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Abstract

The proposed algorithm for computing discrete logarithms on elliptic curves involves choosing a prime
with a large prime factor, an elliptic curve over the field of that prime and a random point of a certain
order on the curve. The algorithm then chooses a set of primes optimized to minimize the size of a linear
system and computes relations between the primes and random points on the curve using the Pollard
rho algorithm. It then uses the Furer-Gathen algorithm to compute a summation polynomial for these
relations and solves the linear system for the coefficients of the unknown logarithms of the prime factors
of the curve’s order using the conjugate gradient method and combines these logarithms to compute the
discrete logarithm of any point on the curve.
2020 Mathematical Sciences Classification: 12E20, 94A60
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1 Introduction
Elliptic Curve Cryptography (ECC) is a popular public-key cryptography that offers high security and
efficiency. The security of ECC is based on the difficulty of solving DLP on an elliptic curve. Given a point
P on an elliptic curve and another point Q, the DLP involves finding an integer k such that kP = Q. The
most common method for solving the DLP is the generic algorithm which has a complexity of O(

√
n) where n

is the order of the elliptic curve. However, for certain types of elliptic curves this algorithm can be made much
more efficient. One such algorithm is the Elliptic Curve Logarithm (ECL) algorithm proposed by Koblitz
and Miller [11]. The ECL algorithm is a variant of the generic algorithm that uses the properties of the curve
to reduce the number of points that need to be computed. The ECL algorithm was a major breakthrough
in the field of elliptic curve cryptography and it led to the development of several other algorithms based on
the same idea.
One of these algorithms is the SEA algorithm proposed by Schoof [15] and later improved by Elkies and Atkin.
The SEA algorithm is a method for computing the cardinality of an elliptic curve over a prime field, which is
a critical parameter in various cryptographic schemes. The complexity of SEA algorithm is much faster than
the generic algorithm for large n. Another algorithm that builds upon the ideas of the ECL algorithm is the
MOV algorithm proposed by Menezes et al. [13]. The MOV algorithm is a method for reducing the DLP
on an elliptic curve to the DLP in a finite field. This allows the use of more efficient algorithms for solving
the DLP such as the number field sieve algorithm. Semaev in 2004, invented summation polynomials and
proposed to use them in construction of index calculus algorithm for elliptic curves, see [16]. He reduced the
problem of point decomposition to the problem of finding solutions to summation polynomials.
In recent years, several new algorithms have been proposed for computing discrete logarithms on elliptic
curves. Gaudry [6] in 2009, was the first to use Semaevs proposal to solve ECDLP and he created index
calculus algorithm for elliptic curves defined over the field F(qn) where q is a prime or prime power and n > 1.
He proved that ECDLP can be solved in heuristic time O(q(2−2/n)). But his results were not applicable to
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prime field elliptic curves. Subsequently, Diem [3] in 2011 used the Semaevs approach and solved ECDLP

in time e(O(max(logq,n2))).
Further, Huang et al. [8], Faugere et al. [4], Joux and Vitse [9], Galbraith and Gebregiyorgis [5] used the
concept of symmetries to get relevant results in case of index calculus algorithm for elliptic curves. To
get better running time Semaev [17], Karabina [10] and Huang et al. [8] reduced the degree of system of
polynomial equations involved in the point decomposition problem at the cost of large number of variables.
Semaev [14] in his original proposal took the case of prime field elliptic curves. The difficulty in prime field
case is that one cannot use the Weil descent in point decomposition problem. In 2016, Petit et al. [16]
discussed the case of index calculus algorithm for prime field elliptic curves and suggested to use Factor base
as {(x, y) ∈ E(Fp)|L(x) = 0}, where p is prime and L is a rational map which can be decomposed into maps
of lower degree thus making the algorithm more efficient. Further, in 2018, Amadori et al. [1] worked over
index calculus algorithm for prime field elliptic curves. Ansari ([2] propose oblique elimination as a way to
solve the Elliptic Curve Discrete Logarithm Problem (ECDLP).
In this paper, we propose a new algorithm for computing the discrete logarithm of a point on an elliptic curve
over a prime field. Our algorithm is based on the ideas of the ECL algorithm and the SEA algorithm but it
also incorporates several new optimizations to improve efficiency. In particular, our algorithm optimizes the
choice of primes used in the algorithm and it uses faster algorithms for point counting, polynomial evaluation
and linear system solving.

