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Abstract
This article attempts to give classification of trans-para-Sasakian manifold M as a para-Sasakian or
para-cosymplectic or a manifold of constant curvature or an Einstein manifold. The methods used are
based on cyclic parallel, codazzi type and semisymmetric restrictions on Z-tensor of trans-para-Sasakian
manifold. We conclude with an example which verifies some of the proved results.
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1 Introduction
The trans-Sasakian structure on a manifold M as detailed by Oubin [9], is an almost contact metric structure
that encompasses both Sasakian and cosymplectic structures, and it has a close relationship with locally
conformal Khler manifolds. Marrero [6, 7] demonstrated the trans-Sasakian structure of type («, 3), where
a and f are smooth functions defined on M. The specific types of trans-Sasakian manifolds, namely (0, 0),
(a,0), and (0, 8), correspond to cosymplectic, a-Sasakian and S-Kenmotsu manifolds respectively. Zamkovy
[12] defined the trans-para-Sasakian manifold and showed that it is analogous to the trans-Sasakian manifold.
The (0,0), (1,0), (—1,0) and (0, 1) trans-para-Sasakian manifolds correspond to the para-cosymplectic, para-
Sasakian, quasi-para-Sasakian and para-Kenmotsu manifolds respectively.
Mantica and Molinari [8] introduced Z-tensor and defined it as a (0,2)—type tensor on a Riemannian
manifold M as follows:

Z(X,Y)=8(X,Y)+ fg(X,Y), (1.1)

where X and Y are arbitrary vector fields on M, S is Ricci tensor, g is Riemannian metric and f is smooth
function on semi-Riemannian manifold M. If f =0 and Z =0 in (1.1), M becomes Z-Einstein and Einstein
manifold respectively. Unal [10] conducted a study on the Z-tensor within N (k)-contact metric manifolds,
while Prakash focused on Z-symmetries in para-Sasakian three-manifolds.

This research examines trans-para-Sasakian manifolds in three dimensions. In Section 2, we outline several
fundamental formulas, and Section 3 discusses Z-covariantly constant, Z-cyclic parallel, Z-recurrent and
Z-codazzi type tensors. Furthermore, Section 4 addresses the conditions Zo R =0, RoZ =0, Qo Z =0,
and Zo0Q =0.

2 Preliminaries

A smooth (2n 4 1)-dimensional manifold M is said to be an almost paracontact manifold if it admits a
(1,1)—tensor field ¢, a vector field £ and a 1-form 7 satisfying the following conditions:

()X = X — n(X)¢ and n(¢) = 1,

(#7)the tensor field ¢ induces an almost paracomplex structure on each fiber of D = ker(n), that is the eigen
distribution D(‘; and D of ¢ corresponding to the eigen values 1 and —1 respectively having equal dimension
n.

From the definition it follows that ¢ o & =0, no0 ¢ = 0.

An almost paracontact manifold M is said to be an almost paracontact metric manifold if there is a pseudo-
Riemannian metric g such that

9(9X,¢Y) = —g(X,Y) + n(X)n(Y), (2.1)

188



for all vector fields X and Y on M.

An almost paracontact structure is said to be a paracontact metric structure if dnp(X,Y) = g(X, ¢Y). Almost
paracontact metric structure is said to be normal, if the (1,2)—type torsion tensor Ny = [¢, ¢] —2dn x &, where
[0, 0](X,Y) = ¢?[X, Y] + [¢ X, dY] — ¢[¢pX, Y] — ¢[X, ¢Y] vanishes. The Manifold M with the paracontact
metric structure (¢, &,7,g) is called paracontact metric manifold.

A paracontact metric manifold is said to be para-Sasakian [12] if and only if

(Vxo)(Y) = —g(X,Y)§ +n(Y)X,

where X, Y are vector fields on M and V is Levi-Civita connection of metric g.
Simillarly, a paracontact metric manifold is said to be para-Kenmotsu manifold [14] if and only if

(Vxo)(Y) = n(Y)¢X + g(X, ¢Y ).

