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Abstract

The I-Function introduced by the author [4] is the ultimate generalization of all the hypergeometric
functions series or complex integrals (like E and H-Functions).This function was based on the generalized
Hardy-Titchmarsh theorems for symmetric and unsymmetric Fourier kernels. However, there is a class of
I-Functions which have not come to the light in spite of their potential applications in science, engineering
and artificial intelligence (AI). The purpose of this paper is to introduce such functions. This investigation
may be useful in finding solutions of differential and Integral equations arising in mixed boundary value
problems of Physics, Engineering and Biology.
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1 Introduction
Several researchers have studied and analyzed the I-Function and it’s trivial extensions. Some of them
have investigated properties and characteristics including algebraic aspects [5]. Some applications of these
functions have also attracted applied mathematicians. In particular, solutions of certain class of single and
dual integral equations involving special functions results in terms of I-Functions.

As we know the kernels in Integral transforms and Integral equations play important roles. These classified
as symmetric and unsymmetric Fourier kernels as per the following definitions

f(x) =

∫ b

a

K(u, x)h(u)du, (1.1)

h(u) =

∫ b

a

H(u, x)f(x)dx. (1.2)

Here f(x) and h(u) are known and unknown functions respective. K(u, x) are called kernels (known)
and if both are same then known as symmetrical kernels otherwise unsymmetrical.

The emergence of Saxena’s I-Function was dependent on the generalizations of HardyTitchmarsh
theorems for both types brought out by the author [1,7] during his Ph.D. thesis work [8] which was published
subsequently. This was an extension of the theory of linear integral equations. The theorems are given below:

Theorem 1.1. Generalized Hardy-Tichmarsh Theorem
Let

g(x) =

∫ ∞

0

K(ux)f(u)du, (1.3)

where K(x) be a kernel function expressed in a finite series of kernels

K(x) =

n∑

r=1

Kr(x) (1.4)

and suppose Kr(ξ)(ξ = σ + it) are Mellin transforms of Kr(x)(r = 1,2,3, . . . ,n), which satisfy the
conditions

Kr(ξ) =

{
A1,r +

B1,r

ξ
+O

(
1

|ξ|2
)}

Γ(ξ) cos
1

2
ξπ, as t→∞
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=

{
A2,r +

B2,r

ξ
+O

(
1

|ξ|2
)}

Γ(ξ) cos
1

2
ξπ, as t→ −∞,

where Ai,r(i = 1,2) are constants. Then

1

2
[f(x+ 0) + f(x− 0)] =

1

2πi

∫ ∞

L

[
n∑

r=1

Kr(ξ)

]−1

G(1− ξ)x−ξdξ, (1.5)

where G(ξ), the Mellin transform of G(x), belong to L2(σ − i∞, σ + i∞).

Proof. Let K(x) be a kernel function expressed as

K(x) =

n∑

r=1

Kr(x),

where n is finite and K̄(ξ) the Mellin transform of Kr(x);Lr(ξ) = 1

Kr(1−ξ)
satisfy the following conditions:

(i) Kr(x) and Lr(ξ), ξ = σ + it (σ and t are real) are regular in the stri ps σ1 < σ < σ2, where
σ1 < 0, σ2 > 1 except, perhaps for a finite number of simple poles in the imaginary axis.

(ii)

Kr(ξ) =

{
A1,r +

B1,r

ξ
+O

(
1

|ξ|2
)}

Γ(ξ) cos
1

2
ξπ, as t→∞

=

{
A2,r +

B2,r

ξ
+O

(
1

|ξ|2
)}

Γ(ξ) cos
1

2
ξπ, as t→ −∞

Lr(ξ) =

{
C1,r +

D1,r

ξ
+O

(
1

|ξ|2
)}

Γ(ξ) cos
1

2
ξπ, as t→∞

=

{
C2,r +

D2,r

ξ
+O

(
1

|ξ|2
)}

Γ(ξ) cos
1

2
ξπ, as t→ −∞,

where A1,r, B1,r, A2,r, B2,r, C1,r, D1,r, C2,r and D2,r(r = 1, 2, . . . , n) are constants.
(iii) f(u) and h(u) functions of bounded variation near u = x, f(x) ∈ L(0,∞) and f̄(ξ) ∈ L

(
1
2 − i∞, 1

2 + i∞
)
.

