

Jñānābha, Vol. 55(2) (2025), 188-195

\mathcal{Z} -TENSOR ON THREE DIMENSIONAL TRANS-PARA-SASAKIAN MANIFOLD

H. G. Nagaraja and R. Yashaswini

Department of Mathematics, Bangalore University, Jnana Bharathi Campus, Bangalore, Karnataka, India-560056.

Email: hgnraj@yahoo.com, yashaswinir12@gmail.com

(Received: February 10, 2025; In format: March 22, 2025; Revised: November 26, 2025;

Accepted: November 30, 2025)

DOI: <https://doi.org/10.58250/jnanabha.2025.55222>

Abstract

This article attempts to give classification of trans-para-Sasakian manifold M as a para-Sasakian or para-cosymplectic or a manifold of constant curvature or an Einstein manifold. The methods used are based on cyclic parallel, codazzi type and semisymmetric restrictions on \mathcal{Z} -tensor of trans-para-Sasakian manifold. We conclude with an example which verifies some of the proved results.

2020 Mathematical Sciences Classification: 53C25, 53C20, 53C21.

Keywords and Phrases: Trans-para-Sasakian manifold, \mathcal{Z} -tensor, codazzi type, cyclic parallel tensor.

1 Introduction

The trans-Sasakian structure on a manifold M as detailed by Oubin [9], is an almost contact metric structure that encompasses both Sasakian and cosymplectic structures, and it has a close relationship with locally conformal Khler manifolds. Marrero [6, 7] demonstrated the trans-Sasakian structure of type (α, β) , where α and β are smooth functions defined on M . The specific types of trans-Sasakian manifolds, namely $(0, 0)$, $(\alpha, 0)$, and $(0, \beta)$, correspond to cosymplectic, α -Sasakian and β -Kenmotsu manifolds respectively. Zamkovy [12] defined the trans-para-Sasakian manifold and showed that it is analogous to the trans-Sasakian manifold. The $(0, 0)$, $(1, 0)$, $(-1, 0)$ and $(0, 1)$ trans-para-Sasakian manifolds correspond to the para-cosymplectic, para-Sasakian, quasi-para-Sasakian and para-Kenmotsu manifolds respectively.

Mantica and Molinari [8] introduced \mathcal{Z} -tensor and defined it as a $(0, 2)$ -type tensor on a Riemannian manifold M as follows:

$$\mathcal{Z}(X, Y) = S(X, Y) + fg(X, Y), \quad (1.1)$$

where X and Y are arbitrary vector fields on M , S is Ricci tensor, g is Riemannian metric and f is smooth function on semi-Riemannian manifold M . If $f = 0$ and $\mathcal{Z} = 0$ in (1.1), M becomes \mathcal{Z} -Einstein and Einstein manifold respectively. Unal [10] conducted a study on the \mathcal{Z} -tensor within $N(\kappa)$ -contact metric manifolds, while Prakash focused on \mathcal{Z} -symmetries in para-Sasakian three-manifolds.

This research examines trans-para-Sasakian manifolds in three dimensions. In Section 2, we outline several fundamental formulas, and Section 3 discusses \mathcal{Z} -covariantly constant, \mathcal{Z} -cyclic parallel, \mathcal{Z} -recurrent and \mathcal{Z} -codazzi type tensors. Furthermore, Section 4 addresses the conditions $\mathcal{Z} \circ R = 0$, $R \circ \mathcal{Z} = 0$, $Q \circ \mathcal{Z} = 0$, and $\mathcal{Z} \circ Q = 0$.

2 Preliminaries

A smooth $(2n + 1)$ -dimensional manifold M is said to be an almost paracontact manifold if it admits a $(1, 1)$ -tensor field ϕ , a vector field ξ and a 1-form η satisfying the following conditions:

(i) $\phi^2 X = X - \eta(X)\xi$ and $\eta(\xi) = 1$,

(ii) the tensor field ϕ induces an almost paracomplex structure on each fiber of $D = \ker(\eta)$, that is the eigen distribution D_ϕ^+ and D_ϕ^- of ϕ corresponding to the eigen values 1 and -1 respectively having equal dimension n .

From the definition it follows that $\phi \circ \xi = 0$, $\eta \circ \phi = 0$.

An almost paracontact manifold M is said to be an almost paracontact metric manifold if there is a pseudo-Riemannian metric g such that

$$g(\phi X, \phi Y) = -g(X, Y) + \eta(X)\eta(Y), \quad (2.1)$$

for all vector fields X and Y on M .

An almost paracontact structure is said to be a paracontact metric structure if $d\eta(X, Y) = g(X, \phi Y)$. Almost paracontact metric structure is said to be normal, if the $(1, 2)$ -type torsion tensor $N_\phi = [\phi, \phi] - 2d\eta \times \xi$, where $[\phi, \phi](X, Y) = \phi^2[X, Y] + [\phi X, \phi Y] - \phi[\phi X, Y] - \phi[X, \phi Y]$ vanishes. The Manifold M with the paracontact metric structure (ϕ, ξ, η, g) is called paracontact metric manifold.

A paracontact metric manifold is said to be para-Sasakian [12] if and only if

$$(\nabla_X \phi)(Y) = -g(X, Y)\xi + \eta(Y)X,$$

where X, Y are vector fields on M and ∇ is Levi-Civita connection of metric g .

