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Abstract

In the present paper, we establish a common fixed point theorem in perturbed metric spaces for
two pair of weakly compatible mappings using rational contraction.Additionally, an application and an
example are provided to support our generalization.
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1 Introduction and Preliminaries
The existence and uniqueness of fixed points are the main concerns of fixed point theory, which is widely
acknowledged to be one of the most studied areas of nonlinear functional analysis today. In order to ensure
that fixed points exist and are unique, Banach [2] obtained the first fundamentals result in this area. In
short, there is a unique fixed point in a complete metric space for every contraction mapping. This result
is called the principle of Banach contraction. Since the introduction of the Banach principle, this topic has
become more significant than ever before due to the fixed point theory’s limitless potential for usage in a wide
range of scientific fields, such as physics, chemistry, economics, some branches of engineering, and numerous
branches of mathematics. Because of this, several authors have explored for more fixed point conclusions
using the well-known Banach principle. They have also successfully published new fixed point results that
were created by combining or utilizing two extremely potent approaches. Substituting a more universal
space for the idea of a metric space is one method to achieve this. Some generalizations of metric spaces,
such as quasi-metric spaces, partial metric spaces, G-metric spaces, fuzzy metric spaces, b-metric spaces,
perturbed metric spaces, multiplicative metric spaces, etc., could be considered as replacements. Because
of its significance and uses in various scientific domains, the well-known Banach Contraction Principle has
been expanded upon and developed by a number of authors over time by introducing rational contractions
in complete metric spaces. Jaggi is credited with one of these attempts [9].
Assume that ( Υ,Σ ) be a complete metric space and let N : Υ → Υ be a self-mapping. If there exist
α, β ∈ [0, 1) with α + β < 1 such that A self-mapping N on a complete metric spaces ( Υ,Σ ) admits a

unique fixed point if Σ(Na,N b) ≤ αΣ(a, b) + βΣ(b,Nb)[1+Σ(a,Na)]
1+Σ(a,b) for all a, b ∈ Y with a 6= b, then N has a

unique fixed point p ∈ Υ.
In 1975, Dass and Gupta [2] gave the following fixed point theorem of new rational contraction to generalize
the Banach contraction principle
Let (Υ,Σ ) be a complete metric space, and let N : Υ → Υ be a self mapping. If there exist α, β ∈ [0, 1)
with α+ β < 1 such that

Σ(N (a),N (b)) 6 αΣ(a, b) + β
[1 + Σ(a,N (a))]Σ(b,N (b))

1 + Σ(a, b)
(1.1)

then N has a unique fixed point x∗ ∈ Υ.
For more details one can see [1, 3, 5, 7, 8, 11-21].
Perturbed metric spaces, one of the most fascinating of abstract spaces, are an exciting generalization of a
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metric space that was proposed in 2025 by Jleli and Samet [10]. The recently suggested idea of perturbed
metric spaces is defined as follows:

Definition 1.1. ([10]). Assume that the two provided mappings are ∇,ℵ : Υ×Υ→ [0,∞). Accordingly, if
∇− ℵ : Υ×Υ→ [0,∞) is defined as follows, then ∇ represents a perturbed metric on Υ with regard to ℵ.
(∇− ℵ)(a, b) = ∇(a, b)− ℵ(a, b)
that is, for all a, b, o ∈ X,
(i) (∇− ℵ)(a, b) ≥ 0;
(ii) (∇− ℵ)(a, b) = 0⇔ a = b;
(iii) (∇− ℵ)(a, b) = (∇− ℵ)(a, b);
(iv) (∇− ℵ)(a, b) ≤ (∇− ℵ)(a, b) + (∇− ℵ)(a, b),
where Σ = ∇ − ℵ produces a standard metric, the mapping ℵ is referred to as a perturbed mapping, and (
Υ,∇,X ) is referred to as a perturbed metric space. For a standard metric space, we use ( Υ,Σ ). Keep in
mind that a metric on Υ is not always a perturbed metric on Υ.

