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Abstract

In this paper, we study some comparative growth properties of composite analytic function of several
complex variables, on the basis of relative order and relative lower order of an entire function with respect
to an analytic function in the unit polydisc. Here we introduce some definitions related to relative order
and relative lower order in terms of central index and study them critically.
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1 Introduction
Let f(z1, z2, ..., zn) be an analytic function of the n complex variables defined as

f(z1, z2, ..., zn) =

∞∑

mj=0,j=1,2,··· ,n
amjz

mj
j , (1.1)

where zj = xj + iyj , xj , yj ∈ R.
Consider the maximum modulus principle of f , maximum term µf (r), central index νf (r) and unit

polydisc U are defined in the n complex variables in the following way respectivily:

Mf (r1, r2, · · · , rn) := max
{|zj |=rj ;j=1,2,··· ,n}

|f(zj)|, (1.2)

µf (r1, r2, · · · , rn) := max
mj≥0,j=1,2,··· ,n

|amj |r
mj
j , (1.3)

νf (r1, r2, · · · , rn) := {mk | µf (r1, r2, · · · , rn) = |amk |rmk}, (1.4)

U = {(z1, z2, ...zn) : |zj | ≤ 1, j = 1, 2...n}. (1.5)

The central index νf (r1, r2, · · · , rn) := {mk | µf (r1, r2, · · · , rn) = |amk |rmk}
so |aνf (r1,r2,··· ,rn)|rνf (r1,r2,··· ,rn) = µf (r1, r2, · · · , rn). Clearly µf (r1, r2, · · · , rn) is a non decreasing function
and µf (r1, r2, · · · , rn) ≤Mf (r1, r2, · · · , rn).

Let g be an analytic function in the unit polydisc. Then the ratio
Mf (r1,r2,··· ,rn)
Mg(r1,r2,··· ,rn) , where rk → 1, k =

1, 2, · · · , n is called the growth of f with respect to g in term of maximum moduli. In fact µf (r1, r2, · · · , rn)

is much weaker than Mf (r1, r2, · · · , rn) in some sense. So from another angle of view
µf (r1,r2,··· ,rn)
µg(r1,r2,··· ,rn) , where

rk → 1, k = 1, 2, · · · , n is called growth of f with respect to g, in term of maximum terms, now in similar way

we get growth of f with respect to g in terms of central index,
νf (r1,r2,··· ,rn)
νg(r1,r2,··· ,rn) where rk → 1, k = 1, 2, · · · , n.

Rastogi [9], Biswas [3] and Pramanik [12] worked on central index. A non-constant analytic function of n-
complex variables f(z1, z2, ..., zn) is said to have index-pair (p, q) if b < vnρ

(p,q)(f) <∞ and vnρ
(p−1,q−1)(f)

is not a nonzero finite number,where b = 1 if p = q and b = 0 for otherwise. Moreover if 0 < vnρ
(p,q)(f) <∞,

then 



vnρ
(p−n,q)(f) =∞ for n < p,

vnρ
(p,q−n)(f) = 0 for n < q,

vnρ
(p+n,q+n)(f) = 1 for n = 1, 2, ... ·
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Similarly for 0 < vnλ
(p,q)(f) <∞, one can easily verify that





vnλ
(p−n,q)(f) =∞ for n < p,

vnλ
(p,q−n)(f) = 0 for n < q,

vnλ
(p+n,q+n)(f) = 1 for n = 1, 2, ... ·

The function f(z1, z2, ...zn) is said to be of regular (p, q) growth when (p, q)-th order and (p, q)-th lower
order of f(z1, z2, ...zn) are the same. Functions which are not of regular (p, q) growth are said to be of
irregular (p, q) growth.

Somasundaram and Thamizharasi [14] introduced the notions of L-order (L-lower order ) for entire
functions of single variable where L ≡ L(r) is a positive continuous function increasing slowly i.e., L(ar) ∼
L(r) as r → 1 for every positive constant a. In the line of Somasundaram and Thamizharasi [14] one may
introduce the definition of (p, q, t)L-th order and (p, q, t)L-th lower order for functions of n complex variables
holomorphic in a unit polydisc in the following way

The details of the notions of maximum modulus , entire functions, growth, maximum term, central index
for one variable appear in [1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 13, 15].

