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Abstract

Anthropogenic activities are the primary drivers of the rising global average temperature, profoundly
affecting carrier population and thereby intensifying the spread and dynamics of carrier-dependent
infectious diseases. In this study, we develop a non-linear mathematical model to investigate the impact
of temperature rise on disease transmission. The model incorporates four key dynamical variables:
global temperature (elevated due to human-induced factors), the densities of susceptible and infected
human populations, and the density of the carrier population. The carrier population is assumed to
grow logistically, with its intrinsic growth rate influenced by rising temperature and its carrying capacity
affected by human activities. The model is analyzed using the stability theory of differential equations and
supported by numerical simulations based on biologically relevant parameter values. The results indicate
that increasing global temperature accelerates carrier population growth, which, in turn, contributes to
a rise in the number of infections within the human population.
2020 Mathematical Sciences Classification: 34C60, 92D40, 37N25, 92D30, 37N30.
Keywords and Phrases: Mathematical model, Carrier population, Anthropogenic activities, Global
average temperature, Numerical simulation.

1 Introduction
Climate change is one of the biggest problems facing the world today. One major result of climate change
is the continuous rise in global temperature, mainly caused by human activities such as burning fossil fuels,
cutting down forests, running industries, and using chemicals in farming. These actions release greenhouse
gases into the air, which trap heat and make the Earth warmer over time. This rise in temperature affects
many parts of life, including human health and the spread of diseases [8, 11]. These diseases that spread
through contaminated food, are often with the help of carriers like houseflies. Houseflies do not cause
diseases themselves, but they carry germs from dirty places like garbage, drains, or open toilets, and
spread them to uncovered or poorly handled food. This can lead to illnesses such as typhoid and diarrhea,
especially in areas with poor hygiene and sanitation [24, 26]. As temperature increases, houseflies grow
and reproduce more quickly. Warm conditions allow them to survive longer, lay more eggs, and become
more active. This leads to a rise in their population, which increases the chances of disease-causing germs
being spread to food. In addition, high temperatures can also help germs survive and multiply faster in
food and the surrounding environment [12, 13]. The 21st century has witnessed a sharp acceleration in
global environmental transformations, largely attributed to intensified anthropogenic activities. Among
these transformations, global warming characterized by a persistent increase in the Earth’s average surface
temperature has emerged as one of the most pressing environmental and public health concerns worldwide.
One significant consequence of this warming is the increased carrier population and the corresponding rise
in the spread of food-borne diseases [35, 36].

Food-borne illnesses represent a critical and persistent global public health challenge, contributing
substantially to both morbidity and mortality across populations worldwide. These diseases exert their
most devastating effects in low and middle income countries, where inadequate sanitation, limited access to
clean water, poor food-handling practices, and insufficient health infrastructure amplify the risk of infection.
According to the World Health Organization (WHO) [37, 38, 39], it is estimated that nearly 600 million
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individuals, almost one in ten people globally fall ill each year due to the consumption of contaminated
food, leading to approximately 420,000 deaths annually. This staggering burden highlights the profound
impact of food-borne diseases on public health, economic stability, and overall quality of life. Among the
wide range of illnesses transmitted through contaminated food, notable examples include typhoid fever,
dysentery, shigellosis, cholera, and various forms of bacterial and viral gastroenteritis. These diseases are
often associated with pathogens that proliferate under unsanitary environmental conditions, finding ideal
transmission routes through food and water sources. One of the most significant yet often underestimated
vectors in this transmission chain is the common housefly (Musca domestica), which plays a crucial role as
a mechanical carrier of infectious agents. Due to their natural feeding and breeding behaviors, houseflies
frequently come into contact with fecal matter, garbage, decaying organic substances, and other reservoirs
rich in microbial contaminants. After acquiring pathogens from these sources, flies can easily transfer them
to human environments. When they subsequently alight on exposed food, kitchen utensils, food preparation
surfaces, or open wounds, they facilitate the transmission of numerous disease-causing microorganisms. This
process occurs through physical contact, regurgitation, or excretion, all of which can contaminate human
food supplies. Numerous studies have confirmed that houseflies are capable of harboring and disseminating
an extensive range of pathogenic organisms-including bacteria such as Salmonella spp., Escherichia coli,
and Shigella spp., as well as a variety of viruses, fungi, and protozoan cysts [1, 2, 3]. In fact, it has been
reported that a single fly can carry more than one hundred distinct pathogenic species, underlining their
epidemiological significance in the context of food-borne disease transmission. The ubiquity of houseflies
in both urban and rural environments, coupled with their rapid breeding cycles and close association
with human habitats, makes them a persistent threat to food safety and public health. Consequently,
understanding their ecological behavior, transmission dynamics, and the environmental factors that influence
their population growth is essential for developing effective strategies to mitigate the spread of food-borne
diseases [4, 5, 6].

