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Abstract

This paper develops bicomplex and multicomplex analogues of fundamental theorems in complex
analysis including Arzelà-Ascoli theorem, Montels theorems (holomorphic and meromorphic), Martys
theorem, Riemann mapping theorem and Hurwitz’s theorem. Each result is rigorously adapted to the
bicomplex and multicomplex framework using the idempotent decomposition and classical component-
wise reduction.
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1 Introduction
The theory of normal families occupies a central position in classical complex analysis, providing a powerful
framework for understanding convergence properties, compactness criteria and structural behavior of families
of holomorphic and meromorphic functions [1, 4, 8, 12, 16, 22, 24]. A family of functions is said to be normal
if every sequence within it contains a subsequence that converges locally uniformly (possibly to infinity) in
the extended complex plane. Originating in the pioneering work of Montel, Vitali and Marty, the concept
has profound implications across various branches of analysis, from geometric function theory and value
distribution theory to the theory of dynamical systems and conformal mappings. Fundamental results such
as Montels theorem, Martys criterion and Arzelà-Ascoli theorem provide essential criteria for normality,
while deep results like the Riemann mapping theorem highlight the geometric and topological significance
of these families.

Over the past decades, there has been significant interest in extending classical complex analysis to
higher-dimensional and richer algebraic frameworks. Among the most natural and fruitful generalizations
are the theories of bicomplex and multicomplex numbers. The bicomplex numbers, defined as

BC = {z1 + jz2 : z1, z2 ∈ C, i2 = j2 = −1, ij = ji},
form a commutative algebra with zero divisors, idempotents and a rich geometric structure. This algebra
admits an idempotent decomposition, allowing many analytic problems to be reduced to classical ones on
complex components, while simultaneously introducing new phenomena absent in the traditional setting. The
theory further generalizes to multicomplex algebras MCn, where several commuting imaginary units give rise
to increasingly intricate analytic structures and a wide spectrum of new behaviors. For more details about
bicomplex and multicomplex numbers one can read [7, 17]. Extending classical theorems concerning normal
families [1, 14] into these hypercomplex frameworks is both natural and mathematically compelling. Many
foundational techniques in the complex setting rely on the field structure of C and its analytic completeness,
neither of which carries over unchanged to bicomplex or multicomplex algebras. Simultaneously, the existence
of idempotent components and the presence of zero divisors require a refined approach to concepts such as
holomorphy, meromorphy, convergence and compactness. These challenges necessitate new formulations and
proof strategies that remain faithful to classical results while accommodating the additional algebraic and
analytic subtleties of hypercomplex settings. For further study of theory of bicomplex functions one can
follow [19].
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While significant progress has been made in bicomplex and multicomplex analysis, including Cauchy
type integral formulas, Liouville and Picard type results, Nevanlinna theory and growth properties of entire
functions relatively little attention has been devoted to the theory of normal families in these extended
frameworks. In particular, systematic generalizations of cornerstone results such as Montels theorem, Martys
criterion and Arzelà-Ascoli theorem remain largely undeveloped. Addressing this gap is the central objective
of the present paper.

The aim of this work is to develop bicomplex and multicomplex analogues of several fundamental results
concerning normal families of functions in classical complex analysis. We present rigorous generalizations
of Arzelà-Ascoli theorem, Montels theorems for holomorphic and meromorphic functions, Martys theorem,
Riemann mapping theorem and Hurwitz’s theorem. Our approach is based on the idempotent decomposition
of bicomplex and multicomplex functions, which allows many arguments to be reduced component-wise to the
classical complex case while carefully handling the algebraic and analytic challenges arising in hypercomplex
settings.

The contributions of this paper are twofold. First, we provide detailed proofs of these classical theorems in
the bicomplex framework, thereby extending the foundational theory of normal families to a new algebraic
setting. Second, we further generalize these results to multicomplex algebras, illustrating how increasing
algebraic complexity influences analytic behavior. Beyond their intrinsic theoretical interest, these results
open the door to new developments in hypercomplex function theory, complex dynamics and potential
applications in mathematical physics and differential equations.

2 Preliminaries
In this section, we briefly summarize the foundational concepts and results that will be used throughout the
paper. We begin by recalling the algebraic and analytic structure of bicomplex and multicomplex numbers,
then introduce the notions of bicomplex and multicomplex holomorphic and meromorphic functions. Finally,
we review the classical concept of normal families and discuss its extension to the hypercomplex setting.
2.1 Bicomplex Numbers and Their Structure
The bicomplex numbers form a commutative algebra over the real field defined as

BC = {z1 + jz2 : z1, z2 ∈ C, i2 = j2 = −1, ij = ji},
where i and j are commuting imaginary units. Every bicomplex number ω ∈ BC can thus be expressed as
ω = z1 +jz2, with z1, z2 ∈ C. The algebra BC is a commutative ring with unity but not a field, as it contains
non-trivial zero divisors.

A key structural property of BC is the existence of idempotent elements

e1 =
1 + ij

2
and e2 =

1− ij
2

,

which satisfy e2
1 = e1, e2

2 = e2 and e1e2 = 0. Using these, any bicomplex number can be uniquely represented
in idempotent form as

ω = ω1e1 + ω2e2,

where ω1, ω2 ∈ C. This decomposition plays a central role in bicomplex analysis, as it reduces many analytic
problems to the study of two independent complex components.
2.2 Multicomplex Numbers
The bicomplex algebra can be generalized to the multicomplex algebras MCn, defined inductively by
introducing n mutually commuting imaginary units i1, i2, . . . , in with i2k = −1. Elements of MCn are of
the form

Ω =
∑

α

zαi
α,

where zα ∈ C and iα ranges over products of the imaginary units where α is a multi-index runs over the
set {0, 1}n = {(α1, α2, . . . , αn) : αk ∈ {0, 1}}. Similar to the bicomplex case, multicomplex algebras possess
idempotent decompositions that allow reduction to several classical complex components. The idempotent
structure becomes increasingly intricate as n grows, but the analytic principles remain parallel.
2.3 Bicomplex Holomorphic and Meromorphic Functions
Let D ⊂ BC be an open subset. A function f : D → BC is called bicomplex holomorphic if it is
complex-differentiable in each component and satisfies a bicomplex version of the CauchyRiemann equations.
Equivalently, if

f(ω) = F1(ω1)e1 + F2(ω2)e2,
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where ω = ω1e1 +ω2e2, then f is bicomplex holomorphic if and only if F1 and F2 are holomorphic functions
in the classical complex sense. For further study on bicomplex holomorphic function one can read [20].