A paracontact metric manifold is said to be para-cosymplectic manifold [2] if and only if

(Vxo)(Y) =0.
A trans-para-contact metric manifold is trans-para-Sasakian manifold [13] if and only if
(Vx)(Y) = a(—g(X,Y)E + n(Y)X) + B(g(X, ¢Y )€ + n(Y)pX), (2.2)

where X and Y are vector fields, o and 3 are smooth functions on the manifold M.
Making use of equation (2.2), we obtain

Vx§=—apX — (X — n(X)¢E). (2.3)
In a trans-para-Sasakian manifold, the curvature tensor R is in the form
R(X,Y)¢ =~ (o + ) (n(Y)X = n(X)Y) = 2a8(n(Y )X —n(X)pY) — X (@)oY + Y ()X
+Y (B9’ X — X(B)8*Y, (2.4)

where X, Y and Z are vector fields on M.
Considering a and 8 as constants in last equation, we get

R(X,Y)¢ = (®+ ) (n(X)Y = n(Y)X) + 2a8(n(X)¢Y — n(Y)$X). (2.5)
Three-dimensional semi-Riemannian manifold has curvature tensor R in the form

R(X,Y)Z = g(Y,Z)R*X — g(X, Z)R*Y + 5(Y, Z2)X — S(X, 2)Y — g(g(K Z)X —g(X,2)Y), (2.6)

where R, S and R* are semi-Riemannian curvature tensor, Ricci tensor and Ricci operator respectively.
Putting Y = Z = £ in (2.6) and using (2.5), we get

RFX = (5 +2(* + ) X = (5 +3(a? + 69 n(X)¢. (2.7)
Utilizing (2.7) in (2.6), we have
R(X,Y)Z = (5 +2(0%+ 8%) (oY, 2)X — g(X, 2)Y) = (5 +3(a® + 8) (9, Z)m(X)¢

(X, 2m(YV)8) + (5 +3(a® + 52)) MX)(Z)Y —n(¥)n(Z)X), (2.8)
Using X = ¢ in (2.8), we obtain
R(E X)Y = —(a® + 83)(g(X, Y )¢ — n(Y)X). (2.9)

3 Z-tensor satisfying certain conditions on three-dimensional trans-para-Sasakian manifold.
Let M be a 3-dimensional trans-para-Sasakian manifold.

Definition 3.1. The Z-tensor in M is cyclic parallel or M admits Z-cyclic parallel tensor if
(VxZ)Y, W) + (Vy Z2)(W, X) + (Vw 2)(X,Y) =0, (3.1)
where X, Y and W are arbitary vector field on M.
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Theorem 3.1. In a three-dimensional trans-para-Sasakian manifold M admitting Z-cyclic parallel tensor
(i) the associated function f is constant and (ii) either scalar curvature r = —6(a? + 32) for 3 #0 or M is
para-Sasakian or M is para-cosymplectic.

Proof. Making use of (2.7) in (1.1), we get

Z(X,Y) = (5 + (@2 + 8 + 1) g(X,¥) = (5 +3(a® + 82)) n(X)n(Y). (3.2)
Taking covarinat derivative along W in (3.2), we obtain
@w2)0ey) = (G v ) st v) = Caconm) - (5 + 3002+ 7))

(—ag(eW, X)n(Y) — ag(eW, Y )n(X) — Bg(X, W)n(Y)

(Wr)
2

— BgY. Wn(X) + 280(X (Y )n(W)). (53)
Utilizing (3.3) in (3.1), we have

(52 + n)avmy+ (S22 + o) scem+ (B2 4 v sy - E2awmom)

= comw) - C o) — (448002 +8)) (~20906, W)n(¥) — 289(X, ¥ (W)

—2Bg(Y, W)n(X) = 2Bn(X)n(Y)n(W)) = 0. (3.4)
Setting X =W =& in (3.4), we get

(Yf) ==2(£f)nY), (3.5)

for all vector fields Y. Taking Y = £ in (3.5), we have (§f) = 0. Which when substituted in (3.5) gives
(Yf) =0. Therefore f is a constant.