During the past few decades, numerous mathematical models [27, 28, 29] have been developed to
capture the dynamics of the proliferation of infectious diseases. These models serve as essential tools for
understanding disease transmission, assessing risk factors, predicting outbreak patterns, and evaluating the
effectiveness of various intervention strategies. The role of carrier populations in disease transmission has
also been extensively examined through mathematical modeling frameworks. Notably, Singh et al. [30, 31]
formulated a model in which the carrier population was assumed to follow logistic growth dynamics, with
both the intrinsic growth rate and carrying capacity modeled as functions of the human population density.
This approach provides valuable insight into how human-driven environmental changes influence carrier
proliferation and, consequently, the spread of infectious diseases. Naresh et al. [23] proposed and analyzed a
nonlinear vaccination model to study the spread of carrier-dependent infectious diseases under the influence
of environmental factors. Their analysis demonstrated that if the vaccination rate exceeds a critical threshold,
the disease cannot escalate into an epidemic provided that the carrier population remains at its equilibrium
level. This result underscores the dual importance of both vaccination efforts and effective management of
the carrier population in disease control. Misra et al. [20, 21] developed a mathematical model showing
that using chemical insecticides based on the number of carriers can help reduce the density of the carrier
population. They found that spraying insecticides on time is effective, but delays in spraying may destabilize
the system and increase the risk of disease. A recent study by, Singh et al. [33, 34] proposed a nonlinear
mathematical model to analyze the effect of temperature on the transmission of carrier-dependent infectious
diseases. The model incorporates temperature as a dynamic variable influencing the intrinsic growth rate
and carrying capacity of the carrier population. Through stability analysis and numerical simulations, the
study demonstrated that rising temperature especially those driven by anthropogenic activities can lead to
a significant increase in the carrier population and, consequently, the number of infected individuals.

This research aims to explore the intricate relationship between carrier populations and global
temperature, which is elevated due to anthropogenic activities, with particular emphasis on contamination
pathways. The carrier population is assumed to grow logistically, with its intrinsic growth rate influenced
by rising temperatures and its carrying capacity affected by human activities. By investigating these
interactions, the study seeks to enhance our understanding of the transmission dynamics of food-borne
diseases in the context of a warming climate. Such insights are essential for identifying effective strategies
to control carrier populations and mitigate the public health risks associated with food-borne infections.
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2 Mathematical model
For the model formulation, suppose the total human population in the considered region at the time t be
denoted by N(t), which is divided into two classes, namely susceptible population X(t) and the infected
population Y (t). The density of carrier population in the considered region is represented by C(t), while the
global average temperature represented by T (t), elevated due to anthropogenic activities. The susceptible
population is assumed to grow at a constant rate A, which comprehends both birth and immigration to
the considered region. The disease is assumed to spread both through direct contact between susceptible
and infected individuals at a rate βXY , and indirectly through carriers that contaminate food consumed
by susceptible individuals [14, 15]. As food-borne diseases spread via carriers, therefore we have considered
that the susceptible population moves to infected population at a rate λXC/(m + C), where λ represents
the disease transmission rate and m is the half saturation constant. Recovered individuals do not develop
permanent immunity and can be reinfected; thus, the parameter ν denotes the recovery rate. The parameters
α and d are introduced to represent the disease-induced and natural death rates of the human population,
respectively. The carrier population is assumed to follow logistic growth, characterized by an intrinsic growth
rate r0and a carrying capacity k0. However, temperature significantly influences the intrinsic growth rate
of the carrier population. Elevated temperatures accelerate the carriers reproduction and developmental
processes and extend their breeding season, resulting in an increase in their population [16, 17]. Therefore,
the intrinsic growth rate is considered as a temperature-dependent function r(T ), while the carrying capacity
is assumed to increase with the human population and is represented as k(N). Further, carrier population
depletes due to various unfavorable environmental factors, which is incorporated by the term r2C. Hence,
our proposed model system reads as follows:

dT

dt
= pN − α0(T − T0),

dX

dt
= A− βXY − λX C

m+ C
− dX + νY,

dY

dt
= βXY + λX

C

m+ C
− (ν + α+ d)Y,

dC

dt
= r(T )C − r0

C2

k(N)
− r2C. (2.1)

We define the temperature-dependent intrinsic growth rate and the population-dependent carrying
capacity of the carrier population as r(T ) = r0 + r1T , k(N) = k0 + k1N respectively. Here, r1 and k1

represent the incremental coefficients corresponding to the effects of temperature on the intrinsic growth
rate and of human population on the carrying capacity. The initial conditions for the system are given by
T (0) = T0 > 0, X(0) = X0 > 0, Y (0) = Y0 ≥ 0, and C(0) = C0 ≥ 0. The constant T0 denotes the global
average temperature of the pre-industrial era, which serves as the baseline reference level for temperature
variation in the model. The various parameters used in the model are described in Table 6.1. We take into
consideration the following reduced system (using X + Y = N) in order to analyze model (2)

dT

dt
= pN − α0(T − T0),

dY

dt
= β(N − Y )Y + λ

C(N − Y )

m+ C
− (ν + α+ d)Y,

dN

dt
= A− dN − αY,

dC

dt
= r(T )C − r0

C2

k(N)
− r2C. (2.2)

Lemma 2.1. Following set defines the region of attraction for model system (2.2):

Ω = {(T, Y,N,C) ∈ R4
+ : T0 ≤ T ≤ Tm, 0 ≤ Y ≤ N ≤

A

d
, 0 ≤ C ≤ Cm},

where Tm = T0 +
pA

α0d
and Cm =

{
r(Tm)k(A/d)− r2

r0

}
and it attracts all the solutions that initiate in the

interior of the positive orthant.
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3 Basic reproduction number (R0)
The disease-free equilibrium point, denoted by E0, is obtained by setting C = 0 and Y = 0. Under this
condition, the infectious components of the model system (2.2), can be expressed as follows:

dY

dt
= β(N − Y )Y + λ

C(N − Y )

m+ C
− (ν + α+ d)Y,

dC

dt
= r(T )C − r0

C2

k(N)
− r2C. (3.1)

The corresponding matrix is:

P =

[
β(N − Y )Y + λC(N−Y )

m+C

0

]
,

S =

[
(ν + α+ d)Y(

−r(T ) + r0
C

k(N) + r2

)
C

]
.

