
ISSN 0304-9892 (Print) ISSN 2455-7463 (Online)

www.vijnanaparishadofindia.org/jnanabha
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Abstract

Assume G is a connected graph with distributing pebbles over its edges. An edge pebbling move on
a graph G is defined to be the removal of two pebbles from one edge and one pebble will be added to
an adjacent edge, while the other pebble will be discarded from the play. In this paper, we introduce
the concept of detour edge pebbling number and find out the detour edge pebbling number for some
standard graphs. We carry out the edge pebbling move in the concept of detour pebbling to arrive a new
graph invariant called the detour edge pebbling number. The detour edge pebbling number of an edge e
of a graph G is the minimum number of pebbles such that these pebbles are placed on the edges of G,
we can move a pebble to e by making a sequence of pebble moves regardless of the initial configuration
using the edge detour path. The detour edge pebbling number of a graph G, f∗

e (G), is the maximum
f∗e(G, e) over all the edges of G.
2020 Mathematical Sciences Classification: 05C12, 05C57, 05C38. Keywords and Phrases:
Edge pebbling move, Edge detour path, Edge detour distance, Detour edge pebbling number.

1 Introduction
Graph pebbling is a game that can be applied to any connected graph. The concept of pebbling in graphs
was first suggested by Lagarias and Saks to give an alternative demonstration of a theorem of Kleitman and
Lemke in number theory and it was first mentioned by Chung [3] in 1989. According to Hurlbert and Kenter
[5], graph pebbling is a blend of Graph theory, Number theory and Optimization and they provide a clear
view of graph pebbling. A series of pebbling moves is what makes the game.

To pebble a graph, we need to choose a vertex with at least two pebbles, get rid of two pebbles from it,
and add one to an adjacent vertex, and the second pebble that is removed is taken out of play. The pebbling
number [3] is the minimum number of pebbles that are sufficient to reach any target vertex irrespective of
the initial configuration of the pebbles. It is denoted by f (G) for a graph G. The possibility exists for graph
pebbling to serve as a model for distributing and transporting consumable resources.

Some invariants in pebbling are optimal pebbling number, t-pebbling number, cover pebbling number,
monophonic pebbling number, etc, and which may be referred to [2, 6, 9, 12]. In 2020, Paul [11] extended
the concept of pebbling by finding the edge pebbling number of certain graph classes. Chartrand et al. [4]
presented and elaborated the fundamental concepts of detour distance in graphs. In 2023, Zhan [13] worked
on the minimum number of detours in graphs and this paper paves the elegant ways of finding the detours
in graphs. Lourdusamy et al. investigated and worked on detour pebbling number [1, 7, 8, 10].

In this paper, we define the detour edge pebbling number and compute the detour edge pebbling number
of certain standard graphs and the square of some standard graph structures.

2 Detour edge pebbling number
Definition 2.1 ([11]). An edge pebbling move on a graph G is defined to be the removal of two pebbles from
one edge and one pebble will be added to an adjacent edge, while the other pebble will be discarded from the
play.

Definition 2.2. The detour edge pebbling number of an edge e of a graph G is the minimum number of
pebbles such that these pebbles are placed on the edges of G, we can move a pebble to e by making a sequence

1



of pebble moves regardless of the initial configuration using the edge detour path. The detour edge pebbling
number of a graph G, f∗e (G), is the maximum f∗e(G, e) over all the edges of G.

Definition 2.3. An edge detour path between ex and ey is a sequence of edges P∗e = {ex, e1, e2, ..., ek,
ey} such that ei ∩ ei+1 6= ∅, no edge appears more than once in the sequence and the path allows repeated
vertices. Therefore, the edge detour distance between the edges ex and ey, d∗(ex, ey) = |P∗e|-1 where |P∗e| is
the total number of edges in the edge detour path.

Theorem 2.1. The detour edge pebbling number for path Pn graph is f∗e (Pn) = 2n−2; n ≥ 2.

