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Abstract

Assume G is a connected graph with distributing pebbles over its edges. An edge pebbling move on
a graph G is defined to be the removal of two pebbles from one edge and one pebble will be added to
an adjacent edge, while the other pebble will be discarded from the play. In this paper, we introduce
the concept of detour edge pebbling number and find out the detour edge pebbling number for some
standard graphs. We carry out the edge pebbling move in the concept of detour pebbling to arrive a new
graph invariant called the detour edge pebbling number. The detour edge pebbling number of an edge ¢
of a graph G is the minimum number of pebbles such that these pebbles are placed on the edges of G,
we can move a pebble to e by making a sequence of pebble moves regardless of the initial configuration
using the edge detour path. The detour edge pebbling number of a graph G, fJ(G), is the maximum
f5(G, e) over all the edges of G.
2020 Mathematical Sciences Classification: 05C12;, 05C57, 05C38. Keywords and Phrases:
Edge pebbling move, Edge detour path, Edge detour distance, Detour edge pebbling number.

1 Introduction

Graph pebbling is a game that can be applied to any connected graph. The concept of pebbling in graphs
was first suggested by Lagarias and Saks to give an alternative demonstration of a theorem of Kleitman and
Lemke in number theory and it was first mentioned by Chung [3] in 1989. According to Hurlbert and Kenter
[5], graph pebbling is a blend of Graph theory, Number theory and Optimization and they provide a clear
view of graph pebbling. A series of pebbling moves is what makes the game.

To pebble a graph, we need to choose a vertex with at least two pebbles, get rid of two pebbles from it,
and add one to an adjacent vertex, and the second pebble that is removed is taken out of play. The pebbling
number [3] is the minimum number of pebbles that are sufficient to reach any target vertex irrespective of
the initial configuration of the pebbles. It is denoted by f(G) for a graph G. The possibility exists for graph
pebbling to serve as a model for distributing and transporting consumable resources.

Some invariants in pebbling are optimal pebbling number, t-pebbling number, cover pebbling number,
monophonic pebbling number, etc, and which may be referred to [2, 6, 9, 12]. In 2020, Paul [11] extended
the concept of pebbling by finding the edge pebbling number of certain graph classes. Chartrand et al. [4]
presented and elaborated the fundamental concepts of detour distance in graphs. In 2023, Zhan [13] worked
on the minimum number of detours in graphs and this paper paves the elegant ways of finding the detours
in graphs. Lourdusamy et al. investigated and worked on detour pebbling number [1, 7, 8, 10].

In this paper, we define the detour edge pebbling number and compute the detour edge pebbling number
of certain standard graphs and the square of some standard graph structures.

2 Detour edge pebbling number
Definition 2.1 ([11]). An edge pebbling move on a graph G is defined to be the removal of two pebbles from
one edge and one pebble will be added to an adjacent edge, while the other pebble will be discarded from the

play.

Definition 2.2. The detour edge pebbling number of an edge e of a graph G is the minimum number of
pebbles such that these pebbles are placed on the edges of G, we can move a pebble to e by making a sequence



of pebble moves regardless of the initial configuration using the edge detour path. The detour edge pebbling
number of a graph G, f¥(G), is the maximum f5 (G, e) over all the edges of G.

Definition 2.3. An edge detour path between e, and e, is a sequence of edges P; = {eg, e, €, ..., e,
ey} such that ¢; N e 1 # 0, no edge appears more than once in the sequence and the path allows repeated
vertices. Therefore, the edge detour distance between the edges e, and e,, d*(eg, e,) = |P%|-1 where |P}| is

the total number of edges in the edge detour path.
Theorem 2.1. The detour edge pebbling number for path P, graph is fi(P,) =2""2; n > 2.

Proof. Let P, be a path graph with n vertices. Let the edge set of P, be E(P,) = {e1, ea,....,en—1}.

Take 2" ~2- 1 pebbles for distribution. Let e,_; be the target edge. Placing 2" ~2- 1 pebbles on the edge e;,
the edge e, _1 cannot be reached. So, f*(P,) > 2"~2.