To start our paper we just recall the following definitions:

2 Definitions
Definition 2.1 ([14]). Let f and g be analytic functions in the unit polydisc U . The relative order of f with
respect to g is defined by

ρ(p,q)
g (f) = lim

r→1

log[p] ν−1
g νf (r)

log[q] 1
1−r

,

and relative lower order is defined by

λ(p,q)
g (f) = lim

r→1

log[p] ν−1
g νf (r)

log[q] 1
1−r

.

Definition 2.2 ([14]). L order and L lower order for an analytic function in the unit polydisc U , where
L ≡ L(r) is a positive continuous function such that L(ar) ∼ L(r) as r → 1, for every positive constant a,
on the basis of maximum modulus M(r, f). The relative L order of an analytic function f with respect to g,
in terms of central index is defined by

ρ(p,q)L
g (f) = lim

r→1

log[p] ν−1
g νf (r)

log[q][ 1
1−rL( 1

1−r )]
,

and relative L lower order is defined by

λ(p,q)L
g (f) = lim

r→1

log[p] ν−1
g νf (r)

log[q][ 1
1−rL( 1

1−r )]
.

In the light of Definition 2.2, and from the concept of several complex variables [7] we would like to
introduce the following definitions for several complex variables:

Definition 2.3. Let f and g be analytic functions of n complex variables in the unit polydisc U . The relative
order and relative lower order of f with respect to g are defined by

ρ(p,q)
g (f) = lim

(r1,r2,··· ,rn)→1

log[p] ν−1
g νf (r1, r2, · · · , rn)

log[q]( 1
(1−r1)(1−r2).....(1−rn) )

,

and

λ(p,q)
g (f) = lim

(r1,r2,··· ,rn)→1

log[p] ν−1
g νf (r1, r2, · · · , rn)

log[q]( 1
(1−r1)(1−r2).....(1−rn) )

,

respectively.
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Definition 2.4. Let f and g be analytic functions of n complex variables in the unit polydisc U . The relative
L order and relative L lower order of f with respect to g, are defined by

ρ(p,q)L
g (f) = lim

(r1,r2,···rn)→1

log[p] ν−1
g νf (r1, r2 · · · , rn)

log[q][( 1
1−r1

1
1−r2 · · ·

1
1−rn )L( 1

1−r1
1

1−r2 · · ·
1

1−rn )]
,

and

λ(p,q)L
g (f) = lim

(r1,r2,···rn)→1

log[p] ν−1
g νf (r1, r2 · · · , rn)

log[q][( 1
(1−r1)(1−r2).....(1−rn) )L( 1

1−r1
1

1−r2 · · ·
1

1−rn )]
,

respectively. Here idea of L order (respectively, L lower order ) of an analytic function is defined in [12, 14].

Definition 2.5. Let f and g be analytic functions of n complex variables in the unit polydisc U . The relative
L∗ order and relative L∗ lower order of f with respect to g is defined by

ρ(p,q)L∗

g (f) = lim
(r1,r2,··· ,rn)→1

log[p] ν−1
g νf (r1, r2, · · · , rn)

log[q][( 1
(1−r1)(1−r2).....(1−rn) ) expL( 1

1−r1
1

1−r2
··· 1

1−rn )]
.

Here idea of L∗ order (respectively, L∗ lower order) of an analytic function where L∗ is nothing but a weaker
assumption of L [12]. The relative L∗ lower order is defined by

λ(p,q)L∗

g (f) = lim
(r1,r2,··· ,rn)→1

log[p] ν−1
g νf (r1, r2, · · · , rn)

log[q][( 1
(1−r1)(1−r2).....(1−rn) ) expL( 1

1−r1
1

1−r2
··· 1

1−rn )]
.

3 Results
The results of the paper are following:

Theorem 3.1. Let f , g and h be analytic functions in the unit polydisc U such that 0 < λh
(p,q)(f ◦ g) ≤

ρh
(p,q)(f ◦ g) <∞ and 0 < λh

(p,q)(f) ≤ ρh(p,q)(f) <∞.
Then

λh
(p,q)(f ◦ g)

ρh(p,q)f
≤ lim

(r1,r2,··· ,rn)→1

log[p] ν−1
h νf◦g(r1, r2, · · · , rn)

log[p] ν−1
h νf (r1, r2, · · · , rn)

≤ min

{
λh

(p,q)(f ◦ g)

λh
(p,q)f

,
ρh

(p,q)(f ◦ g)

ρh(p,q)f

}

≤ max

{
λh

(p,q)(f ◦ g)

λh
(p,q)f

,
ρh

(p,q)(f ◦ g)

ρh(p,q)f

}

≤ lim
(r1,r2,··· ,rn)→1

log[p] ν−1
h νf◦g(r1, r2, · · · , rn)

log[p] νh−1νf (r1, r2, · · · , rn)

≤ ρh
(p,q)(f ◦ g)

λh
(p,q)f

.

