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Abstract

This article attempts to give classification of trans-para-Sasakian manifold M as a para-Sasakian or
para-cosymplectic or a manifold of constant curvature or an Einstein manifold. The methods used are
based on cyclic parallel, codazzi type and semisymmetric restrictions on Z-tensor of trans-para-Sasakian
manifold. We conclude with an example which verifies some of the proved results.
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1 Introduction
The trans-Sasakian structure on a manifold M as detailed by Oubin [9], is an almost contact metric structure
that encompasses both Sasakian and cosymplectic structures, and it has a close relationship with locally
conformal Khler manifolds. Marrero [6, 7] demonstrated the trans-Sasakian structure of type (α, β), where
α and β are smooth functions defined on M . The specific types of trans-Sasakian manifolds, namely (0, 0),
(α, 0), and (0, β), correspond to cosymplectic, α-Sasakian and β-Kenmotsu manifolds respectively. Zamkovy
[12] defined the trans-para-Sasakian manifold and showed that it is analogous to the trans-Sasakian manifold.
The (0, 0), (1, 0), (−1, 0) and (0, 1) trans-para-Sasakian manifolds correspond to the para-cosymplectic, para-
Sasakian, quasi-para-Sasakian and para-Kenmotsu manifolds respectively.
Mantica and Molinari [8] introduced Z-tensor and defined it as a (0, 2)−type tensor on a Riemannian
manifold M as follows:

Z(X,Y ) = S(X,Y ) + fg(X,Y ), (1.1)

where X and Y are arbitrary vector fields on M , S is Ricci tensor, g is Riemannian metric and f is smooth
function on semi-Riemannian manifold M . If f = 0 and Z = 0 in (1.1), M becomes Z-Einstein and Einstein
manifold respectively. Unal [10] conducted a study on the Z-tensor within N(κ)-contact metric manifolds,
while Prakash focused on Z-symmetries in para-Sasakian three-manifolds.
This research examines trans-para-Sasakian manifolds in three dimensions. In Section 2, we outline several
fundamental formulas, and Section 3 discusses Z-covariantly constant, Z-cyclic parallel, Z-recurrent and
Z-codazzi type tensors. Furthermore, Section 4 addresses the conditions Z ◦ R = 0, R ◦ Z = 0, Q ◦ Z = 0,
and Z ◦Q = 0.

2 Preliminaries
A smooth (2n + 1)-dimensional manifold M is said to be an almost paracontact manifold if it admits a
(1, 1)−tensor field φ, a vector field ξ and a 1-form η satisfying the following conditions:
(i)φ2X = X − η(X)ξ and η(ξ) = 1,
(ii)the tensor field φ induces an almost paracomplex structure on each fiber of D = ker(η), that is the eigen
distribution D+

φ and D−φ of φ corresponding to the eigen values 1 and −1 respectively having equal dimension
n.
From the definition it follows that φ ◦ ξ = 0, η ◦ φ = 0.
An almost paracontact manifold M is said to be an almost paracontact metric manifold if there is a pseudo-
Riemannian metric g such that

g(φX, φY ) = −g(X,Y ) + η(X)η(Y ), (2.1)
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for all vector fields X and Y on M .
An almost paracontact structure is said to be a paracontact metric structure if dη(X,Y ) = g(X,φY ). Almost
paracontact metric structure is said to be normal, if the (1, 2)−type torsion tensor Nφ = [φ, φ]−2dη×ξ, where
[φ, φ](X,Y ) = φ2[X,Y ] + [φX, φY ]− φ[φX, Y ]− φ[X,φY ] vanishes. The Manifold M with the paracontact
metric structure (φ, ξ, η, g) is called paracontact metric manifold.
A paracontact metric manifold is said to be para-Sasakian [12] if and only if

(∇Xφ)(Y ) = −g(X,Y )ξ + η(Y )X,

where X, Y are vector fields on M and ∇ is Levi-Civita connection of metric g.
Simillarly, a paracontact metric manifold is said to be para-Kenmotsu manifold [14] if and only if

(∇Xφ)(Y ) = η(Y )φX + g(X,φY )ξ.