For other examples and preliminary work on perturbed metric space, refer to Jleli & Samet [10]. Several
topological concepts in the layout of perturbed metric spaces are now presented:

Definition 1.2. ([10]). Let (Υ,∇,ℵ) form a perturbed metric space. Take into consideration a self-mapping
N defined on Υ and a sequence {pn} in Υ.
(i) If the metric d is defined as Σ = ∇− ℵ, and {pn} is a convergent sequence in a standard metric space (
Y,Σ ), then {pn} is a convergent sequence in the ”perturbed sense in ( Υ,∇,ℵ ).
(ii) The sequence {pn} is a perturbed Cauchy sequence in ( Υ,∇,ℵ ) if it is a Cauchy in the context of a
standard metric space ( Υ,Σ ).
(iii) ( Υ,∇,ℵ ) is referred to as a complete perturbed metric space when ( Υ,Σ ) is a standard complete
metric space. This means that each perturbed Cauchy sequence in ( Υ,∇,ℵ ) converges in the ’perturbed
sense’.
(iv) A mapping N is perturbed continuous if it is continuous in the standard metric space (Υ,Σ).

Definition 1.3. . Let B and C be two self-mappings of perturbed metric spaces ( Υ,∇,ℵ ).
Commutative mappings are those in which BCa = CBa for all a ∈ Υ.

Definition 1.4. . Let B and C be two self-mappings of perturbed metric spaces ( Υ,∇,ℵ ).
Weak commutative mappings are defined as ∇(BCa,CBa) ≤ ∇(Ba,Ca) for any a in Υ.

Remark 1.1. . Weakly commuting is implied by commuting: BCa = CBa for all a ∈ Υ if two mappings B
and C commute. This indicates that ∇(BCa,CBa) = 0. The weak commutativity criterion, ∇(BCa,CBa) ≤
∇(Ba,Ca), is always met since standard distance is always nonnegative. The opposite is untrue: It is possible
for two mappings to commute weakly without really commuting. This occurs when there is at least one a0 ∈ Υ
for which BCa0 6= CBa0, yet ∇(BCa,CBa) ≤ ∇(Ba,Ca) holds for all a ∈ Υ.

Example 1.1. For an interval Υ = [0, 2], we shall define ∇ : Υ×Υ→ [0,∞) be the mapping defined by

∇(κ, t) = (κ− t)2

for all κ, t ∈ Υ. Then ∇ is a perturbed metric on Y, where the perturbed mapping N is given by

ℵ(κ, t) = (κ− t)2 − |κ− t|,
κ, t ∈ Υ, and the exact metric Σ is given by

Σ(κ, t) = |κ− t|
κ, t ∈ Υ. Clearly, (Υ,∇,ℵ) is a complete perturbed metric space.
Define mappings B and C : Υ→ Υ by

Ba = 3− a and Ca =

{
a if a ∈ [0, 1)
3− a if a ∈ [1, 2].

Then B and C are weakly commuting but not commuting.

Definition 1.5. . Consider two self-mappings of perturbed metric spaces ( Υ,∇,ℵ ) with values B and C.
If two mappings B and C commute at coincidence points, meaning that Ba = Ca implies BCa = CBa for
a ∈ Υ, then they are said to be weakly compatible.
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2 Main Result
Ghaziyah, Karapinar, and Shahi [6] demonstrated the following outcome in a complete perturbed metric
space in 2025:
Let N be a perturbed continuous mapping on a complete perturbed metric space ( Υ,∇,ℵ ). If there exists
ψ ∈ Ψ for all κ, η ∈ Υ satisfying

∇(Nκ,Nη) ≤ ψ
(

max
{
∇(κ, η),∇(κ,Nκ),∇(η,Nη), ∇(η,Nη)[1+∇(κ,Nκ)]

1+∇(κ,η)

})
.

Then N contain a fixed point .
Now we extend and generalize the above result in complete perturbed metric spaces as follow:

Theorem 2.1. . Consider a complete perturbed metric space ( Υ,∇,ℵ ). Assume that self-maps B,C,D,
and E : Υ→ Υ are continuous mappings that satisfy an additional requirement:

(C1)∇(Bκ,Cη) ≤ k1∇(Dη,Eκ) + k2 max
{
∇(Dη,Eκ), ∇(Eκ,Bκ)∇(Dη,Cη)

1+∇(Bκ,Cη)

}
+ k3 min{∇(Eκ,Cη),∇(Dη,Bκ)}

for all κ, η ∈ Υ,
where k1 + k2 + k3 < 1, ki ≥ 0, i = 1, 2, 3, (2.1)
(C2)BY ⊆ DY and CY ⊆ EY ,
(C3) (B,E) and (C,D) are weakly compatible,
(C4) perturbed function ℵ(b, b) = 0.
Then, for B,C,D and E in Υ, there is only one common fixed point.