Contracting (3.4) with respect to X = W = e;, where {e;};_, is an orthonormal frame on M, and summing
overi=1 to 3, we obtain

20Y7) = (€n(Y) +48 (5 +3(a® + 82) ) n(Y) = 0. (3.6)
Taking Y = ¢ in (3.4), we get
(ér) = 48 (5 +3(a* + %)) (3.7)
Using (3.7) in (3.6), we obtain
(Y7) + 48 (g +3(a2 + /52)) n(Y) =0, (3.8)
for allvector field Y. Last equation becomnes
Dr = —48 (g +3(a® + 52)) . (3.9)

When we compute the covariant derivative along X in equation (3.9) and incorporate (2.3), then take the
inner product with &, we find that

r
9(VxDr,Y) = =28(Xr)(V) +45 (5 +3(0? +5)) (ag(6X, V) + Bg(X,Y) ~ fn(X)n(¥)).  (3.10)
Interchanging X and Y and subtracting obtained equation with (3.10), making use of g(VNxDr,Y) =
g(Vy Dr, X), we obtain
BXr)n(Y) = B(Yr)n(X) — 2089(¢X,Y) = 0. (3.11)
Setting Y = £ in (3.11), we get
(X7) = (&r)n(Y), (3.12)
for all vector field X, (3.11) becomes dr = (£r)n. By applying d to both sides of the equation and taking
the wedge product, we find that (§r) = 0. Using this result in the earlier equation and performing direct
calculations, we conclude that r is a constant. Substituting r =constant into the equation (3.11), we find
that af(5 + 3(a? + 2)) = 0.
For the case where af8 # 0 , the scalar curvature can be expressed as r = —6(a? + 52). If a3 = 0, then the
manifold is para-cosymplectic when both o and B are equal zero.
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Definition 3.2. A trans-para-Sasakian manifold M is Z-recurrent, if
(VX Z)(Y, W) = A(X)Z(Y, W), (3.13)
where X, Y and W are arbitary vector fields and A is a 1-form on M.

Theorem 3.2. If a three-dimensional trans-para-Sasakian manifold M is Z-recurrent, then either the
manifold M is para-cosymplectic or scalar curvature r = —6(a? + 32) and f = 2(a? + 3?).

Proof. Here we consider 1-form A(X) = n(X) and utilizing (3.3) in (3.13), we get

(S0 + Far w0 = (552 + (X)) atvaw) = Cmmmom) = (5 + 300+ 57)
(—ag(@X,Y)n(W) — ag(¢X, W)n(Y) — Bg(X,Y)n(Z)
— B9(X, Z)n(Y) + 28n(X)n(Y )n(W)). (3.14)
TakingY =W =€ in (3.14), we get
(Xf) = (f = 2(e” + B%))n(X). (3.15)
Using (3.15) in (3.14), we have

O gt W) = 2602 + 8290V, W)n(x) — S0 (w) — (543007 +8%)) (~ag(oX, YIn(0)
— ag(@X, W)n(Y) = Bg(X,Y)n(W) — Bg(X, W)n(Y) + 2Bn(X)n(Y Jn(W)
= (5 +a%+82) g, W)n(xX) = (5 +3(a® + 82) ) n(X)n(¥ n(W). (3.16)
On contracting (3.16) with respect to Y and W, we have
(X7) = (r+6(a® + 5%))n(X). (3.17)

Utilizing (3.17) in (3.15), we get
(5 +3(a% + ) (g (#X.Y) + ag(@X, W)n(Y) + Bg(X, Y )n(W) + Bg(X, Wn(Y)

= 2Bn(X)n(Y)n(W)) = 0. (3.18)
On taking X = W = e;, where {e;}?_, is an orthonal frame on M, we obtain B(5 + 3(a? + B%)) = 0. i.e.,
either 3= 0 or r = —6(a? + 5?).
In the first case M is para-cosymplectic and for the second case substitution of r = —6(a? + 82) in (3.14)
yields (X f) = (f —2(a? + B2))n(X) for all vector fields X. Consequently, we have

Df = (f —2(a® + p*))E. (3.19)

From equation (2.3), we perform the covariant derivative of (3.19) along X and then compute the scalar
product with Y, yielding

g(VxDf,Y) =(Xf)n(Y) + fag(eX,Y) — fB(g(X,Y) —n(X)n(Y))
+2(a® + %) (ag(¢X,Y) = Bn(X)n(Y)). (3.20)

Interchanging X,Y , and subtracting the obtained equation from (3.20), and them making use of
9(VxDfY)=g(VyDf, X), we obtain