A paracontact metric manifold is said to be para-cosymplectic manifold [2] if and only if

(∇Xφ)(Y ) = 0.

A trans-para-contact metric manifold is trans-para-Sasakian manifold [13] if and only if

(∇Xφ)(Y ) = α(−g(X,Y )ξ + η(Y )X) + β(g(X,φY )ξ + η(Y )φX), (2.2)

where X and Y are vector fields, α and β are smooth functions on the manifold M .
Making use of equation (2.2), we obtain

∇Xξ = −αφX − β(X − η(X)ξ). (2.3)

In a trans-para-Sasakian manifold, the curvature tensor R is in the form

R(X,Y )ξ =− (α2 + β2)(η(Y )X − η(X)Y )− 2αβ(η(Y )φX − η(X)φY )−X(α)φY + Y (α)φX

+ Y (β)φ2X −X(β)φ2Y, (2.4)

where X, Y and Z are vector fields on M .
Considering α and β as constants in last equation, we get

R(X,Y )ξ = (α2 + β2)(η(X)Y − η(Y )X) + 2αβ(η(X)φY − η(Y )φX). (2.5)

Three-dimensional semi-Riemannian manifold has curvature tensor R in the form

R(X,Y )Z = g(Y, Z)R#X − g(X,Z)R#Y + S(Y,Z)X − S(X,Z)Y − r

2
(g(Y,Z)X − g(X,Z)Y ), (2.6)

where R, S and R# are semi-Riemannian curvature tensor, Ricci tensor and Ricci operator respectively.
Putting Y = Z = ξ in (2.6) and using (2.5), we get

R#X =
(r

2
+ 2(α2 + β2)

)
X −

(r
2

+ 3(α2 + β2)
)
η(X)ξ. (2.7)

Utilizing (2.7) in (2.6), we have

R(X,Y )Z =
(r

2
+ 2(α2 + β2)

)
(g(Y,Z)X − g(X,Z)Y )−

(r
2

+ 3(α2 + β2)
)

(g(Y, Z)η(X)ξ

− g(X,Z)η(Y )ξ) +
(r

2
+ 3(α2 + β2)

)
(η(X)η(Z)Y − η(Y )η(Z)X). (2.8)

Using X = ξ in (2.8), we obtain

R(ξ,X)Y = −(α2 + β2)(g(X,Y )ξ − η(Y )X). (2.9)

3 Z-tensor satisfying certain conditions on three-dimensional trans-para-Sasakian manifold.
Let M be a 3-dimensional trans-para-Sasakian manifold.

Definition 3.1. The Z-tensor in M is cyclic parallel or M admits Z-cyclic parallel tensor if

(∇XZ)(Y,W ) + (∇Y Z)(W,X) + (∇WZ)(X,Y ) = 0, (3.1)

where X, Y and W are arbitary vector field on M .
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Theorem 3.1. In a three-dimensional trans-para-Sasakian manifold M admitting Z-cyclic parallel tensor
(i) the associated function f is constant and (ii) either scalar curvature r = −6(α2 + β2) for β 6= 0 or M is
para-Sasakian or M is para-cosymplectic.
Proof. Making use of (2.7) in (1.1), we get

Z(X,Y ) =
(r

2
+ (α2 + β2) + f

)
g(X,Y )−

(r
2

+ 3(α2 + β2)
)
η(X)η(Y ). (3.2)

Taking covarinat derivative along W in (3.2), we obtain

(∇WZ)(X,Y ) =

(
(Wr)

2
+ (Wf)

)
g(X,Y )− (Wr)

2
η(X)η(Y )−

(r
2

+ 3(α2 + β2)
)

(−αg(φW,X)η(Y )− αg(φW, Y )η(X)− βg(X,W )η(Y )

− βg(Y,W )η(X) + 2βη(X)η(Y )η(W )). (3.3)

Utilizing (3.3) in (3.1), we have
(

(Xr)

2
+ (Xf)

)
g(Y,W ) +

(
(Y r)

2
+ (Y f)

)
g(X,W ) +

(
(Wr)

2
+ (Wf)

)
g(X,Y )− (Xr)

2
η(Y )η(W )