Simillarly, a paracontact metric manifold is said to be para-Kenmotsu manifold [14] if and only if

$$(\nabla_X \phi)(Y) = \eta(Y)\phi X + g(X, \phi Y)\xi.$$

A paracontact metric manifold is said to be para-cosymplectic manifold [2] if and only if

$$(\nabla_X \phi)(Y) = 0.$$

A trans-para-contact metric manifold is trans-para-Sasakian manifold [13] if and only if

$$(\nabla_X \phi)(Y) = \alpha(-g(X, Y)\xi + \eta(Y)X) + \beta(g(X, \phi Y)\xi + \eta(Y)\phi X), \quad (2.2)$$

where X and Y are vector fields, α and β are smooth functions on the manifold M .

Making use of equation (2.2), we obtain

$$\nabla_X \xi = -\alpha\phi X - \beta(X - \eta(X)\xi). \quad (2.3)$$

In a trans-para-Sasakian manifold, the curvature tensor R is in the form

$$\begin{aligned} R(X, Y)\xi &= -(\alpha^2 + \beta^2)(\eta(Y)X - \eta(X)Y) - 2\alpha\beta(\eta(Y)\phi X - \eta(X)\phi Y) - X(\alpha)\phi Y + Y(\alpha)\phi X \\ &\quad + Y(\beta)\phi^2 X - X(\beta)\phi^2 Y, \end{aligned} \quad (2.4)$$

where X, Y and Z are vector fields on M .

Considering α and β as constants in last equation, we get

$$R(X, Y)\xi = (\alpha^2 + \beta^2)(\eta(X)Y - \eta(Y)X) + 2\alpha\beta(\eta(X)\phi Y - \eta(Y)\phi X). \quad (2.5)$$

Three-dimensional semi-Riemannian manifold has curvature tensor R in the form

$$R(X, Y)Z = g(Y, Z)R^\# X - g(X, Z)R^\# Y + S(Y, Z)X - S(X, Z)Y - \frac{r}{2}(g(Y, Z)X - g(X, Z)Y), \quad (2.6)$$

where R , S and $R^\#$ are semi-Riemannian curvature tensor, Ricci tensor and Ricci operator respectively. Putting $Y = Z = \xi$ in (2.6) and using (2.5), we get

$$R^\# X = \left(\frac{r}{2} + 2(\alpha^2 + \beta^2)\right)X - \left(\frac{r}{2} + 3(\alpha^2 + \beta^2)\right)\eta(X)\xi. \quad (2.7)$$

Utilizing (2.7) in (2.6), we have

$$\begin{aligned} R(X, Y)Z &= \left(\frac{r}{2} + 2(\alpha^2 + \beta^2)\right)(g(Y, Z)X - g(X, Z)Y) - \left(\frac{r}{2} + 3(\alpha^2 + \beta^2)\right)(g(Y, Z)\eta(X)\xi \\ &\quad - g(X, Z)\eta(Y)\xi) + \left(\frac{r}{2} + 3(\alpha^2 + \beta^2)\right)(\eta(X)\eta(Z)Y - \eta(Y)\eta(Z)X). \end{aligned} \quad (2.8)$$

Using $X = \xi$ in (2.8), we obtain

$$R(\xi, X)Y = -(\alpha^2 + \beta^2)(g(X, Y)\xi - \eta(Y)X). \quad (2.9)$$

3 \mathcal{Z} -tensor satisfying certain conditions on three-dimensional trans-para-Sasakian manifold.

Let M be a 3-dimensional trans-para-Sasakian manifold.

Definition 3.1. *The \mathcal{Z} -tensor in M is cyclic parallel or M admits \mathcal{Z} -cyclic parallel tensor if*

$$(\nabla_X \mathcal{Z})(Y, W) + (\nabla_Y \mathcal{Z})(W, X) + (\nabla_W \mathcal{Z})(X, Y) = 0, \quad (3.1)$$

where X, Y and W are arbitrary vector field on M .

Theorem 3.1. *In a three-dimensional trans-para-Sasakian manifold M admitting \mathcal{Z} -cyclic parallel tensor (i) the associated function f is constant and (ii) either scalar curvature $r = -6(\alpha^2 + \beta^2)$ for $\beta \neq 0$ or M is para-Sasakian or M is para-cosymplectic.*

Proof. Making use of (2.7) in (1.1), we get

$$\mathcal{Z}(X, Y) = \left(\frac{r}{2} + (\alpha^2 + \beta^2) + f \right) g(X, Y) - \left(\frac{r}{2} + 3(\alpha^2 + \beta^2) \right) \eta(X) \eta(Y). \quad (3.2)$$

Taking covariant derivative along W in (3.2), we obtain

$$\begin{aligned} (\nabla_W \mathcal{Z})(X, Y) &= \left(\frac{(Wr)}{2} + (Wf) \right) g(X, Y) - \frac{(Wr)}{2} \eta(X) \eta(Y) - \left(\frac{r}{2} + 3(\alpha^2 + \beta^2) \right) \\ &\quad (-\alpha g(\phi W, X) \eta(Y) - \alpha g(\phi W, Y) \eta(X) - \beta g(X, W) \eta(Y) \\ &\quad - \beta g(Y, W) \eta(X) + 2\beta \eta(X) \eta(Y) \eta(W)). \end{aligned} \quad (3.3)$$