The basic reproduction rate R0 is given by
R0 = (individual infection rate) (individual recovery rate) -1.

This concept is extended to matrices in the next generation approach. The next generation matrix divides
the compromised system into two matrices of rates when there are several infection kinds to monitor. These
rate matrices are typically referred to as F and V :

M = [infection rates]× [recovery rates]-1

= F × V -1.

As a result, the transition matrices (F and V ) related to the equilibrium state E0 are derived as follows.

F =

[
βA
d

λA
dm

0 0

]
,

and

V =

[
(ν + α+ d) 0

0 (−r(Tm) + r2)

]
.

In the model system (2.2), the basic reproduction number (R0) is the spectral radius (largest eigenvalue) of
the next generation matrix (N.G.M): R0 = ρ(FV -1) [18, 19]. Therefore, we obtain

R0 =
βA

(ν + α+ d)d
.

4 Equilibria of the proposed system
The model system (2.2) is nonlinear; therefore, it is not possible to find its exact solution. Utilizing the
stability theory of differential equations, we therefore investigate the system’s long-term behavior, identify
the model’s equilibrium, and look at the stability analysis of the equilibria. An equilibrium point that does
not change with time of a dynamical system is the solution [7, 9]. These points are obtained by putting the
growth rate of different variables of the model system equal to zero. The model system (2.2) manifests three
non-negative equilibria as follows:

• Disease free equilibrium E0(T , 0, Ad , 0), where T = T0 + pA
α0d

.

• Carrier free equilibrium E1(T̂, Ŷ, N̂, 0), where T̂ = T0 +
(
p
α0

)(
βA+α(ν+α+d)

β(α+d)

)
, Ŷ = βA−d(ν+α+d)

β(α+d) and

N̂ = βA+α(ν+α+d)
β(α+d) .

The feasibility of this equilibrium depends on the basic reproduction number, R0 =
βA

(ν + α+ d)d
> 1.

• Endemic equilibrium E∗(T ∗, Y ∗, N∗, C∗), which exist in Ω̂ (a subset of Ω) given by

Ω̂ = {(T, Y,N,C) ∈ R4
+ : T0 ≤ T ≤ Tm, 0 ≤ Y ≤

A

α+ d
, 0 < N ≤ A

d
, 0 ≤ C ≤ Cm}.
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The existence of equilibrium E0(T , Ad , 0, 0) is obvious. Now, existence of equilibrium E1 can be derived
by solving the set of equations below;

pN − α0(T − T0) = 0, (4.1)

β(N − Y )Y + λ
C(N − Y )

m+ C
− (ν + α+ d)Y = 0, (4.2)

A− dN − αY = 0, (4.3)

r(T )C − r0
C2

k(N)
− r2C = 0. (4.4)

If C = 0 and Y 6= 0 then from equation (4.2), we have

β(N − Y )− (ν + α+ d) = 0. (4.5)

From equation (4.3), we have

Y =
A− dN

α
. (4.6)

Thus, using equation (4.6) in (4.5), we get

N =
A

α+ d
+
α(ν + α+ d)

β(α+ d)
=
βA+ α(ν + α+ d)

β(α+ d)
= N̂(say). (4.7)

Thus, we have from equation (4.6) and (4.7):

Y =
A− dN̂

α
=
βA− (ν + α+ d)d

β(α+ d)
= Ŷ (say), (4.8)

which exists if βA− d(ν + α+ d) > 0 i.e., R0 =
βA

d(ν + α+ d)
> 1.

Now, from equation (4.1) and (4.7), we have

T = T0 +
p(βA+ α(ν + α+ d))

α0β(α+ d)
= T0 +

pN̂

α0
= T̂ (say).

Thus, the equilibrium point E1(T̂, Ŷ, N̂, 0) exists provided R0 > 1. Now, the existence of equilibrium point
E∗(T ∗, Y ∗, N∗, C∗) in a subset of Ω is obtained by solving the following equations (4.1) to (4.4). We get
from equation (4.4)

C =
(r(T )− r2)k(N)

r0
. (4.9)

From equation (4.3), we have

N =
A− αY

d
. (4.10)

Also from equation (4.1), we have

T = T0 +
pN

α0
. (4.11)

Using equation (4.10) in equation (4.11), we get

T = T0 +
p(A− αY )

α0d
. (4.12)

Using equations (4.10) and (4.12) in equation (4.9), we have

C =
{r(T0 + p(A−αY )

α0d
)− r2}{k(A−αYd )}
r0

= L(Y )(let). (4.13)

Using equations (4.10) and (4.13) in equation (4.2), we have

β
{A− (α+ d)Y }

d
Y + λ

{A− (α+ d)Y }L(Y )

d(m+ L(Y ))
− (ν + α+ d)Y = 0 = f(Y ). (4.14)

