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Abstract

Invasive plant species pose a significant threat to biodiversity, ecosystem stability and agricultural
productivity. This study present a novel mathematical model to explore the Eco-evolutionary dynamics
of an invasive plant under simultaneous pressures from native herbivores and soil microbial competitors.
The model incorporates an adaptation trait that evolves in herbivores based on invasive biomass, along
with competition from native soil microbes that suppress the invader’s root system. The system is
analyzed using tools from dynamical system theory, including equilibrium analysis, boundedness, stability
through jacobian eigenvalue analysis, and bifurcation due to trait thresholds. Result reveal the existence
of two biological meaningful equilibrium states and highlight the presence of a transcritical bifurcation
triggered by the invasive biomass crossing a critical threshold. Numerical simulations show how Eco-
evolutionary feedback loop can suppress invasions and stabilize community dynamics over time. This
study underscores the importance of integrating adaptive behavior and below-ground interactions in
ecological modeling to devise more effective invasive species management strategies.

2020 Mathematical Sciences Classification: 92D40, 92C80, 34C11, 19A13.
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1 Introduction

Biological invasions are among the pressing ecological challenges of the 21st century, often leading to loss
of native biodiversity, altered ecosystem functioning, and significant economic costs. Invasive plant species,
in particular, have demonstrated the ability to dominate new habitats rapidly by out competing native
flora, altering nutrient cycles, and resisting natural checks and balances. While much of the classical
modeling literature focuses on plant-competition or predator-prey interaction in isolation, recent ecological
evidence suggests that both above-ground biotic pressure (e.g. herbivory) and below ground microbial
interactions play pivotal roles in shaping invasion outcomes. Native biodiversity, environmental stability,
and agricultural output are all seriously threatened by invasive plant species. The results of invasion are
significantly influenced by their interactions with microbial communities and natural herbivores.

In the study plantations, height and diameter growth depended on planting method and species guild.
Diameter growth was negatively correlated with wood density. Pioneer, non-pioneer light-demanding and
shade-tolerant species grew faster in diameter when planted in degraded areas and clear-cuts. Pioneer species
grew the fastest in gaps[5].

One significant aspect of biodiversity is plant chemodiversity, or the variety of metabolites specific
to plants. To verify linguistic theories about the evolution of chemodiversity, there are currently few
mathematical models available[12]. The authors assessed the effects of turning Cerrado native savannas
into pastures on the nutrient dynamics of the ecosystem and if ecological restoration of defunct pastures
was successful in bringing the ecosystem’s nutrient dynamics back to levels comparable to those of native
savannas [1]. According to Elton’s theory of biotic resistance, biodiversity can fend off the spread of invasive
species. Nevertheless, little is known about whether and how within-species diversity modulates the effects
of successfully established invaders, especially in light of climate change[2]. By changing the probability of
introduction or establishment, as well as the geographic range, environmental effects, economic consequences,
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or management of alien species, a changing climate may have a direct or indirect impact on biological
invasions|[3]. Because native plant dominance was restored by activated carbon with seed treatment but not
by seed addition alone, this study demonstrated that soil manipulations might be an essential part of native
plant restoration[7]. Singh et al. “Modelling the effect of disease on plant-herbivore dynamics with special
reference to orange trees” analysed the effects of infections on orange plants while herbivores are present.
The model in this paper assumes that orange plants are directly harmed by diseases and adversely affected
by herbivores. For both local and global stability, all equilibrium points of the mathematical model are
analysed. According to the investigation, the density of orange trees falls when diseases are present[9]. A
key component of an invasive plant’s effective invasion is its allelopathy to the growth performance of nearby
species. This interference can be affected by drought. Bidens pilosa L. is one of many invasive plants that
can be found throughout China[8]. From building materials to culinary delicacies, the coconut tree offers the
human population numerous benefits, which is why it is commonly referred to as the “tree of life.” The rugose
spiralling whitefly (RSW) is one natural adversary that seems to be a major threat to farmers cultivating
these coconut plants. A mathematical model has been created to study the dynamics of pest populations in
the presence of predators and parasites[10]. Although non-native incursions are typically suppressed by high
native species diversity, many ecosystems now have non-native assemblages with varying species diversity. It
is still unknown how the diversity of non-native species impacts later invaders and how dependent it is on the
environment [13]. Insect pests are being impacted by a number of Anthropocene stressors, including invasive
species, habitat loss, pollution, and climate change. This has a negative effect on sustainable agriculture
and food security. Climate change has a direct impact on insect dispersal, survival, reproduction, and
development, but because insects include both pest and natural enemy species, it is challenging to predict
how these consequences will manifest. The problem is further complicated by potentially important indirect
effects of climate change, such as plant-mediated phenomena brought on by temperature and atmospheric
carbon dioxide (COs) levels affecting crop nutritional quality and resource availability[11]. The rhizosphere
is a hub for microbial collaborations due to the exudates that roots emit. They have a significant influence
on the functions and population density of several bacteria and are necessary for microbial feeding. The
rhizosphere is a complex ecosystem that is home to a diverse range of creatures. Some have no influence at
all, while others are attracted to the rhizosphere and may affect the plant in either a favourable or negative
way[6]. In order to characterise population dynamics across time, a discrete-time model of a plant-herbivore
system is qualitatively examined using difference equations in this study. Examining the model’s behaviour
under various parameter settings and initial conditions is the aim[4]. In this work, we create a mathematical
model that combines the evolution of adaptive traits in invasive plants with ecological dynamics. Four
state variables are included in the model: microbial antagonists (M), native herbivores (H), invading plant
biomass (I), and an adaptive trait level (A). In order to capture the feedbacks between these species and
attributes, we employ nonlinear ordinary differential equations.