Proof. Let Pn be a path graph with n vertices. Let the edge set of Pn be E (Pn) = {e1, e2,....,en−1}.
Take 2n−2- 1 pebbles for distribution. Let en−1 be the target edge. Placing 2n−2- 1 pebbles on the edge e1,
the edge en−1 cannot be reached. So, f∗e (Pn) ≥ 2n−2.
For proving the sufficient part, consider the target edge to be either e1 or en−1. The detour distance from
ek to e1 is at most k-1 where 1 < k < n-1. By using 2k−1 pebbles, reaching the target edge either e1 or en−1

is possible. Now, consider ek as the target edge. The detour distance from ek to ej is at most n-2 where k
< j ≤ n-1. Hence, the edge set {ek, ek+1,...,en−1} contains at least 2n−3 pebbles, we can reach the target
edge ek. Therefore, 2n−2 pebbles are sufficient to reach the target edge because the detour distance from ek
to ei is at most k-1 where 1 ≤ i < k.
Therefore, f∗e (Pn) = 2n−2.

Theorem 2.2. The detour edge pebbling number for the Wheel graph is f∗e (Wn) = 2n+dn3 e; when n is odd
and n ≥ 3 and f∗e (Wn) = 2n+n

2 ; when n is even and n ≥ 4.

Proof. Case (1). n is odd. Consider the edge set of Wn be E(Wn) = {e1, e2,...,e2n}.
The edge detour path of Wn does not consist of all the edges i.e., for n = 3, the edge detour path lacks one
edge from the total number of edges of W3 since the edge detour path has only 5 edges. And the lacking
of edges in the edge detour path keeps on increasing by one edge for n ≥ 3. Take 2n+dn3 e-1 pebbles for
distribution. Consider the target edge to be any one of the spokes of Wn and let it be e1 and assume there
are zero number of pebbles on it. Placing 2n+dn3 e-1 pebbles on any one of the cycle edges which is adjacent
to e1, the target edge cannot be reached using the edge detour path since the detour distance is 2n-dn3 e-1.

Therefore, f∗e (Wn) ≥ 2n+dn3 e.
Now we prove the sufficient part by distributing 2n+dn3 e pebbles on the edges of Wn.

Subcase 1.1: Consider the target edge to be any one of the spokes of Wn and let it be e1 and assume there
are zero number of pebbles on it.
If we place all the pebbles on any one of the cycle edges that is adjacent to the edge e1, we can reach the
target edge with 2n+dn3 e pebbles since the length of the edge detour path is 2n-dn3 e. Also, if we alter the
configurations of pebbles on the edges, by Theorem 2.1, shifting a pebble to the destination edge is possible.
By symmetry we can reach all the spokes of the graph Wn.
Subcase 1.2: Consider the target edge to be any one of the cycle edges of Wn and let it be e1 and assume
there are zero number of pebbles on it.
If we place all the pebbles on any one of the spokes that is adjacent to the edge e1, we can reach the
target edge with 2n+dn3 e pebbles since the length of the edge detour path is 2n-dn3 e. Also, if we alter the
configurations of pebbles on the edges, by Theorem 2.1, shifting a pebble to the destination edge is possible.
By symmetry we can reach all the cycle edges of the graph Wn.
Thus, f∗e (Wn) = 2n+dn3 e, when n is odd.
Case (2). n is even.
The edge detour path of Wn does not consist of all the edges of Wn i.e., for n = 4, the edge detour path
lacks one edge from the total number of edges of W4 since the edge detour path has only 7 edges. And the
lacking of edges in the edge detour path keeps on increasing by one edge for n ≥ 4.
Take 2n+n

2 -1 pebbles for distribution. Consider the target edge to be any one of the cycle edges of Wn and
let it be e1 and assume there are zero number of pebbles on it. Placing 2n+n

2 -1 pebbles on any one of the
cycle edges that is adjacent to e1, the target edge cannot be reached using the edge detour path since the
length of the edge detour path is n+n

2 +1. Therefore, f∗e (Wn) ≥ 2n+n
2 .