(X m(Y) = (Y F)n(X) + (2fa+2(a® + 52))g(¢X,Y) = 0. (3.21)
Setting Y = € in (3.21), we get (Xf) = (£f)n(X). Using same calculation as in Theorem 3.1, we obtain
f =constant. Utilizing this in (3.20), we get f = 2(a® + B?). This completes our proof.
Definition 3.3. A Z- tensor in M is said to be Codazzi type if it satisfies the following:
where X, Y and W are arbitary vector fields on M.
Theorem 3.3. In a three-dimensional trans-para-Sasakian manifold M if the Z-tensor is a Codazzi type

with scalar curvature r and associated function f as constants along Reeb vector field € then manifold M is
either para cosymplectic or of constant curvature r = —6(a? + 32).
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Proof. Making use of (3.3) in (3.22), we get

(552 +@n) o - (52 + 00) sxw) - EPharamy + Ebaomw)
+ (5 +3(e% + 89)) (2ag(@X. Y)n(W) + ag(oX, W)n(Y) — ag(¢Y, W)n(X) + Bg(X, W)n(¥)
~ Bg(Y.W)n(X)) = 0. (3:23)
Tracing (3.23) with respect to X = W = {e;}3_, where e; is an orthonormal frame on M, we have
E0 o)+ Enr) 2005 + 302 + 52mv) =0, (3.21)

Choosing Y = & in (3.24), we get (&r) + (£f) — 2B(5 + 3(a® + ?)).
If r and f both are constants along the Reeb wvector field & then from (3.24) it follows that either M is
cosymplectic or M is of constant scalar curvature r = —6(a® + 32).

Definition 3.4. A Z-tensor in M is covariantly constant if (Vw 2)(X,Y) = 0.

Theorem 3.4. In a three-dimensional trans-para-Sasakian manifold, Z-tensor is covariantly constant if the
smooth function f and scalar curvature v are constants.

Proof. Let us assume Z- tensor is covariantly constant i.e., (VwZ)(X,Y) = 0. Utilizing this in (3.3),
we get

(552 0vp) gxrw) = BEhaxinr) - (5 +360% + 82) (aglom Xn(r) - aglo. 1 )n(x)

— Bg(X, Wn(Y') = Bg(Y, W)n(X) + 2Bn(X)n(Y)n(W)) = 0. (3.25)
Setting X =Y = & in (3.25), we arrive at (W f) =0, for all vector fields W, and hence we have Df = 0.
On integrating it we get f =constant. Using f =constant in (3.25), we obtain
Wr)

SS9, Y) = n(X)n(Y)) = (5 +3(a? + 8%)) (—ag(@W. X)n(Y) — ag(@W. ¥ n(X)

— Bg(X, W)n(Y) = Bg(Y, W)n(X) + 26n(X)n(Y)n(W)) = 0. (3.26)
Tracing (3.26) with respect to X = W = e; where {e;}?_, is an orthonormal frame on M, we have B(% +
3(a? + 3?)) = 0. Then we have either =0 or r = —6(a? + 32). We follow as in proof of Theorem (2.3)
and get that manifold is either para-cosymplectic or of constant curvature r = —6(a + 52).
On the other hand, if 3 # 0, r = —6(a?+32), f and r are constants in (3.3), then we obtain (Vy Z)(X,Y) =
0. i.e., Z- tensor is covariantly constant.

Definition 3.5. The Z- tensor in M is n—parallel if
(VwZ)(¢X,¢Y) =0, (3.27)
where X, Y and W are arbitary vector fields.

Theorem 3.5. In a three-dimensional trans-para-Sasakian manifold admitting n— parallel-Z-tensor, v+ 2 f

a constant.
Proof. Replacing X by ¢X in (3.2), we get

Z(OX.Y) = (5 + (07 + 52 + Ng(6X.Y). (3.28)

Setting Y = £ in (3.28), we obtain
Z(¢X,€) = 0. (3.29)

Replacing Y by ¢Y in (3.28), we have
Z(¢X,9Y) = (g +(0® + %) + f)(=g(X,Y) +n(X)n(Y)). (3.30)

Differntiating (3.30) using (2.2), (2.3) and (3.30), we get
(Wr)

(Vw2)6X.0) = (W) + T o(x, )+ n(x)mv). (3.31)
Utlizing (3.27) in (3.31), we obtain
(075 + B2 cox.) + amr) =o, (3.32)

i.e., ((Wf) + %) = 0, for all vector field W. Terefore we have D(2f + 1) = 0. On integrating it we
arriwe at 2f +r = C, where C' = constant.
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4 Three-dimensional trans-para-Sasakian manifold satisfying semi-symmetric conditions with
respect to Z-tensor
Theorem 4.1. A trans-para-Sasakian manifold satisfying R(§, X) o Z(Y,W) = 0 is an Einstein manifold.
Proof. Let
Z(R(&,X)Y, W)+ Z(Y,R(§, X)W) = 0. (4.1)