Proof. From the definition of relative order defined in (2.3), for arbitrary ε > 0, we get the following

log[p] ν−1
h νf◦g(r1, r2, · · · , rn) ≤ (ρ

(p,q)
h (f ◦ g) + ε) log[q](

1

(1− r1)(1− r2).....(1− rn)
), (3.1)

and

log[p] ν−1
h νf◦g(r1, r2, · · · , rn) ≥ (λ

(p,q)
h (f ◦ g)− ε) log[q](

1

(1− r1)(1− r2).....(1− rn)
). (3.2)

When rk → 1, where k = 1, 2, · · · , n

log[p] ν−1
h νf◦g(r1, r2, · · · , rn) ≤ (λ

(p,q)
h (f ◦ g) + ε) log[q](

1

(1− r1)(1− r2).....(1− rn)
), (3.3)
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and

log[p] ν−1
h νf◦g(r1, r2, · · · , rn) ≥ (ρ

(p,q)
h (f ◦ g)− ε) log[q](

1

(1− r1)(1− r2).....(1− rn)
). (3.4)

Similarly when we replace f ◦ g by f in the above equation, we get the following

log[p] ν−1
h νf (r1, r2, · · · , rn) ≤ (ρ

(p,q)
h (f) + ε) log[q](

1

(1− r1)(1− r2).....(1− rn)
), (3.5)

and

log[p] ν−1
h νf (r1, r2, · · · , rn) ≥ (λ

(p,q)
h (f)− ε) log[q](

1

(1− r1)(1− r2).....(1− rn)
). (3.6)

When rk → 1, where k = 1, 2, · · · , n
log[p] ν−1

h νf (r1, r2, · · · , rn) ≤ (λ
(p,q)
h (f) + ε) log[q](

1

(1− r1)(1− r2).....(1− rn)
), (3.7)

and

log[p] ν−1
h νf (r1, r2, · · · , rn) ≥ (ρ

(p,q)
h (f)− ε) log[q](

1

(1− r1)(1− r2).....(1− rn)
). (3.8)

From (3.2) and (3.5) it follows for sufficiently large value of 1
1−r1 ,

1
1−r2 , · · ·

1
1−rn that

log[p] ν−1
h νf◦g(r1, r2, · · · , rn)

log[p] ν−1
h νf (r1, r2, · · · , rn)

≥ λ
(p,q)
h (f ◦ g)− ε
ρ

(p,q)
h (f) + ε

.

Since ε is arbitrary

lim
(r1,r2,··· ,rn)→1

log[p] ν−1
h νf◦g(r1, r2, · · · , rn)

log[p] ν−1
h νf (r1, r2, · · · , rn)

≥ λ
(p,q)
h (f ◦ g)

ρ
(p,q)
h (f)

. (3.9)

From (3.3) and (3.6), we obtain

log[p] ν−1
h νf◦g(r1, r2, · · · , rn)

log[p] ν−1
h νf (r1, r2, · · · , rn)

≤ λ
(p,q)
h (f ◦ g) + ε

λ
(p,q)
h (f)− ε

.

Since ε is arbitrary

lim
(r1,r2,··· ,rn)→1

log[p] ν−1
h νf◦g(r1, r2, · · · , rn)

log[p] ν−1
h νf (r1, r2, · · · rn)

≤ λ
(p,q)
h (f ◦ g)

λ
(p,q)
h (f)

, (3.10)

From (3.1) and (3.8)

log[p] ν−1
h νf◦g(r1, r2, · · · , rn)

log[p] ν−1
h νf (r1, r2, · · · , rn)

≤ ρ
(p,q)
h (f ◦ g) + ε

ρ
(p,q)
h (f)− ε

.