From equation (4.14), we easily observe that

f(0) =
λAL(0)

d(m+ L(0))
, (4.15)
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From equation (4.13),

L(0) =
{r(T0 + pA

α0d
)− r1}{k(Ad )}
r0

> 0,

so from equation (4.15), get

f(0) > 0, f(
A

α+ d
) = − (ν + α+ d)A

α+ d
< 0. (4.16)

And differentiating equation (4.14) with respect to Y , we get

f ′(Y ) =
βA

d
− 2β(α+ d)Y

d
− (ν + α+ d)

+
λ

d

{
(m+ L(Y )){{A− (α+ d)Y }L′(Y )− (α+ d)L(Y )} − {A− (α+ d)Y }L(Y )L′(Y )

(m+ L(Y ))2

}
,

Multiply by Y , then

Y f ′(Y ) = −β(α+ d)Y 2

d
− λAL(Y )

d(m+ L(Y ))
+
λm

d

{{A− (α+ d)Y }Y L′(Y )

(m+ L(Y ))2

}
, (4.17)

where

L′(Y ) = −αk1

r0d

{
r{T0 +

p(A− αY )

α0d
} − r2

}
− αr1p

α0r0d

{
k

(
A− αY

d

)}
.

Using the value of L′(Y ) in equation (4.17), we get

Y f ′(Y ) < 0. (4.18)

Consequently, since f ′(Y ) < 0 for all Y > 0, a unique root Y ∗ exists such that 0 < Y < A
(α+d) . Utilizing Y ∗,

the variables N∗, C∗ and T ∗ are determined from equations (4.9), (4.10) and (4.11) respectively. Therefore,
the endemic equilibrium E∗(T ∗, Y ∗, N∗, C∗) exists in Ω̂.

Remark 4.1. It is observed that dY ∗

dr1
> 0, dC∗

dr1
> 0, dY ∗

dk1
> 0, and dC∗

dk1
> 0. These expressions indicate that

both the infected human population and the carrier population increase with higher values of the intrinsic
growth rate coefficient and the carrying capacity increment coefficient, which are influenced by the rise in
global average temperature and human activities. Furthermore, the inequalities dY ∗

dp > 0 and dC∗

dp > 0
reveal that as the rate of increase in global temperature driven by anthropogenic activities grows, there is a
corresponding rise in the equilibrium levels of infected individuals and carrier population density.

5 Stability analysis
In this section, we analyze the stability behavior of the equilibria E0, E1 and E∗. Consider, an equilibrium
is locally stable if solutions starting close to it converge to it. The local stability of E0 and E1 assess with
the help of Jacobian matrix method [22, 25] that corresponds to the model system (2.2).
5.1 Local stability analysis
For the local stability of equilibrium point E0 and E1, we check the sign of eigenvalues of the Jacobian matrix.
For the non-trivial endemic equilibrium E∗, we determine local stability using Routh-Hurwitz criterion [10].
The Jacobian matrix of system model (2.2) is given by

M =




−α0 0 p 0

0
(
−βY − λCN

Y (m+C)

) (
βY + λC

(m+C)

)
λm(N−Y )
(m+C)2

0 −α −d 0

r1C 0 r0k1C
2

k(N)2

(
r(T )− 2r0C

k(N) − r2

)



.

Consider M(E0) as Jacobian matrix of the system (2.2), evaluated at the equilibrium point E0. Thus, M(E0)
has two eigenvalues −α0 and −d, which are always negative and if r(T0 + pA

α0d
)−r2 < 0 and one eigenvalue is

(ν + α+ d)(R0 − 1) > 0, which is positive and negative if R0 > 1 and R0 < 1. Thus, E0(T0 + pA
α0d

, 0, A
d , 0)

is unstable and stable if R0 > 1 and R0 < 1, respectively. Similarly, for equilibrium E1(T̄, Ȳ, N̄, 0) the
matrix M(E1) has one positive eigenvalue (r(T̄ )− r2), when endemic equilibrium exists. Thus, equilibrium
E1(T̄, Ȳ, N̄, 0)is unstable. In additional, we use the Routh-Hurwitz criterion to study the local stability
behavior of non-trivial equilibrium E∗(T ∗, Y ∗, N∗, C∗), which is outlined in the theorem.
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Theorem 5.1 States that, under the following conditions, the equilibrium E∗(T ∗, Y ∗, N∗, C∗) is locally
asymptotically stable,

(a1a2 − a3)a3 − a2
1a4 > 0, (5.1)

where,

a1 =α0 + d+

{
βY ∗ +

λC∗N∗

Y ∗(m+ C∗)

}
+

r0C
∗

k(N∗)
,

a2 =α0

{
d+ βY ∗ +

λC∗N∗

Y ∗(m+ C∗)
+

r0C
∗

k(N∗)

}
+

r0C
∗

k(N∗)

{
d+ βY ∗ +

λC∗N∗

Y ∗(m+ C∗)

}

+ d

{
βY ∗ +

λC∗N∗

Y ∗(m+ C∗)

}
+ α

{
βY ∗ +

λC∗

(m+ C∗)

}
,

a3 =α0

{
r0C

∗

k(N∗)