Similarly, a function f : D → BC∪{∞} is said to be bicomplex meromorphic if each component F1 and F2

is meromorphic on its respective domain. The presence of zero divisors requires some care in defining poles
and essential singularities, but the component-wise approach ensures that most classical results translate
naturally.
2.4 Normal Families in the Classical and Bicomplex Settings
In classical complex analysis, a family F of holomorphic functions on a domain Ω ⊂ C is called normal [1]
if every sequence {fn} ⊂ F contains a subsequence that converges locally uniformly on Ω to a holomorphic
function.

This notion extends naturally to bicomplex function theory:

Definition 2.1 (Normal Family of Bicomplex Valued Holomorphic Functions [5]). Let Ω ⊂ BC be a domain
and let F be a family of bicomplex holomorphic functions [20] on Ω. We say that F is normal [15] in Ω if,
for every sequence {Fn} ⊂ F , there exists a subsequence {Fnk} that converges locally uniformly on Ω (with
respect to the natural bicomplex topology) to a bicomplex holomorphic function.

In classical complex analysis, a family F of meromorphic functions on a domain Ω ⊂ C is called normal
if every sequence {fn} ⊂ F contains a subsequence that converges locally uniformly (with respect to the
spherical metric) on Ω either to a meromorphic function or to ∞.

This notion extends naturally to bicomplex function theory:

Definition 2.2 ([6]). Let Ω ⊂ BC be a domain and also let F be a family of bicomplex meromorphic functions
on Ω. We say that F is normal in Ω if, for every sequence {fn} ⊂ F , there exists a subsequence {fnk} that
converges locally uniformly in the bicomplex spherical metric to a bicomplex meromorphic function or to ∞.

Due to the idempotent decomposition, this is equivalent to requiring that the two component families
{F1,n} and {F2,n} be normal in the classical sense on their respective domains.

In the paper two classical tools play a fundamental role in our analysis.
• Idempotent decomposition principle: Any bicomplex analytic property is equivalent to the

corresponding pair of properties satisfied by the two complex components. This allows the transfer of
classical theorems component-wise [17].

• Component-wise convergence: Local uniform convergence of a sequence of bicomplex functions is
equivalent to local uniform convergence of each component sequence.

We do not mention the detailed theories of bicomplex and multicomplex analysis as those are available
in [9, 10].

3 Bicomplex Analogues of Classical Theorems on Normal Families
In this section, we establish bicomplex analogues of several foundational results concerning normal families of
functions. Each result is formulated and proved using the idempotent decomposition principle, which allows
us to reduce many problems to their classical complex counterparts and then reconstruct the bicomplex
statements. We begin with Arzelà-Ascoli theorem and then proceed to Montel’s theorem in both holomorphic
and meromorphic settings, Martys criterion and finally the Riemann mapping theorem.

The following lemma represents Arzelà-Ascoli theorem in classical complex analysis.

Lemma 3.1 (cf. [1, 24]). Let (X, d) be a compact metric space and let (fn) be a sequence of real-valued
continuous functions on X. Suppose the family

{fn : n ∈ N}
satisfies:

1. Equicontinuity: For every ε > 0, there exists δ > 0 such that for all x, y ∈ X with d(x, y) < δ and
all n ∈ N,

|fn(x)− fn(y)| < ε.
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2. Pointwise boundedness: For each x ∈ X, the set

{fn(x) : n ∈ N}
is bounded.

Then there exists a subsequence (fnk) which converges uniformly on X to a continuous function f : X → R.

3.1 Bicomplex Analogue of Arzelà-Ascoli theorem
The classical Arzelà-Ascoli theorem provides a fundamental compactness criterion for families of continuous
functions. Its bicomplex analogue follows using the idempotent decomposition as we see in the following
theorem.

Theorem 3.1. Let (Ω, ‖ · ‖) be a compact subset of BC and F = {fn : Ω → BC} be a family of bicomplex
valued continuous functions. Let us suppose that

i. Equicontinuity: For every ε > 0, there exists δ > 0 such that

‖fn(ω)− fn(ω′)‖ < ε for all ω, ω′ ∈ Ω with ‖ω − ω′‖ < δ and all n ∈ N.
ii. Pointwise boundedness: For each ω ∈ Ω, there exists Mω > 0 such that

‖fn(ω)‖ ≤Mω for all n ∈ N.

Then there exists a subsequence (fnk) which converges uniformly on Ω to a bicomplex continuous function
f : Ω→ BC.

Proof. We proceed step by step, constructing the proof entirely within the bicomplex setting.
Since Ω is compact in the bicomplex metric, it is separable. Let {ωm}∞m=1 be a countable dense subset

of Ω.
By pointwise boundedness, for each fixed ω1, the sequence {fn(ω1)}n∈N ⊂ BC is bounded. Since BC ∼= C2

as a vector space over R, bounded sequences in BC have convergent subsequences. Choose a subsequence
{f
n
(1)
k

} such that

f
n
(1)
k

(ω1)→ f(ω1) ∈ BC.

Next, consider ω2. There exists a subsequence {f
n
(2)
k

} ⊂ {f
n
(1)
k

} such that

f
n
(2)
k

(ω2)→ f(ω2) ∈ BC.

Now we proceed inductively for all ωm. Using the standard diagonal argument, let us define

fnk := f
n
(k)
k

.

Then fnk(ωm)→ f(ωm) for all m ∈ N.
Fix ε > 0. By equicontinuity, there exists δ > 0 such that

‖fn(ω)− fn(ω′)‖ < ε/3 for all n ∈ N, whenever ‖ω − ω′‖ < δ.

Since {ωm} is dense in the compact set Ω, we can cover Ω with finitely many balls of radius δ, centered
at points ωm1 , . . . , ωmp . That is,

Ω ⊂
p⋃

j=1

Bδ(ωmj ).

Now we have already shown that fnk(ωm) → f(ωm) for all m ∈ N. Hence, for each j = 1, . . . , p, there
exists N large enough such that for all k ≥ N ,

‖fnk(ωmj )− f(ωmj )‖ < ε/3.

For any ω ∈ Ω, choose j such that ω ∈ Bδ(ωmj ). Then for k ≥ N ,

‖fnk(ω)− f(ω)‖ ≤ ‖fnk(ω)− fnk(ωmj )‖+ ‖fnk(ωmj )− f(ωmj )‖+ ‖f(ωmj )− f(ω)‖
<
ε

3
+
ε

3
+
ε

3
= ε.

The limit f is continuous because the convergence is uniform and each fnk is continuous.
We have constructed a subsequence (fnk) that converges uniformly on Ω to a bicomplex valued continuous

function f . This completes the proof of the theorem.
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Remark 3.1. We may now state the bicomplex analogue of Arzelà-Ascoli theorem in an alternative form:
Let F be a family of bicomplex-holomorphic functions on a compact set K ( BC. Then F is relatively

compact in the supremum norm
‖f‖∞ := sup

ω∈K
‖f(ω)‖, f ∈ F ,

if and only if it is equicontinuous and uniformly bounded on K.

