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Abstract

The formulae for the sum of inverses of odd divisors of an integer n are deduced by various authors
in the literature. Here, in this paper, we exhibit that their expressions are related by certain identity of
Li involving the number of representations of n as a sum of squares.
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1 Introduction
The formulae for the sum of inverses of odd divisors of an integer n are deduced by Jha [4, 14] and Glaisher
[ 9,11]. Here, in this paper, we exhibit that their expressions are related by certain identity of Li involving
the number of representations of n as a sum of squares.

Jha [4, 14] obtained the following expression for the sum of inverses of odd divisors of a positive integer
n :

2(−1)nD(n) := 2(−1)n
∑

oddd|n

1

d
=

n∑

j=1

(−1)j

j

(
n

j

)
rj(n), (1.1)

where rk(n) is the number of representations of n as a sum of k squares [1, 12, 19]. On the other hand, we
have the Glaisher’s result [9, 11]:

2(−1)nD(n) =

n∑

k=1

(−1)k

k
Rk(n), (1.2)

where Rk(n) is the number of representations of n as a sum of k nonvanishing squares [12].
Li [16] deduced the relation:

Rk(n) =

k∑

j=1

(−1)k−j
(
k

j

)
rj(n), n ≥ 1, (1.3)

In Sec. 2 we exhibit that (1.2) and (1.3) imply (1.1). Again, we obtain the inversion of (1.3). In Sec. 3 we
show that D(n) has connection with the Jacobi theta functions.
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2 Glaisher, Jha and Li formulae
From (1.1), (1.2) and (1.3):

2(−1)n
∑

oddd|n

1

d
=
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k=1

1

k

k∑

j=1

(−1)j
(
k

j

)
rj(n) =

n∑

j=1

(−1)jrj(n)

n∑

k=j

1

k

(
k

j

)
,

where we used the property [22]:
n∑

k=j

1

k

(
k

j

)
=

1

j

(
n

j

)
. (2.1)

We know [15, 24] that rk(n) is a polynomial of degree n, in k with the structure:

rk(n) =

n∑

l=1

a(n, l)kl, (2.2)

such that:

a(n, n) =
2n

n!
, n ≥ 0; a(n, 1) = 2(−1)n−1

∑

odd d ln 1
d

, n ≥ 1,

a(n, n− 1) = − 2n−1

(n− 2)!
, n ≥ 2; a(n, n− 2) =

2n−3(3n− 1)

3(n− 3)!
, n ≥ 3 (2.3)

a(n, n− 3) =
2n−4(n+ 2)(3− n)

3(n− 4)!
, n ≥ 4, etc.

For example [12, 15, 26]:

rk(1) = 2k, rk(2) = 2k(k − 1), rk(3) =
4

3
k(k − 1)(k − 2),

rk(4) =
2

3
k[3(2k − 1) + k(k − 1)(k − 5)], rk(5) =

4

15
k(k − 1)[3(2k − 3) + k(k − 4)(k − 5)],

rk(6) =
4

45
k(k − 1)(k − 2)[45 + (k − 3)(k − 4)(k − 5)], (2.4)

rk(7) =
8

315
k(k − 1)(k − 2)(k − 3)

(
k3 − 15k2 + 74k − 15

)
, . . . .

The application of (2.2) in (1.3) gives the interesting expression:

Rk(n) = k!

n∑

l=1

a(n, l)S
[k]
l , (2.5)

where participate the Stirling numbers of the second kind [5, 13, 17, 22]. From (2.3) and (2.5) it is possible
to deduce results which are in harmony with Grosswald [12], in fact:

R1(n) = r1(n) =

n∑

l=1

a(n, l), Rk(1) = 2k!S
[k]
1 =

{
2, k = 1

0, k ≥ 2
, Rk(n) = 0, k ≥ n+ 1,

Rk(2) = 2k!
(
S

[k]
2 − S

[k]
1

)
=





0, k = 1

4, k = 2,

0, k ≥ 3

, Rm−1(m) = 0, m ≥ 2, Rn−2(n) = 0, n ≥ 3, (2.6)

Rk(3) =
4

3
k!
(

2S
[k]
1 − 3S

[k]
2 + S

[k]
3

)
=

{
8, k = 3

0, k 6= 3
, Rm−3(m) = 2m−3(m− 3), m ≥ 4,

Rn(n) = n!

n∑

l=1

a(n, l)S
[n]
l = n!a(n, n) = 2n, n ≥ 1, . . .

Remark 2.1. The relation (1.3) is a binomial transform [3] whose inversion is immediate:

rk(n) =

m∑

j=1

(
k

j

)
Rj(n) with m =

{
k, 1 ≤ k ≤ n
n, k ≥ n+ 1

. (2.7)
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Remark 2.2. It is easy to obtain the corresponding inversion of (2.5), in fact:

a(n, l) =

n∑

j=l

1

j!
Rj(n)S

(l)
j , (2.8)

with the presence of the Stirling numbers of the first kind [18, 22].

Remark 2.3. The application of (1.3) in (2.8) gives the inversion of (2.2):

a(n, l) =

n∑

j=0

b(n, l, j)rj(n), b(n, l, j) =
1

j!

n−j∑

t=0

(−1)t

t!
S

(l)
t+j . (2.9)

The quantities a(n, k) can be written in terms of the partial Bell polynomials [6, 8, 15, 20].
Hence, our work shows that Jha’s and Glaisher’s expressions are related through Li’s identity.