{
d+ βY ∗ +

λC∗N∗

Y ∗(m+ C∗)

}
+ d

{
βY ∗ +

λC∗N∗

Y ∗(m+ C∗)

}}

+ α0α

{
βY ∗ +

λC∗

(m+ C∗)

}
+
dr0C

∗

k(N∗)

{
βY ∗ +

λC∗N∗

Y ∗(m+ C∗)

}

+ α

{
βY ∗ +

λC∗

(m+ C∗)

}
r0C

∗

k(N∗)
+
αr0k1C

∗2

k(N∗)2

{
λm(N∗ − Y ∗)

(m+ C∗)2

}
,

a4 =αr1pC
∗
{
λm(N∗ − Y ∗)

(m+ C∗)2

}
+
αα0r0k1C

∗2

k(N∗)2

{
λm(N∗ − Y ∗)

(m+ C∗)2

}

+ α0

{
(α+ d)βY ∗ +

dλC∗N∗

Y ∗(m+ C∗)
+

αλC∗

(m+ C∗)

}
r0C

∗

k(N∗)
.

Here, it is noted that ai > 0, for all i = 1, 2, 3, 4.
Proof : See the Appendix 1.
5.2 Global stability analysis
To the global stability analysis, using Lyapunov’s direct method to evaluate the stability of endemic
equilibrium E∗(T ∗, Y ∗, N∗, C∗) for long term behavior, is outlined in subsequent theorem.
Theorem 5.2. If the following criteria are satisfied, the equilibrium E∗ is globally asymptotically stable in
Ω̂,

λ2αCm
2 < β2d(m+ Cm)2Ym

2, (5.2)

and

4pr1k1αλ
2m2k(

A

d
)C∗N∗2 < α0r0dβ2Ym

2(m+ Cm)k(N∗)(m+ C∗)2. (5.3)

where,
Ym and Cm are the maximum value of Y and C, which are given by Ym = A

α+d and

Cm =
{

(r(Tm)−r2)k(Ad )

r0

}
for Tm = T0 + pA

α0d
.

Proof : See the Appendix 2.

6 Numerical simulation
In this section, to visualize the dynamics of the proposed model, we present numerical simulation of the
model system (2.2) corresponding to the following specified parameter values by using MATLAB [32, 40]:

With parameter values mentioned above, we get the endemic equilibrium E∗ as

T ∗ = 15.20, N∗ = 1988.92, Y ∗ = 301.11, C∗ = 6067.34.

The Jacobian matrix (ME∗) for the above values of parameters at E∗(T ∗, Y ∗, N∗, C∗);



−0.1 0 0.00001 0
0 −0.11943 0.02319 0.0006758
0 −0.1 −0.01 0

6.06734 0 0.146876 −0.054198


 ,

which corresponds to following eigenvalues of the Jacobian matrix
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Table 6.1: Values of the parameters used in model system (2).

Parameter Description V alue
p Growth rate coefficient of average global temperature from anthro-

pogenic sources
0.00001

α0 Natural depletion rate coefficient of average global temperature 0.1
T0 Global average temperature of pre-industrial era 15
A Rate of constant immigration and birth in the consider region 50
β Transmission coefficient due to infective population 0.00002
λ Transmission coefficient due to carrier population 0.02
ν Recovery rate of coefficient of infective population 0.02
d Natural death rate constant of human population 0.01
α Disease related death rate coefficient of infective population 0.1
m Half saturation point at which the transmission rate becomes half 1000
r0 Intrinsic growth rate coefficient of carrier population 0.04
r1 Increment coefficient of intrinsic growth rate due to temperature 0.001
k0 Carrying capacity of carrier population 500
k1 Increment coefficient of carrying capacity due to anthropogenic activities 2
r2 Carrier population depletes due to various unfavorable environmental

factors
0.001

−0.0997,−0.0953, and −0.0443± 0.0121ι̇.

Negative real part sign of all the eigenvalues confirms that the equilibrium E∗ is locally asymptotically
stable. In Figure 6.1, the solution trajectories in the N − Y − C space are shown for four different
initial conditions. All trajectories converge towards the equilibrium point E∗, clearly demonstrating its
global stability. The computer generated three-dimensional plot of N versus Y versus C for model system
(2.2), corresponding to the initial points [15,200,3800,5800] [15,1300,1800,500], [15,1450,2200,4200] and
[15,180,3500,2800] further confirms this result. The trajectories from each initial condition move toward
the endemic equilibrium E∗(T ∗, Y ∗, N∗, C∗), illustrating that the system eventually stabilizes at an endemic
equilibrium state irrespective of the starting values. This consistent convergence in the N − Y − C phase
space verifies the global stability of the endemic equilibrium.