Since ε is arbitrary

lim
(r1,r2,··· ,rn)→1

log[p] ν−1
h νf◦g(r1, r2, · · · , rn)

log[p] ν−1
h νf (r1, r2, · · · , rn)

≤ ρ
(p,q)
h (f ◦ g)

ρ
(p,q)
h (f)

. (3.11)

From (3.9), (3.10) and (3.11), we obtain

λ
(p,q)
h (f ◦ g)

ρ
(p,q)
h (f)

≤ lim
(r1,r2,···rn)→1

log[p] ν−1
h νf◦g(r1, r2, · · · , rn)

log[p] ν−1
h νf (r1, r2, · · · , rn)

≤ min

{
λ

(p,q)
h (f ◦ g)

λ
(p,q)
h (f)

,
ρ

(p,q)
h (f ◦ g)

ρ
(p,q)
h (f)

}
. (3.12)

From (3.2) and (3.7) for rk → 1, where k = 1, 2, · · · , n, we get

log[p] ν−1
h νf◦g(r1, r2, · · · , rn)

log[p] ν−1
h νf (r1, r2, · · · , rn)

≥ λ
(p,q)
h (f ◦ g)− ε
λ

(p,q)
h (f) + ε

.

As ε > 0 is arbitrary, we obtain

lim
(r1,r2,··· ,rn)→1

log[p] ν−1
h νf◦g(r1, r2, · · · rn)

log[p] ν−1
h νf (r1, r2, · · · , rn)

≥ λ
(p,q)
h (f ◦ g))

λ
(p,q)
h (f))

. (3.13)
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From (3.1) and (3.6), we obtain the following

log[p] ν−1
h νf◦g(r1, r2, · · · rn)

log[p] ν−1
h νf (r1, r2, · · · , rn)

≤ ρ
(p,q)
h (f ◦ g) + ε

λ
(p,q)
h (f)− ε

.

As ε > 0, we obtain

lim
(r1,r2,··· ,rn)→1

log[p] ν−1
h νf◦g(r1, r2, · · · , rn)

log[p] ν−1
h νf (r1, r2, · · · rn)

≤ ρ
(p,q)
h (f ◦ g)

λ
(p,q)
h (f)

. (3.14)

Similarly from (3.4) and (3.5)

log[p] ν−1
h νf◦g(r1, r2, · · · , rn)

log[p] ν−1
h νf (r1, r2, · · · , rn)

≥ ρ
(p,q)
h (f ◦ g)− ε
ρ

(p,q)
h (f) + ε

.

As ε is arbitrary

lim
(r1,r2,···rn)→1

log[p] ν−1
h νf◦g(r1, r2, · · · , rn)

log[p] ν−1
h νf (r1, r2, · · · , rn)

≥ ρ
(p,q)
h (f ◦ g)

ρ
(p,q)
h (f)

. (3.15)

Combining (3.13), (3.14) and (3.15), we obtain

max

{
λh

p,q(f ◦ g)

λh
(p,q)f

,
ρh

(p,q)(f ◦ g)

ρh(p,q)f

}
≤ lim

(r1,r2,···rn)→1

log[p] ν−1
h νf◦g(r1, r2, · · · , rn)

log[p] ν−1
h νf (r1, r2, · · · , rn)

≤ ρh
(p,q)(f ◦ g)

λh
(p,q)(f)

. (3.16)

Hence, from (3.12) and (3.16), we obtain

λh
(p,q)(f ◦ g)

ρh(p,q)(f)
≤ lim

(r1,r2,···rn)→1

log[p] ν−1
h νf◦g(r1, r2, · · · , rn)

log[p] ν−1
h νf (r1, r2, · · · , rn)

≤ min

{
λh

(p,q)(f ◦ g)

λh
(p,q)f

,
ρh

(p,q)(f ◦ g)

ρh(p,q)f

}

≤ max

{
λh

(p,q)(f ◦ g)

λh
(p,q)f

,
ρh

(p,q)(f ◦ g)

ρh(p,q)f

}

≤ lim
(r1,r2,··· ,rn)→1

log[p] ν−1
h νf◦g(r1, r2, · · · , rn)

log[p] νh−1νf (r1, r2, · · · , rn)

≤ ρh
(p,q)(f ◦ g)

λh
(p,q)(f)

.

Theorem 3.2. Let f , g and h be analytic functions of n complex variables in the unit polydisc U such that
0 < λh

(p,q)(f ◦ g) ≤ ρh(p,q)(f ◦ g) <∞ and 0 < λh
(p,q)(f) ≤ ρh(p,q)(f) <∞.

Then
λh

(p,q)(f ◦ g)

ρh(p,q)(f)
≤ lim

(r1,r2,··· ,rn)→1

log[p] ν−1
h νf◦g(r1, r2, · · · , rn)

log[p] ν−1
h νf (r1, r2, · · · , rn)

≤ λh
(p,q)(f ◦ g)

λh
(p,q)f

≤ lim
(r1,r2,··· ,rn)→1

log[p] ν−1
h νf◦g(r1, r2, · · · , rn)

log[p] νh−1νf (r1, r2, · · · , rn)
≤ ρh

(p,q)(f ◦ g)

λh
(p,q)(f)

.