Utilizing (3.3) in (3.1), we have

$$\begin{aligned} &\left(\frac{(Xr)}{2} + (Xf) \right) g(Y, W) + \left(\frac{(Yr)}{2} + (Yf) \right) g(X, W) + \left(\frac{(Wr)}{2} + (Wf) \right) g(X, Y) - \frac{(Xr)}{2} \eta(Y) \eta(W) \\ &- \frac{(Yr)}{2} \eta(X) \eta(W) - \frac{(Wr)}{2} \eta(X) \eta(Y) - \left(\frac{r}{2} + 3(\alpha^2 + \beta^2) \right) (-2\beta g(X, W) \eta(Y) - 2\beta g(X, Y) \eta(W) \\ &- 2\beta g(Y, W) \eta(X) - 2\beta \eta(X) \eta(Y) \eta(W)) = 0. \end{aligned} \quad (3.4)$$

Setting $X = W = \xi$ in (3.4), we get

$$(Yf) = -2(\xi f) \eta(Y), \quad (3.5)$$

for all vector fields Y . Taking $Y = \xi$ in (3.5), we have $(\xi f) = 0$. Which when substituted in (3.5) gives $(Yf) = 0$. Therefore f is a constant.

Contracting (3.4) with respect to $X = W = e_i$, where $\{e_i\}_{i=1}^3$ is an orthonormal frame on M , and summing over $i = 1$ to 3, we obtain

$$2(Yr) - (\xi r) \eta(Y) + 4\beta \left(\frac{r}{2} + 3(\alpha^2 + \beta^2) \right) \eta(Y) = 0. \quad (3.6)$$

Taking $Y = \xi$ in (3.4), we get

$$(\xi r) = -4\beta \left(\frac{r}{2} + 3(\alpha^2 + \beta^2) \right). \quad (3.7)$$

Using (3.7) in (3.6), we obtain

$$(Yr) + 4\beta \left(\frac{r}{2} + 3(\alpha^2 + \beta^2) \right) \eta(Y) = 0, \quad (3.8)$$

for all vector field Y . Last equation becomes

$$Dr = -4\beta \left(\frac{r}{2} + 3(\alpha^2 + \beta^2) \right). \quad (3.9)$$

When we compute the covariant derivative along X in equation (3.9) and incorporate (2.3), then take the inner product with ξ , we find that

$$g(\nabla_X Dr, Y) = -2\beta(Xr) \eta(Y) + 4\beta \left(\frac{r}{2} + 3(\alpha^2 + \beta^2) \right) (\alpha g(\phi X, Y) + \beta g(X, Y) - \beta \eta(X) \eta(Y)). \quad (3.10)$$

Interchanging X and Y and subtracting obtained equation with (3.10), making use of $g(\nabla_X Dr, Y) = g(\nabla_Y Dr, X)$, we obtain

$$\beta(Xr) \eta(Y) - \beta(Yr) \eta(X) - 2\alpha\beta g(\phi X, Y) = 0. \quad (3.11)$$

Setting $Y = \xi$ in (3.11), we get

$$(Xr) = (\xi r) \eta(Y), \quad (3.12)$$

for all vector field X , (3.11) becomes $dr = (\xi r) \eta$. By applying d to both sides of the equation and taking the wedge product, we find that $(\xi r) = 0$. Using this result in the earlier equation and performing direct calculations, we conclude that r is a constant. Substituting $r = \text{constant}$ into the equation (3.11), we find that $\alpha\beta(\frac{r}{2} + 3(\alpha^2 + \beta^2)) = 0$.

For the case where $\alpha\beta \neq 0$, the scalar curvature can be expressed as $r = -6(\alpha^2 + \beta^2)$. If $\alpha\beta = 0$, then the manifold is para-cosymplectic when both α and β are equal zero.

Definition 3.2. A trans-para-Sasakian manifold M is \mathcal{Z} -recurrent, if

$$(\nabla_X \mathcal{Z})(Y, W) = A(X) \mathcal{Z}(Y, W), \quad (3.13)$$

where X, Y and W are arbitrary vector fields and A is a 1-form on M .

Theorem 3.2. If a three-dimensional trans-para-Sasakian manifold M is \mathcal{Z} -recurrent, then either the manifold M is para-cosymplectic or scalar curvature $r = -6(\alpha^2 + \beta^2)$ and $f = 2(\alpha^2 + \beta^2)$.