Figure 6.2 illustrates the temporal variation of global average temperature T (t) over time (in days) for
three different values of the anthropogenic activity parameter p = 0.00001, 0.00002 and 0.00003. It is
observed that as the value of p increases, the corresponding temperature rises more rapidly and attains a
higher equilibrium level. The curves show an initial steep increase in temperature followed by stabilization,
indicating that anthropogenic activities significantly accelerate temperature elevation before reaching a
steady-state value. Specifically, higher values of p (represented by the green curve) lead to a greater and faster
temperature rise compared to lower values (blue and red curves). This behavior demonstrates the direct
influence of anthropogenic factors on the long-term warming trend of the global environment. Furthermore
in figure 6.3, All variables exhibit a rapid increase during the initial phase followed by stabilization, signifying
that the system eventually attains equilibrium. The synchronized approach of these variables toward steady
states reflects the internal consistency and stability of the proposed model, emphasizing the interconnected
effects of temperature rise, infection spread, and carrier population dynamics. Figure 6.4 depicts the effect
of varying the increased temperature-dependent growth rate due to anthropogenic activities parameter (r1)
on infective and carrier populations. Both populations rise rapidly at the beginning and eventually stabilize,
indicating equilibrium. Higher values of r1 result in faster growth and larger steady-state levels, showing
that increased temperature accelerates and carrier proliferation and infection spread. Figures 6.5 and 6.6
illustrate the effects of the increased carrying capacity coefficient of carriers due to anthropogenic activities
(k1) and the immigration rate by birth and outside in the consider region A on the densities of infective
human and carrier population. Both k1 and A, when increased, cause a rise in infected individuals and
carrier population. Figure 6.7 verifies that an increase in the carrier population growth rate (r0) results in
elevated densities of both infective and carrier populations.

The surface plots in Figures (6.8)-(6.10) illustrate the combined effects of different model parameters on
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Figure 6.1: Global stability plot of endemic equilibrium E∗ in N − Y − C space.
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Figure 6.2: Variation of global average temperature over time (in days) under different levels of
anthropogenic activity (p).
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Figure 6.3: Temporal variation of dynamical variables; global average temperature (T ), infected population
(Y ), human population (N), and carrier population (C).
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Figure 6.4: Variations in infected and carrier population with different parameter values r1 =
{0.001, 0.01, 1} and r1 = {0.001, 0.002, 0.003}.
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Figure 6.5: Variations in infected and carrier population with different parameter values of k1 = {1, 4, 7}
and k1 = {1, 1.5, 2}.
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Figure 6.6: Variations in infected and carrier population with different parameter values of A = {30, 40, 50}.
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Figure 6.7: Variations in infected and carrier population with different parameter values of r0 =
{0.04, 0.1, 1}.
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Figure 6.8: Surface plots of equilibrium levels of infected and carrier population based on r1, and k1, while
maintaining same values for other parameter as in Table 6.1.

Figure 6.9: Surface plots of equilibrium levels of infected and carrier population based on r1, and k0, while
maintaining same values for other parameter as in Table 6.1.
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Figure 6.10: Surface plots of equilibrium levels of infected and carrier population based on r1, and m, while
maintaining same values for other parameter as in Table 6.1.

the infected human population Y (t) and carrier population C(t). In Figure 6.8, an increase in the intrinsic
growth rate coefficient (r1) and increment factor of carrying capacity (k1), both influenced by global average
temperature and anthropogenic activities, leads to a noticeable rise in both Y (t) and C(t), showing that
stronger growth dynamics promote disease spread. Figure 6.9 depicts a similar pattern when (r1) and
the carrying capacity (k0) increase, highlighting how environmental capacity amplifies infection persistence.
Finally, Figure 6.10 shows that higher values of (r1) and the half-saturation constant (m), which represents
the rate of resource absorption at half its maximum, further elevate Y (t) and C(t). These results collectively
emphasize that human-induced changes in biological and environmental parameters can significantly intensify
the disease transmission potential through carrier populations.

7 Conclusions
The accelerating rise in global temperature projected to increase by 2◦C to 4◦C by 2050 poses a profound
threat to public health by reshaping the dynamics of food-borne diseases. Even a modest warming
significantly alters pathogen behavior, accelerates replication rates, enhances virulence, and expands the
geographical range of disease carrying insects such as houseflies. These climatic shifts intensify the risk
of outbreaks caused by pathogens like Salmonella typhi, underscoring the urgent need to understand and
mitigate temperature-driven disease transmission.

This study presents a nonlinear mathematical model to investigate the impact of anthropogenic
temperature rise on the transmission dynamics of carrier-dependent infectious diseases. The model
incorporates four key variables: global temperature, susceptible and infected human populations, and
the carrier population, while accounting for temperature-dependent carrier growth and human population
dependent carrying capacity. Analytical and numerical approaches were employed to examine how
temperature variations, induced by human activities, influence disease spread through their effect on carrier
density. The model exhibits three non-negative equilibria: a carrier-free equilibrium, a carrier-disease-free
equilibrium, and an interior (endemic) equilibrium. Stability analysis reveals that both boundary equilibria
are unstable, indicating that disease eradication is difficult once carriers are introduced into the environment.
Local and global stability of the interior equilibrium were examined using the Routh-Hurwitz criterion and
Lyapunov’s direct method, respectively. The results show that a rise in temperature enhances the intrinsic
growth rate of the carrier population, leading to an increase in infection prevalence among humans. Thus,
temperature-induced carrier proliferation has a destabilizing effect on the overall disease dynamics.