For proving the sufficient part, consider the target edge to be either e; or e,_1. The detour distance from
ex, to ep is at most k-1 where 1 < k < n-1. By using 2~! pebbles, reaching the target edge either e; or e,_1
is possible. Now, consider e, as the target edge. The detour distance from ey, to e; is at most n-2 where k&
< j < n-1. Hence, the edge set {ex, €xy1,....6n_1} contains at least 2”2 pebbles, we can reach the target
edge ej,. Therefore, 2"~2 pebbles are sufficient to reach the target edge because the detour distance from e,
to e; is at most k-1 where 1 < i < k.

Therefore, f*(P,) = 2" 2. O

Theorem 2.2. The detour edge pebbling number for the Wheel graph is fX(W,) = 274131 when n is odd
and n >3 and fX (W, ) = 2""%; when n is even and n > 4.

Proof. Case (1). n is odd. Consider the edge set of W;, be E(W,,) = {e1, ea,....e2,}.

The edge detour path of W,, does not consist of all the edges i.e., for n = 3, the edge detour path lacks one
edge from the total number of edges of W3 since the edge detour path has only 5 edges. And the lacking
of edges in the edge detour path keeps on increasing by one edge for n > 3. Take 2"+51-1 pebbles for
distribution. Consider the target edge to be any one of the spokes of W,, and let it be e; and assume there
are zero number of pebbles on it. Placing 27t151-1 pebbles on any one of the cycle edges which is adjacent
to e1, the target edge cannot be reached using the edge detour path since the detour distance is 2n-[ % ]-1.
Therefore, f*(W,) > 2n+131,

Now we prove the sufficient part by distributing 2731 pebbles on the edges of W,,. O

Subcase 1.1: Consider the target edge to be any one of the spokes of W,, and let it be e; and assume there
are zero number of pebbles on it.

If we place all the pebbles on any one of the cycle edges that is adjacent to the edge ey, we can reach the
target edge with 27+51 pebbles since the length of the edge detour path is 2n-[2]. Also, if we alter the
configurations of pebbles on the edges, by Theorem 2.1, shifting a pebble to the destination edge is possible.
By symmetry we can reach all the spokes of the graph W,,.

Subcase 1.2: Consider the target edge to be any one of the cycle edges of W,, and let it be e; and assume
there are zero number of pebbles on it.

If we place all the pebbles on any one of the spokes that is adjacent to the edge e;, we can reach the
target edge with 27151 pebbles since the length of the edge detour path is 2n-[%]. Also, if we alter the
configurations of pebbles on the edges, by Theorem 2.1, shifting a pebble to the destination edge is possible.
By symmetry we can reach all the cycle edges of the graph W,.

Thus, f5(W,) = 2131 when n is odd.

Case (2). n is even.

The edge detour path of W,, does not consist of all the edges of W, i.e., for n = 4, the edge detour path
lacks one edge from the total number of edges of Wy since the edge detour path has only 7 edges. And the
lacking of edges in the edge detour path keeps on increasing by one edge for n > 4.

Take 2"*%-1 pebbles for distribution. Consider the target edge to be any one of the cycle edges of W,, and
let it be e; and assume there are zero number of pebbles on it. Placing 2"t %-1 pebbles on any one of the
cycle edges that is adjacent to ey, the target edge cannot be reached using the edge detour path since the
length of the edge detour path is n+%+1. Therefore, f7(W,) > 2"2.

Now we prove that f(W,) < 2"+%. The proof follows from case 1.



Theorem 2.3 The detour edge pebbling number for the triangular snake graph is f*(T'S,) = 22"=4; n > 2.
Proof. Consider a path vq, va, ..., v,. The triangular snake graph is obtained by joining v; and v;41 to a
new vertex u; for 1 < i < n-1. Consider the edge set of T'S,, be E(T'S,) = {e1, €2, ..., e3(n—1)}-

Take 23"~4-1 pebbles for distribution. Consider the target edge to be v;vo and assume it has zero number
of pebbles. Place 23" ~4-1 pebbles on the edge vov3, using the edge detour path we cannot move a pebble to
v1vy since the length of the edge detour path is 3(n-1) and the edge detour path of T'S,, consists of all the
edges.

Therefore, f(T'S,) > 2374,

Now we prove the sufficient part by distributing 23"~* pebbles on the edges of T'S,,.