− (Y r)

2
η(X)η(W )− (Wr)

2
η(X)η(Y )−

(r
2

+ 3(α2 + β2)
)

(−2βg(X,W )η(Y )− 2βg(X,Y )η(W )

− 2βg(Y,W )η(X)− 2βη(X)η(Y )η(W )) = 0. (3.4)

Setting X = W = ξ in (3.4), we get
(Y f) = −2(ξf)η(Y ), (3.5)

for all vector fields Y . Taking Y = ξ in (3.5), we have (ξf) = 0. Which when substituted in (3.5) gives
(Y f) = 0. Therefore f is a constant.
Contracting (3.4) with respect to X = W = ei, where {ei}3i=1 is an orthonormal frame on M , and summing
over i = 1 to 3, we obtain

2(Y r)− (ξr)η(Y ) + 4β
(r

2
+ 3(α2 + β2)

)
η(Y ) = 0. (3.6)

Taking Y = ξ in (3.4), we get

(ξr) = −4β
(r

2
+ 3(α2 + β2)

)
. (3.7)

Using (3.7) in (3.6), we obtain

(Y r) + 4β
(r

2
+ 3(α2 + β2)

)
η(Y ) = 0, (3.8)

for allvector field Y . Last equation becomes

Dr = −4β
(r

2
+ 3(α2 + β2)

)
. (3.9)

When we compute the covariant derivative along X in equation (3.9) and incorporate (2.3), then take the
inner product with ξ, we find that

g(∇XDr, Y ) = −2β(Xr)η(Y ) + 4β
(r

2
+ 3(α2 + β2)

)
(αg(φX, Y ) + βg(X,Y )− βη(X)η(Y )). (3.10)

Interchanging X and Y and subtracting obtained equation with (3.10), making use of g(∇XDr, Y ) =
g(∇YDr,X), we obtain

β(Xr)η(Y )− β(Y r)η(X)− 2αβg(φX, Y ) = 0. (3.11)

Setting Y = ξ in (3.11), we get
(Xr) = (ξr)η(Y ), (3.12)

for all vector field X, (3.11) becomes dr = (ξr)η. By applying d to both sides of the equation and taking
the wedge product, we find that (ξr) = 0. Using this result in the earlier equation and performing direct
calculations, we conclude that r is a constant. Substituting r =constant into the equation (3.11), we find
that αβ( r2 + 3(α2 + β2)) = 0.
For the case where αβ 6= 0 , the scalar curvature can be expressed as r = −6(α2 + β2). If αβ = 0, then the
manifold is para-cosymplectic when both α and β are equal zero.
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Definition 3.2. A trans-para-Sasakian manifold M is Z-recurrent, if

(∇XZ)(Y,W ) = A(X)Z(Y,W ), (3.13)

where X, Y and W are arbitary vector fields and A is a 1-form on M .

Theorem 3.2. If a three-dimensional trans-para-Sasakian manifold M is Z-recurrent, then either the
manifold M is para-cosymplectic or scalar curvature r = −6(α2 + β2) and f = 2(α2 + β2).

Proof. Here we consider 1-form A(X) = η(X) and utilizing (3.3) in (3.13), we get

(S(Y,W ) + fg(Y,W ))η(X) =

(
(Xr)

2
+ (Xf)

)
g(Y,W )− (Xr)

2
η(Y )η(W )−

(r
2

+ 3(α2 + β2)
)

(−αg(φX, Y )η(W )− αg(φX,W )η(Y )− βg(X,Y )η(Z)

− βg(X,Z)η(Y ) + 2βη(X)η(Y )η(W )). (3.14)

Taking Y = W = ξ in (3.14), we get

(Xf) = (f − 2(α2 + β2))η(X). (3.15)

Using (3.15) in (3.14), we have

(Xr)

2
g(Y,W )− 2(α2 + β2)g(Y,W )η(X)− (Xr)

2
η(Y )η(W )−

(r
2

+ 3(α2 + β2)
)

(−αg(φX, Y )η(W )

− αg(φX,W )η(Y )− βg(X,Y )η(W )− βg(X,W )η(Y ) + 2βη(X)η(Y )η(W ))