Now we prove that f∗e (Wn) ≤ 2n+n
2 . The proof follows from case 1.
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Theorem 2.3 The detour edge pebbling number for the triangular snake graph is f∗e (TSn) = 23n−4; n ≥ 2.
Proof. Consider a path v1, v2, ..., vn. The triangular snake graph is obtained by joining v i and v i+1 to a
new vertex ui for 1 ≤ i ≤ n-1. Consider the edge set of TSn be E (TSn) = {e1, e2, ..., e3(n−1)}.
Take 23n−4-1 pebbles for distribution. Consider the target edge to be v1v2 and assume it has zero number
of pebbles. Place 23n−4-1 pebbles on the edge v2v3, using the edge detour path we cannot move a pebble to
v1v2 since the length of the edge detour path is 3(n-1) and the edge detour path of TSn consists of all the
edges.
Therefore,f∗e (TSn) ≥ 23n−4.
Now we prove the sufficient part by distributing 23n−4 pebbles on the edges of TSn.
Consider the target edge to be any edge of TSn. Without loss of generality, let it be v1v2 and assume it
has zero number of pebbles. Consider the pebble allotment in an unusual way of placing 23n−5 pebbles on
the edge v2u1 and one pebble on the edge v1u1. Now, reaching the target edge is possible with 23n−5+1
pebbles since the edge detour distance from v1v2 to v2u1 is 3n-5. And by placing 23n−4 pebbles on the edge
v2u2, using the edge detour path, reaching the target edge is possible. Also, if we alter the configurations of
pebbles on the edges, by Theorem 2.1, shifting a pebble to the destination edge is possible. By symmetry
we can reach all the edges of the graph TSn.
Thus, the detour edge pebbling number for the triangular snake graph is f∗e (TSn) = 23n−4.

3. Detour edge pebbling number of the square of some standard graphs

Theorem 3.1. The detour edge pebbling number for the square of path P2
n graph is f∗e (P2

n) = 22n−4; n ≥
3.
Proof. Let P2

n be a square of path graph with n vertices and 2n-3 edges.
Let the edge set S 1 = {e1, e2, ..., en−1} be the edges of Pn. Let the edge set S 2 = {en, en+1, ..., e2n−3} be
the new edges added to the edges of Pn to form P2

n. Let en be the edge adjacent to e1, e2 and e3, let en+1

be the edge adjacent to e1, e2, e3 and e4, let en+2 be the edge adjacent to e2, e3, e4 and e5, ..., let e2n−4 be
the edge adjacent to en−4, en−3, en−2 and en−1, let e2n−3 be the edge adjacent to en−1, en−2 and en−3.
The edge detour path from e1 to en−1 has all the edges of P2

n. Thus, the edge detour distance from e1 to
en−1 is 2n-4. Let en−1 be the destination edge. Take 22n−4-1 pebbles for distribution. Place 22n−4-1 pebbles
on the edge e1. Now, using the edge detour path, reaching the destination edge en−1 is not achievable since
22n−4-1 pebbles are sufficient only to reach the edges which are at a distance of at most 2n-5 from e1.
So, f∗e (P2