Proof. Let κp0 := κ be an arbitrary point in Υ, and using condition (C2), we establish the sequences {κpn}
and {ηpn} in Υ as follows:

ηp2n = Dκp2n+1 = Bκp2n and ηp2n+1 = Eκp2n+2 = Cκp2n+1 for all n = 0, 1, 2, . . . ·
If ηp2n = ηp2n+1, for some n, then κp2n+1 is a coincident point of D and E.
Similarly, if ηp2n+1 = ηp2n+2, for some n, then Bκp2n+2 = Eκp2n+2, implying that κp2n+2 is a coincident point
of B and E.
Assume that ηp2n 6= ηp2n+1, for all n.
Then, using ( C1 ), by putting κ = κp2n and η = κp2n+1, we have
∇
(
ηp2n, η

p
2n+1

)
= ∇

(
Bκp2n,Cκ

p
2n+1

)
≤ k1∇

(
Dκp2n+1,Eκ

p
2n

)
+

k2 max

{
∇
(
Dκp2n+1,Eκ

p
2n

)
,
∇(Eκp2n,Bκ

p
2n)∇(Dκp2n+1,Uκ

p
2n+1)

1+∇(Bκp2n,Cκ
p
2n+1)

}
+

k3 min
{
∇
(
Eκp2n,Cκ

p
2n+1

)
,∇
(
Dκp2n+1,Bκ

p
2n

)}
.

That is, ∇
(
ηp2n, η

p
2n+1

)
= ∇

(
Bκp2n,Cκ

p
2n+1

)
≤ k1∇

(
ηp2n, η

p
2n−1

)
+

k2 max

{
∇
(
ηp2n, η

p
2n−1

)
,
∇(ηp2n−1,η

p
2n)∇(ηp2n,κ

p
2n+1)

1+∇(ηp2n,η
p
2n+1)

}
+ k3 min

{
∇
(
ηp2n−1, η

p
2n+1

)
,∇ (ηp2n, η

p
2n)
}

i.e., ∇
(
ηp2n, η

p
2n+1

)
≤ (k1 + k2)∇

(
ηp2n, η

p
2n−1

)
+

k3 min
{
∇
(
ηp2n−1, η

p
2n+1

)
,∇ (ηp2n, η

p
2n)
}
. (2.2)

By definition, Σ = ∇− N is the exact metric. In view of (2.2), we deduce that

Σ
(
ηp2n, η

p
2n+1

)
+ R

(
ηp2n, η

p
2n+1

)

≤ (k1 + k2)∇
(
ηp2n, η

p
2n−1

)
+ k3 min

{
∇
(
ηp2n−1, η

p
2n+1

)
,∇ (ηp2n, η

p
2n)
}

Σ
(
ηp2n, η

p
2n+1

)
≤ (k1 + k2)

(
Σ
(
ηp2n, η

p
2n−1

)
+ κ

(
ηp2n, η

p
2n−1

))
+

k3 min
{(

d
(
ηp2n−1, η

p
2n+1

)
+ R

(
ηp2n−1, η

p
2n+1

))
,Σ (ηp2n, η

p
2n) + κ (ηp2n, η

p
2n)
}

Σ
(
ηp2n, η

p
2n+1

)
≤ (k1 + k2)∇

(
ηp2n, η

p
2n−1

)
.

Similarly,
Σ
(
ηp2n−1, η

p
2n

)
≤ (k1 + k2)∇

(
ηp2n−2, η

p
2n−1

)
.

Thus, for any n ∈ N,
Σ
(
ηpn, η

p
n+1

)
≤ (k1 + k2)∇

(
ηpn−1, η

p
n

)
≤ (k1 + k2)

2∇
(
ηpn−2, η

p
n−1

)

≤ . . . ≤ (k1 + k2)
n∇ (ηp0 , η

p
1).
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Now, considering n,m ∈ N where m > n, we have:

Σ
(
ηpn, η

p
n+m

)
≤ Σ

(
ηpn, η

p
n+1

)
+ Σ

(
ηpn+1, η

p
n+m

)

≤ Σ
(
ηpn, η

p
n+1

)
+ Σ

(
ηpn+1, η

p
n+2

)
+ Σ

(
ηpn+2, η

p
n+m

)