=
(r

2
+ α2 + β2

)
g(Y,W )η(X)−

(r
2

+ 3(α2 + β2)
)
η(X)η(Y )η(W ). (3.16)

On contracting (3.16) with respect to Y and W , we have

(Xr) = (r + 6(α2 + β2))η(X). (3.17)

Utilizing (3.17) in (3.15), we get

(
r

2
+ 3(α2 + β2))(αg(φX, Y ) + αg(φX,W )η(Y ) + βg(X,Y )η(W ) + βg(X,W )η(Y )

− 2βη(X)η(Y )η(W )) = 0. (3.18)

On taking X = W = ei, where {ei}3i=1 is an orthonal frame on M , we obtain β( r2 + 3(α2 + β2)) = 0. i.e.,
either β = 0 or r = −6(α2 + β2).
In the first case M is para-cosymplectic and for the second case substitution of r = −6(α2 + β2) in (3.14)
yields (Xf) = (f − 2(α2 + β2))η(X) for all vector fields X. Consequently, we have

Df = (f − 2(α2 + β2))ξ. (3.19)

From equation (2.3), we perform the covariant derivative of (3.19) along X and then compute the scalar
product with Y , yielding

g(∇XDf, Y ) =(Xf)η(Y ) + fαg(φX, Y )− fβ(g(X,Y )− η(X)η(Y ))

+ 2(α2 + β2)(αg(φX, Y )− βη(X)η(Y )). (3.20)

Interchanging X,Y , and subtracting the obtained equation from (3.20), and them making use of
g(∇XDf, Y ) = g(∇YDf,X), we obtain

(Xf)η(Y )− (Y f)η(X) + (2fα+ 2(α2 + β2))g(φX, Y ) = 0. (3.21)

Setting Y = ξ in (3.21), we get (Xf) = (ξf)η(X). Using same calculation as in Theorem 3.1, we obtain
f =constant. Utilizing this in (3.20), we get f = 2(α2 + β2). This completes our proof.

Definition 3.3. A Z- tensor in M is said to be Codazzi type if it satisfies the following:

(∇XZ)(Y,W ) = (∇Y Z)(X,W ), (3.22)

where X, Y and W are arbitary vector fields on M .

Theorem 3.3. In a three-dimensional trans-para-Sasakian manifold M if the Z-tensor is a Codazzi type
with scalar curvature r and associated function f as constants along Reeb vector field ξ then manifold M is
either para cosymplectic or of constant curvature r = −6(α2 + β2).
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Proof. Making use of (3.3) in (3.22), we get(
(Xr)

2
+ (Xf)

)
g(Y,W )−

(
(Y r)

2
+ (Y f)

)
g(X,W )− (Xr)

2
η(Y )η(W ) +

(Y r)

2
η(X)η(W )

+
(r

2
+ 3(α2 + β2)

)
(2αg(φX, Y )η(W ) + αg(φX,W )η(Y )− αg(φY,W )η(X) + βg(X,W )η(Y )

− βg(Y,W )η(X)) = 0. (3.23)

Tracing (3.23) with respect to X = W = {ei}3i=1 where ei is an orthonormal frame on M , we have
(Y r)

2
+ 2(Y f) +

(ξr)

2
η(Y )− 2β(

r

2
+ 3(α2 + β2))η(Y ) = 0. (3.24)

Choosing Y = ξ in (3.24), we get (ξr) + (ξf)− 2β( r2 + 3(α2 + β2)).
If r and f both are constants along the Reeb vector field ξ then from (3.24) it follows that either M is
cosymplectic or M is of constant scalar curvature r = −6(α2 + β2).

Definition 3.4. A Z-tensor in M is covariantly constant if (∇WZ)(X,Y ) = 0.

Theorem 3.4. In a three-dimensional trans-para-Sasakian manifold, Z-tensor is covariantly constant if the
smooth function f and scalar curvature r are constants.