Proof. The above theorem follows from (3.9), (3.10), (3.13) and (3.16).

Theorem 3.3. Let f , g and h be analytic functions of n complex variables in the unit polydisc U . such that
0 < λh

(p,q)(f ◦ g) ≤ ρh(f ◦ g) <∞ and 0 < λh(f) ≤ ρh(p,q)(f) <∞.
Then

lim
(r1,r2,···rn)→1

log[p] ν−1
h νf◦g(r1, r2, · · · , rn)

log[p] ν−1
h νf (r1, r2, · · · rn)

≤ ρh
(p,q)(f ◦ g)

ρ
(p,q)
h f

≤ lim
(r1,r2,···rn)→1

log[p] ν−1
h νf◦g(r1, r2, · · · rn)

log[p] νh−1νf (r1, r2, · · · rn)
.
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Proof. From the definition of relative order of f for ε > 0 and rk → 1, where k = 1, 2, · · · , n

log[p] ν−1
h νf (r1, r2, · · · , rn) ≥ (ρ

(p,q)
h (f)− ε) log[p](r1r2 · · · rn), (3.17)

and

log[p] ν−1
h νf◦g(r1, r2, · · · rn) ≤ (ρ

(p,q)
h (f ◦ g) + ε) log[q](

1

(1− r1)(1− r2).....(1− rn)
) (3.18)

From (3.17) and (3.18) we obtain

log[p] ν−1
h νf◦g(r1, r2, · · · rn)

log[p] ν−1
h νf (r1, r2, · · · , rn)

≤ ρh
(p,q)(f ◦ g) + ε

ρh(p,q)f − ε
As ε > 0

lim
(r1,r2,··· ,rn)→1

log[p] ν−1
h νf◦g(r1, r2, · · · , rn)

log[p] ν−1
h νf (r1, r2, · · · , rn)

≤ ρh
(p,q)(f ◦ g)

ρh(p,q)f
(3.19)

Since rk → 1, where k = 1, 2, · · · , n

log[p] ν−1
h νf◦g(r1, r2, · · · rn) ≥ (ρ

(p,q)
h (f ◦ g)− ε) log[q](

1

(1− r1)(1− r2).....(1− rn)
) (3.20)

Now combining form of (3.5) and (3.20) is the following:

log[p] ν−1
h νf◦g(r1, r2, · · · rn)

log[p] ν−1
h νf (r1, r2, · · · , rn)

≥ ρh
(p,q)(f ◦ g) + ε

ρh(p,q)f − ε
As ε > 0 is arbitrary

lim
(r1,r2,··· ,rn)→1

log[p] ν−1
h νf◦g(r1, r2, · · · , rn)

log[p] ν−1
h νf (r1, r2, · · · rn)

≥ ρ
(p,q)
h (f ◦ g)

ρ
(p,q)
h (f)

(3.21)

Hence, from (3.21) and (3.19), we obtain

lim
(r1,r2,··· ,rn)→1

log[p] ν−1
h νf◦g(r1, r2, · · · , rn)

log[p] ν−1
h νf (r1, r2, · · · , rn)

≤ ρh
(p,q)(f ◦ g)

ρh(p,q)f

≤ lim
(r1,r2,··· ,rn)→1

log[p] ν−1
f◦gνf (r1, r2, · · · , rn)

log[p] ν−1
h νf (r1, r2, · · · rn)

.

Theorem 3.4. Let f , g and h be analytic functions in the unit polydisc U , such that 0 < λh
(p,q)L(f ◦ g) ≤

ρh
(p,q)L(f ◦ g) <∞ and 0 < λh

(p,q)L(f) ≤ ρh(p,q)L(f) <∞.
Then

λh
(p,q)L(f ◦ g)

ρh(p,q)L(f)
≤ lim

(r1,r2,··· ,rn)→1

log[p] ν−1
h νf◦g(r1, r2, · · · , rn)

log[p] ν−1
h νf (r1, r2, · · · , rn)

≤ min

{
λh

(p,q)L(f ◦ g)

λh
(p,q)Lf

,
ρh

(p,q)L(f ◦ g)

ρh(p,q)Lf

}

≤ max

{
λh

(p,q)L(f ◦ g)

λh
(p,q)Lf

,
ρh

(p,q)L(f ◦ g)