≤ Σ
(
ηpn, η

p
n+1

)
+ Σ

(
ηpn+1, η

p
n+2

)
+ Σ

(
ηpn+2, η

p
n+3

)
+ Σ

(
ηpn+3, η

p
n+m

)

≤ · · · ≤ Σ
(
ηpn, η

p
n+1

)
+ Σ

(
ηpn+1, η

p
n+2

)
+ Σ

(
ηpn+2, η

p
n+3

)
+ · · ·+ Σ

(
ηpn+m−2, η

p
n+m−1

)

+ Σ
(
ηpn+m−1, η

p
n+m

)
,

Σ
(
ηpn, η

p
n+m

)
≤ (k1 + k2)

n∇ (ηp0 , η
p
1) + (k1 + k2)

n+1∇ (ηp0 , η
p
1) +

(k1 + k2)
n+2∇ (ηp0 , η

p
1) + · · ·+ (k1 + k2)

n+m−2∇ (ηp0 , η
p
1) + (k1 + k2)

n+m−1∇ (ηp0 , η
p
1)

≤ (k1 + k2)
n
[
1 + (k1 + k2) + (k1 + k2)

2
+ ..+ (k1 + k2)

m−2
+ (k1 + k2)

m−1
]
.

Σ
(
ηpn, η

p
n+m

)
≤ (k1+k2)n

1−(k1+k2)∇ (ηp0 , η
p
1) .

Since (k1 + k2) < 1, therefore, limm,n→∞Σ
(
ηpn, η

p
n+m

)
= 0.

Now, following standard reasoning, the above inequality establishes that the sequence {ηpn} forms Cauchy in
the layout of the standard metric space (Υ,Σ). It yields that the constructed sequence {ηpn} is a perturbed
Cauchy in a perturbed metric space ( Υ,∇, X ). Since Υ is a complete therefore, limn→∞Σ (ηp2n, η

∗) = 0.
Since BΥ ⊆ DΥ there exists κ∗ ∈ Υ such that η∗ = Dκ∗.
We claim that η∗ = Cκ∗.
Now from triangle inequality of a standard metric space, we have

Σ
(
Cκ∗, ηp2n+1

)
≤ Σ (Cκ∗, ηp2n) + Σ

(
ηp2n, η

p
2n+1

)
.

By definition, Σ = ∇− ℵ is the exact metric, so we have

∇
(
Cκ∗, ηp2n+1

)
− ℵ

(
Cκ∗, ηp2n+1

)

≤ ∇ (Cℵ∗, ηp2n)− ℵ (Cκ∗, ηp2n) +∇
(
ηp2n, η

p
2n+1

)
− ℵ

(
ηp2n, η

p
2n+1

)
,

Σ
(
Cκ∗, ηp2n+1

)
≤ ∇ (Cκ∗, ηp2n) +∇

(
ηp2n, η

p
2n+1

)
. (2.3)

Again, from triangle inequality of a standard metric space, we have
Σ (Cκ∗, ηp2n) ≤ Σ (Cκ∗, η∗) + Σ (η∗, ηp2n) ,
Σ (Cκ∗, ηp2n) ≤ ∇ (Cκ∗, η∗) +∇ (η∗, ηp2n) .
Now (2.3) becomes

Σ
(
Cκ∗, ηp2n+1

)
≤ ∇ (Cκ∗, ηp2n) +∇

(
ηp2n, η

p
2n+1

)

≤ Σ (Cκ∗, ηp2n) + ℵ (Cκ∗, ηp2n) +∇
(
ηp2n, η

p
2n+1

)

Σ
(
Cκ∗, ηp2n+1

)
≤ ∇ (Cκ∗, η∗) +∇ (η∗, ηp2n) +∇

(
ηp2n, η

p
2n+1

)
+ ℵ (Cκ∗, ηp2n) .

Taking n→∞, we have

Σ
(
C̃κ∗, η∗

)
≤ ∇ (Cκ∗, η∗) +∇ (η∗, η∗) +∇ (η∗, η∗) ≤ ∇ (Cκ∗, η∗) + 0 + 0 + ℵ (Cκ∗, η∗)

Σ (Cκ∗, η∗) ≤ ∇ (Cκ∗, η∗) + ℵ (Cκ∗, η∗)
implies that η∗ = Cκ∗.
Now
Σ (Dκ∗,Cκ∗) ≤ Σ (Dκ∗, ηp2n) + Σ (ηp2n,Cκ