n) ≥ 22n−4.
Let D be any distribution of 22n−4 pebbles on the edges of P2

n to demonstrate the sufficient part.
Case (1). Let el be the destination edge where l ∈ S1.
Subcase 1.1. Let e1 or en−1 be the destination edge.
Without loss of generality, let en−1 be the destination edge. The edge detour distance from any one of the
edges of set S 1 to en−1 is at most 2n-4. Now, reaching the destination edge en−1 using the edge detour path
is achievable by distributing at most 22n−4 pebbles.
The edge detour distance from any one of the edges of set S 2 to en−1 is at most 2n-5. Now, reaching the
destination edge en−1 using the edge detour path is achievable by distributing at most 22n−5 pebbles. By
symmetry, we can prove for e1.
Subcase 1.2. Let e2 or en−2 be the destination edge.
Without loss of generality, let en−2 be the destination edge. The detour distance from any one of the edges
of set S 1 to en−2 is at most 2n-4. Now, reaching the destination edge en−2 using the edge detour path is
achievable by distributing at most 22n−4 pebbles.
The edge detour distance from any one of the edges of set S 2 to en−2 is at most 2n-5. Now, reaching the
destination edge en−2 using the edge detour path is achievable by distributing at most 22n−5 pebbles. By
symmetry, we can prove for e2.
Subcase 1.3. Let e3 or en−3 be the destination edge.
Without loss of generality, let en−3 be the destination edge. The edge detour distance from any one of the
edges of set S 1 to en−3 is at most 2n-5. Now, reaching the destination edge en−3 using the edge detour path
is achievable by distributing at most 22n−5 pebbles.
The edge detour distance from any one of the edges of set S 2 to en−3 is at most 2n-6. Now, reaching the
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destination edge en−3 using the edge detour path is achievable by distributing at most 22n−6 pebbles. By
symmetry, we can prove for e3.
Subcase 1.4. Let S 3 = {e4, e5, ..., en−5, en−4} be the destination edge.
The edge detour distance from any one of the edges of set S 3 to any one of the edges of set S 1 is at most
2n-6. Now, reaching the destination edge using the edge detour path is achievable by distributing at most
22n−6 pebbles.
The edge detour distance from any one of the edges of set S 3 to any one of the edges of set S 2 is at most
2n-8. Now, reaching the destination edge using the edge detour path is achievable by distributing at most
22n−8+n-5 pebbles.
Case (2). Let em be the destination edge where m ∈ S2.
Subcase 2.1. Let en or e2n−3 be the destination edge.
Without loss of generality, let e2n−3 be the destination edge. The edge detour distance from any one of the
edges of set S 1 to e2n−3 is at most 2n-5. Now, reaching the destination edge e2n−3 using the edge detour
path is achievable by distributing at most 22n−5 pebbles.
The edge detour distance from any one of the edges of set S 2 to e2n−3 is at most 2n-6. Now, reaching the
destination edge e2n−3 using the edge detour path is achievable by distributing at most 22n−6 pebbles. By
symmetry, we can prove for en.
Subcase 2.2. Let en+1 or e2n−4 be the destination edge.
Without loss of generality, let e2n−4 be the destination edge. The edge detour distance from any one of the
edges of set S 1 to e2n−4 is at most 2n-4. Now, reaching the destination edge e2n−4 using the edge detour
path is achievable by distributing at most 22n−4 pebbles.
The edge detour distance from any one of the edges of set S 2 to e2n−4 is at most 2n-5. Now, reaching the
destination edge e2n−4 using the edge detour path is achievable by distributing at most 22n−5 pebbles. By
symmetry, we can prove for en+1.
Subcase 2.3. Let en+2 or e2n−5 be the destination edge.
Without loss of generality, let e2n−5 be the destination edge. The edge detour distance from any one of the
edges of set S 1 to e2n−5 is at most 2n-5. Now, reaching the destination edge e2n−5 using the edge detour
path is achievable by distributing at most 22n−5+1 pebbles.
The edge detour distance from any one of the edges of set S 2 to e2n−5 is at most 2n-6. Now, reaching the
destination edge e2n−5 using the edge detour path is achievable by distributing at most 22n−6+1 pebbles.
By symmetry, we can prove for en+2.
Subcase 2.4. Let S 4 = {en+3, en+4, ..., e2n−7, e2n−6} be the destination edge.
The edge detour distance from any one of the edges of set S 4 to any one of the edges of set S 1 is at most
2n-5. Now, reaching the destination edge using the edge detour path is achievable by distributing at most
22n−5+1 pebbles.
The edge detour distance from any one of the edges of set S 4 to any one of the edges of set S 2 is at most
2n-6. Now, reaching the destination edge using the edge detour path is achievable by distributing at most
22n−6+1 pebbles.
Thus, the detour edge pebbling number for the square of path P2

n graph is f∗e (P2
n) = 22n−4; n ≥ 3.