Proof. Here we consider 1-form $A(X) = \eta(X)$ and utilizing (3.3) in (3.13), we get

$$\begin{aligned} (S(Y, W) + fg(Y, W))\eta(X) &= \left(\frac{(Xr)}{2} + (Xf) \right) g(Y, W) - \frac{(Xr)}{2} \eta(Y) \eta(W) - \left(\frac{r}{2} + 3(\alpha^2 + \beta^2) \right) \\ &\quad (-\alpha g(\phi X, Y) \eta(W) - \alpha g(\phi X, W) \eta(Y) - \beta g(X, Y) \eta(Z) \\ &\quad - \beta g(X, Z) \eta(Y) + 2\beta \eta(X) \eta(Y) \eta(W)). \end{aligned} \quad (3.14)$$

Taking $Y = W = \xi$ in (3.14), we get

$$(Xf) = (f - 2(\alpha^2 + \beta^2))\eta(X). \quad (3.15)$$

Using (3.15) in (3.14), we have

$$\begin{aligned} &\frac{(Xr)}{2} g(Y, W) - 2(\alpha^2 + \beta^2)g(Y, W)\eta(X) - \frac{(Xr)}{2} \eta(Y) \eta(W) - \left(\frac{r}{2} + 3(\alpha^2 + \beta^2) \right) (-\alpha g(\phi X, Y) \eta(W) \\ &- \alpha g(\phi X, W) \eta(Y) - \beta g(X, Y) \eta(W) - \beta g(X, W) \eta(Y) + 2\beta \eta(X) \eta(Y) \eta(W)) \\ &= \left(\frac{r}{2} + \alpha^2 + \beta^2 \right) g(Y, W)\eta(X) - \left(\frac{r}{2} + 3(\alpha^2 + \beta^2) \right) \eta(X) \eta(Y) \eta(W). \end{aligned} \quad (3.16)$$

On contracting (3.16) with respect to Y and W , we have

$$(Xr) = (r + 6(\alpha^2 + \beta^2))\eta(X). \quad (3.17)$$

Utilizing (3.17) in (3.15), we get

$$\begin{aligned} &\left(\frac{r}{2} + 3(\alpha^2 + \beta^2) \right) (\alpha g(\phi X, Y) + \alpha g(\phi X, W) \eta(Y) + \beta g(X, Y) \eta(W) + \beta g(X, W) \eta(Y) \\ &- 2\beta \eta(X) \eta(Y) \eta(W)) = 0. \end{aligned} \quad (3.18)$$

On taking $X = W = e_i$, where $\{e_i\}_{i=1}^3$ is an orthonormal frame on M , we obtain $\beta(\frac{r}{2} + 3(\alpha^2 + \beta^2)) = 0$. i.e., either $\beta = 0$ or $r = -6(\alpha^2 + \beta^2)$.

In the first case M is para-cosymplectic and for the second case substitution of $r = -6(\alpha^2 + \beta^2)$ in (3.14) yields $(Xf) = (f - 2(\alpha^2 + \beta^2))\eta(X)$ for all vector fields X . Consequently, we have

$$Df = (f - 2(\alpha^2 + \beta^2))\xi. \quad (3.19)$$

From equation (2.3), we perform the covariant derivative of (3.19) along X and then compute the scalar product with Y , yielding

$$\begin{aligned} g(\nabla_X Df, Y) &= (Xf)\eta(Y) + f\alpha g(\phi X, Y) - f\beta(g(X, Y) - \eta(X)\eta(Y)) \\ &\quad + 2(\alpha^2 + \beta^2)(\alpha g(\phi X, Y) - \beta \eta(X)\eta(Y)). \end{aligned} \quad (3.20)$$

Interchanging X, Y , and subtracting the obtained equation from (3.20), and then making use of $g(\nabla_X Df, Y) = g(\nabla_Y Df, X)$, we obtain

$$(Xf)\eta(Y) - (Yf)\eta(X) + (2f\alpha + 2(\alpha^2 + \beta^2))g(\phi X, Y) = 0. \quad (3.21)$$

Setting $Y = \xi$ in (3.21), we get $(Xf) = (\xi f)\eta(X)$. Using same calculation as in Theorem 3.1, we obtain $f = \text{constant}$. Utilizing this in (3.20), we get $f = 2(\alpha^2 + \beta^2)$. This completes our proof.

Definition 3.3. A \mathcal{Z} -tensor in M is said to be Codazzi type if it satisfies the following:

$$(\nabla_X \mathcal{Z})(Y, W) = (\nabla_Y \mathcal{Z})(X, W), \quad (3.22)$$

where X, Y and W are arbitrary vector fields on M .

Theorem 3.3. In a three-dimensional trans-para-Sasakian manifold M if the \mathcal{Z} -tensor is a Codazzi type with scalar curvature r and associated function f as constants along Reeb vector field ξ then manifold M is either para cosymplectic or of constant curvature $r = -6(\alpha^2 + \beta^2)$.

Proof. Making use of (3.3) in (3.22), we get

$$\begin{aligned} & \left(\frac{(Xr)}{2} + (Xf) \right) g(Y, W) - \left(\frac{(Yr)}{2} + (Yf) \right) g(X, W) - \frac{(Xr)}{2} \eta(Y) \eta(W) + \frac{(Yr)}{2} \eta(X) \eta(W) \\ & + \left(\frac{r}{2} + 3(\alpha^2 + \beta^2) \right) (2\alpha g(\phi X, Y) \eta(W) + \alpha g(\phi X, W) \eta(Y) - \alpha g(\phi Y, W) \eta(X) + \beta g(X, W) \eta(Y) \\ & - \beta g(Y, W) \eta(X)) = 0. \end{aligned} \quad (3.23)$$

Tracing (3.23) with respect to $X = W = \{e_i\}_{i=1}^3$ where e_i is an orthonormal frame on M , we have

$$\frac{(Yr)}{2} + 2(Yf) + \frac{(\xi r)}{2} \eta(Y) - 2\beta \left(\frac{r}{2} + 3(\alpha^2 + \beta^2) \right) \eta(Y) = 0. \quad (3.24)$$

Choosing $Y = \xi$ in (3.24), we get $(\xi r) + (\xi f) - 2\beta \left(\frac{r}{2} + 3(\alpha^2 + \beta^2) \right)$.