Then solution of integral equation

f(x) =

∫ ∞

0

K(ux)h(u)du

is given by

1

2
[h(x+ 0) + h(x− 0)] = lim

t→∞

1

2πi

∫ 1
2 +it

1
2−it

Φ(ξ)f̄(1− ξ)x−ξdξ (1.6)

where

Φ(ξ) =

[
n∑

r=1

1

L̄r(ξ)

]−1

and f̄(ξ) is Mellin transform of f(x).
Above generalized Hardy-Titchmarsh theorem evolves variety of functions which nontrivial generaliza-

tions of functions which may fall under the category of symmetric and unsymmetric Fourier kernels. The
class of functions which are generated from hypergeometric functions or their special cases may be called ’A
class of I-Functions .This will include Saxena’s I-Function. An extensive use of Mellin Transforms has been
carried out in these derivations which are given in the next section.

The Mellin transform of a function f(x) is defined as, if we take kernel

K(u, x) = uξ−1,

f̄(ξ) = M [f(u)] =

∫ ∞

0

uξ−1f(u)du. (1.7)

The inversion formula of Mellin transform is given by

M−1[f̄(ξ)] = f(u) =
1

2πi

∫ σ+i∞

σ−i∞
u−ξ f̄(ξ)dξ. (1.8)
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The Parseval’s theorem (convolution theorem) of the Mellin transform [6] is

M [f(u)] = f̄(ξ),M [g(u)] = ḡ(ξ), (1.9)∫ ∞

0

f(u)g(x)du = lim
t→∞

1

2πi

∫ σ0+it

σ0−it
x−ξ ḡ(ξ)f̄(1− ξ)dξ, (1.10)

M [f(ux)] = x−ξ, f(ξ) = M [f(u)], (1.11)

then, ∫ ∞

0

f(u)g(ux)du = lim
t→∞

1

2πi

∫ σ0+it

σ0−it
x−ξ ḡ(ξ)f̄(1− ξ)dξ. (1.12)

Validity conditions of the equation are,

f(ξ) ∈ Lp(σ − i∞, σ + i∞) and x1−σg(x) ∈ Lp(0,∞), p ≥ 1.

2 A Class of I-Functions
On the basis of the generalized Hardy-Titchmarsh theorem we can introduce several new functions and call
them as a new class of I-Functions. Some of such functions are related to classical special functions and
denoted as listed below

IJ , IY , IW , IF , IE , IG, IBM , IH/I.

These functions can be generated from Bessel, Modified Bessel, Whittaker, Generalized Hypergeometric,
Mac-Robert’s-E, Meijer’s-G, Bessel-Maitland and Fox’s H-Functions [5,6] respectively. The IH/I is Saxena’s
I-Function. These functions are defined as:

(i) Bessel I-Function:

IJ(z) =
1

2πi

∫

L

Γ (1− 1/2 (a0 + v0) + ξ) zξdξ∑r
i=1 Γ (1/2 (ai − vi − ξ))

, (2.1)

ai ≥ 0,Re(ξ) > Re (vi) >
3
2 for i = 0, 2, . . . , r;L is Barne’s contour parallel to imaginary axis.

(ii) Modified Bessel I-Function:

IY (z) =
1

2πi

∫

L

Γ (1− 1/2 (a0 − v0 − 1) + ξ) Γ (1/2 (a0 − v0)− ξ) z∑r
i=1 Γ (1− 1/2 (ai + vi) + ξ)) Γ (1 + 1/2 (ai + vi)− ξ)

, (2.2)

ai ≥ 0, |Re (vi)| < Re(ξ) < 3
2 for i = 0, 2, . . . , r

(iii) Whittaker I-Function:

IW (z) =
1

2πi

∫

L

Γ (−a0 + λ0 + ξ) Γ
(
a0 − µ0 + 1

2 − ξ
)
zξdξ∑r

i=1 Γ
(

1
2 − ai + µi

)
+ ξ
) , (2.3)

|Re (µi)| −
1

2
< Re(ξ) < −Re (λi) for i = 0, 2, . . . , r

(iv) Hypergeometric I-Function:

IF (z) =
1

2πi

∫

L

Γ(1 + ξ)zξdξ∑r
i=1

∏p
i=1 Γ (1− air − ξ)

∏q
j=1 Γ (bir + ξ)

, (2.4)

Where p < q, air, bir ≥ 0.
(v) E-I-Function:

IE(z) =
1

2πi

∫

L

Γ(ξ)
∏q
j=1 Γ (bj − ξ) zzξdξ∑r
i=1 ΠΓ (aij − ξ)

