): The hesitant edge weights between the vertices of and are given by:
h(,(uh ’Ul) = {0.4, 0.5},
hg(ul, 1)2) = {05, 06},
hU(UQ, Ul) = {03, 04},
hU(UQ, ’UQ) = {0.6, 07}
Calculation of Vertex and Edge Cohesive Numbers for Hesitant Fuzzy Bipartite Graph Hesitant
Vertex Cohesive Number ay(Gp): In the hesitant case, the vertex cohesive number ay(Gp) is calculated
by considering the minimum values from the intersections of hesitant membership and edge weights.

ag(Gy) = Z Z min (hy, (u) N hy(v) N he(u,v)). (3.7)

UEV] VEV2

(3.6)

Calculating for each pair:

(u1,v1) : min{0.7,0.8} N {0.6,0.7} N {0.4,0.5} = min(0.7) = 0.4, (3.8)
(u1,v2) : min{0.7,0.8} N {0.8,0.9} N {0.5,0.6} = min(0.7) = 0.5, (3.9)
(u2,v1) : min{0.5,0.6} N {0.6,0.4} N {0.3,0.4} = min(0.5) = 0.3, (3.10)
(u2,v2) : min{0.5,0.6} N {0.8,0.9} N {0.6,0.7} = min(0.5) = 0.6. (3.11)
So,
#(Gr) =0.4+05+0.3+0.6=18. (3.12)
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Hesitant Edge Cohesive Number
Similarly, the edge cohesive number Sy (Gg) is calculated by taking the product of the hesitant edge weight
and the minimum hesitant membership values for connected vertices.

Bu(Gh) = Z max (ho (u,v)) - min (A, (w) N hy(v)). (3.13)
(u,v)EE

Calculating for each edge:

For (uy,v1) : max{0.4,0.5} - min{0.7} = 0.5 x 0.6 = 0.30, (3.14)
For (u1,v2) : max{0.5,0.6} - min{0.7} = 0.6 x 0.8 = 0.48, (3.15)
For (ug,v1) : max{0.3,0.4} - min{0.5} = 0.4 x 0.5 = 0.20, (3.16)
For (ug,vs) : max{0.6,0.7} - min{0.5} = 0.7 x 0.6 = 0.42. (3.17)
So,

Br(Gr) = 0.30 + 0.48 + 0.20 + 0.42 = 1.40. (3.18)

Summary
Hesitant Vertex Cohesive Numberay(Gy) = 1.8, (3.19)
Hesitant Edge Cohesive Number Sy (Gpy) = 1.40. (3.20)

{0.6}————— 106,07} ———{0.82.9}
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Figure 3.4: Hesitant Fuzzy Bipartite Graph

These measures give us an understanding of the connectivity and strength of the hesitant fuzzy bipartite
graph. They provide a way to analyze the graph’s structure when membership values are not certain but lie
within a set of possibilities.

3.1 Comparison of Hesitant Fuzzy Cohesive Numbers with Classical Fuzzy and Intuitionistic
Fuzzy Graphs

In classical fuzzy graphs, each vertex or edge is assigned a single membership value p € [0, 1], representing the

degree of connection or association. The vertex cohesive number «(G) and edge cohesive number 5(G) are

computed using these fixed membership degrees. This approach provides a precise measure of connectivity

but fails to capture situations where the degree of membership is uncertain or varies due to multiple expert

evaluations or dynamic environmental conditions.

In intuitionistic fuzzy graphs, each vertex or edge is characterized by a pair of values: the membership
degree p(z) and the non-membership degree v(z), satisfying the condition 0 < u(x) + v(xz) < 1. The
hesitation margin m(z) = 1 — pu(z) — v(z) expresses uncertainty indirectly. The cohesive numbers ! (G) and
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B1(Q) in this context combine both membership and non-membership information, giving a more balanced
but still fixed representation of uncertainty.

In hesitant fuzzy graphs, however, each vertex or edge is represented by a set of possible membership
degrees, such as u(e) = {0.6,0.7,0.8}, instead of a single value or pair. This representation models multiple
expert opinions or hesitation regarding the strength of relationships. Accordingly:

e The hesitant vertex cohesive number off (G) is computed using intersection and minimum
operations over all possible membership degrees, providing a conservative yet realistic measure of
connectivity.

e The hesitant edge cohesive number 37 (G) incorporates both maximum and minimum hesitant
values, reflecting the uncertainty and variability in edge strength more effectively than classical fuzzy
or intuitionistic fuzzy models.