Theorem 2.3. The detour edge pebbling number for the square of cycle C2
n graph is f∗e (C2

n) = 22n−1; n ≥
5.

Proof. Let C 2
n be a square of cycle graph with n vertices and 2n edges.

Let the edge set S 1 = {e1, e2, ..., en} be the edges of Cn. Let the edge set S2 = {en+1, en+2, ..., e2n} be
the new edges added to the edges of Cn to form C 2

n. Let e∗ be any one of the adjacent edges of en+1 in S1.
The edge detour path from en+1 to e∗ has all the edges of C 2

n. Thus, the edge detour distance from en+1 to
e∗ is 2n-1. Let en+1 be the destination edge. Take 22n−1-1 pebbles for distribution. Place 22n−1-1 pebbles
on the edge e∗. Now, using the edge detour path, reaching the destination edge en+1 is not achievable since
22n−1-1 pebbles are sufficient only to reach the edges which are at a distance of at most 2n-2 from e∗.
So, f∗e (C 2

n) ≥ 22n−1.
Let D be any distribution of 22n−1 pebbles on the edges of C 2

n to demonstrate the sufficient part.
Case (1). Let el be the destination edge where l ∈ S1.
Without loss of generality, let en be the destination edge. The edge detour distance from en to en−1 is
2n-1. Now, reaching the destination edge en using the edge detour path is achievable by distributing 22n−1
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pebbles.
The edge detour distance from en to en−2 is 2n-2. Now, reaching the destination edge en using the edge
detour path is achievable by distributing 22n−2 pebbles.
The edge detour distance from en to any one of the remaining edges in S1 is at most 2n-3. Now, reaching
the destination edge en using the edge detour path is achievable by distributing at most 22n−3 pebbles.
The edge detour distance from en to any one of the edges in S2 which is adjacent to en is 2n-1. Now, reaching
the destination edge en using the edge detour path is achievable by distributing 22n−1 pebbles.
The edge detour distance from en to any one of the edges in S2 which is not adjacent to en is at most 2n-2.
Now, reaching the destination edge en using the edge detour path is achievable by distributing at most 22n−2

pebbles. By symmetry, we can prove for all el.
Case (2). Let em be the destination edge where m ∈ S2.
Without loss of generality, let en+1 be the destination edge. The edge detour distance from en+1 to any one
of its adjacent edges in S1 is 2n-1. Now, reaching the destination edge en+1 using the edge detour path is
achievable by distributing at most 22n−1 pebbles.
The edge detour distance from en+1 to any one of its non-adjacent edges in S1 is at most 2n-2. Now, reaching
the destination edge en+1 using the edge detour path is achievable by distributing at most 22n−2 pebbles.
The edge detour distance from en+1 to any one of its adjacent edges in S2 is at most 2n-1. Now, reaching
the destination edge en+1 using the edge detour path is achievable by distributing at most 22n−1 pebbles.
The edge detour distance from en+1 to any one of its non-adjacent edges in S2 is at most 2n-2. Now, reaching
the destination edge en+1 using the edge detour path is achievable by distributing at most 22n−2 pebbles.
By symmetry, we can prove for all em.
Thus, the detour edge pebbling number for the square of cycle C 2

n graph is f∗e (C 2
n) = 22n−1; n ≥ 5.

Theorem 3.3. The detour edge pebbling number for the square of star S2
n graph is f∗e (S2

n) = 22n+dn3 e; n ≥
5 when n is odd and f∗e (S2

n) = 2
5n
2 ; n ≥ 6 when n is even.