Proof. Let us assume Z- tensor is covariantly constant i.e., (∇WZ)(X,Y ) = 0. Utilizing this in (3.3),
we get(

(Wr)

2
+ (Wf)

)
g(X,Y )− (Wr)

2
η(X)η(Y )−

(r
2

+ 3(α2 + β2)
)

(−αg(φW,X)η(Y )− αg(φW, Y )η(X)

− βg(X,W )η(Y )− βg(Y,W )η(X) + 2βη(X)η(Y )η(W )) = 0. (3.25)

Setting X = Y = ξ in (3.25), we arrive at (Wf) = 0, for all vector fields W , and hence we have Df = 0.
On integrating it we get f =constant. Using f =constant in (3.25), we obtain

(Wr)

2
(g(X,Y )− η(X)η(Y ))−

(r
2

+ 3(α2 + β2)
)

(−αg(φW,X)η(Y )− αg(φW, Y )η(X)

− βg(X,W )η(Y )− βg(Y,W )η(X) + 2βη(X)η(Y )η(W )) = 0. (3.26)

Tracing ( 3.26) with respect to X = W = ei where {ei}3i=1 is an orthonormal frame on M , we have β( r2 +
3(α2 + β2)) = 0. Then we have either β = 0 or r = −6(α2 + β2). We follow as in proof of Theorem (2.3)
and get that manifold is either para-cosymplectic or of constant curvature r = −6(α2 + β2).
On the other hand, if β 6= 0, r = −6(α2+β2), f and r are constants in (3.3), then we obtain (∇WZ)(X,Y ) =
0. i.e., Z- tensor is covariantly constant.

Definition 3.5. The Z- tensor in M is η−parallel if

(∇WZ)(φX, φY ) = 0, (3.27)

where X, Y and W are arbitary vector fields.

Theorem 3.5. In a three-dimensional trans-para-Sasakian manifold admitting η− parallel-Z-tensor, r+ 2f
a constant.
Proof. Replacing X by φX in (3.2), we get

Z(φX, Y ) = (
r

2
+ (α2 + β2) + f)g(φX, Y ). (3.28)

Setting Y = ξ in (3.28), we obtain
Z(φX, ξ) = 0. (3.29)

Replacing Y by φY in (3.28), we have

Z(φX, φY ) = (
r

2
+ (α2 + β2) + f)(−g(X,Y ) + η(X)η(Y )). (3.30)

Differntiating (3.30) using (2.2), (2.3) and (3.30), we get

(∇WZ)(φX, φY ) = ((Wf) +
(Wr)

2
)(−g(X,Y ) + η(X)η(Y )). (3.31)

Utlizing (3.27) in (3.31), we obtain(
(Wf) +

(Wr)

2

)
(−g(X,Y ) + η(X)η(Y )) = 0. (3.32)

i.e.,
(

(Wf) + (Wr)
2

)
= 0, for all vector field W . Terefore we have D(2f + r) = 0. On integrating it we

arrive at 2f + r = C, where C = constant.
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4 Three-dimensional trans-para-Sasakian manifold satisfying semi-symmetric conditions with
respect to Z-tensor

Theorem 4.1. A trans-para-Sasakian manifold satisfying R(ξ,X) ◦ Z(Y,W ) = 0 is an Einstein manifold.
Proof. Let

Z(R(ξ,X)Y,W ) + Z(Y,R(ξ,X)W ) = 0. (4.1)

Utilizing (2.8) in (4.1), we get

−(α2 + β2)(g(X,Y )Z(ξ,W )− η(Y )Z(X,W )− g(X,W )Z(Y,W )−Z(X,Y )η(W )) = 0. (4.2)

Putting X = ξ in (1.1) and using obtained equtaion in (4.2), we obtain

(α2 + β2)(S(X,W ) + 2(α2 + β2)g(X,W )) = 0. (4.3)

Dividing the last equation by (α2 + β2), we get

S(X,W ) = −2(α2 + β2)g(X,W ). (4.4)

i.e., manifold is Einstein. On tracing (4.4), we obtain scalar curvature r = −6(α2 + β2).