The following lemma is the classical form of Montels theorem in complex analysis.

Lemma 3.2 (cf. [14, 24]). Let F be a family of holomorphic functions on a domain Ω ⊂ C. If F is uniformly
bounded on every compact subset of Ω, then F is a normal family.

In other words, every sequence (fn) in F has a subsequence that converges locally uniformly on Ω to a
holomorphic function.

3.2 Bicomplex Analogue of Montel’s Theorem (Holomorphic Version)
The next theorem represents the bicomplex version of Montel’s theorem on holomorphic functions.

Theorem 3.2 (cf. [3, 15, 23]). Let F be a family of bicomplex holomorphic functions on a domain Ω ⊂ BC.
If F is locally uniformly bounded, i.e., for every compact set K ⊂ Ω there exists a constant MK > 0 such
that

‖F (Z)‖ ≤MK for all F ∈ F , Z ∈ K,
then F is a normal family. In other words, every sequence (Fn) in F has a subsequence that converges locally
uniformly on Ω to a bicomplex holomorphic function.

Proof. Every bicomplex holomorphic function F can be written as

F (Z) = F1(z1)e1 + F2(z2)e2,

where F1 and F2 are holomorphic on domains Ω1,Ω2 ⊂ C respectively, corresponding to the projections of
Ω.

The local uniform boundedness of F implies the existence of MK > 0 such that

‖F (Z)‖ = max{|F1(z1)|, |F2(z2)|} ≤MK ∀Z ∈ K, F ∈ F .
Hence, the families

F1 = {F1 | F ∈ F}, F2 = {F2 | F ∈ F}
are locally bounded families of holomorphic functions in C.

Let K ⊂ Ω be compact. For Z = e1z1 + e2z2 and F (Z) = F1(z1)e1 + F2(z2)e2, the derivative satisfies

F ′(Z) = F ′1(z1)e1 + F ′2(z2)e2.

By applying Cauchy’s integral formula separately to F1 and F2, we get that

|F ′1(z1)| ≤ MK

r1
and |F ′2(z2)| ≤ MK

r2
,

where r1, r2 > 0 are the radii of disks contained in Ω1 and Ω2 around z1 and z2, respectively.
Now, let us define the constant

CK = max

{
MK

r1
,
MK

r2

}
.

Thus,
‖F ′(Z)‖ = max{|F ′1(z1)|, |F ′2(z2)|} ≤ CK ,

which shows that F is equicontinuous on K.

By Lemma 3.1 as applied separately for each idempotent component, the local boundedness and
equicontinuity imply that from any sequence {Fn} ⊂ F , we can extract subsequences {F1,nk} and {F2,nk}
converging uniformly on compact subsets of Ω1 and Ω2 to holomorphic functions F ∗1 and F ∗2 , respectively.

Let us define
F ∗(Z) = F ∗1 (z1)e1 + F ∗2 (z2)e2.
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Since F ∗1 and F ∗2 are holomorphic, the function F ∗ is bicomplex holomorphic. Moreover, {Fnk} converges
locally uniformly on Ω to F ∗.

Therefore, every sequence {Fn} in F has a subsequence that converges locally uniformly to a bicomplex
holomorphic function. Hence, F is a normal family.

Hence, the theorem is established.

Remark 3.2. Theorem 3.2 extends the classical Montel’s theorem to the bicomplex setting by using the
idempotent decomposition. Every bicomplex holomorphic function F (Z) can be written as

F (Z) = F1(z1)e1 + F2(z2)e2,
where F1 and F2 are holomorphic in the complex planes corresponding to e1 and e2. This decomposition
allows the reduction of many classical results, including Montel’s theorem to componentwise arguments.

Remark 3.3. Local uniform boundedness of a family F of bicomplex holomorphic functions implies that each
component family F1 = {F1} and F2 = {F2} is locally uniformly bounded in C. By the classical Montel’s
theorem, each component is normal, which then implies the normality of the bicomplex family.

Remark 3.4. Equicontinuity plays a crucial role in the proof. Using Cauchy estimates on each component
function allows us to establish uniform bounds on derivatives, which in turn guarantees equicontinuity on
compact sets. This step is completely analogous to the classical complex case but applied to the bicomplex
components.

Remark 3.5. Theorem 3.2 is foundational for further results in bicomplex analysis, such as:
• Bicomplex version of Picards theorem.
• Bicomplex version of Riemann mapping theorem.
• Normal family criteria for bicomplex meromorphic functions.

It demonstrates how classical complex analysis tools extend naturally to higher-dimensional commutative
algebras like BC.

Example 3.1 (Bounded Linear Family in Bicomplex Analysis). Let
F1 = {FA(w) = Aw : A ∈ BC, ‖A‖ ≤ 1}

be defined on the unit ball
D = {w ∈ BC : ‖w‖ < 1}.

Let us write the idempotent decomposition
A = A1e1 +A2e2 and w = w1e1 + w2e2.

Then each function in the family can be written as
FA(w) = A1w1e1 +A2w2e2.

Since |A1| ≤ 1 and |A2| ≤ 1, each component family
{A1w1} ⊂ C and {A2w2} ⊂ C

is bounded on compact subsets of the unit disk. By Lemma 3.2, each component family is normal. Hence,
the whole family F1 is normal in the bicomplex sense.

Example 3.2 (Polynomial Family in Bicomplex Analysis). Let us consider the family
F2 = {Fn(Z) = Zn : n = 1, 2, 3, . . . }

on the bicomplex unit ball D = {Z ∈ BC : ‖Z‖ < 1}.
Using the idempotent decomposition

Z = z1e1 + z2e2,

we have
Fn(Z) = zn1 e1 + zn2 e2.

For any compact set K ⊂ D, there exists r < 1 such that |z1| ≤ r and |z2| ≤ r for all Z ∈ K. Then
|zn1 | ≤ rn → 0 and |zn2 | ≤ rn → 0 as n→∞.

Hence the family {zn1 } and {zn2 } are uniformly bounded on K and by Lemma 3.2 they are normal.
Therefore, the bicomplex family F2 is normal and in fact, every sequence converges locally uniformly to the
zero function on D.

The following lemma is the meromorphic version of Lemma 3.2.

Lemma 3.3. Let Ω ⊂ C be a domain and let F be a family of meromorphic functions on Ω such that there
exists a spherical compact set K ⊂ Ĉ = C ∪ {∞} and F omits K (i.e., for all f ∈ F and z ∈ Ω, f(z) /∈ K).
Then F is a normal family on Ω.
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3.3 Bicomplex Analogue of Montel’s Theorem (Meromorphic Version)
Definition 3.1 (Bicomplex Meromorphic Function). Let Ω ⊂ BC be a domain. A function

F (Z) = f1(z1)e1 + f2(z2)e2

is called bicomplex meromorphic if f1 and f2 are meromorphic in their respective domains in C.