ρh(p,q)Lf

}

≤ lim
(r1,r2,··· ,rn)→1

log[p] ν−1
h νf◦g(r1, r2, · · · , rn)

log[p] νh−1νf (r1, r2, · · · rn)

≤ ρh
(p,q)L(f ◦ g)

λh
(p,q)L(f)

.
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Proof. From the definition (2.4) and arbitrary ε > 0

log[p] ν−1
h νf◦g(r1, r2, · · · , rn) ≤

(
ρ

(p,q)L
h (f ◦ g) + ε

)

log[q]

(
1

(1− r1)(1− r2).....(1− rn)
L

(
1

(1− r1)

1

(1− r2)
· · · 1

(1− rn)

))
, (3.22)

and

log[p] ν−1
h νf◦g(r1, r2, · · · , rn) ≥

(
λ

(p,q)L
h (f ◦ g)− ε

)

log[q]

(
1

(1− r1)(1− r2).....(1− rn)
L

(
1

(1− r1)

1

(1− r2)
· · · 1

(1− rn)

))
. (3.23)

Since rk → 1, where k = 1, 2, · · · , n

log[p] ν−1
h νf◦g(r1, r2, · · · , rn) ≤

(
λ

(p,q)L
h (f ◦ g) + ε

)

log[q]

(
1

(1− r1)(1− r2).....(1− rn)
L

(
1

(1− r1)

1

(1− r2)
· · · 1

(1− rn)

))
, (3.24)

and

log[p] ν−1
h νf◦g(r1, r2, · · · rn) ≥

(
ρ

(p,q)L
h (f ◦ g)− ε

)

log[q]

(
1

(1− r1)(1− r2).....(1− rn)
L

(
1

(1− r1)

1

(1− r2)
· · · 1

(1− rn)

))
. (3.25)

Similarly for the function f , we obtain

log[p] ν−1
h νf (r1, r2, · · · , rn) ≤

(
ρ

(p,q)L
h (f) + ε

)

log[q]

(
1

(1− r1)(1− r2).....(1− rn)
L

(
1

(1− r1)

1

(1− r2)
· · · 1

(1− rn)

))
, (3.26)

and

log[p] ν−1
h νf (r1, r2, . . . , rn) ≥

(
λ

(p,q)L
h (f)− ε

)

log[q]

(
1

(1− r1)(1− r2).....(1− rn)
L

(
1

(1− r1)

1

(1− r2)
· · · 1

(1− rn)

))
. (3.27)

Since rk → 1, where k = 1, 2, · · · , n

log[p] ν−1
h νf (r1, r2, · · · , rn) ≤

(
λ

(p,q)L
h (f) + ε

)

log[q]

(
1

(1− r1)(1− r2).....(1− rn)
L

(
1

(1− r1)

1

(1− r2)
· · · 1

(1− rn)

))
, (3.28)

and

log[p] ν−1
h νf (r1, r2, · · · , rn) ≥

(
ρ

(p,q)L
h (f)− ε

)

log[q]

(
1

(1− r1)(1− r2).....(1− rn)
L

(
1

(1− r1)

1

(1− r2)
· · · 1

(1− rn)

))
. (3.29)

From (3.23) and (3.26) it follows for sufficiently large value of (r1, r2, · · · , rn)

log[p] ν−1
h νf◦g(r1, r2, · · · rn)

log[p] ν−1
h νf (r1, r2, · · · , rn)

≥ λ
(p,q)L
h (f ◦ g)− ε
ρ

(p,q)L
h (f) + ε

.

Since ε > 0 is arbitrary

lim
(r1,r2,··· ,rn)→1

log[p] ν−1
h νf◦g(r1, r2, · · · , rn)

log[p] ν−1
h νf (r1, r2, · · · rn)

≥ λ
(p,q)L
h (f ◦ g)

ρ
(p,q)L
h (f)

. (3.30)
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From (3.24) and (3.27), we obtain

log[p] ν−1
h νf◦g(r1, r2, . . . rn)

log[p] ν−1
h νf (r1, r2, · · · , rn)

≤ λ
(p,q)L
h (f ◦ g) + ε

λ
(p,q)L
h (f)− ε

.