3 Sum of inverses of odd divisors of a positive integer
Now we consider the arithmetic function:

A(n) := (−1)nnD(n) = (−1)n−1n
∑

odddin

1

d
, (3.1)

then is easy to obtain the values A(1) = 1, A(2) = −2, A(3) = 4, A(4) = −4, etc., thus it appears the
sequence:

1,−2, 4,−4, 6,−8, 8,−8, 13,−12, 12,−16, 14,−16, 24,−16, 18,−26, 20,−24, 32,−24, 24,−32, 31,−28, . . . .
(3.2)

We visited the On-line Encyclopedia of Integer Sequences [27] and we find that (3.2) is the sequence
A186690, therefore:

−1

8

ϑ′′3(0, q)

ϑ3(0, q)
=

∞∑

n=1

A(n)qn =

∞∑

j=1

(−1)j−1jqj

1− q2j
, (3.3)

that is, the quantities (3.1) are connected to the Jacobi theta functions [2, 7, 23, 28].
On the other hand, Prof. Michael Somos [21] indicates the following relation between sequences:

A186690(n) = (−1)n−1A002131(n), (3.4)

hence:

A(n) =

{
−
(
σ(n)− σ

(
n
2

))
, n is even

σ(n), n is odd
(3.5)

involving the sum of divisors function σ(n)[10, 25, 26].

4 Application of Rk(n) in solving difference equations
Consider that for k 6= n, Y (h, k;n) = Rk(n)hn ∀k ≥ 1, n ≥ 0 and when k = n, there exists

Y (h, n;n) = Y (h;n) = Rn(n)hn = 2nhn ∀n ≥ 0. (4.1)

Since by (2.5) we have

Rk(n) = k!

n∑

l=1

a(n, l)S
[k]
l , Rk(n) = 0 ∀k ≥ n+ 1. (4.2)

Then (4.2) satisfies the result
Rk(0) = 0 ∀k ≥ 1. (4.3)

Theorem 4.1. If k 6= n, n ≥ 0, k ≥ 1 and h > 0, then Y (h, k;n) of (4.1) satisfies a difference equation

Y (h, k;n+ 1)− 1

h
Y (h, k;n) = 0. (4.4)

Proof. Multiplying by hn in left hand sides of difference equation (4.4) and then summing up n = 0 to
n =∞, we get

∞∑

n=0

Y (h, k;n+ 1)hn −
∞∑

n=0

Y (h, k;n)hn−1. (4.5)
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Applying (4.1), for k 6= n, Y (h, k;n) = Rk(n)hn ∀k ≥ 1, n ≥ 0, in equation (4.5) we find

(
Y (h, k; 1) + Y (h, k; 2)h+ Y (h, k; 3)h2 + · · ·

)
−
(
Y (h, k; 0)

1

h
+ Y (h, k; 1) + Y (h, k; 2)h+ · · ·

)

(
Rk(1)h+Rk(2)h3 +Rk(3)h5 + · · ·

)
−
(
Rk(0)

1

h
+Rk(1)h+Rk(2)h3 + · · ·

)
. (4.6)

Then in the relation (4.6) using the result (4.3) ∀k ≥ 1, we get right hand sides of difference equation
(4.4).

Hence, Y (h, k;n) = Rk(n)hn is a solution of difference equation (4.4) ∀k ≥ 1, n ≥ 0 and k 6= n.

Theorem 4.2. If n ≥ 0 and h > 0, then Y (h;n) given in (4.1) satisfies a difference equation

Y (h;n+ 1)− 1

2h
Y (h;n) +

1

2n+1hn+1
= 0. (4.7)

Proof. Multiplying by 2nhn in left hand sides of difference equation (4.7) and then summing up n = 0 to
n =∞, we get

∞∑

n=0

Y (h;n+ 1)2nhn −
∞∑

n=0

Y (h;n)2n−1hn−1 +
1

2h
. (4.8)

Now, applying (4.1) for Y (h;n) = 2nhn ∀k ≥ 1, n ≥ 0, in equation (4.8), we find

(
Y (h; 1) + Y (h; 2)2h+ Y (h; 3)22h2 + · · ·

)
−
(
Y (h; 0)

1

2h
+ Y (h; 1) + Y (h; 2)2h+ · · ·

)
+

1

2h
. (4.9)

Since in formula (4.1), Y (h;n) = Rn(n)hn = 2nhn ∀n ≥ 0, which for n = 0 gives Y (h; 0) = 1, therefore
in (4.9) putting Y (h; 0) = 1, we get zero, therefore right hand side of equation (4.7) is satisfied.

Hence, Y (h;n) = Rn(n)hn = 2nhn is the solution of equation (4.7).

5 Conclusion
In this paper, we deduce the formulae for the sum of inverses of odd divisors of an integer n by Jha [4, 14]
and Glaisher [9,11]. Again, we exhibit the expressions related by certain identity of Li involving the number
of representations of n as a sum of squares. In the Section 4, we search some of the difference equations
satisfying the function given by

Y (h, k;n) =

{
Rk(n)hn ∀k ≥ 1, n ≥ 0 and k 6= n;
Rn(n)hn ∀n ≥ 0 when k = n.

(5.1)
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[24] R. Sivaraman, J. López-Bonilla and S. Vidal-Beltrán, On the polynomial structure of rk(n), Indian J.

of Advanced Maths., 3(2) (2023), 4-5.
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