, (2.5)

where L is Barne’s contour on complex plane parallel to imaginary axis running from σ−i∞ to σ+i∞,
where σ is appropriate real number. In this particular section σ = 0 and all the poles of Γ (bj − ξ) (j =
1, 2, . . . , p) are to the right of L and of Γ(ξ) to the left; pi < q + 1 and | arg(z)| <

(
m+ n− 1

2pj − q
)
π

for i = 1, 2, . . . , r.
(vi) G− I-Function:

IG(z) =
1

2πi

∫

L

∏m
j=1 Γ (bj − ξ)

∏n
j=1 Γ (1− aj + ξ) zξdξ∑r

i=1

∏qi
j=m+1 Γ (1− bji + ξ)

∏pi
j=n+1 Γ (aji − ξ)

. (2.6)

As earlier L is Barne’s contour such that all the poles of Γ (bj − ξ) (j = 1, 2, . . . ,m) are to the right of
L and all the poles of Γ (1− aj + ξ) (j = 1, 2, . . . , n) are to the left.
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(vii) Bessel-Maitland-I-Function:

IBM (z) =
1

2πi

∫

L

Γ(ξ)zξdξ∑r
i=1 Γ (1 + vi + λiξ)

, (2.7)

vi, λi > 0(i = 1, 2, . . . , r).
(viii) H − I-Function (Saxena’s I-Function):

I(z) = Im,npi,qi;r

[
z/

(aj , αj) , . . . , (ap, αp)
(bj , βj) , . . . , (bp, βp)

]
(2.8)

=
1

2πi

∫

L

ϕ(s)zsds, (2.9)

where

ϕ(s) =

∏m
j=1 Γ (bj − βjs)

∏m
j=1 Γ (1− aj + αjs)

∑r
i=1

{∏qi
j=m+1 (1− bji + βjis)

∏pi
j=n+1 (aji − αjis)

} , (2.10)

pi(i = 1, 2, 3, . . . , r), qi(i = 1, 2, 3, . . . , r),m and n are integers satisfying 0 < n < pi and o < m < qi, r
is finite and αj , βj , αji, βji, are complex numbers.

For I- function, there are three different paths L of integration

a. L is a contour which runs from σ − i∞ to σ + i∞ (σ is real), so that all poles of Γ (bj − βjs), j =
1, 2, 3 . . . ,m are to the right and all poles of Γ (1− aj + αjs) , j = 1, 2, 3, . . . , n are to the left of L .

b. L is a loop starting and ending at σ+ i∞ and encircling all the poles of Γ (bj − βjs) , j = 1, 2, 3 . . . ,m,
once in the negative direction but none of the pole of Γ (1− aj + αjs) , j = 1, 2, 3, . . . , n. The integral
converges if q > 1 and either pi < qi or pi = qi and |z| < 1, i = 1, 2, 3, ..., r.

c. L is a loop starting and ending at σ + i∞ and encircling all the poles of Γ (1− aj + αjs), once in
positive direction, but none of the poles of Γ (bj + βjs) , j = 1, 2, 3, . . . ,m.

On specializing the parameters in I-Function we can arrive at G and H functions. Thus G and H
functions are particular cases of I-Function.

3 Example: [5]
The definitions (1.1) and (1.2) are motivated and derived from the theory of symmetrical and unsymmetrical
Fourier kernel and supported by generalized Hardy-Titchmarsh theorem. Other than the above functions
there are several other functions defined in terms of Gamma functions can generate more I-Functions. For
examples like Bessel-Maitland I-Functions can be evolved as given below, in which use of Erdélyi-Kober
operators < and I made extensively [5].

Theorem 3.1. If f(x) is solution of the integral equation
∫ ∞

0

N∑

j=1

uαjJλjµj (ux)f(u)du = g(x), x > 1, (3.1)

where α, λ and µ are arbitrary real numbers . Then

f(x) =

∫ ∞

0

IN,mm+N−1,m+N+1;r

[
ux

∣∣∣∣
(Aj , γj)1,m′ (Aji, γji)1,N−1

( Bj , δj)1,N ′ (Bji, δji)1,m+1

]
g1(u)du, (3.2)

where

g1(x) =

m∏

k=1

{<k[g(x)]} ,<
[
bk − ek,

µk
fk

:
1

fk

]
g(x) = <k[g(x)], x > 1.

