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Abstract

The formulae for the sum of inverses of odd divisors of an integer n are deduced by various authors
in the literature. Here, in this paper, we exhibit that their expressions are related by certain identity of
Li involving the number of representations of n as a sum of squares.
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1 Introduction
The formulae for the sum of inverses of odd divisors of an integer n are deduced by Jha [4, 14] and Glaisher
[ 9,11]. Here, in this paper, we exhibit that their expressions are related by certain identity of Li involving
the number of representations of n as a sum of squares.

Jha [4,14] obtained the following expression for the sum of inverses of odd divisors of a positive integer

2(~1)"D(n) = 2(-1)" Y % - Z (_]1)3 (;’) ri(n), (1.1)

oddd|n

where ri(n) is the number of representations of n as a sum of k squares [1,12,19]. On the other hand, we
have the Glaisher’s result [9, 11]:

n - (_1)k
21y D(m) = S R, (1.2)
k=1

where Rj(n) is the number of representations of n as a sum of k nonvanishing squares [12].
Li [16] deduced the relation:

k
run) = S0 (B, 0z 13)

In Sec. 2 we exhibit that (1.2) and (1.3) imply (1.1). Again, we obtain the inversion of (1.3). In Sec. 3 we
show that D(n) has connection with the Jacobi theta functions.
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2 Glaisher, Jha and Li formulae
From (1.1), (1.2) and (1.3):

SUDSEE B ':<1>J‘<’;>rj<n> i ()

oddd|n k= J

() -3()

We know [15,24] that ri(n) is a polynomial of degree n, in k with the structure:

where we used the property [22]:

n

re(n) = Z a(n, Dk,

=1

such that: on
a(n,n) ==, n>0; a(n1)=2(-)"" Y, n>1,
" odd dln %
gn—1 2”*3(3n -1
a(n,n—l)_ m, n227 a(n,n_Q):W, 77/23
277,74 2 _
a(n,n —3) = (n+2)3 = n) n>4, etc.

3(n—4)! ’
For example [12, 15, 26]:
r(1) =26 ry(2) =2k~ 1), 7x(3) = Sh(k— 1)k ~2)

re(4) = %k[?)(% 1) +k(k—1)(k—5)], rx(5) = 14—5k(k —1)[3(2k — 3) + k(k — 4)(k — 5)],

ri(6) = %k‘(k —1)(k—2)[45+ (kK —3)(k —4)(k — 5)],

_8
- 315
The application of (2.2) in (1.3) gives the interesting expression:

6 (7) k(k—1)(k —2)(k — 3) (k* — 15k* + 74k — 15) ... .

n

Ri(n) = k'Y a(n,1)S}",

=1

(2.5)

where participate the Stirling numbers of the second kind [5, 13, 17, 22]. From (2.3) and (2.5) it is possible

to deduce results which are in harmony with Grosswald [12], in fact:

- 2 =1
Ri(n) =ri(n) = > a(n,1), RMU:%GW:{’ K Ri(n) =0, k>n+1,

— 0, k>2’
0, k=1
Ri(2) = 2! (s;’“] - sg’“l) =4, k=2, Rui(m)=0, m>2 Ry asn)=0 n>3,
0, k>3
Rmngm(%ﬁkaw@+8@)={§::#2, Rop_s(m) =2""3(m—3), m >4,

n
R,(n)=n! Z a(n, Z)Sl["] =nla(n,n)=2" n>1,...
=1
Remark 2.1. The relation (1.3) is a binomial transform [3] whose inversion is immediate:
- (k k, 1<k<
rk(n)_z<,>Rj(n) with m—{ ’ =r=n

= 7 n, k>n+1"
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Remark 2.2. [t is easy to obtain the corresponding inversion of (2.5), in fact:

n

1 !
aln ) = 3 Ri(m)S)", (2:8)
j=l
with the presence of the Stirling numbers of the first kind [18, 22].
Remark 2.3. The application of (1.3) in (2.8) gives the inversion of (2.2):

n—j

D)= bn1,j)rj(n), bn,l,j) = ],Z
j=0

The quantities a(n, k) can be written in terms of the partial Bell polynomials [6,8, 15, 20].
Hence, our work shows that Jha’s and Glaisher’s expressions are related through Li’s identity.

t+j (29)