Consider the target edge to be any edge of T'S,,. Without loss of generality, let it be v;v2 and assume it
has zero number of pebbles. Consider the pebble allotment in an unusual way of placing 23"~ pebbles on
the edge vou; and one pebble on the edge viu;. Now, reaching the target edge is possible with 237541
pebbles since the edge detour distance from v, vy to vau is 3n-5. And by placing 237 ~4 pebbles on the edge
vaUg, using the edge detour path, reaching the target edge is possible. Also, if we alter the configurations of
pebbles on the edges, by Theorem 2.1, shifting a pebble to the destination edge is possible. By symmetry
we can reach all the edges of the graph T'S,,.

Thus, the detour edge pebbling number for the triangular snake graph is f(T'S,) = 23"

3. Detour edge pebbling number of the square of some standard graphs

Theorem 3.1. The detour edge pebbling number for the square of path P2 graph is fr(P?) = 22"=4: n >
3.

Proof. Let P2 be a square of path graph with n vertices and 2n-3 edges.

Let the edge set S1 = {e1, e, ..., e,—1} be the edges of P,. Let the edge set So = {en, €nt1, ..., €2n—3} be
the new edges added to the edges of P, to form P2. Let e, be the edge adjacent to e;, ez and e3, let e, 41
be the edge adjacent to e;, es, es and ey, let e,4+2 be the edge adjacent to es, e3, e4 and es, ..., let ea,—4 be
the edge adjacent to e,,_4, €,_3, en_2 and e,_1, let es,_3 be the edge adjacent to e,,_1, e,_2 and e, _3.
The edge detour path from e; to e,_; has all the edges of P2. Thus, the edge detour distance from e; to
en—1 is 2n-4. Let e,_; be the destination edge. Take 227~4-1 pebbles for distribution. Place 22"~4-1 pebbles
on the edge e;. Now, using the edge detour path, reaching the destination edge e, _1 is not achievable since
22n=4_1 pebbles are sufficient only to reach the edges which are at a distance of at most 2n-5 from e;.

So, f2(P2) > 2274,

Let D be any distribution of 22"~ pebbles on the edges of P2 to demonstrate the sufficient part.

Case (1). Let e; be the destination edge where [ € Sj.

Subcase 1.1. Let e; or e,—1 be the destination edge.

Without loss of generality, let e,,_; be the destination edge. The edge detour distance from any one of the
edges of set 1 to e,_1 is at most 2n-4. Now, reaching the destination edge e,,_; using the edge detour path
is achievable by distributing at most 22"~* pebbles.

The edge detour distance from any one of the edges of set S5 to e,_1 is at most 2n-5. Now, reaching the
destination edge e,_; using the edge detour path is achievable by distributing at most 22"~% pebbles. By
symmetry, we can prove for e;j.

Subcase 1.2. Let e; or e,_5 be the destination edge.

Without loss of generality, let e, _o be the destination edge. The detour distance from any one of the edges
of set S1 to e,_o is at most 2n-4. Now, reaching the destination edge e,_o using the edge detour path is
achievable by distributing at most 22" ~* pebbles.

The edge detour distance from any one of the edges of set Sy to e,_2 is at most 2n-5. Now, reaching the
destination edge e,_o using the edge detour path is achievable by distributing at most 22> pebbles. By
symmetry, we can prove for es.

Subcase 1.3. Let e3 or e,,_3 be the destination edge.

Without loss of generality, let e,,_3 be the destination edge. The edge detour distance from any one of the
edges of set S1 to e,_3 is at most 2n-5. Now, reaching the destination edge e,_3 using the edge detour path
is achievable by distributing at most 22"~5 pebbles.

The edge detour distance from any one of the edges of set S5 to e,_3 is at most 2n-6. Now, reaching the



destination edge e,_3 using the edge detour path is achievable by distributing at most 22~6 pebbles. By
symmetry, we can prove for es.

Subcase 1.4. Let S5 = {ey, €5, ..., €n—5, €n—a} be the destination edge.

The edge detour distance from any one of the edges of set S3 to any one of the edges of set S; is at most
2n-6. Now, reaching the destination edge using the edge detour path is achievable by distributing at most
22n=6 hebbles.

The edge detour distance from any one of the edges of set S35 to any one of the edges of set S5 is at most
2n-8. Now, reaching the destination edge using the edge detour path is achievable by distributing at most
227=8_ 1 n-5 pebbles.