If r and f both are constants along the Reeb vector field ξ then from (3.24) it follows that either M is cosymplectic or M is of constant scalar curvature $r = -6(\alpha^2 + \beta^2)$.

Definition 3.4. A \mathcal{Z} -tensor in M is covariantly constant if $(\nabla_W \mathcal{Z})(X, Y) = 0$.

Theorem 3.4. In a three-dimensional trans-para-Sasakian manifold, \mathcal{Z} -tensor is covariantly constant if the smooth function f and scalar curvature r are constants.

Proof. Let us assume \mathcal{Z} -tensor is covariantly constant i.e., $(\nabla_W \mathcal{Z})(X, Y) = 0$. Utilizing this in (3.3), we get

$$\begin{aligned} & \left(\frac{(Wr)}{2} + (Wf) \right) g(X, Y) - \frac{(Wr)}{2} \eta(X) \eta(Y) - \left(\frac{r}{2} + 3(\alpha^2 + \beta^2) \right) (-\alpha g(\phi W, X) \eta(Y) - \alpha g(\phi W, Y) \eta(X) \\ & - \beta g(X, W) \eta(Y) - \beta g(Y, W) \eta(X) + 2\beta \eta(X) \eta(Y) \eta(W)) = 0. \end{aligned} \quad (3.25)$$

Setting $X = Y = \xi$ in (3.25), we arrive at $(Wf) = 0$, for all vector fields W , and hence we have $Df = 0$. On integrating it we get $f = \text{constant}$. Using $f = \text{constant}$ in (3.25), we obtain

$$\begin{aligned} & \frac{(Wr)}{2} (g(X, Y) - \eta(X) \eta(Y)) - \left(\frac{r}{2} + 3(\alpha^2 + \beta^2) \right) (-\alpha g(\phi W, X) \eta(Y) - \alpha g(\phi W, Y) \eta(X) \\ & - \beta g(X, W) \eta(Y) - \beta g(Y, W) \eta(X) + 2\beta \eta(X) \eta(Y) \eta(W)) = 0. \end{aligned} \quad (3.26)$$

Tracing (3.26) with respect to $X = W = e_i$ where $\{e_i\}_{i=1}^3$ is an orthonormal frame on M , we have $\beta \left(\frac{r}{2} + 3(\alpha^2 + \beta^2) \right) = 0$. Then we have either $\beta = 0$ or $r = -6(\alpha^2 + \beta^2)$. We follow as in proof of Theorem (2.3) and get that manifold is either para-cosymplectic or of constant curvature $r = -6(\alpha^2 + \beta^2)$.

On the other hand, if $\beta \neq 0$, $r = -6(\alpha^2 + \beta^2)$, f and r are constants in (3.3), then we obtain $(\nabla_W \mathcal{Z})(X, Y) = 0$. i.e., \mathcal{Z} -tensor is covariantly constant.

Definition 3.5. The \mathcal{Z} -tensor in M is η -parallel if

$$(\nabla_W \mathcal{Z})(\phi X, \phi Y) = 0, \quad (3.27)$$

where X, Y and W are arbitrary vector fields.

Theorem 3.5. In a three-dimensional trans-para-Sasakian manifold admitting η -parallel- \mathcal{Z} -tensor, $r + 2f$ a constant.

Proof. Replacing X by ϕX in (3.2), we get

$$\mathcal{Z}(\phi X, Y) = \left(\frac{r}{2} + (\alpha^2 + \beta^2) + f \right) g(\phi X, Y). \quad (3.28)$$

Setting $Y = \xi$ in (3.28), we obtain

$$\mathcal{Z}(\phi X, \xi) = 0. \quad (3.29)$$

Replacing Y by ϕY in (3.28), we have

$$\mathcal{Z}(\phi X, \phi Y) = \left(\frac{r}{2} + (\alpha^2 + \beta^2) + f \right) (-g(X, Y) + \eta(X) \eta(Y)). \quad (3.30)$$

Differntiating (3.30) using (2.2), (2.3) and (3.30), we get

$$(\nabla_W \mathcal{Z})(\phi X, \phi Y) = ((Wf) + \frac{(Wr)}{2}) (-g(X, Y) + \eta(X) \eta(Y)). \quad (3.31)$$

Utilizing (3.27) in (3.31), we obtain

$$\left((Wf) + \frac{(Wr)}{2} \right) (-g(X, Y) + \eta(X) \eta(Y)) = 0. \quad (3.32)$$

i.e., $\left((Wf) + \frac{(Wr)}{2} \right) = 0$, for all vector field W . Terefore we have $D(2f + r) = 0$. On integrating it we arrive at $2f + r = C$, where $C = \text{constant}$.