Comparison Summary:

Table 3.1: Comparison of Cohesive Numbers across Fuzzy Graph Types

Graph Type Membership Repre- | Captures Cohesive Number | Relative Ro-
sentation Uncer- Representation bustness
tainty
Classical Fuzzy | Single p € [0,1] Low a(G),B8(G) based on | Limited
Graph fixed values
Intuitionistic Fuzzy | Pair (p, v) with hesita- | Moderate (@), B1(G) include | Medium
Graph tion m non-membership
Hesitant Fuzzy | Set of membership val- | High o (G), B (G) based | Strong
Graph ues {pi1, 2y .-y Uk} on hesitant set
operations

Therefore, hesitant fuzzy cohesive numbers offer a richer and more flexible framework than their
classical and intuitionistic counterparts. They are particularly suitable for modeling real-world systemssuch
as social, transportation, or communication networkswhere uncertainty, hesitation, or multiple expert
evaluations influence the assessment of connectivity and reliability.

3.2 Computational Complexity and Practical Implementation for Large-Scale Graphs

The computation of vertex and edge cohesive numbers in hesitant fuzzy graphs (HFGs) involves processing
multiple possible membership degrees for each vertex and edge. Let G = (V| E) denote a hesitant fuzzy
graph, where each vertex v; € V and edge e;; € E are associated with hesitant membership sets h(v;)
and h(e;;), respectively. If each hesitant set contains k possible values on average, the time complexity for
cohesive number computation increases significantly compared to classical fuzzy graphs.

I. Theoretical Complexity Analysis

e For a classical fuzzy graph, computing the vertex cohesive number a(G) requires O(|V|?) operations,
as each pair of vertices is compared once based on single membership values.

e For an intuitionistic fuzzy graph, the inclusion of both membership and non-membership values
increases the complexity slightly to O(2|V|?), which is still linear in the number of vertex pairs.

e For a hesitant fuzzy graph, however, each comparison involves operations over k-sized membership sets,
making the overall complexity approximately O(k?|V'|?) for dense graphs, since each pairwise relation
may require computing intersections or aggregations across hesitant sets.

Similarly, the computation of the edge cohesive number 5(G) for large networks with |E| edges exhibits
O(k?|E|) complexity. For sparse graphs, this cost remains manageable, but for dense or real-world networks
(social, biological, or communication networks), the computational cost becomes significant.

II. Algorithmic and Heuristic Strategies
To address scalability challenges, several computational strategies can be adopted:

1. Set Reduction Heuristic: Reduce each hesitant membership set {p1, g2, . . ., i} to a representative
subset (e.g., by clustering or percentile selection), which decreases the effective k without major loss
of accuracy.
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2. Parallel Cohesion Computation: Since cohesive number calculations for distinct vertices and edges
are independent, they can be parallelized using multi-threading or distributed computing frameworks
such as Apache Spark GraphX or Hadoop Graph Processing.

3. Incremental Cohesion Update: In dynamic networks, instead of recomputing the entire cohesive
matrix, update only the affected regions when vertices or edges change, leading to significant time
savings.

4. Graph Sampling Techniques: For very large networks, compute cohesive numbers on sampled

subgraphs and use statistical estimators (such as Monte Carlo averaging) to approximate global
cohesion metrics.

5. Matrix-Based Computation: Represent hesitant fuzzy membership values as interval or multi-layer
adjacency matrices, enabling the use of optimized linear algebra operations and sparse matrix storage
for improved efficiency.

ITI. Practical Considerations

For practical implementation on large-scale networks (|V| > 10%), the use of sparse matrix structures and
parallel processing is essential to maintain tractable computation times. Hybrid approaches that combine set
reduction with incremental updates provide a balance between accuracy and scalability. Such methods
ensure that hesitant fuzzy cohesive measures remain computationally feasible even in complex real-world
network analysis.