∗) ,
Σ (Dκ∗,Cκ∗) ≤ Σ (Dκ∗, ηp2n) +∇ (Bκp2n,Cκ

∗)− ℵ (Bκp2n,Cκ
∗) ,

Σ (Dκ∗,Cκ∗) ≤ Σ (Dκ∗, ηp2n) +∇ (Bκp2n,Cκ
∗) ,

Σ (Dκ∗,Cκ∗) ≤ Σ (Dκ∗, ηp2n) + k1∇ (Dκ∗,Eκp2n) + k2 max

{
∇ (Dκ∗,Eκp2n) ,

∇(Eκp2n,Bκ
p
2n)∇(Dκ∗,Cκ∗)

1+∇(Bκp2n,Cκ∗)

}
+

k3 min {∇ (Eκp2n,Cκ
∗) ,∇ (Dκ∗,Bκp2n)} .

Taking n→∞, we have

Σ (Dκ∗,Cκ∗) ≤ Σ (Dκ∗, η∗) + k1∇ (Dκ∗, η∗) + k2 max
{
∇ (Dκ∗, η∗) , ∇(η∗,η∗)∇(Dκ∗,Cκ∗)

1+∇(η∗,Cκ∗)

}

+k3 min {∇ (η∗,Cκ∗) ,∇ (Dκ∗, η∗)} .
i.e., Σ (Dκ∗,Cκ∗) ≤ 0 + 0 + k2 max{0, 0}+ k3 min{0, 0}.
We obtain limn→∞Σ (Dκ∗,Cκ∗) = 0.
Hence Σ (Dκ∗,Cκ∗) = 0, implying η∗ = Dκ∗ = Cκ∗.
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Again, since CΥ ⊆ EΥ, there exists a point w ∈ Υ such that η∗ = Ew.
Furthermore, using ( C1 ), on putting κ = w and η = κ∗, we have

∇ (Bw, η∗) = ∇ (Bw,Cκ∗) ≤ k1∇ (Dκ∗,Cw) + k2 max
{
∇ (Dκ∗,Cw) , ∇(Cw,Bw)∇(Dκ∗,Cκ∗)

1+∇(Bw,Cκ∗)

}
+

k3 min {∇ (Ew,Cκ∗) ,∇ (Dκ∗,Bw)} .
∇ (Bw,Cκ∗) ≤ k1∇ (η∗,Gw) + k2 max

{
∇ (η∗, η∗) , ∇(η∗,Bw)∇(η∗,η∗)

1+∇(Bw,η∗)

}
+ k3 min {∇ (η∗, η∗) ,∇ (η∗,Bw)} .

∇ (Bw,Cκ∗) ≤ k1∇ (η∗,Ew) + k2 max{0, 0}+ k3 min {0,∇ (η∗,Bw)} = k1∇ (η∗,Ew) .
∇ (Bw, η∗) ≤ 0.
Hence, Σ (Bw, η∗) = 0, which implies that η∗ = Bw.
Consequently, this leads to η∗ = Bw = Ew; hence, η∗ = Dκ∗ = Cκ∗ = Bw = Ew.
Since ( C,D ) is weakly compatible, it follows that CDκ∗ = DCκ∗, thereby implying Cη∗ = Dη∗.
Now, let us prove that η∗ is a fixed-point of C.
If Cη∗ 6= η∗, then according to ( C1 ): on putting κ = w and η = η∗, we have

∇ (η∗,Cη∗) = ∇ (Bw,Cη∗) ≤ k1∇ (Dη∗,Cw) + k2 max
{
∇ (Dη∗,Cw) , ∇(Ew,Bw)∇(Dη∗,Cη∗)

1+∇(Bw,Cη∗)

}
+

k3 min {∇ (Cw,Cη∗) ,∇ (Dη∗,Bw)} .
That is, ∇ (η∗,Cη∗) ≤ k1∇ (Cη∗, η∗) + k2 max {∇ (Cη∗, η∗) , 0}+
k3 min {∇ (η∗,Cη∗) ,∇ (Cη∗, η∗)} ≤ (k1 + k2 + k3)∇

(
{η∗, η∗

)
.