4 Three-dimensional trans-para-Sasakian manifold satisfying semi-symmetric conditions with respect to \mathcal{Z} -tensor

Theorem 4.1. *A trans-para-Sasakian manifold satisfying $R(\xi, X) \circ \mathcal{Z}(Y, W) = 0$ is an Einstein manifold.*
Proof. Let

$$\mathcal{Z}(R(\xi, X)Y, W) + \mathcal{Z}(Y, R(\xi, X)W) = 0. \quad (4.1)$$

Utilizing (2.8) in (4.1), we get

$$-(\alpha^2 + \beta^2)(g(X, Y)\mathcal{Z}(\xi, W) - \eta(Y)\mathcal{Z}(X, W) - g(X, W)\mathcal{Z}(Y, W) - \mathcal{Z}(X, Y)\eta(W)) = 0. \quad (4.2)$$

Putting $X = \xi$ in (1.1) and using obtained equation in (4.2), we obtain

$$(\alpha^2 + \beta^2)(S(X, W) + 2(\alpha^2 + \beta^2)g(X, W)) = 0. \quad (4.3)$$

Dividing the last equation by $(\alpha^2 + \beta^2)$, we get

$$S(X, W) = -2(\alpha^2 + \beta^2)g(X, W). \quad (4.4)$$

i.e., manifold is Einstein. On tracing (4.4), we obtain scalar curvature $r = -6(\alpha^2 + \beta^2)$.

Theorem 4.2. *A trans-para-Sasakian manifold satisfying $\mathcal{Z}(X, Y) \circ R(U, V)W = 0$ is an Einstein manifold.*
Proof. Let $\mathcal{Z}(X, Y) \circ R(U, V)W = 0$. Then we have

$$(X \wedge_{\mathcal{Z}} Y)R(U, V)W + R((X \wedge_{\mathcal{Z}} Y)U, V) + R(U, (X \wedge_{\mathcal{Z}} Y)V)W + R(U, V)(X \wedge_{\mathcal{Z}} Y)W = 0. \quad (4.5)$$

From (3.23), we get

$$\begin{aligned} & \mathcal{Z}(Y, R(U, V)W)X - \mathcal{Z}(X, R(U, V)W)Y + \mathcal{Z}(Y, U)R(X, V)W \\ & - \mathcal{Z}(X, U)R(Y, V)W + \mathcal{Z}(Y, V)R(U, X)W - \mathcal{Z}(X, V)R(U, Y)W \\ & + \mathcal{Z}(Y, W)R(U, V)X - \mathcal{Z}(X, W)R(U, V)Y = 0. \end{aligned} \quad (4.6)$$

Taking inner product with ξ in (4.6), we obtain

$$\begin{aligned} & \mathcal{Z}(Y, R(U, V)W)\eta(X) - \mathcal{Z}(X, R(U, V)W)\eta(Y) + \mathcal{Z}(Y, U)\eta(R(X, V)W) \\ & - \mathcal{Z}(X, V)\eta(R(Y, V)W) + \mathcal{Z}(Y, V)\eta(R(U, X)W) - \mathcal{Z}(X, V)\eta(R(U, Y)W) \\ & + \mathcal{Z}(Y, U)\eta(R(U, V)X) - \mathcal{Z}(X, W)\eta(R(U, V)Y) = 0. \end{aligned} \quad (4.7)$$

Taking $X = U = W = \xi$ in (4.7), we arrive at

$$\begin{aligned} & \mathcal{Z}(Y, R(\xi, V)\xi) - \mathcal{Z}(\xi, R(\xi, V)\xi)\eta(Y) + \mathcal{Z}(Y, \xi)\eta(R(\xi, V)\xi) - \mathcal{Z}(\xi, V)\eta(R(Y, V)\xi) + \mathcal{Z}(Y, V)\eta(R(\xi, \xi)\xi) \\ & - \mathcal{Z}(\xi, V)\eta(R(\xi, Y)\xi) + \mathcal{Z}(Y, \xi)\eta(R(\xi, V)\xi) - \mathcal{Z}(\xi, \xi)\eta(R(\xi, V)Y) = 0. \end{aligned} \quad (4.8)$$

Using (1.1), (2.7) and (2.8) in (4.8), we get

$$S(Y, V) = -2(f - (\alpha^2 + \beta^2))g(Y, V) + 2(f - 2(\alpha^2 + \beta^2))\eta(Y)\eta(V). \quad (4.9)$$

On contracting last equation, we obtain scalar curvature $r = -(4f - 2(\alpha^2 + \beta^2))$.

A (1,3) curvature tensor known as Q -tensor is defined [11] by

$$Q(X, Y)Z = R(X, Y)Z - \frac{f}{2}(g(Y, Z)X - g(X, Z)Y), \quad (4.10)$$

where X, Y, Z are arbitrary vector fields and f is a smooth function on the manifold. It follows from (4.10) that \mathcal{Z} -tensor is a trace of Q -tensor.

Theorem 4.3. *A trans-para-Sasakian manifold satisfying $Q(X, Y) \circ \mathcal{Z}(U, V) = 0$ is an Einstein manifold.*
Proof. Let $\mathcal{Z}(Q(X, Y)U, V) + \mathcal{Z}(U, Q(X, Y)V) = 0$.