Definition 3.2 (Bicomplex Chordal Metric). For Z1, Z2 ∈ BC ∪ {∞}, let

Z1 = f1e1 + f2e2 and Z2 = g1e1 + g2e2,

where f1, f2, g1, g2 ∈ C ∪ {∞}. The bicomplex chordal metric is defined by

χBC(Z1, Z2) =
√
χ(f1, g1)2 + χ(f2, g2)2,

where χ denotes the classical chordal (spherical) distance on C.

The following theorem is the meromorphic version of Theorem 3.2.

Theorem 3.3. Let F be a family of bicomplex meromorphic functions on a domain Ω ⊂ BC. Then F is
normal in Ω if and only if F is locally uniformly bounded in the bicomplex spherical metric.

Proof. Every Z ∈ BC has an idempotent decomposition:

Z = z1e1 + z2e2 where e1 =
1 + ij

2
and e2 =

1− ij
2

.

Similarly, any bicomplex meromorphic function F can be written as

F (Z) = F1(z1)e1 + F2(z2)e2,

where F1, F2 are meromorphic functions in C. The bicomplex spherical metric is

ds(F (Z), G(Z)) = max{ds(F1(z1), G1(z1)), ds(F2(z2), G2(z2))}.

Let us assume that F is locally uniformly bounded in the bicomplex spherical metric.
Now let us first decompose into component families:

F1 = {F1 : F ∈ F} and F2 = {F2 : F ∈ F}.
Local uniform boundedness in BC implies that F1 and F2 are locally uniformly bounded in the classical

spherical metric in C. So in view of the arguments regarding meromorphic functions, each component family
is normal. Then extracting the subsequences componentwise and defining the bicomplex limit

Fnk(Z) = F1,nk(z1)e1 + F2,nk(z2)e2 → F ∗1 (z1)e1 + F ∗2 (z2)e2 = F ∗(Z),

which is locally uniform in the bicomplexial spherical metric.
Hence, F is normal.

Conversely, let us assume that F be normal. Now if possible, let it not be locally uniformly bounded.
Then there exists a compact set K ⊂ Ω and a sequence {Fn} ⊂ F such that

sup
Z∈K

ds(Fn(Z), 0)→∞ as n→∞.

By normality, a subsequence {Fnk} converges locally uniformly in the bicomplex spherical metric to a
bicomplex meromorphic function F ∗ (or ∞). Local uniform convergence implies that {Fnk} is uniformly
bounded on K unless the limit is identically ∞, which contradicts the assumption.

Thus, F must be locally uniformly bounded in the bicomplex spherical metric.

This completes the proof of the theorem.

Remark 3.6. Theorem 3.3 generalizes the classical Montel’s theorem from C to the bicomplex setting. By
using the idempotent decomposition

F (Z) = F1(z1) e1 + F2(z2) e2,

the normality of a bicomplex family reduces to the normality of two component families in the complex plane.

Remark 3.7. Local uniform boundedness with respect to the bicomplex chordal metric:

χBC(F (Z), 0) =
√
χ(F1(z1), 0)2 + χ(F2(z2), 0)2

ensures that each component family {F1} and {F2} is locally uniformly bounded in the classical spherical
metric, which is crucial for applying the Montel-type arguments componentwise.
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Remark 3.8. Equicontinuity of the family in the bicomplex chordal metric is obtained from componentwise
equicontinuity; i.e., if the spherical derivatives of F1 and F2 are bounded on compact sets, then the bicomplex
family is equicontinuous, which guarantees the existence of locally uniformly convergent subsequences.

Remark 3.9. Theorem 3.3 provides the foundation for further results in bicomplex meromorphic function
theory, such as:

• Bicomplex version of Picard’s theorem,
• Criteria for normality of bicomplex meromorphic families and
• Applications in bicomplex dynamical systems and iteration theory.

Definition 3.3 (Spherical Derivative). Let f be a meromorphic function on a domain Ω ⊂ C. The spherical
derivative of f is defined as

f#(z) =
|f ′(z)|

1 + |f(z)|2 .

The following lemma represents Marty’s theorem in classical complex analysis.

Lemma 3.4 (cf. [1, 13]). Let F be a family of meromorphic functions on a domain Ω ⊂ C. Then F is
normal if and only if the family of spherical derivatives

F# = {f# : f ∈ F}
is locally uniformly bounded on Ω; i.e., for every compact set K ⊂ Ω there exists a constant MK > 0 such
that

f#(z) ≤MK , ∀z ∈ K, ∀f ∈ F .

3.4 Bicomplex Analogue of Marty’s Theorem
Definition 3.4 (Bicomplex Spherical Derivative). Let Ω ⊂ BC be a domain and let

F (Z) = F1(z1)e1 + F2(z2)e2

be a bicomplex valued meromorphic function on Ω, where F1 and F2 are meromorphic functions in the
complex plane associated with the idempotents e1 and e2 respectively.

The bicomplex spherical derivative of F at Z is defined componentwise by

F#(Z) := F#
1 (z1)e1 + F#

2 (z2)e2,

where

F#
i (zi) =

|F ′i (zi)|
1 + |Fi(zi)|2

,

is the classical spherical derivative of Fi for i = 1, 2, in the complex plane.
Equivalently, one may define a scalar spherical derivative norm by

‖F#(Z)‖ = max{F#
1 (z1), F#

2 (z2)}.

The following theorem represents the bicomplex version of Martys theorem in classical complex analysis.

Theorem 3.4. Let F be a family of bicomplex meromorphic functions on a domain Ω ⊂ BC. Then F is
normal if and only if the family of bicomplex spherical derivatives

F# = {F# : F ∈ F}
is locally uniformly bounded on Ω, i.e., for every compact set K ⊂ Ω, there exists MK > 0 such that

‖F#(Z)‖ = max{F#
1 (z1), F#

2 (z2)} ≤MK , ∀F ∈ F , Z ∈ K.

Proof. Let us write F (Z) = F1(z1)e1 + F2(z2)e2. Then the bicomplex spherical derivative is decomposed as

F#(Z) = F#
1 (z1) e1 + F#

2 (z2) e2.

Let us assume that F is normal. Then each component family F1 = {F1} and F2 = {F2} is normal

in the classical sense. By Lemma 3.4, the spherical derivatives F#
1 and F#

2 are locally uniformly bounded.
Hence the bicomplex spherical derivatives are locally uniformly bounded

‖F#(Z)‖ = max{F#
1 (z1), F#

2 (z2)} ≤MK .
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Conversely, let us assume that ‖F#(Z)‖ be locally uniformly bounded. Then

F#
1 (z1) ≤MK

and
F#

2 (z2) ≤MK

for all F ∈ F and Z ∈ K. Then by Lemma 3.4, each component family F1 and F2 is normal in C. Using
the idempotent decomposition, the bicomplex family F is normal in BC.