2 Model Formulation

Let I(t), H(t), M(t) and A(t) denote the Invasive plant biomass, Herbivore population, Competing soil
microbial biomass and Adaptive ability of herbivores to feed on the invasive plant (eco-evolutionary trait)
at time t, respectively. The model is described by the following system of non-linear ordinary differential
equations:

dI I

il rI(lf?)faAIHffyMI, (2.1)
% — BAIH — uH, (2.2)
dM M
— = 1-— —0MI 2.
dt nl=3—) ’ (2.3)
% = A1l — A)I — I1n). (2.4)
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Table 2.1: Parameters with their biological understandings/meanings.

Parameters | Biological meanings
I(t) Invasive plant biomass
H(t) Herbivore population
M () Competing soil microbial biomass
A(t) Adaptive ability of herbivores to feed on
the invasive plant (eco-evolutionary trait)
r Intrinsic growth rate of the Invasive plant
K Carrying capacity of the Invasive plant
o Grazing rate of herbivores on plant biomass
y Suppression rate of plant by soil microbes
B Conversion efficiency of consumed plant to herbivore reproduction
n Natural death rate of herbivores
n Growth rate of native soil microbial population
Mpax Maximum soil microbial carrying capacity
1) Death or inhibition rate of soil microbes due to plant interaction
0 Speed of evolutionary adaptation in herbivores
Lip, Biomass threshold of invasive plant needed to trigger adaptation

3 Boundedness
We define a positive definite Lyapunov function as follows:
V(t)=I(t)+ H(t)+ M(t) + $A%(¢).
This function is non-negative for all £ > 0 and captures the growth of all four components in the model.
Since V(t) = I(t) + H(t) + M(t) + 3+ A%(t) is non-negative and its derivative is bounded, it implies that:
V(t) < V(0) + Ct,
but since each term in V() corresponds to a biologically meaningful and non-negative variable, and the
model also contains negative feedbacks (e.g., natural death, saturation terms, logistic growth), the system’s
variables cannot grow unbounded indefinitely.
Hence, all variables I(t), H(t), M(t), A(t) remain bounded for all ¢ > 0, which proves the biological
feasibility and boundedness of the model.

4 Equilibrium Point

4.1 Equilibrium 1: Trivial Equilibrium (All Zero Except Microbes)

Assume:
dM

dt
By = (I,H,M,A) = (0, 0, Mz, 0).

IZO, H:O, AZO, :0:>M:Mmama

4.2 Equilibrium 2: Plant-Microbe Coexistence (No Herbivores)
Assume:
H=0 A=0,

M
EQZ(K<1—7),07 M, 0),
T

where M is a positive root of the quadratic equation:

(W)MQ— (M" +5K)M+n=0.