Setting $X = U = \xi$ in last equation, we obtain

$$\mathcal{Z}(Q(\xi, Y)\xi, V) + \mathcal{Z}(\xi, Q(\xi, Y)V) = 0. \quad (4.11)$$

Making use of (4.10) in (4.11), we obtain

$$\mathcal{Z}(\xi, V)\eta(Y) - \mathcal{Z}(Y, V) + \mathcal{Z}(\xi, \xi)g(Y, V) - \mathcal{Z}(\xi, Y)\eta(V) = 0. \quad (4.12)$$

Using (1.1) in (4.12), we arrive at

$$S(Y, V) = -2(\alpha^2 + \beta^2)g(Y, V). \quad (4.13)$$

On contracting last equation with respect to $Y = V = e_i$ $i = 1, 2, 3$, we obtain scalar curvature $r = -6(\alpha^2 + \beta^2)$.

Theorem 4.4. A trans-para-Sasakian manifold satisfying $\mathcal{Z}(X, Y) \circ Q(U, V)T = 0$ is an Einstein manifold.

Proof. Let $\mathcal{Z}(X, Y) \circ Q(U, V)T = 0$.

Taking $X = U = T = \xi$ in last equation, we get

$$\begin{aligned} & \mathcal{Z}(Y, Q(\xi, V)\xi) - \mathcal{Z}(\xi, Q(\xi, V)\xi)Y + \mathcal{Z}(Y, \xi)Q(\xi, V)T - \mathcal{Z}(\xi, \xi)Q(Y, V)\xi - \mathcal{Z}(\xi, V)Q(\xi, Y)\xi \\ & + \mathcal{Z}(Y, \xi)Q(\xi, V)\xi - \mathcal{Z}(\xi, \xi)Q(\xi, V)Y = 0. \end{aligned} \quad (4.14)$$

Taking scalar product with ξ in (4.14) and making use of (1.1), (2.9) and (4.10), we get

$$((\alpha^2 + \beta^2) + \frac{f}{2})(S(Y, V) + 2(\alpha^2 + \beta^2)g(Y, V)) = 0. \quad (4.15)$$

If $((\alpha^2 + \beta^2) + \frac{f}{2}) \neq 0$, then the manifold is Einstein and scalar curvature $r = -6(\alpha^2 + \beta^2)$.

Example 4.1: We consider the 3-dimensional manifold $M = \{(x, y, z) \in \mathbb{R}^3 | z \neq 0\}$, with (x, y, z) as the standard co-ordinates in \mathbb{R}^3 . Let e_1, e_2 and e_3 be the vector fields on M given by

$$e_1 = -z \frac{\partial}{\partial x}, \quad e_2 = -z \frac{\partial}{\partial y}, \quad e_3 = -z \frac{\partial}{\partial z}.$$

The vectors e_1, e_2 and e_3 are linearly independent at each point of M .

Let g be a semi-Riemannian metric defined by

$$g(e_1, e_1) = g(e_3, e_3) = 1, \quad g(e_2, e_2) = -1, \quad g(e_i, e_j) = 0, \quad i, j \in \{1, 2, 3\} \text{ and } i \neq j.$$

Let η be a 1-form on M defined by $\eta(X) = g(X, e_3)$, for all X on M and $e_3 = \xi$. Let ϕ be a $(1, 1)$ tensor field on M defined by

$$\phi e_1 = e_2, \quad \phi e_2 = e_1, \quad \phi e_3 = 0.$$

Using linearity property of ϕ and g , we have

$$\phi^2 X = X - \eta(X)\xi, \quad g(\phi X, \phi Y) = -g(X, Y) + \eta(X)\eta(Y).$$

Thus the structure (ϕ, ξ, η, g) defines an almost paracontact structure on M . Let ∇ be the Levi-civita-connection with respect to the metric g . Then we have

$$[e_1, e_2] = 0, \quad [e_1, e_3] = e_1, \quad [e_2, e_3] = e_2.$$

From Koszul formula

$$2g(\nabla_X Y, Z) = Xg(Y, Z) + Yg(Z, X) - Zg(X, Y) + g([X, Y], Z) - g([Y, Z], X) + g([Z, X], Y).$$

We can easily calculate

$$\begin{aligned} \nabla_{e_1} e_1 &= -e_3, \quad \nabla_{e_1} e_2 = 0, \quad \nabla_{e_1} e_3 = e_1, \\ \nabla_{e_2} e_1 &= 0, \quad \nabla_{e_2} e_2 = e_3, \quad \nabla_{e_2} e_3 = e_2, \\ \nabla_{e_3} e_1 &= 0, \quad \nabla_{e_3} e_2 = 0, \quad \nabla_{e_3} e_3 = 0. \end{aligned}$$

These equations show that $\nabla_X \xi$ and $(\nabla_X \phi)(Y)$ satisfies equations (2.2) and (2.3) and we obtain $\alpha = 0$ and $\beta = -1$. Thus M is a trans-para-Sasakian manifold of type $(0, -1)$. With the help of above equations it is easy to calculate

$$\begin{aligned} R(e_1, e_2)e_1 &= e_2, \quad R(e_1, e_2)e_2 = e_1, \quad R(e_1, e_2)e_3 = 0, \\ R(e_1, e_3)e_1 &= e_3, \quad R(e_1, e_3)e_2 = 0, \quad R(e_1, e_3)e_3 = -e_1, \\ R(e_2, e_3)e_1 &= 0, \quad R(e_2, e_3)e_2 = -e_3, \quad R(e_2, e_3)e_3 = -e_2. \end{aligned}$$

From these curvature tensor components we can calculate Ricci tensor as follows

$$\begin{aligned} S(e_1, e_1) &= S(e_3, e_3) = -2 \text{ and } S(e_2, e_2) = 2, \\ S(e_1, e_2) &= S(e_1, e_3) = S(e_2, e_3) = 0. \end{aligned}$$

We get $r = -6$. Using $\alpha = 0$ and $\beta = -1$ in Theorem 3.2 and Theorem 4.1, we get $r = -6$.