Since ε > 0 is arbitrary

lim
r1,r2,···rn→1

log[p] ν−1
h νf◦g(r1, r2, · · · , rn)

log[p] ν−1
h νf (r1, r2, · · · , rn)

≤ λ
(p,q)L
h (f ◦ g)

λ
(p,q)L
h (f)

. (3.31)

From (3.22) and (3.29), we obtain

log[p] ν−1
h νf◦g(r1, r2, · · · , rn)

log[p] ν−1
h νf (r1, r2, · · · , rn)

≤ ρ
(p,q)L
h (f ◦ g) + ε

ρ
(p,q)L
h (f)− ε

.

As ε > 0

lim
(r1,r2,··· ,rn)→1

log[p] ν−1
h νf◦g(r1, r2, · · · , rn)

log[p] ν−1
h νf (r1, r2, · · · , rn)

≤ ρ
(p,q)L
h (f ◦ g)

ρ
(p,q)L
h (f)

. (3.32)

From (3.30), (3.31) and (3.32), we get the following

λ
(p,q)L
h (f ◦ g)

ρ
(p,q)L
h (f)

≤ lim
r1,r2,··· ,rn→1

log[p] ν−1
h νf◦g(r1, r2, · · · , rn)

log[p] ν−1
h νf (r1, r2, · · · , rn)

≤ min

{
λ

(p,q)L
h (f ◦ g)

λ
(p,q)L
h (f)

,
ρ

(p,q)L
h (f ◦ g)

ρ
(p,q)L
h (f)

}
. (3.33)

From (3.23) and (3.28) for rk → 1, where k = 1, 2, · · · , n, then

log[p] ν−1
h νf◦g(r1, r2, · · · , rn)

log[p] ν−1
h νf (r1, r2, · · · , rn)

≥ λ
(p,q)L
h (f ◦ g)− ε
λ

(p,q)L
h (f) + ε

.

As ε > 0 is arbitrary

lim
(r1,r2,··· ,rn)→1

log[p] ν−1
h νf◦g(r1, r2, · · · , rn)

log[p] ν−1
h νf (r1, r2, . . . , rn)

≥ λ
(p,q)L
h (f ◦ g)

λ
(p,q)L
h (f)

. (3.34)

From (3.22) and (3.27)

log[p] ν−1
h νf◦g(r1, r2, · · · , rn)

log[p] ν−1
h νf (r1, r2, · · · , rn)

≤ ρ
(p,q)L
h (f ◦ g) + ε

λ
(p,q)L
h (f)− ε

.

As ε > 0 is arbitrary

lim
(r1,r2,··· ,rn)→1

log[p] ν−1
h νf◦g(r1, r2, · · · rn)

log[p] ν−1
h νf (r1, r2, · · · , rn)

≤ ρ
(p,q)L
h (f ◦ g)

λ
(p,q)L
h (f)

. (3.35)

Similarly from (3.25) and (3.26), we get the following:

log[p] ν−1
h νf◦g(r1, r2, · · · , rn)

log[p] ν−1
h νf (r1, r2, · · · , rn)

≥ ρ
(p,q)L
h (f ◦ g)− ε
ρ

(p,q)L
h (f) + ε

.

As ε > 0 is arbitrary

lim
(r1,r2,··· ,rn)→1

log[p] ν−1
h νf◦g(r1, r2, · · · , rn)

log[p] ν−1
h νf (r1, r2, · · · , rn)

≥ ρ
(p,q)L
h (f ◦ g)

ρ
(p,q)L
h (f)

. (3.36)

From (3.34), (3.35) and (3.36) we obtain

max

{
λh

(p,q)L(f ◦ g)

λh
(p,q)Lf

,
ρh

(p,q)L(f ◦ g)

ρh(p,q)Lf

}
≤ lim

(r1,r2,··· ,rn)→1

log[p] ν−1
h νf (r1, r2, · · · , rn)

log[p] ν−1
h νf(r1, r2, · · · , rn)

≤ ρh
(p,q)L(f ◦ g)

λh
(p,q)L(f)

.

(3.37)
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From (3.33) and (3.37)

λh
(p,q)L(f ◦ g)

ρh(p,q)L(f)
≤ lim

(r1,r2,··· ,rn)→1

log[p] ν−1
h νf◦g(r1, r2, · · · , rn)

log[p] ν−1
h νf (r1, r2, · · · , rn)

≤ min

{
λh

(p,q)L(f ◦ g)

λh
(p,q)Lf

,
ρh

(p,q)L(f ◦ g)

ρh(p,q)Lf

}

≤ max

{
λh

(p,q)L(f ◦ g)

λh
(p,q)Lf

,
ρh

(p,q)L(f ◦ g)

ρh(p,q)Lf

}

≤ lim
(r1,r2,··· ,rn)→1

log[p] ν−1
h νf◦g(r1, r2, . . . , rn)

log[p] νh−1νf (r1, r2, · · · , rn)

≤ ρh
(p,q)L(f ◦ g)

λh
(p,q)L(f)

.