4 Application

Real-Time Validation of Vertex and Edge Cohesive Numbers in Transportation Networks
Optimizing Transportation Network Reliability using Vertex and Edge Cohesive Numbers in Hesitant

Fuzzy Graphs We aim to apply the concepts of vertex cohesive number and edge cohesive number of hesitant

fuzzy graphs to

1. Identify critical hubs (stations) that ensure the transportation network remains connected despite
uncertainties.
2. Pinpoint crucial transportation links (roads, railways, etc.) that must be maintained to ensure network

reliability and smooth operation.

To validate the theoretical findings, a real-time transportation dataset is utilized, representing major city
routes and traffic flow data collected over multiple intervals. Each hub (vertex) represents a transport
station, and each link (edge) carries hesitant fuzzy reliability values derived from fluctuating traffic densities
and maintenance schedules.

The data set includes six primary hubs and eight direct connections.

Hubs (Vertices):

H,, Hs, H3, Hy, H5, Hg represent major bus or train stations in the city.

Links (Edges): Each link between hubs is assigned hesitant fuzzy values representing the uncertainty in
the reliability of these links, based on traffic or maintenance disruptions.

The hesitant fuzzy values for the edges are as follows:

(Hy, Hs) : {0.8,0.9},

(Hs, H3) : {0.6,0.7},
(Hs, Hy) : {0.5,0.6},
(Hy4, Hs) : {0.7,0.8},
(Hs, Hg) : {0.5,0.6}, (4.1)
(Hg, H1) : {0.6,0.7},
(Hy, H3) : {0.7,0.8},
(Ha, Hy) : {0.5,0.6}.

Step 1: Vertex Cohesive Number
The vertex cohesive number represents the smallest group of hubs that ensure connectivity in the network.
We will examine the hesitant fuzzy values to find the largest subset of vertices that forms a cohesive set.
e For each pair of hubs, we look at the reliability of the connections. We can say that a pair of hubs is
cohesive if the hesitant fuzzy values between them are relatively high (e.g., > 0.6).

49



e In this example, the hesitant fuzzy values between hubs (Hy, Hs), (Hy, Hs), (Hy, Hs) and (Hg, Hy)
indicate higher reliability.
e The smallest set of hubs that ensures the network remains connected is {H_1, H 6} because any
additional hubs are connected through at least one reliable edge. This forms a cohesive group.
e Vertex Cohesive Number: 2 (i.e., H; and H>).
Step 2: Edge Cohesive Number
The edge cohesive number is the largest subset of edges that ensures the graph remains connected. Here,
we need to identify the critical links between hubs that maintain the transportation networks integrity.
e Consider the edges (Hy, Hs),(Hy,Hs) and (Hg, Hs)which have relatively high reliability values
(hesitant fuzzy values > 0.7).
e These edges form the most reliable connections and should be prioritized to ensure network cohesion.
If any of these links were disrupted, the connectivity between hubs would be significantly weakened.
e Edge Cohesive Number: 2 (i.e., the two edges (Hy, Hy) and (Hy, Hs)).
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Figure 4.1: Transportation Network with Hesitant Fuzzy Values

In this transportation network, the vertex cohesive number is 2, indicating that hubs H; and H, are the
most critical nodes that must remain operational to ensure network connectivity. The edge cohesive number
is also 2, signifying that the transportation links between H; and Hs , and between H, and Hj , are the
most crucial connections to be prioritized for maintenance.

By focusing on these critical hubs and links, transportation planners can ensure the network remains reliable
and functional, even under uncertain conditions such as fluctuating traffic or infrastructure maintenance.

5 Conclusion

The development of hesitant fuzzy graph theory and its subsequent advancements have significantly
broadened the scope of graph theory applications. Whether in computer networks, social network analysis,
or organizational studies, hesitant fuzzy graph structures offer a robust framework for understanding and
analyzing complex relationships and interactions. This study demonstrates that by applying vertex and
edge cohesive numbers to hesitant fuzzy graphs, transportation networks can be optimized for reliability
and resilience, ensuring minimal disruption and efficient resource allocation under uncertain conditions. By
utilizing vertex and edge cohesive numbers within hesitant fuzzy graph structures, this research provides a
robust framework for optimizing transportation networks under uncertainty. However, the study has certain
limitations. The computation of vertex cohesive number and edge cohesive number becomes complex for
large-scale graphs, and the selection of hesitant membership sets may involve subjective judgment. Moreover,
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the present model assumes static hesitant values, whereas real-world systems often exhibit dynamic and time-
varying uncertainty.
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