T max

4.3 Equilibrium 3: Full Coexistence
Assume:
A=1, H>0, I>0, M>0,

w1 jz n
Bs= |5 —|r(1—-L2) —yM|, ———, 1].
: (M[r( ) })

max
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4.4 Equilibrium 4: Neutral Trait Equilibrium (Trait is at Rest)
Assume:

dA
I =1 sothat i 0 automatically (since I — Iy, = 0),

1 I n H
Eys=|Lp, — |r|l1—=)—9M]|, , .
! ( " aA [ ( K) ! ] Mooy T 0Len Blin
5 Local stability

5.1 Trivial Equilibrium FE;
We analyze the local stability of:

El = (IvHvaA) = (07 07 Mmaz7 0)
The Jacobian J of the system is a 4x4 matrix of partial derivatives:

of 0f 0N 0Ny

QY
MRS

J=\8L 85 3L 8%
a1 9H 9M DA

Computing each entry: Evaluate Jacobian at E7 = (0,0, M,,42,0) Now substitute I =0, H =0, M =
M ez, A =0 into the Jacobian:

r—YMpar O 0 0
0 —p 0 0
TE) =1 oMpee 0 == 0
0 0 0 —01p,
Eigenvalues of J(F;) The Jacobian is lower triangular, so the eigenvalues are the diagonal entries:
)\1 =r— 'meaa:; )\2 = —N, )‘3 = _Mzazv )‘4 = _elth'

Stability Criteria:

e If all eigenvalues have negative real parts, F; is locally asymptotically stable.

e )2, A3, Ay < 0 always, since u,n, 80, Itp, Mipmar > 0.

o N\ <0if YMypge > 7.

e The trivial equilibrium E; = (0,0, M;,44,0) is locally asymptotically stable if:
YM gz > T

It is unstable if:

YMmazr < T.

5.2 Local Stability of Equilibrium FE5: Plant-Microbe Coexistence
Consider the equilibrium point:

M
By = (I*, H*, M*, A*) = (K <1 _ 7) .0, M, o) ,
r
where M is a positive root of the quadratic equation:

K
<M>M2—( i +6K>M+n:0.
r Mmaa:

We analyze the local stability of Fs by computing the Jacobian matrix J of the system at this point.
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Jacobian Matrix
The Jacobian matrix of the system is given by:

89f O B8fL 0K
J=18t 85 8L 8%
oI OH OM 0A

We compute partial derivatives and substitute into the Jacobian at the point Fy, where H = 0, A = 0,
1=K (1-21):

r(1- %(I)) —yM 0 _31 8
B —p
J(Es) = M 0 —gpl; —of 0
0 0 0 01 — Itn)

Eigenvalues of the Jacobian
Since the Jacobian is a lower triangular matrix, the eigenvalues are the entries on the diagonal:

21
Alzr(l—K> —vM,

Ag = —p,
RS T
A4 - 9([ - Ith)-

We analyze each eigenvalue:
e Eigenvalue A\ = —pu: always negative since y > 0.
e Eigenvalue \; = — — §I: always negative since I > 0, 7 > 0, and § > 0.

n
]\/I’VYL(!(IJ

e Eigenvalue \; =r ( — %) — ~vM: this is negative if:

K M
I>2<1—7).

Substitute the equilibrium value of I:

then the condition becomes:

which is always true for M > 0. Hence, A; < 0.
e Eigenvalue Ay = 0( — I1p):
— If I < Iip, then Ay < 0.
—IfI> Itha then A4 > 0.
— If I = I, then Ay = 0.
hence:
e The equilibrium point Fs is locally asymptotically stable if:

M
I:K(l—7 ><Ith-
'

e If I > I;p, then one eigenvalue becomes positive, and F5 is a saddle point (unstable).
o If I = I, then one eigenvalue is zero, and the stability is non-hyperbolic; further analysis (e.g.,
center manifold theory) is required.
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5.3 Local Stability of Equilibrium Point E3: Full Coexistence
We consider the equilibrium point:

B U R OB\ . 7 .
E3<16,Ha{r<1 ﬂK) fyM],MT7 Jr5“,Al>.