Therefore, the bicomplex family F is normal if and only if its bicomplex spherical derivatives are locally
uniformly bounded.

This proves the theorem.

Remark 3.10. Theorem 3.4 reduces the problem of checking normality in BC to checking the local
boundedness of the spherical derivatives componentwise in C.

Remark 3.11. Equicontinuity in the bicomplex chordal metric follows from the boundedness of the bicomplex
spherical derivative.

Remark 3.12. Theorem 3.4 provides a powerful tool to verify the normality of family of bicomplex valued
meromorphic functions without directly testing the convergence of sequences.

The next lemma represents Riemann mapping theorem in classical complex analysis.

Lemma 3.5 (cf. [1]). Let Ω ⊂ C be a non-empty, simply connected, proper open subset of the complex plane
C (i.e., Ω 6= C). Then there exists a biholomorphic map

f : Ω→ D
from Ω onto the open unit disk D = {z ∈ C : |z| < 1}.

Moreover, if a ∈ Ω is fixed, then there is a unique such biholomorphic function f satisfying the
normalization conditions

f(a) = 0 and f ′(a) > 0.

3.5 Bicomplex Analogue of Riemann Mapping Theorem (Product Domains)
Definition 3.5 (Bicomplex unit polydisk). The bicomplex unit polydisk is

DBC := {Z = z1e1 + z2e2 : |z1| < 1, |z2| < 1}.

Definition 3.6 (Product domain in BC). A domain Ω ⊂ BC is called a product domain if

Ω = {z1e1 + z2e2 : z1 ∈ Ω1, z2 ∈ Ω2},
for some planar domains Ω1,Ω2 ⊂ C.

The next theorem represents the bicomplex analogue for product domain of Riemann mapping theorem
in classical complex analysis.

Theorem 3.5 (cf. [2]). Let Ω ⊂ BC be a product domain with projections Ω1,Ω2 ⊂ C. Assume each Ωi is
nonempty, simply connected and proper (i.e. Ωi 6= C). Fix a ∈ Ω and write a = a1e1 + a2e2 with ai ∈ Ωi.

Then there exists a bicomplex biholomorphism

F : Ω −→ DBC

satisfying F (a) = 0. Moreover, F is unique if we require the normalization that each component derivative
F ′i (ai) is real and positive.

Proof. By Lemma 3.5 for i = 1, 2 there exists a unique biholomorphism

fi : Ωi −→ D
such that

fi(ai) = 0, f ′i(ai) > 0.

Each fi is holomorphic and bijective with holomorphic inverse gi := f−1
i : D→ Ωi.
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Let us define F : Ω→ DBC by the idempotent sum of component maps as

F (Z) = f1(z1) e1 + f2(z2) e2 with Z = z1e1 + z2e2 ∈ Ω.

Since each fi is holomorphic in its complex variable, F is bicomplex-holomorphic on Ω. Also F (a) = 0 (by
construction) and |fi(zi)| < 1 and so F (Ω) ⊂ DBC.

The component inverses gi : D→ Ωi are holomorphic.
Now let us define

G(W ) = g1(w1) e1 + g2(w2) e2 with W = w1e1 + w2e2 ∈ DBC.

Then G is bicomplex-holomorphic on DBC and is indeed the inverse of F .

G(F (Z)) = g1(f1(z1))e1 + g2(f2(z2))e2 = z1e1 + z2e2 = Z,

and similarly F (G(W )) = W . Hence F is a bicomplex biholomorphism between Ω and DBC.

Suppose F̃ is another bicomplex biholomorphism Ω → DBC with F̃ (a) = 0 and write its components f̃i.
Then each f̃i : Ωi → D is a classical conformal map sending ai to 0. By the uniqueness part of Lemma 3.5,
under derivative normalization we have f̃i = fi whenever f̃ ′i(ai) > 0. Therefore F̃ = F . This establishes the
uniqueness of F under the stated normalization.

Thus the map F is a bicomplex biholomorphism Ω→ DBC with F (a) = 0, unique after the normalization
of component derivatives.

This concludes the proof of the theorem.

Remark 3.13. The product-domain hypothesis is essential in Theorem 3.5. The bicomplex holomorphy
condition decouples into two classical holomorphy conditions only in idempotent coordinates. So arbitrary
4D domains need not admit such a direct product decomposition and also a global Riemann map onto DBC.

Remark 3.14. The construction of the proof as carried out in Theorem 3.5 is explicit i.e., the bicomplex
Riemann map is simply the idempotent combination of the two classical Riemann maps of the projections.

The following lemma represents Hurwitz’s theorem in classical complex analysis.

Lemma 3.6 (cf. [11]). Let Ω ⊂ C be a domain and {fn} be a sequence of holomorphic functions on Ω
converging locally uniformly to a holomorphic function f on Ω.

i. If each fn is nonvanishing on Ω and f 6≡ 0, then f is either nonvanishing on Ω or has isolated zeros.
Moreover, for every compact K ⊂ Ω there exists N such that for all n ≥ N the number of zeros of fn
in K (counted with multiplicity) equals the number of zeros of f in K.

ii. More generally, if f is not identically zero then every zero z0 of f (of multiplicity m) is approximated
by exactly m zeros of fn (counted with multiplicity) for all large n -they converge to z0 as n→∞.

3.6 Bicomplex Analogue of Hurwitz’s theorem
Definition 3.7 (Bicomplex zero and multiplicity). A point Z0 = z0

1e1 +z0
2e2 ∈ Ω is a bicomplex zero of F if

f1(z0
1) = 0 and f2(z0

2) = 0. If m1 is the order of the zero of f1 at z0
1 and m2 the order of the zero of f2 at z0

2 ,
we will say the bicomplex zero Z0 has component multiplicities (m1,m2). In particular, in a small polydisc
around Z0, the total number (counting multiplicity) of bicomplex zeros of a nearby product-type function is
equal to m1 ·m2 .

The following theorem represents the bicomplex analogue of Hurwitz’s theorem in classical complex
analysis.

Theorem 3.6. Let Ω ⊂ BC be a domain and let {Fn} be a sequence of bicomplex-holomorphic functions on
Ω,

Fn(Z) = f1,n(z1)e1 + f2,n(z2)e2,

which converges locally uniformly (in the bicomplex topology) to a bicomplex-holomorphic function

F (Z) = f1(z1)e1 + f2(z2)e2.

Then the followings hold.

(A) (Degenerate limit.) If F ≡ 0 on a nonempty open subset of Ω then, for every compact K ⊂ Ω and
every M ∈ N, there exists N such that for n ≥ N the function Fn has at least M bicomplex zeros
(counted with multiplicity) in K.