Proof. Let S 2
n be a square of star graph with n+1 vertices and 3n edges.

Let the edge set S1 = {e1, e2, ..., en} be the edges of Sn. Let the edge set S2 = {en+1, en+2, ..., e3n} be
the new edges added to the edges of Sn to form S 2

n i.e., let the edge set S3 = {en+1, en+2, ..., e2n} be the
edges of cycle Cn added to the edges of star graph Sn to form a wheel graph Wn S4 = {e1, e2, ..., en, en+1,
en+2, ..., e2n} as a subgraph of S 2

n and let the edge set S5 = {e2n+1, e2n+2, ..., e3n} be the remaining edges
incident with the vertices of cycle Cn.
Case (1). When n is odd.
The edge detour path from e2n+1 to any one of the edges of the set S4 does not consist of all the edges of
S 2
n since for n = 5, the edge detour path lacks two edges from the total number of edges of S 2

5, for n = 7,
the edge detour path lacks three edges from the total number of edges of S 2

7 and the lacking of edges in the
edge detour path keeps on increasing by one edge for n ≥ 5.
Thus, the edge detour distance from e2n+1 to any one of the edges of the set S4 is 5n−1

2 . Let e∗ be any one

of the edges of the set S4 and let it be the destination edge. Take 22n+dn3 e-1 pebbles for distribution. Place
22n+dn3 e-1 pebbles on the edge e2n+1. Now, using the edge detour path, reaching the destination edge e∗ is
not achievable since 22n+dn3 e-1 pebbles are sufficient only to reach the edges which are at a distance of at
most 5n−3

2 from e2n+1.

So, f∗e (S 2
n) ≥ 22n+dn3 e.

Let D be any distribution of 22n+dn3 e pebbles on the edges of S 2
n to demonstrate the sufficient part.

Subcase 1.1. Let eu be the destination edge where u ∈ the set S1.
Without loss of generality, let en be the destination edge. The edge detour distance from en to ev is at most
5n−1

2 where v ∈ the set S3. Now, reaching the destination edge en using the edge detour path is achievable

by distributing at most 22n+dn3 e pebbles.
The edge detour distance from en to ew is at most 5n−1

2 where w ∈ the set S5. Now, reaching the destination

edge en using the edge detour path is achievable by distributing at most 22n+dn3 e pebbles.
The edge detour distance from en to any other edges of the set S1 is at most 5n−1

2 . Now, reaching the

destination edge en using the edge detour path is achievable by distributing at most 22n+dn3 e pebbles. By
symmetry, we can prove for all eu.
Subcase 1.2. Let ev be the destination edge where v ∈ the set S3.
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Without loss of generality, let e2n be the destination edge. The edge detour distance from e2n to eu is at
most 5n−1

2 where u ∈ the set S1. Now, reaching the destination edge e2n using the edge detour path is

achievable by distributing at most 22n+dn3 e pebbles.
The edge detour distance from e2n to ew is at most 5n−1

2 where w ∈ the set S5. Now, reaching the destination

edge e2n using the edge detour path is achievable by distributing at most 22n+dn3 e pebbles.
The edge detour distance from e2n to any other edges of the set S3 is at most 5n−1

2 . Now, reaching the

destination edge e2n using the edge detour path is achievable by distributing at most 22n+dn3 e pebbles. By
symmetry, we can prove for all ev.
Subcase 1.3. Let ew be the destination edge where w ∈ the set S5.
Without loss of generality, let e3n be the destination edge. The edge detour distance from e3n to eu is at
most 5n−1

2 where u ∈ the set S1. Now, reaching the destination edge e3n using the edge detour path is

achievable by distributing at most 22n+dn3 e pebbles.
The edge detour distance from e3n to ev is at most 5n−1

2 where v ∈ the set S3. Now, reaching the destination

edge e3n using the edge detour path is achievable by distributing at most 22n+dn3 e pebbles.
The edge detour distance from e3n to any other edges of the set S5 is at most 5n−1