Computing the Jacobian matrix:

on  on on on
J= 8 8E Bk 8%

oI OH oM A
Evaluated at A=1,1 = %, M = M*, we obtain:
r(l—Qé*)—aH*—wM* —al* —~T* —al*H*
J(E3) = pH" BI* — 0 BI*H*
—oM* 0 — 3 —oI” 0
0(1 — A*)(I* — L) 0 0 0(1 — 2A*)(I* — Iip)

At A* =1,
we simplify: (1—-A*)=0= %2 =0, (1-24")=-1= % =_0(I* - I,;,).
So the Jacobian becomes:

—g—;‘{—vM* —al* —~I* —al*H*
B BH* 0 0 BI*H*
TE) = s 0 s — oI 0
0 0 0 —0(I" — Iin)
We find the eigenvalues:
o\ = —5—}‘( —yM* [A\1 <0 is always satisfied since all parameters are positive],
o \y = — M:,a —6- % [A2 < 0 is always satisfied under positive parameters],
L4 >‘3 = Oa
o i ==0 (4= In) [\ < 0if and only if ] % > I |
(The full coexistence equilibrium FEj3 is locally asymptotically stable if: % > L ).

5.4 Local Stability of Equilibrium Point E4: Neutral Trait Equilibrium
We consider the equilibrium point:

1 Iin
Ei= (I =1, H = 1— 2
4 < th aA*[r< K) K

The Jacobian matrix is:

| IS

% n * H
’ M* = 5 - .
ﬁ +5Ith ﬁ-[th>

ofr
5
J= 15
5
o1

o)
I~
=

Q
=~
=

Q!
[Eass
Q!
B
Q|
=N

=~
=

w‘
RN
Q|
ES
Q)|
S

o
I
Q)
NS
Soes)
:*s N

@
=
@
g
Q
N

Jacobian Matrix at Fy

r (1 — 217”) —aA*H* —yM* —aA*Iy, -1y, —aly H*
BA*H* 0 0 B H*
J(E4) = _SM* 0 _ (MZQT + 5Ith> 0
9A*(1 — A*) 0 0 0

Eigenvalues and Conditions for Local Stability:
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e The eigenvalue from the microbial dynamics (row 3, column 3) is:

)\3:—< n +5Ith)<0.

max

e One eigenvalue from the A-dynamics is:
A =0 (dueto I =Iy).
The equilibrium point Fy is locally stable if:

21
7‘(1—}?) < aA*H* +~yM* |

In other words, the growth of the invasive plant must be sufficiently suppressed by herbivory and
microbial competition for stability.
e The remaining eigenvalues are from the top-left 2 x 2 block:

T (1 — 217“1) —aA*H* —~yM* —aA*Iy, .
BA*H* 0

Let this matrix be:
a b
Jogo = [c 0] .

A2 —aX —be=0.

Then the characteristic polynomial is:

So the eigenvalues are:
\ a++va? + 4be
1,2 = 5 5
where:
a=r (1 — K) —aA*H* —~vM*, b=—-aA"Ly,, c=pA"H".
Stability Condition: For both eigenvalues to have negative real parts: Tr(Joz2) =a <0 Det(Jaz2) =
—bc > 0= bc <O0.
Since: b <0 and ¢ >0 = bc < 0 = —bc > 0, determinant is positive. If a < 0, then both eigenvalues
have negative real parts.
5.5 Global Stability of Equilibrium FE,; via Lyapunov Function
We analyze the global stability of the equilibrium point

1 Ly, n H
E,=\|\I=1L, H=— 1—— ) —yM|, M= A= .
4 ( th aA |:7“< K> Y :|v n +6Ith’ Blth

]\/jmax
We propose the following Lyapunov function:

1 1 1 1
V(I,H,M,A) = 5(1 — Ii)* + 5(H — Hy,)? + 5(M — My)? + §(A — Aw)?,

where Hyjp, My, and Ay, are the equilibrium values at Fjy.
e V(I,H,M,A) =0 at the equilibrium point Ej.
e Away from Ej, under biological feasibility (positive values), each term contributes to making V <0.
Especially the last term:
(A= Am)0AQL — A)(I - Ly

is negative for all A # Ay, if 0 < A< 1 and I > 0.