Case (2). Let e, be the destination edge where m € Ss.

Subcase 2.1. Let e, or es,_3 be the destination edge.

Without loss of generality, let es,, 3 be the destination edge. The edge detour distance from any one of the
edges of set Sy to es,_3 is at most 2n-5. Now, reaching the destination edge es,_3 using the edge detour
path is achievable by distributing at most 227> pebbles.

The edge detour distance from any one of the edges of set Sy to ez,_3 is at most 2n-6. Now, reaching the
destination edge es,—3 using the edge detour path is achievable by distributing at most 2276 pebbles. By
symmetry, we can prove for e,.

Subcase 2.2. Let e,41 or es,_4 be the destination edge.

Without loss of generality, let es,,_4 be the destination edge. The edge detour distance from any one of the
edges of set Sy to es,—g is at most 2n-4. Now, reaching the destination edge es,_4 using the edge detour
path is achievable by distributing at most 22”~* pebbles.

The edge detour distance from any one of the edges of set S to es,_4 is at most 2n-5. Now, reaching the
destination edge es,—4 using the edge detour path is achievable by distributing at most 227> pebbles. By
symmetry, we can prove for e, 1.

Subcase 2.3. Let e,42 or e2,_5 be the destination edge.

Without loss of generality, let es,,_5 be the destination edge. The edge detour distance from any one of the
edges of set Sy to es,_5 is at most 2n-5. Now, reaching the destination edge ey, _5 using the edge detour
path is achievable by distributing at most 22" ~°41 pebbles.

The edge detour distance from any one of the edges of set S5 to es,_5 is at most 2n-6. Now, reaching the
destination edge es,_5 using the edge detour path is achievable by distributing at most 22" ~64-1 pebbles.
By symmetry, we can prove for e, ys.

Subcase 2.4. Let S4 = {en+3, €ntd, .-y €2n—7, €2n—c} be the destination edge.

The edge detour distance from any one of the edges of set S4 to any one of the edges of set S; is at most
2n-5. Now, reaching the destination edge using the edge detour path is achievable by distributing at most
227=511 pebbles.

The edge detour distance from any one of the edges of set S4 to any one of the edges of set So is at most
2n-6. Now, reaching the destination edge using the edge detour path is achievable by distributing at most
22n=61 1 pebbles.

Thus, the detour edge pebbling number for the square of path P2 graph is f(P2) = 22"~4; n > 3.

Theorem 2.3. The detour edge pebbling number for the square of cycle C? graph is fF(C%) = 22"=1: n >
5.

Proof. Let C2 be a square of cycle graph with n vertices and 2n edges.

Let the edge set S1 = {e1, e, ..., en} be the edges of C,,. Let the edge set S2 = {ent1, €nt2, ..., €2,} be
the new edges added to the edges of C,, to form C2. Let e* be any one of the adjacent edges of e, ;1 in 5.
The edge detour path from e, to e* has all the edges of C2. Thus, the edge detour distance from e, 1 to
e* is 2n-1. Let e, 41 be the destination edge. Take 22"~1-1 pebbles for distribution. Place 22"~!-1 pebbles
on the edge e*. Now, using the edge detour path, reaching the destination edge e, 1 is not achievable since
22n=1_1 pebbles are sufficient only to reach the edges which are at a distance of at most 2n-2 from e*.

So, fX(C3) > 22n~1,

Let D be any distribution of 22”~! pebbles on the edges of C2? to demonstrate the sufficient part.

Case (1). Let ¢; be the destination edge where [ € Sj.

Without loss of generality, let e, be the destination edge. The edge detour distance from e, to e,_; is
2n-1. Now, reaching the destination edge e, using the edge detour path is achievable by distributing 227!



pebbles.

The edge detour distance from e, to e,_s is 2n-2. Now, reaching the destination edge e, using the edge
detour path is achievable by distributing 22”2 pebbles.

The edge detour distance from e,, to any one of the remaining edges in S; is at most 2n-3. Now, reaching
the destination edge e,, using the edge detour path is achievable by distributing at most 22”3 pebbles.
The edge detour distance from e,, to any one of the edges in Sy which is adjacent to e, is 2n-1. Now, reaching
the destination edge e, using the edge detour path is achievable by distributing 22"~! pebbles.