This implies that ∇ (η∗,Cη∗) < ∇ (η∗,	 η∗), which is a contradiction.
Therefore, η∗ = Cη∗.
Hence, η∗ = Cη∗ = Dη∗.
Similarly, due to the weak compatibility of ( B,E ), we observe that η∗ = Bη∗ = Eη∗.
Now from ( C1 ) by putting κ = η∗ and η = η∗, we get

∇ (Bη∗, η∗) = ∇ (Bη∗,Cη∗) ≤ k1∇ (Dη∗,Eη∗) + k2 max
{
∇ (Dη∗,Eη∗) , ∇(Cη∗,Bη∗)∇(Dη∗,Cη∗)

1+∇(Bη∗,Cη∗)

}

+k3 min {∇ (Eη∗,Cη∗) ,∇ (Dη∗,Bη∗)}
∇ (Bη∗, η∗) ≤ k1∇ (η∗,Bη∗) + k2 max {∇ (η∗,Bη∗) , 0}+ k3 min {∇ (Bη∗, η∗) ,∇ (η∗,Bη∗)}
≤ (k1 + k2 + k3)∇ (Bη∗, η∗).
This implies that ∇ (Bη∗, η∗) < ∇ (Bη∗, η∗), a contradiction.
Thus, η∗ = Bη∗ = Cη∗ = Dη∗ = Eη∗, and η∗ is a common fixed-point of B,C,D, and E.
Uniqueness of η∗, let us suppose that η∗1 and η∗2 ; η∗1 6= η∗2 are common fixed-points of B,C,D and E.
Using (C1), on putting κ = η∗1 and η = η∗2 , we obtain

∇ (η∗1 , η
∗
2) = ∇ (Bη∗1 ,Cη

∗
2) ≤ k1∇ (Dη∗2 ,Eη

∗
1) + k2 max

{
∇ (Dη∗2 ,Eη

∗
1) ,

∇(Eη∗1 ,Bη
∗
1 )∇(Dη∗2 ,Cη

∗
2 )

1+∇(Bη∗1 ,Cη∗2)

}
+

k3 min {∇ (Eη∗1 ,Cη
∗
2) ,∇ (Dη∗2 ,Bη

∗
1)}

∇ (η∗1 , η
∗
2) ≤ k1∇ (η∗2 , η

∗
1) + k2 max {∇ (η∗2 , η

∗
1) , 0}+ k3 min {∇ (η∗1 , η

∗
2) ,∇ (η∗2 , η

∗
1)} .

That is, Σ (η∗1 , η
∗
2) = 0.

Therefore, η∗1 = η∗2 .
This concludes the proof of our theorem.

Remark 2.1. . In Theorem 2.1, the following inequalities hold: (k1 + k2) < 1, k1 < 1, k2 < 1.
Following Remark 2.1, we can derive the subsequent corollaries from Theorem 2.1.

Corollary 2.1. . Let ( Υ,∇,ℵ ) be a complete perturbed metric space. Let B,C : Υ → Υ be continuous
mappings satisfying:

∇(Bκ,Cη) ≤k1∇(κ, η) + k2 max

{
∇(κ, η),

∇(κ,Bκ)∇(η,Cη)

1 +∇(Bκ,Cη)

}

+ k3 min{∇(κ,Cη),∇(η,Bκ)},
for all κ, η ∈ Υ, where ki ∈ [0, 1), i=1,2,3 satisfy (k1 + k2) + k3 < 1.
Then B and C possess a unique common fixed point.

Corollary 2.2. ([6]). Suppose that ( Υ,∇,ℵ ) be a complete perturbed metric space. Let B : Υ → Υ be
continuous mappings satisfying:

∇(Bκ,Bη) ≤ k1∇(κ, η), for all κ, η ∈ Υ,

k1 ∈ (0,1), then B has a unique fixed-point.
This result signifies a Banach fixed-point theorem in a complete perturbed metric space.

184



Example 2.1. For an interval Υ = [0, 1], we shall define ∇ : Υ×Υ→ [0,∞) be the mapping defined by

∇(κ, t) = (κ− t)2

for all κ, t ∈ Υ.
Then ∇ is a perturbed metric on Υ, where the perturbed mapping ℵ is given by

ℵ(κ, t) = (κ− t)2 − |κ− t|,
κ, t ∈ Υ, and the exact metric Σ is given by

Σ(κ, t) = |κ− t|,
κ, t ∈ Υ. Clearly, ( Υ,∇,ℵ ) is a complete perturbed metric space.
Define the mappings B,C,D,E : Υ→ Υ be continuous mappings as follows:

Bκ =
κ

9
,Cκ =

κ

18
,Dκ =

κ

6
,Eκ =

κ

3
.