Numerical simulations support the analytical findings, illustrating that increasing global temperature
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significantly raises carrier density and consequently the number of infected individuals. This positive
association emphasizes the role of environmental factors in shaping epidemic patterns. Improper waste
disposal, open drainage systems, and poor sanitation further exacerbate the problem by providing ideal
breeding sites for carriers, which amplifies infection transmission rates. Overall, the study concludes that
climate change, resulting from anthropogenic factors, amplifies carrier population growth and consequently
escalates the number of infections. Even moderate temperature increases can significantly influence disease
dynamics by enhancing pathogen survival, accelerating life cycles, and extending the geographical range of
disease vectors. Hence, effective environmental management and climate adaptive public health strategies
are essential to control the future burden of food-borne diseases in a warming world.
Appendix 1. Proof of the Theorem 5.1

Proof: The Jacobian matrix for the model system (2.2);

ME∗ =




−α0 0 p 0

0
(
−βY ∗ − λC∗N∗

Y ∗(m+C∗)

) (
βY ∗ + λC∗

(m+C∗)

)
λm(N∗−Y ∗)

(m+C∗)2

0 −α −d 0

r1C
∗ 0 r0k1C

∗2

k(N∗)2 − r0C
∗

k(N∗)


 .

Suppose that λ is the eigen value of the matrix M∗E . The eigen function is given by

λ4 + a1λ
3 + a2λ

2 + a3λ+ a4 = 0. (7.1)

Where

a1 =α0 + d+

{
βY ∗ +

λC∗N∗

Y ∗(m+ C∗)

}
+

r0C
∗

k(N∗)
,

a2 =α0

{
d+ βY ∗ +

λC∗N∗

Y ∗(m+ C∗)
+

r0C
∗

k(N∗)

}
+

r0C
∗

k(N∗)

{
d+ βY ∗ +

λC∗N∗

Y ∗(m+ C∗)

}

+ d

{
βY ∗ +

λC∗N∗

Y ∗(m+ C∗)

}
+ α

{
βY ∗ +

λC∗

(m+ C∗)

}
,

a3 =α0

{
r0C

∗

k(N∗)

{
d+ βY ∗ +

λC∗N∗

Y ∗(m+ C∗)

}
+ d

{
βY ∗ +

λC∗N∗

Y ∗(m+ C∗)

}}

+ α0α

{
βY ∗ +

λC∗

(m+ C∗)

}
+
dr0C

∗

k(N∗)

{
βY ∗ +

λC∗N∗

Y ∗(m+ C∗)

}

+ α

{
βY ∗ +

λC∗

(m+ C∗)

}
r0C

∗

k(N∗)
+
αr0k1C

∗2

k(N∗)2

{
λm(N∗ − Y ∗)

(m+ C∗)2

}
,

a4 =αr1pC
∗
{
λm(N∗ − Y ∗)

(m+ C∗)2

}
+
αα0r0k1C

∗2

k(N∗)2

{
λm(N∗ − Y ∗)

(m+ C∗)2

}

+ α0

{
(α+ d)βY ∗ +

dλC∗N∗

Y ∗(m+ C∗)
+

αλC∗

(m+ C∗)

}
r0C

∗

k(N∗)
.

Using the Routh-Hurwitz criterion, the equilibrium E3(T ∗, Y ∗, N∗, C∗) in Eq. (32) is locally asymp-totically
stable, provided that the following conditions are satisfied

(a1a2 − a3)a3 − a2
1a4 > 0.

for all ai > 0, for all i = 1, 2, 3, 4.

Appendix 2. Proof of the Theorem 5.2

Proof: For the proof of this theorem, we use Lyapunov direct method. For this first, we let the following
positive definite Lyapunov function

V =
L0

2
(T − T ∗)2 + L1(Y − Y ∗ − Y ∗log Y

Y ∗
) +

L2

2
(N −N∗)2 + L3(C − C∗ − C∗log C

C∗
). (7.2)

Differentiating equation (7.2) with respect to t, we get

dV

dt
= L0(T − T ∗)Ṫ + L1(Y − Y ∗) Ẏ

Y
+ L2(N −N∗)Ṅ + L3(C − C∗) Ċ

C
. (7.3)
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From model system (2.2), we have

Ṫ = p(N −N∗)− α0(T − T ∗), (7.4)

Ẏ

Y
=−

{
β +

λC∗N∗

Y Y ∗(m+ C∗)

}
(Y − Y ∗) +

{
β +

λC

Y (m+ C)

}
(N −N∗)

− λm(Y −N∗)
Y (m+ C)(m+ C∗)

(C − C∗), (7.5)

Ṅ =− d(N −N∗)− α(Y − Y ∗), (7.6)

Ċ

C
= r1(T − T ∗)− r0

k(N)
(C − C∗) +

r0k1C
∗

k(N)k(N∗)
(N −N∗). (7.7)

Using equations (7.4) to (7.7) in equation (7.3), we get

V̇ =L0 {p(N −N∗)− α0(T − T ∗)} (T − T ∗)

+ L1

{(
β +

λC

Y (m+ C)

)
(N −N∗)−

(
β +

λC∗N∗

Y Y ∗(m+ C∗)

)
(Y − Y ∗)

}
(Y − Y ∗)

− L1

{
λm(Y −N∗)

Y (m+ C)(m+ C∗)
(C − C∗)

}
(Y − Y ∗)

+ L2{−d(N −N∗)− α(Y − Y ∗)}(N −N∗)

+ L3

{
r1(T − T ∗)− r0(C − C∗)

k(N)
+
r0k1C

∗(N −N∗)
k(N)k(N∗)