The edge detour distance from e, to any one of the edges in S which is not adjacent to e, is at most 2n-2.
Now, reaching the destination edge e,, using the edge detour path is achievable by distributing at most 222
pebbles. By symmetry, we can prove for all e;.

Case (2). Let e, be the destination edge where m € S.

Without loss of generality, let e, 1 be the destination edge. The edge detour distance from e, 41 to any one
of its adjacent edges in Sy is 2n-1. Now, reaching the destination edge e, 11 using the edge detour path is
achievable by distributing at most 22”1 pebbles.

The edge detour distance from e, 41 to any one of its non-adjacent edges in 57 is at most 2n-2. Now, reaching
the destination edge e, using the edge detour path is achievable by distributing at most 22"~2 pebbles.
The edge detour distance from e, 1 to any one of its adjacent edges in Ss is at most 2n-1. Now, reaching
the destination edge e, 1 using the edge detour path is achievable by distributing at most 22"~! pebbles.
The edge detour distance from e, 1 to any one of its non-adjacent edges in Ss is at most 2n-2. Now, reaching
the destination edge e, 1 using the edge detour path is achievable by distributing at most 227=2 pebbles.
By symmetry, we can prove for all e,,.

Thus, the detour edge pebbling number for the square of cycle C2 graph is f*(C2) = 22"~1; n > 5. O

Theorem 3.3. The detour edge pebbling number for the square of star S% graph is fr(S2) = 2ntl51, p >
5 when n is odd and fr(S%) = 2% n > 6 when n is even.

Proof. Let S2 be a square of star graph with n+1 vertices and 3n edges.

Let the edge set S1 = {e1, e, ..., €,} be the edges of S,,. Let the edge set So = {en+1, €nt2y ..y €3n} be
the new edges added to the edges of S, to form S2 i.e., let the edge set S35 = {€,+1, €nt2, -, €2n} be the
edges of cycle C,, added to the edges of star graph S,, to form a wheel graph W,, Sy = {ex, €2, ..., €n, €nt1,
€ni2, -y €2} as a subgraph of S2 and let the edge set S5 = {e2,11, €2nt2, .-, €3} be the remaining edges
incident with the vertices of cycle C,,.

Case (1). When n is odd.

The edge detour path from ey, 1 to any one of the edges of the set Sy does not consist of all the edges of
S2 since for n = 5, the edge detour path lacks two edges from the total number of edges of S2, for n = 7,
the edge detour path lacks three edges from the total number of edges of S% and the lacking of edges in the
edge detour path keeps on increasing by one edge for n > 5.

Thus, the edge detour distance from es, 1 to any one of the edges of the set Sy is 5";1. Let e* be any one
of the edges of the set S, and let it be the destination edge. Take 227+151-1 pebbles for distribution. Place
22741311 pebbles on the edge es,41. Now, using the edge detour path, reaching the destination edge e* is
not achievable since 227511 pebbles are sufficient only to reach the edges which are at a distance of at
most 5”2’3 from egp11.

So, fz(87) > 2251

Let D be any distribution of 227151 pebbles on the edges of S2 to demonstrate the sufficient part.
Subcase 1.1. Let e, be the destination edge where u € the set 5.

Without loss of generality, let e,, be the destination edge. The edge detour distance from e, to e, is at most
% where v € the set S3. Now, reaching the destination edge e,, using the edge detour path is achievable
by distributing at most 22"*151 pebbles.

The edge detour distance from e, to e,, is at most

5"2_ L where w € the set S5. Now, reaching the destination

edge e, using the edge detour path is achievable by distributing at most 22" +51 pebbles.
The edge detour distance from e, to any other edges of the set S; is at most 5”—2’1 Now, reaching the

destination edge e, using the edge detour path is achievable by distributing at most 227+31 pebbles. By
symmetry, we can prove for all e,.
Subcase 1.2. Let e, be the destination edge where v € the set S3.



Without loss of generality, let es, be the destination edge. The edge detour distance from ey, to e, is at

most 5"{ L where u € the set S;. Now, reaching the destination edge es, using the edge detour path is

achievable by distributing at most 22"*51 pebbles.