2 . Now, reaching the

destination edge e3n using the edge detour path is achievable by distributing at most 22n+dn3 e pebbles. By
symmetry, we can prove for all ew.
Thus, the detour edge pebbling number for the square of star S 2

n graph is f∗e (S 2
n) = 22n+dn3 e; n ≥ 5 when n

is odd.
Case (2). When n is even.
The edge detour path from e2n+1 to any one of the edges of the set S3 does not consist of all the edges of
S 2
n since for n = 6, the edge detour path lacks two edges from the total number of edges of S 2

6, for n = 8,
the edge detour path lacks three edges from the total number of edges of S 2

8 and the lacking of edges in the
edge detour path keeps on increasing by one edge for n ≥ 6.
Thus, the edge detour distance from e2n+1 to any one of the edges of the set S3 is 5n

2 . Let e∗ be any one

of the edges of the set S3 and let it be the destination edge. Take 2
5n
2 -1 pebbles for distribution. Place

2
5n
2 -1 pebbles on the edge e2n+1. Now, using the edge detour path, reaching the destination edge e∗ is not

achievable since 2
5n
2 -1 pebbles are sufficient only to reach the edges which are at a distance of at most 5n−2

2
from e2n+1.
So, f∗e (S 2

n) ≥ 2
5n
2 .

Let D be any distribution of 2
5n
2 pebbles on the edges of S 2

n to demonstrate the sufficient part.
Subcase 2.1. Let eu be the destination edge where u ∈ the set S1.
Without loss of generality, let en be the destination edge. The edge detour distance from en to ev is at most
5n
2 where v ∈ the set S3. Now, reaching the destination edge en using the edge detour path is achievable by

distributing at most 2
5n
2 pebbles.

The edge detour distance from en to ew is at most 5n
2 where w ∈ the set S5. Now, reaching the destination

edge en using the edge detour path is achievable by distributing at most 2
5n
2 pebbles.

The edge detour distance from en to any other edges of the set S1 is at most 5n
2 . Now, reaching the destination

edge en using the edge detour path is achievable by distributing at most 2
5n
2 pebbles. By symmetry, we can

prove for all eu.
Subcase 2.2. Let ev be the destination edge where v ∈ the set S3.
Without loss of generality, let e2n be the destination edge. The edge detour distance from e2n to eu is at most
5n
2 where u ∈ the set S1. Now, reaching the destination edge e2n using the edge detour path is achievable

by distributing at most 2
5n
2 pebbles.

The edge detour distance from e2n to ew is at most 5n
2 where w ∈ the set S5. Now, reaching the destination

edge e2n using the edge detour path is achievable by distributing at most 2
5n
2 pebbles.

The edge detour distance from e2n to any other edges of the set S3 is at most 5n
2 . Now, reaching the

destination edge e2n using the edge detour path is achievable by distributing at most 2
5n
2 pebbles. By

symmetry, we can prove for all ev.
Subcase 2.3. Let ew be the destination edge where w ∈ the set S5.
Without loss of generality, let e3n be the destination edge. The edge detour distance from e3n to eu is at most
5n
2 where u ∈ the set S1. Now, reaching the destination edge e3n using the edge detour path is achievable
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by distributing at most 2
5n
2 pebbles.

The edge detour distance from e3n to ev is at most 5n
2 where v ∈ the set S3. Now, reaching the destination

edge e3n using the edge detour path is achievable by distributing at most 2
5n
2 pebbles.

The edge detour distance from e3n to any other edges of the set S5 is at most 5n
2 . Now, reaching the

destination edge e3n using the edge detour path is achievable by distributing at most 2
5n
2 pebbles. By

symmetry, we can prove for all ew.
Thus, the detour edge pebbling number for the square of star S 2

n graph is f∗e (S 2
n) = 2

5n
2 ; n ≥ 6 when n is

even.
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