We observe that BΥ ⊆ DΥ and CΥ ⊆ EΥ. For each κ ∈ Υ, we have BEκ = κ
27 = EBκ and CDκ = κ

108 =
DCκ. Therefore, the pairs ( B,C ) and ( C,D ) are commuting mapping and hence are weakly compatible.
Therefore, all conditions of Theorem 2.1 are satisfied, and B,C,D and E have a unique common fixed-point
at 0 in Υ.

3 Application
Let Υ = C[a, b] be the set of continuous functions on Ω whose square is integrable on Ω where Ω = [0, 1] is
a standard metric space.
Consider the integral equations

κ(t) =

∫

Ω

q1(t, b, κ(b))db+ η(t),

η(t) =

∫

Ω

q2(t, b, η(b))db+ η(t), (3.1)

where q1, q2 : Ω× Ω× R→ R and η : Ω→ R+are given continuous mappings.
C[a, b] = {f : [a, b]→ R | f is continuous on [a, b]}.
The mapping is defined by the relation:

∇(z, w) = max
t∈[a,b]

|z(t)− w(t)|+ τ(z(a)− w(a)), τ ≥ −1, (3.2)

z, w ∈ C[a, b].
The mapping ∇ is a perturbed metric on C[a, b] with respect to the perturbing function ℵ, defined by the
relation:

ℵ(z, w) = τ(z(a)− w(a)), τ ≥ −1, z, w ∈ C[a, b]. (3.3)

The function ΣC[a, b]× C[a, b]→ [0,+∞) defined by the relation:

Σ(z, w) = max
t∈[a,b]

|z(t)− w(t)|, z, w ∈ C[a, b]. (3.4)

is an exact metric on C[a, b].
So, (C[a, b],∇,ℵ) is a perturbed metric space and (C[a, b],Σ) is an standard metric space. Suppose that the
following conditions hold:
(i) For each b, t ∈ Ω, we have

κ1(t) ≤
∫

Ω

q1 (t, b, κ1(b)) db

and

κ2(t) ≤
∫

Ω

q2 (t, b, κ2(b)) db.

(ii) There exists p : Ω→ Ω satisfying∫

Ω

|q1(t, b, κ(b))− q2(t, b, η(b))| db ≤ p(t)|κ(t)− η(t)|

for each b, t ∈ Ω with supt∈Ω p(t) ≤ k where k ∈ [0, 1).
Then the integral equations (3.1) have a common solution in C[a, b].

185



Proof. (Bκ)(t) =
∫

Ω
q1(t, b, κ(b))db+ η(t) and (Cκ)(t) =

∫
Ω
q2(t, b, κ(b))db+ η(t).

From (i), we have
Now, for all comparable κ, η ∈ Υ, we have

∇(Bκ,Cη) = sup
t∈Ω
|(Bκ)(t)− (Cη)(t)|

= sup
t∈Ω

∣∣∣∣
∫

Ω

q1(t, b, κ(b))db−
∫

Ω

q2(t, b, η(b))db

∣∣∣∣

≤ sup
t∈Ω

∫

Ω

|q1(t, b, κ(b))− q2(t, b, η(b))| db

≤ sup
t∈Ω

(t)|κ(t)− η(t)|

≤ k sup
t∈Ω
|κ(t)− η(t)|

= k∇(κ, η)

= k∇a,b(B,C),

where
∇κ,η(B,C) = ∇(κ, η)

≤
{
k1∇(κ, η) + k2 max

{
∇(κ, η),

∇(κ,Bκ)∇(η,Cη)

1 +∇(Bκ,Cη)

}

+k3 min{∇(κ,Cη),∇(η,Bκ)}} .
where ki ∈ [0, 1), i = 1, 2, 3 satisfy k1 + k2 + k3 < 1.
Now we can apply Corollary 2.1 to obtain the common solutions of integral equations (3.1) in C[a, b].

4 Conculsion
This paper defines commutative, weakly commutative, and weakly compatible mappings in perturbed

metric spaces, which is a natural and recent extension of classical metric spaces. We also obtained a common
fixed point result for self-mappings that satisfy the rational contractive condition. In addition to providing
enhancements and improvements over previous work, our results also generalize several of the well-known
fixed-point theorems in [2,4,6,9,10]. This demonstrates the value of perturbed metric spaces in expanding
the field of fixed-point theory and offers a solid basis for further research in this area.
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