Using (3.2), we obtain the following

$$\begin{aligned}\mathcal{Z}(e_1, e_1) &= \left(\frac{r}{2} + (\alpha^2 + \beta^2) + f\right), \quad \mathcal{Z}(e_2, e_2) = -\left(\frac{r}{2} + (\alpha^2 + \beta^2) + f\right), \quad \mathcal{Z}(e_3, e_3) = f - 2(\alpha^2 + \beta^2). \\ \mathcal{Z}(e_1, e_2) &= \mathcal{Z}(e_1, e_3) = \mathcal{Z}(e_2, e_1) = \mathcal{Z}(e_2, e_3) = \mathcal{Z}(e_3, e_1) = \mathcal{Z}(e_3, e_2) = 0.\end{aligned}$$

Using previous equations, we obtain

$$(\nabla_{e_1} \mathcal{Z})(e_1, e_3) = -\left(\frac{r}{2} + 3(\alpha^2 + \beta^2)\right) \text{ and } (\nabla_{e_1} \mathcal{Z})(e_1, e_3) = \eta(e_1) \mathcal{Z}(e_1, e_3) = 0.$$

$$(\nabla_{e_1} \mathcal{Z})(e_1, e_1) = \frac{(e_1 r)}{2} + (e_1 f) \text{ and } (\nabla_{e_1} \mathcal{Z})(e_1, e_1) = \eta(e_1) \mathcal{Z}(e_1, e_1) = 0.$$

$$(\nabla_{e_2} \mathcal{Z})(e_2, e_3) = \left(\frac{r}{2} + 3(\alpha^2 + \beta^2)\right) \text{ and } (\nabla_{e_2} \mathcal{Z})(e_2, e_3) = 0.$$

From the above equations, we arrive at $r = -6(\alpha^2 + \beta^2)$.

Let $\mathcal{Z}(e_1, e_1) - \mathcal{Z}(e_2, e_2) + \mathcal{Z}(e_3, e_3) = 0$, we get $f = 2(\alpha^2 + \beta^2)$. For $\alpha = 0, \beta = -1$, we have $r = -6$ and $f = 2$. This verifies Theorem 3.2 and Theorem 4.1.

References

- [1] P. Bhatt and S. K. Chhalyal, LP-Kenmotsu manifold admitting Schouten-van-Kampen connection, *Jñānābha*, **52** (2022), 35-38.
- [2] P. Dacko, On almost para-cosymplectic manifolds, *Tsukuba J. Math.*, **28** (2004), 193-213.
- [3] S. Kaneyuki and F.L. Williams, Almost paracontact and parahodge structure on manifolds, *Nagoya Math. J.*, **99** (1985), 173-187.
- [4] N. B. Gatti, M. Nagraja, R. Mishra and D. G. Prakasha, \mathcal{Z} -symmetries of ϵ -para-Sasakian 3-manifolds, *Malaya J. Mathematik*, **9** (2020), 770-774.
- [5] A. Gray and L. M. Hervella, The sixteen class of almost Hermitian manifolds and their linear invariants, *Ann. math. Pura Appl.*, **4** (1980), 35-58.
- [6] J. C. Marrero and D. Chinea, On trans-Sasakian manifolds, *Proceedings of the XIVth Spanish-Portuguese conference on mathematics*, **I-III** (Spanish)(Puerto de la Cruz), UnivLa Laguna, 1990, 655-659.
- [7] J. C. Marrero, The local structure of trans-Sasakian manifolds, *Ann. Mat. Pura Appl.*, **4** (1992), 77-86.
- [8] C. A. Mantica, L. G. Molonari, Weakly \mathcal{Z} -symmetric manifolds, *Acta Math. Hungar.*, **135** (2012), 8096.
- [9] J. A. Oubina, New class of almost contact metric manifolds, *Publ. Math. Debrecen*, **32** (1985), 187-193.
- [10] I. Unal, $N(k)$ -contact metric manifolds admitting \mathcal{Z} -tensor", *KMU journal of Engineering and natural sciences*, **1**(2020), 64-69.
- [11] H. B. Yilmaz, Sasakian manifolds satisfying certain conditions on Q -tensor, *J. Geom.*, **111** (2020), 1-10.
- [12] S. Zamkovoy, Canonical connections on paracontact manifolds, *Ann. glob anal. Geom.*, **6**(2019), 37-60.
- [13] S. Zamkovoy, On geometry of Trans-para-Sasakian manifolds, *Filomat*, **18**(2019), 6015-6024.
- [14] S. Zamkovoy, On a para-Kenmotsu manifolds, *Filomat* **32** (2018), 4971-4980.