}
(C − C∗),

V̇ =−
{
L0α0

2
(T − T ∗)2 − L0p(N −N∗)(T − T ∗) +

dL2

4
(N −N∗)2

}

+ {(L1β − αL2)(Y − Y ∗)(N −N∗)}

−
{
L1β

2
(Y − Y ∗)2 − λmN∗L1

Y (m+ C)(m+ C∗)
(C − C∗)(Y − Y ∗) +

r0L3

2k(N)
(C − C∗)2

}

−
{

λmL1

(m+ C)(m+ C∗)

}
(C − C∗)(Y − Y ∗)−

{
λL1C

∗N∗

Y Y ∗(m+ C∗)

}
(Y − Y ∗)2

−
{
dL2

2
(N −N∗)2 − L1λC

Y (m+ C)
(N −N∗)(Y − Y ∗) +

L1β

2
(Y − Y ∗)2

}

−
{
r0L3

4k(N)
(C − C∗)2 − L3r0k1C

∗

k(N)k(N∗)
(N −N∗)(C − C∗) +

dL2

4
(N −N∗)2

}

−
{
r0L3

4k(N)
(C − C∗)2 − r1L3(T − T ∗)(C − C∗) +

L0α0

2
(T − T ∗)2

}
,

we take the constants L1 = α
β . and L2 = 1, such that (L1β − αL2 = 0), we have

V̇ =−
{
L0α0

2
(T − T ∗)2 − L0p(N −N∗)(T − T ∗) +

dL2

4
(N −N∗)2

}

−
{
L1β

2
(Y − Y ∗)2 − λmN∗L1

Y (m+ C)(m+ C∗)
(C − C∗)(Y − Y ∗) +

r0L3

2k(N)
(C − C∗)2

}

−
{

λmL1

(m+ C)(m+ C∗)

}
(C − C∗)(Y − Y ∗)−

{
λL1C

∗N∗

Y Y ∗(m+ C∗)

}
(Y − Y ∗)2

−
{
dL2

2
(N −N∗)2 − L1λC

Y (m+ C)
(N −N∗)(Y − Y ∗) +

L1β

2
(Y − Y ∗)2

}

−
{
r0L3

4k(N)
(C − C∗)2 − L3r0k1C

∗

k(N)k(N∗)
(N −N∗)(C − C∗) +

dL2

4
(N −N∗)2

}

−
{
r0L3

4k(N)
(C − C∗)2 − r1L3(T − T ∗)(C − C∗) +

L0α0

2
(T − T ∗)2

}
.

Here, V̇ is negative definite if

L0 <
α0d

2p2
,
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λ2L1C
2

βdY 2(m+ C)2
< L2,

=⇒
αλ2Cm

2 < dβ2Ym
2(m+ Cm)2.

where Ym and Cm are the maximum value of Y and C.
Now

λ2m2N∗2k(N)

βr0Y 2(m+ C)2(m+ C∗)2
L1 < L3,

2r1
2L3

2

α0r0L0
<

L3

k(N)
,

L3

k(N)
<

dk(N∗)2

4r0k1
2C∗2

,

Eliminate L0, L1 and L3 from these Eqs. we get

αλ2m2N∗2k(N)

r0β2Y 2(m+ C)2(m+ C∗)2
<
α0dk(N∗)

4pr1k1C∗
.

So, conditions for V̇ is negative definite

αλ2Cm
2 < dβ2Ym

2(m+ Cm)2,

and
αk(Ad )λ2m2N∗2

r0β2Ym2(m+ Cm)2(m+ C∗)2
<
α0dk(N∗)

4pr1k1C∗
.

where Ym and Cm are the maximum value of Y and C.
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10.58250/jnanabha.2024.54233

[34] S. Singh, S. Chaudhry, M.S. Arora, R.K. Singh and A.K. Misra, Modeling the effect of temperature rise
due to atmospheric carbon dioxide on the outbreak of food-borne diseases, J. Appl. Math. Comput.,
71(2) (2025), 2673-2701.

[35] S. Singh, Modeling the effect of global warming on the spread of carrier dependent infectious diseases,
Model Earth Syst Environ., 39(3) (2017), 1-10.

[36] S. Singh and A. Omar, Modeling and analysis the effect of global warming on the Spread of carrier
dependent infectious diseases, Jñānābha, 50(1) (2020), 189-206.

295



[37] World Health Organization, Foodborne diseases, Geneva: World Health Organization, (2025). Available
from: https://www.who.int/health-topics/foodborne-diseases#tab=tab_1

[38] WHO, World Health Organization, Healh Topics, Food-borne diseases.
https://www.who.int/health-topics/foodborne-diseases#tab=tab_2

[39] World Meteorological Organization et al., United in Science: High-level Synthesis Report of Latest
Climate Science Information convened by the Science Advisory Group of the UN Climate Action Summit,
(2019). Available at: https://wedocs.unep.org/bitstream/handle/20.500.11822/30023/climsci.
pdf.

[40] X. Wu, Y. Lu, S. Zhou, L. Chen and B. Xu, Impact of climate change on human infectious diseases:
Empirical evidence and human adaptation, Environ. Int., 86 (2016), 14–23. Available from: https:

//doi.org/10.1016/j.envint.2015.09.007

296