Utilizing (2.8) in (4.1), we get

—(@+ ) (9(X,Y)Z(E, W) = n(Y)Z(X, W) — g(X, W) Z(Y, W) — Z(X,Y)n(W)) = 0. (4.2)
Putting X = £ in (1.1) and using obtained equtaion in (4.2), we obtain

(0® + BH(S(X, W) +2(a* + B2)g(X, W) = 0. (4.3)
Dividing the last equation by (o + 2), we get
S(X, W) = —2(a® + gHg(X,W). (4.4)
i.e., manifold is Finstein. On tracing (4.4), we obtain scalar curvature r = —6(a? + 32).

Theorem 4.2. A trans-para-Sasakian manifold satisfying Z(X,Y)o R(U, V)W = 0 is an Einstein manifold.
Proof. Let Z(X,Y)o R(U,V)W = 0. Then we have

(XAzYV)RU, VW +R(XAzY)U,V)+ RU, (X Az Y)V)W 4+ R(U, V(X Az Y)WV =0. (4.5)
From (3.23), we get
Z(Y,R(U,V)W)X — Z(X,R(U,V)W)Y + Z(Y,U)R(X, V)W
— Z(X,U)R(Y, V)W + Z(Y,V)R(U, X)W — Z(X,V)R(U,Y)W
+ Z(Y,W)R(U, V)X — Z(X,W)R(U,V)Y = 0. (4.6)
Taking inner product with & in (4.6), we obtain
Z(Y,R(U,V)W)n(X) = Z(X, R(U,V)W)n(Y) + Z(Y, U)n(R(X, V)W)
= Z(X,Vn(R(Y, V)W) + Z(Y,V)n(R(U, X)W) — Z(X, V)n(R(U,Y)W)
+ Z(Y,Un(R(U,V)X) = Z(X,W)n(R(U,V)Y) = 0. (4.7)
Taking X =U =W =& in (4.7), we arrive at
Z(Y,R(&,V)E) — Z(§, RS V)On(Y) + Z(Y,On(R(E, V)E) — Z(§, VIn(R(Y,V)E) + Z(Y, V)n(R(E, £)E)

= Z(&VIn(R(,Y)E) + Z(Y. On(R(E V)E) — Z(& En(R(E V)Y) =0. (4.8)
Using (1.1), (2.7) and (2.8) in (4.8), we get
S(Y,V) = =2(f — (@ + ))g(Y, V) + 2(f — 2(a® + 5%))n(Y )n(V). (4.9)
On contracting last equation, we obtain scalar curvature r = —(4f — 2(a? + 32)).

A (1,3) curvature tensor known as Q- tensor is defined [11] by

QX Y)Z = RIX.Y)Z ~ L(o(v. 2)X — g(x. 2)Y), (4.10)

where X, Y, Z are arbitary vector fields and f is a smooth function on the manifold. It follows from (4.10)
that Z-tensor is a trace of Q-tensor.

Theorem 4.3. A trans-para-Sasakian manifold satisfying Q(X,Y) o Z(U,V) = 0 is an Einstein manifold.
Proof. Let Z(Q(X,Y)U,V)+ Z(U,Q(X,Y)V) = 0.
Setting X = U = £ in last equation, we obtain

Z(Q(&,Y)E, V) + 2(£,Q(5,Y)V) = 0. (4.11)
Making use of (4.10) in (4.11), we obtain
Z(EVIn(Y) = 2(Y,V) + 2(§8g(Y, V) = Z(£,Y)n(V) =0. (4.12)
Using (1.1) in (4.12), we arrive at
S(Y,V) = —2(a? 4 BHg(Y, V). (4.13)
On contracting last equation with respect toY =V =e; i =1, 2, 3, we obtain scalar crvature r = —6(a’+5?).
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Theorem 4.4. A trnas-para-Sasakian manifold satisfying Z(X,Y)oQ(U, V)T = 0 is an Einstein manifold.
Proof. Let Z(X,Y) o Q(U, V)T = 0.
Taking X = U =T = £ in last equation, we get