The edge detour distance from ey, to e, is at most 5”2—_1 where w € the set S5. Now, reaching the destination
edge es, using the edge detour path is achievable by distributing at most 22"*t1%1 pebbles.

The edge detour distance from e, to any other edges of the set S3 is at most % Now, reaching the
destination edge e, using the edge detour path is achievable by distributing at most 22**+[%1 pebbles. By
symmetry, we can prove for all e,.

Subcase 1.3. Let e¢,, be the destination edge where w € the set Ss.

Without loss of generality, let es,, be the destination edge. The edge detour distance from es, to e, is at
most 5"; L where u € the set S;. Now, reaching the destination edge es, using the edge detour path is

achievable by distributing at most 22"*51 pebbles.

The edge detour distance from es, to e, is at most 5"{ L where v € the set S3. Now, reaching the destination

edge es,, using the edge detour path is achievable by distributing at most 22**151 pebbles.
The edge detour distance from es, to any other edges of the set S5 is at most 2=, Now, reaching the
destination edge es,, using the edge detour path is achievable by distributing at most 22731 pebbles. By
symmetry, we can prove for all e,,.
Thus, the detour edge pebbling number for the square of star S2 graph is f(52) = 22"*+131; 5 > 5 when n
is odd.
Case (2). When n is even.
The edge detour path from es,11 to any one of the edges of the set S3 does not consist of all the edges of
S2 since for n = 6, the edge detour path lacks two edges from the total number of edges of S, for n = 8,
the edge detour path lacks three edges from the total number of edges of S% and the lacking of edges in the
edge detour path keeps on increasing by one edge for n > 6.

5n

Thus, the edge detour distance from ez, 1 to any one of the edges of the set S3 is <. Let e* be any one

of the edges of the set S3 and let it be the destination edge. Take 2% 1 pebbles for distribution. Place
2% -1 pebbles on the edge es,,+1. Now, using the edge detour path, reaching the destination edge e* is not
achievable since 2% -1 pebbles are sufficient only to reach the edges which are at a distance of at most %
from egp 1.

So, f¥(82) > 2%,

Let D be any distribution of 2% pebbles on the edges of S2 to demonstrate the sufficient part.

Subcase 2.1. Let e, be the destination edge where u € the set S;.

Without loss of generality, let e,, be the destination edge. The edge detour distance from e, to e, is at most
57” where v € the set S3. Now, reaching the destination edge e,, using the edge detour path is achievable by

distributing at most 2% pebbles.
The edge detour distance from e,, to e, is at most 57" where w € the set S5. Now, reaching the destination

edge e, using the edge detour path is achievable by distributing at most 2% pebbles.
The edge detour distance from e,, to any other edges of the set 57 is at most % Now, reaching the destination

edge e, using the edge detour path is achievable by distributing at most 2% pebbles. By symmetry, we can
prove for all e,,.

Subcase 2.2. Let e, be the destination edge where v € the set S3.

Without loss of generality, let es,, be the destination edge. The edge detour distance from e, to e, is at most
5n

%" where u € the set S;. Now, reaching the destination edge ea, using the edge detour path is achievable

by distributing at most 2% pebbles.

The edge detour distance from es, to e, is at most 57” where w € the set S5. Now, reaching the destination
edge ey, using the edge detour path is achievable by distributing at most 2% pebbles.

The edge detour distance from es, to any other edges of the set Ss is at most 57" Now, reaching the

destination edge es, using the edge detour path is achievable by distributing at most 2% pebbles. By
symmetry, we can prove for all e,.

Subcase 2.3. Let e, be the destination edge where w € the set Sjs.

Without loss of generality, let es,, be the destination edge. The edge detour distance from e, to e, is at most
5n

%" where u € the set S;. Now, reaching the destination edge e3, using the edge detour path is achievable



by distributing at most 2% pebbles.

The edge detour distance from es, to e, is at most 57" where v € the set S3. Now, reaching the destination
edge es,, using the edge detour path is achievable by distributing at most 2% pebbles.

The edge detour distance from es, to any other edges of the set S5 is at most 57" Now, reaching the
destination edge es, using the edge detour path is achievable by distributing at most 2% pebbles. By
symmetry, we can prove for all e, .

Thus, the detour edge pebbling number for the square of star S2 graph is f*(52%) = 2
even.

5n .
2 ; n > 6 when n is
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