3 Sum of inverses of odd divisors of a positive integer
Now we consider the arithmetic function:

A(n) == (=1)"nD(n) = (-1)""'n (3.1)

odddin
then is easy to obtain the values A(1) = 1,A(2) = —2,A(3) = 4, A4
sequence:
1,-2,4,-4,6,-8,8, 8,13, —12,12, —16, 14, —16, 24, — 16, 18, —26, 20, —24, 32, —24, 24, —32,31, —28, ... .
(3.2)
We visited the On-line Encyclopedia of Integer Sequences [27] and we find that (3.2) is the sequence
A186690, therefore:

1
d’
) =

—4, etc., thus it appears the

194(0,9) <~ i )iLjqd

3.3
- 843(0,q) Z 1—q2j 7 (3:3)
n=1 j=1

that is, the quantities (3.1) are connected to the Jacobi theta functions [2, 7, 23, 28].
On the other hand, Prof. Michael Somos [21] indicates the following relation between sequences:
A186690(n) = (—1)""1 A002131(n), (3.4)
hence:
Ay =1~ (c(n)—o (%)), n ?s even (35)
o(n), n is odd
involving the sum of divisors function o(n)[10, 25, 26].
4 Application of Ri(n) in solving difference equations
Consider that for k # n, Y (h,k;n) = Ri(n)h™ Vk > 1,n > 0 and when k = n, there exists
Y(h,n;n) =Y (h;n) = Ry(n)h™ = 2"h" ¥n > 0. (4.1)
Since by (2.5) we have
Ri(n) = k1> a(n, S, Re(n) =0 Yk >n+ 1. (4.2)
=1
Then (4.2) satisfies the result
Ri(0) =0 Vk > 1. (4.3)

Theorem 4.1. If k #n,n >0,k >1 and h > 0, then Y (h,k;n) of (4.1) satisfies a difference equation
1
Y(h,k;n+1) — EY(h’ k;n) =0. (4.4)

Proof. Multiplying by A™ in left hand sides of difference equation (4.4) and then summing up n = 0 to
n = 0o, we get
> Y(hkin+ 1" = > V(b k;n)h" (4.5)
n=0

n=0
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Applying (4.1), for k # n,Y (h, k;n) = Rg(n)h™ Vk > 1,n > 0, in equation (4.5) we find

(Y(h, k; 1) + Y (h k;2)h + Y (h, k; 3)h? + -+ ) — (Y(h, k; 0)% +Y (h,k;1) + Y (h, k; 2)h + - )
(Re(D)h+ Ri(2)h* + Rp(3)h° + -+ ) — (Rk(o)}ll + Ri(D)h + Ri(2)h* + - - ) . (4.6)

Then in the relation (4.6) using the result (4.3) Vk > 1, we get right hand sides of difference equation
(4.4).

Hence, Y'(h, k;n) = Ri(n)h™ is a solution of difference equation (4.4) Vk > 1,n > 0 and k # n. O
Theorem 4.2. Ifn >0 and h > 0, then Y (h;n) given in (4.1) satisfies a difference equation
1 1

Proof. Multiplying by 2™h"™ in left hand sides of difference equation (4.7) and then summing up n = 0 to
n = 0o, we get

o0 (o] 1
. nyn __ . n—1pn—1 -
> Y(hin+1)2"R" = Y(hin)2" R 4 o (4.8)
n=0 n=0
Now, applying (4.1) for Y (h;n) = 2™h"™ Vk > 1,n > 0, in equation (4.8), we find
(Y(h;1) + Y (h;2)2h + Y (h; 3)2°h% + -+ ) — <Y(h; 0)% +Y(h;1) + Y (h;2)2h + - > + o (4.9)

Since in formula (4.1), Y (h;n) = R,(n)h™ = 2"h™ Vn > 0, which for n = 0 gives Y (h;0) = 1, therefore
in (4.9) putting Y (h;0) = 1, we get zero, therefore right hand side of equation (4.7) is satisfied.
Hence, Y (h;n) = R, (n)h™ = 2™h™ is the solution of equation (4.7). O

5 Conclusion
In this paper, we deduce the formulae for the sum of inverses of odd divisors of an integer n by Jha [4, 14]
and Glaisher [9,11]. Again, we exhibit the expressions related by certain identity of Li involving the number
of representations of n as a sum of squares. In the Section 4, we search some of the difference equations
satisfying the function given by

| Rg(n)h" Vk>1,n>0and k #n;
V(b ksn) = { R, (n)h™ ¥Yn > 0 when k = n.
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