Z(Y,Q(§,V)§)E — 2(6, Q6 V)Y + Z(Y,Q(E V)T — Z(£,£)Q(Y, V)§ — Z2(&,V)Q(E, V)¢

+ Z2(Y, Q& V)E — Z(£,6)Q(E, V)Y =0. (4.14)
Taking scalar product with & in (4.14) and making use of (1.1), (2.9) and (4.10), we get
(0% + 8 + DS, V) 4200+ 2297, V)) = 0. (115)

If ((a® + B%) + %) # 0, then the manifold is Einstein and scalar curvature r = —6(a? + 32).

Example 4.1: We consider the 3-dimensional manifold M = {(z,y,2) € R® 2z # 0}, with (z,y, 2) as the
standard co-ordinates in R3. Let e1, e3 and e3 be the vector fields on M given by

0 9 9
€1 = —Z%, €y = _ZFy’ €3 = —ZE

The vectors ey, es and e3 are linearly independent at each point of M.
Let g be a semi-Riemannian metric defined by

9(61761) = 9(63763) = 15 9(62a62) = 71a g(eivej) = 07 7”] € {15273} and i 7& ]

Let ) be a 1-form on M defined by n(X) = g(X, e3), for all X on M and e3 = £. Let ¢ be a (1,1) tensor
field on M defined by

pe1 = e, pez = ey, gpez = 0.
Using linearity property of ¢ and g, we have
P*X =X —n(X)E, g(¢X,9Y) = —g(X,Y) + n(X)n(Y).

Thus the structure (¢,&,7,g) defines an almost paracontact structure on M. Let V be the Levi-civita-
connection with respect to the metric g. Then we have

[e1,e2] =0, [e1,e3] = e1, [e2, €3] = ea.
From Koszul formula
29(VxY,Z)=Xg(Y,2) +Yg(Z,X) — Zg(X,Y) + g([X,Y], Z) — g([Y, Z], X) + 9([Z, X], Y).
We can easily calculate

Ve,e1 = —e3, Ve, ea =0, Ve, €3 = ey,
v6261 = 07 v6262 = 637 V62€3 = 627
v€3€1 = 0, v63€2 = 0, v63€3 =0.

These equations show that Vx& and (Vx¢)(Y) satisfies equations (2.2) and (2.3) and we obtain o = 0 and
B = —1. Thus M is a trans-para-Sasakian manifold of type (0, —1). With the help of above equations it is
easy to calculate

R(e1,ez)e1 = ez, R(ey,ez)es = e1, R(er,e2)ez =0,
R(ei,e3)er = e3, R(ei,e3)ea =0, R(e1,e3)es = —ey,
R(€2,63)61 = 0, R(€2,63)62 = —eg, R(€2,63)63 — —€9.

From these curvature tensor components we can calculate Ricci tensor as follows

S(er,e1) = S(es, e3) = =2 and S(ez, e2) = 2.
5(61762) = 5(61,63) = 5(62763) =0.

We get r = —6. Using @« =0 and = —1 in Theorem 3.2 and Theorem 4.1, we get r = —6.
Using (3.2), we obtain the following
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Z(er,e1) = (5+ (@2 + B2+ f), Z(ea,e2) = —(5 + (o> + B2) + f), Z(es,e3) = f —2(a® + B?).
Z(e1,e2) = Z(e1,e3) = Z(ea,e1) = Z(e2,e3) = Z(es,e1) = Z(es,e2) = 0.

Using previous equations, we obtain

(Ve  Z)(e1,e3) = —(5 + 3(a® + 82)) and (Ve, Z)(e1,e3) = nle1)Z(er, e3) = 0.

(Ve Z)(erse1) = G2 + (erf) and (Ve, 2)(er,e1) = n(e1) Z(er,e1) = 0.
(Ve, Z)(e2,e3) = (5 +3(a® + %)) and (Ve, Z)(e2, 3) = 0.

From the above equations, we arrive at r = —6(a? + 5?).
Let Z(ep,e1) — Z(ea,e2) + Z(e3,e3) = 0, we get f = 2(a? + 42). For a =0, 3 = —1, we have r = —6 and
f = 2. This verifies Theorem 3.2 and Theorem 4.1.
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