Theorem 4.2. A trans-para-Sasakian manifold satisfying Z(X,Y )◦R(U, V )W = 0 is an Einstein manifold.
Proof. Let Z(X,Y ) ◦R(U, V )W = 0. Then we have

(X ∧Z Y )R(U, V )W +R((X ∧Z Y )U, V ) +R(U, (X ∧Z Y )V )W +R(U, V )(X ∧Z Y )W = 0. (4.5)

From (3.23), we get

Z(Y,R(U, V )W )X −Z(X,R(U, V )W )Y + Z(Y,U)R(X,V )W

−Z(X,U)R(Y, V )W + Z(Y, V )R(U,X)W −Z(X,V )R(U, Y )W

+ Z(Y,W )R(U, V )X −Z(X,W )R(U, V )Y = 0. (4.6)

Taking inner product with ξ in (4.6), we obtain

Z(Y,R(U, V )W )η(X)−Z(X,R(U, V )W )η(Y ) + Z(Y,U)η(R(X,V )W )

−Z(X,V )η(R(Y, V )W ) + Z(Y, V )η(R(U,X)W )−Z(X,V )η(R(U, Y )W )

+ Z(Y,U)η(R(U, V )X)−Z(X,W )η(R(U, V )Y ) = 0. (4.7)

Taking X = U = W = ξ in (4.7), we arrive at

Z(Y,R(ξ, V )ξ)−Z(ξ,R(ξ, V )ξ)η(Y ) + Z(Y, ξ)η(R(ξ, V )ξ)−Z(ξ, V )η(R(Y, V )ξ) + Z(Y, V )η(R(ξ, ξ)ξ)

−Z(ξ, V )η(R(ξ, Y )ξ) + Z(Y, ξ)η(R(ξ, V )ξ)−Z(ξ, ξ)η(R(ξ, V )Y ) = 0. (4.8)

Using (1.1), (2.7) and (2.8) in (4.8), we get

S(Y, V ) = −2(f − (α2 + β2))g(Y, V ) + 2(f − 2(α2 + β2))η(Y )η(V ). (4.9)

On contracting last equation, we obtain scalar curvature r = −(4f − 2(α2 + β2)).

A (1,3) curvature tensor known as Q- tensor is defined [11] by

Q(X,Y )Z = R(X,Y )Z − f

2
(g(Y,Z)X − g(X,Z)Y ), (4.10)

where X, Y , Z are arbitary vector fields and f is a smooth function on the manifold. It follows from (4.10)
that Z-tensor is a trace of Q-tensor.

Theorem 4.3. A trans-para-Sasakian manifold satisfying Q(X,Y ) ◦ Z(U, V ) = 0 is an Einstein manifold.
Proof. Let Z(Q(X,Y )U, V ) + Z(U,Q(X,Y )V ) = 0.
Setting X = U = ξ in last equation, we obtain

Z(Q(ξ, Y )ξ, V ) + Z(ξ,Q(ξ, Y )V ) = 0. (4.11)

Making use of (4.10) in (4.11), we obtain

Z(ξ, V )η(Y )−Z(Y, V ) + Z(ξ, ξ)g(Y, V )−Z(ξ, Y )η(V ) = 0. (4.12)

Using (1.1) in (4.12), we arrive at

S(Y, V ) = −2(α2 + β2)g(Y, V ). (4.13)

On contracting last equation with respect to Y = V = ei i = 1, 2, 3, we obtain scalar crvature r = −6(α2+β2).
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Theorem 4.4. A trnas-para-Sasakian manifold satisfying Z(X,Y )◦Q(U, V )T = 0 is an Einstein manifold.
Proof. Let Z(X,Y ) ◦Q(U, V )T = 0.
Taking X = U = T = ξ in last equation, we get

Z(Y,Q(ξ, V )ξ)ξ −Z(ξ,Q(ξ, V )ξ)Y + Z(Y, ξ)Q(ξ, V )T −Z(ξ, ξ)Q(Y, V )ξ −Z(ξ, V )Q(ξ, Y )ξ

+ Z(Y, ξ)Q(ξ, V )ξ −Z(ξ, ξ)Q(ξ, V )Y = 0. (4.14)

Taking scalar product with ξ in (4.14) and making use of (1.1), (2.9) and (4.10), we get

((α2 + β2) +
f

2
)(S(Y, V ) + 2(α2 + β2)g(Y, V )) = 0. (4.15)

If ((α2 + β2) + f
2 ) 6= 0, then the manifold is Einstein and scalar curvature r = −6(α2 + β2).