249



(B) (Nondegenerate limit, both components nonidentically zero.) If neither f1 nor f2 is identically zero
on any open subset of its projected domain, then every bicomplex zero Z0 = z0

1e1 +z0
2e2 of F is isolated

in Ω. Moreover, if m1 (resp. m2) is the multiplicity of z0
1 as a zero of f1 (resp. z0

2 of f2), then there
exist small discs z0

1 ∈ D1 and z0
2 ∈ D2 with D1 ×D2 ⊂ Ω such that for all large n

• f1,n has exactly m1 zeros (counted with multiplicity) in D1,
• f2,n has exactly m2 zeros (counted with multiplicity) in D2,
• consequently Fn has exactly m1 · m2 bicomplex zeros (counted with multiplicity) in the polydisc
D1e1 +D2e2 and these bicomplex zeros converge to Z0 as n→∞.

Furthermore, if K ⊂ Ω is compact and contains finitely many bicomplex zeros of F , then for large n
the number of bicomplex zeros of Fn in K equals the sum, over bicomplex zeros Z0 of F in K, of the
products m1(Z0)m2(Z0).

(C) (Mixed or one-component-degenerate cases.) If exactly one component of F is identically zero on
some open set (say f1 ≡ 0 on an open set while f2 6≡ 0 there), then zeros of F need not be isolated
i.e. the zero set contains entire slices {z1} × {z2 : f2(z2) = 0}. The componentwise Hurwitz’s theorem
describes the limiting behaviour of zeros of f2,n on slices; bicomplex zeros of Fn correspond to arbitrary
pairings of a zero of f1,n in the z1-variable with a zero of f2,n in the z2-variable.

Proof. Local uniform convergence Fn → F in the bicomplex topology means exactly that both component
sequences converge locally uniformly on their projected planar domains:

f1,n → f1 locally uniformly on π1(Ω), f2,n → f2 locally uniformly on π2(Ω),

where π1, π2 denote the projection maps to the idempotent coordinates.
Thus any classical result about local uniform limits of holomorphic functions (in one complex variable)

may be applied to each component separately.

Case (A): F ≡ 0 on a nonempty open set. If F ≡ 0 on some open subset U ⊂ Ω, then both components
f1 and f2 vanish identically on the projected open sets of U . By Lemma 3.6, zeros of fi,n become arbitrarily
dense in compacta of these projected sets as n→∞. Hence for any compact K ⊂ U and any M we can find
N so that for n ≥ N each component has at least M zeros in the corresponding projections; pairing zeros
of the two components yields at least M ·M bicomplex zeros in K if one counts combinatorially. Thus in
particular there are arbitrarily many bicomplex zeros in K for large n. This establishes Case (A).

Case (B): Let us assume that F 6≡ 0 and on the neighbourhood we consider, neither f1 nor f2 vanishes
identically. Let Z0 = z0

1e1 + z0
2e2 be a bicomplex zero of F , so f1(z0

1) = 0 and f2(z0
2) = 0. Let m1 be the

order of the zero of f1 at z0
1 and m2 the order of the zero of f2 at z0

2 .
In classical complex analysis, as zeros of a nontrivial holomorphic function are isolated, hence we may

choose radii r1, r2 > 0 small enough that the closed disks

D1 := {z : |z − z0
1 | ≤ r1} ⊂ π1(Ω) and D2 := {w : |w − z0

2 | ≤ r2} ⊂ π2(Ω)

satisfy

a) f1 has no zeros on ∂D1 and the only zeros of f1 in D1 are z0
1 , counted with multiplicity m1.

b) f2 has no zeros on ∂D2 and the only zeros of f2 in D2 are z0
2 , counted with multiplicity m2.

Let us choose ri small enough to isolate the chosen zero.
We now apply Lemma 3.6 to each component sequence.
• Because f1,n → f1 uniformly on D1, for all sufficiently large n the function f1,n has exactly m1 zeros

in D1 (counted with multiplicity) and these zeros converge to z0
1 as n→∞.

• Similarly, because f2,n → f2 uniformly on D2, for all sufficiently large n the function f2,n has exactly
m2 zeros in D2 (counted with multiplicity) and these zeros converge to z0

2 .
Now let us consider the bicomplex polydisc

P := D1e1 +D2e2 = {ze1 + we2 : z ∈ D1, w ∈ D2},
which is contained in Ω by construction.

We should observe here that for each fixed n and for any root z
(i,n)
1 ∈ D1 of f1,n and any root z

(j,n)
2 ∈ D2

of f2,n, the bicomplex point

Z
(n)
i,j := z

(i,n)
1 e1 + z

(j,n)
2 e2 ∈ P
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satisfies
Fn
(
Z

(n)
i,j

)
= f1,n

(
z

(i,n)
1

)
e1 + f2,n

(
z

(j,n)
2

)
e2 = 0,

so it is a bicomplex zero of Fn. Conversely, any bicomplex zero Z ∈ P of Fn must have its first component in
D1 and second component in D2, hence arise from such a pair. Therefore the bicomplex zeros of Fn in P are
in bijection with ordered pairs (root of f1,n in D1, root of f2,n in D2). Counting multiplicities (one can treat
multiplicity by counting roots with multiplicity in each factor) yields that the total number of bicomplex
zeros of Fn in P equals m1 ·m2 for all sufficiently large n.

Finally, because the component zeros converge to z0
1 and z0

2 , every bicomplex zero Z
(n)
i,j converges to Z0

as n→∞. This proves the statements locally and the product multiplicity phenomenon.
To obtain the global counting statement on a compact K ⊂ Ω that contains finitely many bicomplex

zeros Z
(1)
0 , . . . , Z

(t)
0 of F , choose pairwise disjoint polydiscs Pk around each Z

(k)
0 as above (isolating each

bicomplex zero). The complement K \⋃k Pk is compact and F has no bicomplex zeros there, so there is a
positive lower bound on max{|f1|, |f2|} on that complement. Uniform convergence implies that for large n
the functions f1,n, f2,n do not vanish simultaneously on the complement. Hence no bicomplex zeros appear

there. Summing the bicomplex zero counts in each Pk (each equal to m
(k)
1 m

(k)
2 ) yields the asserted count for

large n.
This completes the proof of Case (B).

Suppose for concreteness that f1 ≡ 0 on some open subset U1 ⊂ π1(Ω) while f2 is not identically zero
on the corresponding slice region. Then every point Z = z1e1 + z2e2 with z1 ∈ U1 and f2(z2) = 0 is a
bicomplex zero of F , so zeros need not be isolated and form slices. The componentwise Lemma 3.6 applied
to f2,n → f2 gives the convergence behaviour of zeros of the second component on each slice; zeros of f1,n

may also accumulate (if f1,n → 0) and bicomplex zeros of Fn are arbitrary pairings of component zeros as in
the product case. The counting statements must be adapted (they typically produce infinitely many zeros
in small neighbourhoods if a component limit is identically zero). It is noted that in Case (B) we assume
the components nonidentically zero locally.