Aj = 1− bk − fk, γj = fk, (j, k = 1, 2, . . .m);Bj = 1− λj + µj − λjαj , δj = λj , (j = 1, 2, . . . , N);Aji =
1 − λji + µji − λjiαji, γji = λji(j = 1, 2, . . . , N − 1; i = 1, 2, . . . , r)Bji = 1 − eki − fki, δji = fki, (j, k =
1, 2, . . . m; i = 1, 2, . . . , r);Bm+1,i = −αi, δm+1,i = 1, (i = 1, 2, . . . , r) provided

(i) λ′ > 0, | arg x| < 1
2λ
′π,

(ii) λ′ ≥ 0, | arg x| ≤ 1
2λ
′π,Re (µ′ + 1) < 0,
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where

λ′ =

m∑

j=1

γj +

N∑

j=1

δj − max
1≤i≤r



N−1∑

j=1

γji +

m+1∑

j=1

δji


 (3.3)

and

µ′ =

N∑

j=1

Bj −
m∑

j=1

Aj − min
1≤i≤r



N−1∑

j=1

Aji −
m+1∑

j=1

Bji − 1


 . (3.4)

Proof. Applying Parseval’s theorem of the Mellin transforms in (3.1, we obtain

lim
t→∞

1

2πi

∫ σ0+it

σ0−it

N∑

j=1

Γ (αj + ξ)

Γ (1 + µj − λjαj − λjξ)
x−ξF (1− ξ)dξ = g(x), x > 1, (3.5)

where ξ = σ0 + it and F (ξ) is Mellin transform of f(u).
Proceeding on the same lines of above and apply the second fractional integral operator <. We obtain

the transformation of the equation (3.1) as∫ ∞

0

N∑

j=1

H0,m+1
m+2,m

[
ux

∣∣∣∣
(· · · · · · ), (bk, fk)1,m , (· · · · · · )

(αj , 1) , (ek, fk)1,m , (1 + µj − λjα, λj)

]
f(u)du = g1(x), (3.6)

where g1(x) is known. Proceeding on the similar lines as above, we obtain

f(x) =
1

2πi

∫

L

∏N
j=1 Γ (1 + µj − λjαj − λj + λjs)

∏m
k=1 Γ {bk + fk − fks}x−sG(1− s)ds

∑r
i=1

[
Γ (αi + 1− s)∏N−1

j=1 Γ (1 + µji − λjiαji − λji + λjis)
∏m
k=1 Γ {eki + fki − fkis}

] .

(3.7)
Again, applying Parseval’s theorem defined in section-1, we finally obtain R.H.S of (1.8).

Corollary 3.1. If α, λ and µ are arbitrary positive real numbers (0 < λj < 1) for j = 1, . . . , N , and if
∫ ∞

0

N∑

j=1

uαjJλjµj (ux)f(u)du = g(x), 0 < x < 1. (3.8)

Then

f(x) =

∫ ∞

0

Im+N,0
m+N−1,m+N+1;r

[
ux

∣∣∣∣
(ak − gk, gk)1,m , (1− λji + µji − λjiαji, λji)1,N−1

(1− λj + µj − λjαj , λj)1,N , (τk − gk, gk)1,m , (−αj , 1)

]
h1(u)du,

(3.9)
where

h1(x) =

m∏

k=1

{Ik[g(x)]} , Jk[g(x)] = I
[
ak − τk, τkg−1

k − 1 : g−1
k

]
g(x), 0 < x < 1.

provided ak > τk and τk
gk
> c, (ξ = c + it),m > 0, N > 0,Re (τk −min ak) > 0, (k = 1, 2, . . . , m) and other

conditions of I-Function are same as given earlier.

Proof. Now, to establish the next inversion, we shall use the operator I, and Beta function. Further we
replace x by v in (3.5) and multiply both the sides by(

x
1
g1 − v 1

g1

)a1−τ1−1

v
τ1
g1
−1,

and integrate under the integral sign with respect to 0 to x and apply the same process as above, we obtain
the transformations of the integral equation (3.8), is given as∫ ∞

0

N∑

j=1

H1, m
jm, m+2

[
ux

∣∣∣∣
(. . .), (τk, gk)1, m , (. . .)

(αj , 1) , (ak, gk)1, m , (1 + µj − λjα, λj)

]
f(u)du = h1(x) (3.10)

where

h1(x) =

m∏

k=1

{Ik[g(x)]} , 0 < x < 1. (3.11)

By proceeding on similar lines, we will obtain R.H.S of (3.9).
The I-function thus created may be useful in solving problems arisings in forms of integral equations

including mixed boundary problems of science, engineering and biology.
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