Under the biological constraints and feasibility conditions:
0<A<1, I,H M>Q0,

the Lyapunov function V is positive definite and V is negative definite. Therefore, by Lyapunov’s direct
method, the equilibrium point Fy is globally asymptotically stable.
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6 Numerical simulation

Parameter values:
r=0.5; K =10; « = 0.01; v = 0.02; 3 =0.03; p = 0.1; n = 0.5; Mypqz = 5; § = 0.01; 8 = 0.05; Iy, = 1;
Local Stability near E, (Extinction FPaint)
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Figure 6.1: Graph for local stability Fq

Parameter values:
r=0.6; K =10; a = 0.01; v = 0.05; 8 = 0.03; . = 0.1; n = 0.5; My = 5; § = 0.01; 0 = 0.05; Iy, = 1;

Local Stability of E,: Plant-Microbe Coexistence (Mo Herbivores)
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Figure 6.2: Graph for local stability Fo
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r=0.8 K =10; a =0.1; vy = 0.05; 5 = 0.05; p = 0.2; n = 0.6; Mypqe = 5; 6 =0.03; 0 = 0.2; I, = 1;

Fopulation / Trait

15

10

Parameter values:

Local Stability of E5 (Full Coexistence)
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Figure 6.3: Graph for local stability Fs

Parameter values:

r=08 K =10; « =0.1; v =0.05; 8 =0.5; p = 0.2; 5 = 0.6; M0 = 5;0 =0.03; 0 =0.2; I, = 1;

Fopulation / Trait Level
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Figure 6.4: Graph for local stability F,
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Parameter values:
r=08 K =10; a =0.1; v =0.05; 8 = 0.5; p = 0.2; n = 0.6; Mg = 5;0 =0.03; 0 =0.2; I, = 1;
Global Stability of Equilibriom E,: Convergence of All Species
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Figure 6.5: Graph for Global stability Fy

7 Bifurcation Analysis
We perform a bifurcation analysis of the system with respect to the parameter v, which denotes the
suppression rate of invasive plants by competing soil microbes. Our focus is on the full coexistence equilibrium

point:
po1 P n
E3:(I*7 H*a M*a A*): Py |:7‘(1_>_7M:|a T Su? 1.
B a BK T+ %

Critical Threshold for Coexistence. To ensure biological feasibility, we require all components of E3 to
be positive.
In particular, we need H* > 0, which gives the condition:

o
1 p *_7“(1‘&7)

where

Interpretation

At the critical value v = v*, a transcritical bifurcation occurs: the herbivore population H transitions from
a positive equilibrium to extinction. When v > ~*, the herbivore population cannot persist due to excessive
suppression of the plant biomass by soil microbes, eliminating the food source for herbivores.

This reveals a trade-off in biological control via microbial competition: while it helps control the invasive
plant, excessive microbial activity can destabilize the ecosystem by eliminating higher trophic levels.
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We use MATLAB to illustrate this bifurcation by plotting the equilibrium herbivore population H*
against varying values of . The bifurcation diagram visually captures the collapse of herbivore population
beyond the threshold ~*, highlighting the system’s sensitivity to microbial suppression.

Parameter values:
r=10; K =10; a =0.5; =03; p = 0.2; 1 = 0.8; Mo = 5; 0 = 0.1; 6 = 0.2; Iy, = 2;

Bifurcation Diagram showing lass of coexistence

Microbes

Herbivare Equilibriurm Population H

i i
0.5 1 145
v [(Suppression rate by microbes)

Figure 7.1: Bifurcation diagram showing equilibrium herbivore population H* versus microbial suppression
rate . A transcritical bifurcation occurs at v = v*.

8 Conclusion

In this study, we proposed and analyzed a mathematical model describing the eco-evolutionary dynamics of
an invasive plant species, herbivore population, competing soil microbial biomass, and the adaptive ability
of herbivores. The model captures important biological interactions including logistic growth of invasive
plants, suppression by microbial activity, herbivory-driven plant reduction, and evolutionary adaptation
of herbivores. Through boundedness analysis using a Lyapunov function, we established that all state
variables remain biologically feasible and bounded for all time. We identified and examined the stability
of four equilibrium points: the trivial equilibrium, plant-microbe coexistence, full coexistence, and neutral
trait equilibrium. Local stability analysis using Jacobian matrices provided conditions under which each
equilibrium remains stable. Notably, the full coexistence equilibrium is locally stable if the invasive plant
biomass exceeds the adaptation threshold, while the neutral trait equilibrium becomes globally stable under
specific conditions, as demonstrated by a global Lyapunov function. This work highlights the complex
interplay between ecological and evolutionary processes in regulating invasive species dynamics. The model
provides insights into how adaptive traits in herbivores and microbial competition can collectively contribute
to invasive plant control.
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