This establishes the theorem.

Remark 3.15. The key points making Theorem 3.6 straightforward are (i) convergence in the bicomplex
topology is equivalent to componentwise convergence and (ii) the bicomplex zero equation splits into two
independent scalar equations. This reduces the bicomplex problem to two copies of the classical one-variable
problem and a final combinatorial counting step.

Remark 3.16. The notion of ‘multiplicity’ of a bicomplex zero is naturally a pair (m1,m2). When one
wants a single integer to count zeros in a polydisc one can use the product m1m2, since the zeros in the
polydisc arise as Cartesian combinations of the m1 roots in the first factor and the m2 roots in the second
factor.

4 Multicomplex Analogues of Some Theorems on Normal Families
In this section, we extend the results of Theorems 3.1, 3.2, 3.3, 3.4, 3.5 and 3.6 respectively to the
multicomplex setting. Let MCn denote the n-fold multicomplex algebra with n commuting imaginary units
i1, i2, . . . , in, each satisfying i2k = −1. Elements of MCn admit a complete idempotent decomposition,
which allows the reduction of multicomplex analytic problems to 2n−1 classical complex components.
This structural principle underlies the multicomplex analogues of the classical theorems concerning normal
families.
4.1 Multicomplex Analogue of Theorem 3.1
Multicomplex analogue of Theorem 3.1 follows using the idempotent decomposition as we can see in the
following theorem.

Theorem 4.1. Let Ω ⊂MCn be a domain and let F be a family of continuous multicomplex-valued functions
on Ω. Let us assume that

i. F is uniformly bounded on compact subsets of Ω;
ii. F is equicontinuous on compact subsets of Ω.

Then F is relatively compact in C(Ω,MCn) with respect to the topology of uniform convergence on compact
sets.
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Proof. By the idempotent decomposition of MCn, every function f ∈ F can be written as

f =

2n−1∑

k=1

Fkek,

where ek are the orthogonal idempotents and each Fk is a complex-valued continuous function on the
corresponding component domain Ωk.

The assumptions of uniform boundedness and equicontinuity on F imply the same properties for each
component family {Fk}. Applying Lemma 3.1 to each {Fk} yields subsequences converging locally uniformly
to continuous functions F ∗k . Taking a diagonal subsequence across all components produces a multicomplex
limit

f∗ =

2n−1∑

k=1

F ∗k ek,

which is continuous and the locally uniform limit of a subsequence of F .
This completes the proof of the theorem.

4.2 Multicomplex Analogue of Theorem 3.2 (Holomorphic Version)
The next theorem represents the multicomplex version of Theorem 3.2 on holomorphic functions.

Theorem 4.2. Let Ω ⊂MCn be a domain and let F be a family of multicomplex holomorphic functions on
Ω uniformly bounded on compact subsets. Then F is normal.

Proof. Decompose each f ∈ F as

f =

2n−1∑

k=1

Fkek,

where each Fk is holomorphic in the classical sense on its component domain Ωk. The uniform boundedness
of F implies uniform boundedness of each {Fk} on compact sets. By Lemma 3.2, each component family is
normal.

Using a standard diagonal argument across all 2n−1 components, we can extract a subsequence of F
converging locally uniformly in the multicomplex topology to

f∗ =

2n−1∑

k=1

F ∗k ek,

which is multicomplex holomorphic. Hence F is normal.

4.3 Multicomplex Analogue of Theorem 3.3 (Meromorphic Version)
The following theorem is the meromorphic version of Theorem 4.2.

Theorem 4.3. Let Ω ⊂MCn be a domain and F a family of multicomplex meromorphic functions. Suppose
there exist three distinct values α, β, γ ∈ MCn such that all differences α − β, β − γ, γ − α are invertible.
Then F is normal.

Proof. Let us decompose each f ∈ F as

f =

2n−1∑

k=1

Fkek with α =

2n−1∑

k=1

αkek, β =

2n−1∑

k=1

βkek and γ =

2n−1∑

k=1

γkek.

Invertibility of the differences ensures that for each component k, the three complex values αk, βk, γk are
distinct. By Lemma 3.3 for meromorphic functions, each component family {Fk} is normal.

Applying a diagonal selection argument over all components yields a subsequence of F converging locally
uniformly (in the multicomplex spherical metric) to a multicomplex meromorphic function. Therefore, F is
normal.
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4.4 Multicomplex Analogue of Theorem 3.4
The following theorem represents the multicomplex version of Theorem 3.4 in classical complex analysis.

Theorem 4.4. Let F be a family of multicomplex meromorphic functions on Ω ⊂MCn. Then F is normal
if and only if the multicomplex spherical derivatives

f#(Ω) =

2n−1∑

k=1

F#
k (Ωk)ek

are locally bounded on Ω.

Proof. Let us decompose each f ∈ F as above. Local boundedness of f# implies boundedness of each F#
k .

By Lemma 3.4, each component family is normal. Using a diagonal argument across components yields a
locally uniform convergent subsequence in MCn.

Conversely, if F is normal, each component family is normal and therefore has locally bounded spherical
derivative. Summing over idempotents proves the equivalence.

4.5 Multicomplex Analogue of Theorem 3.5
The next theorem represents the multicomplex analogue for product domain of Theorem 3.5.

Theorem 4.5. Let D ( MCn be a simply connected domain not equal to the entire multicomplex plane.
Then there exists a biholomorphic map

f : D → DMCn = {Ω ∈MCn : |Ω| < 1}.
For any Ω0 ∈ D, there exists a unique such map satisfying f(Ω0) = 0 and f ′(Ω0) > 0.

Proof. Let D =
∑2n−1

k=1 Dkek be the idempotent decomposition. Each component Dk ( C is simply
connected. By Lemma 3.5, there exist biholomorphic maps

Fk : Dk → D, Fk(Ω0,k) = 0, F ′k(Ω0,k) > 0.

Let us define a multicomplex map

f =

2n−1∑

k=1

Fkek.

Then f is multicomplex holomorphic, bijective onto DMCn and satisfies the prescribed normalization.
Uniqueness follows from the uniqueness of the Riemann mapping in each complex component.

4.6 Multicomplex Analogue of Theorem 3.6
Definition 4.1. A function F : Ω ⊂ MCn → MCn is multicomplex-holomorphic if it can be written in
idempotent form

F (Z) =

2n−1∑

j=1

fj(zj)ej

where each fj is holomorphic in the complex variable zj on the projected domain πj(Ω) ⊂ C.

Definition 4.2 (Multicomplex zero). A point Z0 =
∑
j z

0
j ej ∈ Ω is a multicomplex zero of F if fj(z

0
j ) = 0

for all j = 1, . . . , 2n−1. The multiplicity of Z0 is the 2n−1-tuple of multiplicities of the z0
j in fj.