Example 4.1: We consider the 3-dimensional manifold M = {(x, y, z) ∈ R3 z 6= 0}, with (x, y, z) as the
standard co-ordinates in R3. Let e1, e2 and e3 be the vector fields on M given by

e1 = −z ∂
∂x , e2 = −z ∂

∂y , e3 = −z ∂
∂z .

The vectors e1, e2 and e3 are linearly independent at each point of M .
Let g be a semi-Riemannian metric defined by

g(e1, e1) = g(e3, e3) = 1, g(e2, e2) = −1, g(ei, ej) = 0, i, j ∈ {1, 2, 3} and i 6= j.

Let η be a 1-form on M defined by η(X) = g(X, e3), for all X on M and e3 = ξ. Let φ be a (1, 1) tensor
field on M defined by

φe1 = e2, φe2 = e1, φe3 = 0.

Using linearity property of φ and g, we have

φ2X = X − η(X)ξ, g(φX, φY ) = −g(X,Y ) + η(X)η(Y ).

Thus the structure (φ, ξ, η, g) defines an almost paracontact structure on M . Let ∇ be the Levi-civita-
connection with respect to the metric g. Then we have

[e1, e2] = 0, [e1, e3] = e1, [e2, e3] = e2.

From Koszul formula

2g(∇XY, Z) = Xg(Y,Z) + Y g(Z,X)− Zg(X,Y ) + g([X,Y ], Z)− g([Y, Z], X) + g([Z,X], Y ).

We can easily calculate

∇e1e1 = −e3, ∇e1e2 = 0, ∇e1e3 = e1,
∇e2e1 = 0, ∇e2e2 = e3, ∇e2e3 = e2,
∇e3e1 = 0, ∇e3e2 = 0, ∇e3e3 = 0.

These equations show that ∇Xξ and (∇Xφ)(Y ) satisfies equations (2.2) and (2.3) and we obtain α = 0 and
β = −1. Thus M is a trans-para-Sasakian manifold of type (0,−1). With the help of above equations it is
easy to calculate

R(e1, e2)e1 = e2, R(e1, e2)e2 = e1, R(e1, e2)e3 = 0,
R(e1, e3)e1 = e3, R(e1, e3)e2 = 0, R(e1, e3)e3 = −e1,
R(e2, e3)e1 = 0, R(e2, e3)e2 = −e3, R(e2, e3)e3 = −e2.

From these curvature tensor components we can calculate Ricci tensor as follows

S(e1, e1) = S(e3, e3) = −2 and S(e2, e2) = 2.
S(e1, e2) = S(e1, e3) = S(e2, e3) = 0.

We get r = −6. Using α = 0 and β = −1 in Theorem 3.2 and Theorem 4.1, we get r = −6.
Using (3.2), we obtain the following

194



Z(e1, e1) = ( r2 + (α2 + β2) + f), Z(e2, e2) = −( r2 + (α2 + β2) + f), Z(e3, e3) = f − 2(α2 + β2).
Z(e1, e2) = Z(e1, e3) = Z(e2, e1) = Z(e2, e3) = Z(e3, e1) = Z(e3, e2) = 0.

Using previous equations, we obtain

(∇e1Z)(e1, e3) = −( r2 + 3(α2 + β2)) and (∇e1Z)(e1, e3) = η(e1)Z(e1, e3) = 0.

(∇e1Z)(e1, e1) = (e1r)
2 + (e1f) and (∇e1Z)(e1, e1) = η(e1)Z(e1, e1) = 0.

(∇e2Z)(e2, e3) = ( r2 + 3(α2 + β2)) and (∇e2Z)(e2, e3) = 0.

From the above equations, we arrive at r = −6(α2 + β2).
Let Z(e1, e1) − Z(e2, e2) + Z(e3, e3) = 0, we get f = 2(α2 + β2). For α = 0, β = −1, we have r = −6 and
f = 2. This verifies Theorem 3.2 and Theorem 4.1.
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