From the above theorems we can obtain the following corollaries:

Corollary 3.1. Let f , g and h be analytic functions in the unit polydisc U such that 0 < λh
(p,q)L(f ◦ g) ≤

ρh
(p,q)L(f ◦ g) <∞ and 0 < λh

(p,q)L(f) ≤ ρh(p,q)L(f) <∞.
Then

λh
(p,q)L(f ◦ g)

ρh(p,q)L(f)
≤ lim

(r1,r2,··· ,rn)→1

log[p] ν−1
h νf◦g(r1, r2, · · · , rn)

log[p] ν−1
h νf (r1, r2, · · · , rn)

≤ λh
(p,q)L(f ◦ g)

λh
(p,q)Lf

≤ lim
(r1,r2,··· ,rn)→1

log[p] ν−1
h νf◦g(r1, r2, · · · , rn)

log[p] νh−1νf (r1, r2, · · · , rn)
≤ ρh

(p,q)L(f ◦ g)

λh
(p,q)L(f)

.

Proof. When we take L-lower order and L-order in Theorem 3.2 then we get the corollary.

Corollary 3.2. Let f , g and h be analytic functions in the unit polydisc U such that 0 < λh
(p,q)L(f ◦ g) ≤

ρh
(p,q)L(f ◦ g) <∞ and 0 < λh

(p,q)L(f) ≤ ρh(p,q)L(f) <∞.
Then

lim inf
(r1,r2,··· ,rn)→1

log[p] ν−1
h νf◦g(r1, r2 · · · , rn)

log[p] ν−1
h νf (r1, r2, · · · , rn)

≤ ρh
(p,q)L(f ◦ g)

ρh(p,q)Lf

≤ lim sup
(r1,r2,··· ,rn)→1

log[p] ν−1
h νf◦g(r1, r2, · · · , rn)

log[p] νh−1νf (r1, r2, · · · , rn)
.

Proof. When we take L-order and L- lower order in Theorem 3.3 we can get the result.

Corollary 3.3. Let f , g and h be analytic functions in the unit polydisc U such that 0 < λh
(p,q)L∗(f ◦ g) ≤

ρh
(p,q)L∗(f ◦ g) <∞ and 0 < λh

(p,q)L∗(f) ≤ ρh(p,q)L∗(f) <∞.
Then

λh
(p,q)L∗(f ◦ g)

ρh(p,q)L∗(f)
≤ lim inf

(r1,r2,··· ,rn)→1

log[p] ν−1
h νf◦g(r1, r2, · · · , rn)

log[p] ν−1
h νf (r1, r2, · · · rn)

≤ λh
(p,q)L∗(f ◦ g)

λh
(p,q)L∗f

≤ lim sup
(r1,r2,···rn)→1

log[p] ν−1
h νf◦g(r1, r2, · · · rn)

log[p] νh−1νf (r1, r2, · · · , rn)
≤ ρh

(p,q)L∗(f ◦ g)

λh
(p,q)L∗(f)

.

Proof. When we take L∗ order and L∗ lower order in Theorem 3.2 we can get the result.

Corollary 3.4. Let f , g and h be analytic functions in the unit polydisc U such that 0 < λh
(p,q)L∗(f ◦ g) ≤

ρh
(p,q)L∗(f ◦ g) <∞ and 0 < λh

(p,q)L∗(f) ≤ ρh(p,q)L∗(f) <∞.
Then

lim inf
(r1,r2,···rn)→1

log[p] ν−1
h νf◦g(r1, r2, · · · rn)

log[p] ν−1
h νf (r1, r2, · · · , rn)

≤ ρh
(p,q)L∗(f ◦ g)

ρh(p,q)L∗f
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≤ lim sup
(r1,r2,··· ,rn)→1

log[p] ν−1
h νf◦g(r1, r2, · · · , rn)

log[p] νh−1νf (r1, r2, . . . , rn)
.

Proof. When we take L∗ order and L∗ lower order in Theorem 3.3 we can get the result.

4 Conclusion
In this paper we have established some inequalities between relative order and relative lower order of analytic
functions of several complex variables in the unit polydisc in terms of central index. Further we have obtained
some corollaries of the above theorems.
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