The following theorem represents the bicomplex analogue of Theorem 3.6.

Theorem 4.6. Let Ω ⊂MCn be a domain and let {Fk} be a sequence of multicomplex-holomorphic functions

Fk(Z) =

2n−1∑

j=1

fj,k(zj)ej

converging locally uniformly (in the multicomplex topology) to

F (Z) =

2n−1∑

j=1

fj(zj)ej .

Then the followings hold:
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(A) If F ≡ 0 on a nonempty open subset of Ω, then for every compact K ⊂ Ω and M ∈ N, there exists
N such that for k ≥ N , Fk has at least M multicomplex zeros in K.

(B) If no component fj is identically zero on a neighborhood, then each multicomplex zero Z0 =
∑
j z

0
j ej

is isolated and for each j, let mj denote the multiplicity of z0
j as a zero of fj. Then there exist small

discs z0
j ∈ Dj such that for all large k.

• fj,k has exactly mj zeros in Dj (counted with multiplicity),

• Fk has exactly
∏2n−1

j=1 mj multicomplex zeros in the polydisc
∑
j Djej,

• these zeros converge to Z0 as k →∞.
(C) If some components fj are identically zero, then zeros may form slices in the corresponding sub-
spaces. Componentwise Hurwitz’s theorem describes the limiting behaviour for nontrivial components;
multicomplex zeros of Fk correspond to all possible combinations of zeros in each component.

Proof. The proof proceeds by induction on n using the idempotent decomposition.

Local uniform convergence Fk → F in the multicomplex topology is equivalent to

fj,k → fj locally uniformly on πj(Ω), ∀j = 1, . . . , 2n−1.

By Lemma 3.6, for each j:
• if fj ≡ 0 on an open set, the zeros of fj,k accumulate densely on compacts;
• if fj 6≡ 0, then zeros of fj,k near a zero z0

j of fj converge to z0
j and the multiplicity is preserved.

A multicomplex zero Z0 corresponds to a simultaneous zero of all components. In a small polydisc
∏
j Dj

around Z0, the zeros of Fk are exactly all combinations of component zeros:

{
∑

j

z
(ij ,k)
j ej : z

(ij ,k)
j zero of fj,k in Dj}.

Hence the total number of multicomplex zeros in the polydisc is equal to
∏
jmj for large k and these converge

to Z0.

If some components are identically zero, zeros may form slices. Componentwise notion still describes the
convergence of zeros in nontrivial components and thereby multicomplex zeros are obtained by combinatorial
pairing of zeros from each component.

All assertions (A), (B), (C) follow by applying Lemma 3.6 componentwise and assembling the zeros using
the idempotent decomposition.

Hence, the theorem is established.

Remark 4.1. Multicomplex zeros are isolated only if all components are nondegenerate locally.

Remark 4.2. The multiplicity of a multicomplex zero is naturally the tuple (m1, . . . ,m2n−1) and the total
count in a polydisc is the product

∏
jmj.

Remark 4.3. Degenerate components produce slices of zeros in higher-dimensional subspaces.

5 Alternative view point of multicomplex analysis [18]
A multicomplex number ξn ∈ Cn can be defined as

ξn = ξn−1,1 + in ξn−1,2,

where
ξn−1,1, ξn−1,2 ∈ Cn−1, (in)2 = −1.

Addition and multiplication in multicomplex space Cn are defined componentwise extended by (in)2 =
−1.
5.1 Idempotent elements in Cn
It is easy to verify that the following are idempotent elements in Cn.

0, 1,
1 + i1i2

2
,

1− i1i2
2

,
1 + i1i3

2
,

1− i1i3
2

,
1 + i2i3

2
,

1− i2i3
2

, . . . ,
1 + in−1in

2
,

1− in−1in
2

.

For convenience in notation, define the symbols

e(iris) :=
1 + iris

2
, e(−iris) :=

1− iris
2

, where r, s ∈ N.
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5.2 Idempotent representation
Let ξ be an element in Cn and let ξ = ξ1 + inξ2 with ξ1, ξ2 ∈ Cn−1. Then

ξ =
(
ξ1 − in−1 ξ2

)
e
(
in−1in

)
+
(
ξ1 + in−1 ξ2

)
e
(
− in−1in

)
.

5.3 Idempotent Representation of Holomorphic Multicomplex Valued Functions
Let X be a domain in Cn, n ≥ 1 and let f be a holomorphic function in Cn then there exists holomorphic
functions

f1 : X1 → Cn−1 and f2 : X2 → Cn−1 where X1, X2 ⊆ Cn−1,

such that
f(ξ1 + inξ2) = f1(ξ1 − in−1ξ2)e(in−1in) + f2(ξ1 + in−1ξ2)e(−in−1in).

For further study on multicomplex analysis one can see [9, 10].

From this alternative perspective in multicomplex analysis, proof of Theorems 4.1, 4.2 and 4.5 can be
reformulated as follows.

The proof of Theorem 4.1 can be done using idempotent decomposition and mathematical induction as
follows.

Reconstructed proof of Theorem 4.1. Here we take the multicomplex space as Cn.
The theorem is already proved for m = 1 and m = 2 i.e. respectively for complex and bicomplex spaces

{cf. Lemma 3.1 and Theorem 3.1}.
Now let the theorem be true for m = n− 1. Using idempotent decomposition, every function f ∈ F can

be written as
f(ξ1 + inξ2) = f1(ξ1 − in−1ξ2)e(in−1in) + f2(ξ1 + in−1ξ2)e(−in−1in).

where f1 and f2 are holomorphic functions on Cn−1.
By the induction hypothesis, assumptions of uniform boundedness and equicontinuity on F imply the

same properties for each component family {fi}, (i = 1, 2). Applying induction hypothesis to each {fi}
yields subsequences converging locally uniformly to continuous functions f∗i for i = 1, 2. Taking a diagonal
subsequence across both the components produce a multicomplex limit

f∗ = f∗1 e(in−1in) + f∗2 e(−in−1in),

which is continuous and the locally uniform limit of a subsequence of F . Therefore the theorem is true for
m = n. Then by mathematical induction we can say that the theorem is true for all m ∈ N i.e. the theorem
is true in the multicomplex space Cn.

This completes the proof of the theorem.

Remark 5.1. By employing idempotent decomposition and mathematical induction as in the earlier proof,
we can similarly establish the proof of Theorems 4.2 and 4.5 and therefore the same is omitted.

These structural facts provide the foundation for adapting classical results concerning normal families to
the bicomplex and multicomplex settings.

6 Open problems and future directions
The notion of bicomplex and multicomplex setting of certain theorems concerning the normal family of
functions may be extended for the functions of uncertain variables and are still virgin. Therefore those may
be posed as open problems to the future researchers of this branch.
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