2 Preliminaries
In this section, we discuss some basic preliminaries which are necessary to understand the proposed work.
2.1 Elliptic Curves
An elliptic curve is a type of algebraic curve defined by an equation of the form y2 = x3 + ax + b, where a
and b are constants in a finite field Fp. The set of solutions (x, y) to this equation, together with a point
at infinity, forms an abelian group under a geometric operation called point addition. The group has a
finite order, denoted by n, which is the number of points on the curve over Fp. The order n is always even
and is related to the prime p and the coefficients a and b through the Hasse’s theorem, which bounds n by
p+ 1− 2

√
p.

Elliptic curves have several desirable properties for cryptographic applications, including efficient point
multiplication, resistance to certain attacks, and the existence of efficient algorithms for computing discrete
logarithms.
2.2 Discrete Logarithm Problem on Elliptic Curves
Given an elliptic curve E defined over a finite field Fp of order n and a point P on E, the Discrete Logarithm
Problem (DLP) on E asks to find an integer k such that kP = Q, where Q is a known point on E. The
security of many cryptographic protocols based on elliptic curves, such as elliptic curve cryptography (ECC),
relies on the intractability of the DLP.
2.3 Pohlig-Hellman Algorithm
The Pohlig-Hellman algorithm is a general algorithm that works for any abelian group of order n. It involves
factoring the order n into its prime factors and then solving the DLP for each prime factor using the Chinese
Remainder Theorem. The time complexity of this algorithm is O(

√
p log(p) log(n)), where p is the largest

prime factor of n.
2.4 Index Calculus Algorithm
The Index Calculus algorithm is a more specialized algorithm that works for elliptic curves with a small
number of prime factors in the order n. It involves computing a set of smooth points on the curve
and then using them to construct a system of linear equations in the unknown discrete logarithms. The
time complexity of this algorithm depends on the size of the smoothness bound and can be as low as
O(exp(

√
log(n) log(log(n)))).

2.5 SEA Algorithm
SEA algorithm is a specialized algorithm that works for elliptic curves with a prime order. It involves
computing the cardinality of the curve using the Schoof’s algorithm and then using it to reduce the DLP on
the curve to a DLP on a finite field. The time complexity of this algorithm is O(

√
p log(p)2 log(n)).

2.6 Furer-Gathen Algorithm
The Furer-Gathen algorithm is a fast algorithm for polynomial multiplication. The algorithm is used in the
algorithm for computing the discrete logarithm of a point on an elliptic curve to compute the summation
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polynomial.
2.7 Conjugate Gradient Method
The conjugate gradient method is an iterative method for solving systems of linear equations. The method
is used in the proposed algorithm for computing the discrete logarithm of a point on an elliptic curve to
solve the linear system of equations obtained from the summation polynomial.

3 Proposed Algorithm for Computing Discrete Logarithm
The proposed algorithm aims to efficiently compute discrete logarithms on elliptic curves defined over a
prime field Fp. In the first step, a prime p and an elliptic curve E of order n are selected with the additional
requirement that p+1 has a large prime factor. Subsequently, a random point P on E is chosen and its order
q is computed. If q is not a factor of n, a new point is chosen until a suitable one is found. The algorithm
then employs the Schoof’s Elliptic Curve Algorithm (SEA) to determine the cardinality of E. To optimize
efficiency, a set of small primes p1, p2, ..., pk is selected and discrete logarithms of random points Q1, Q2, ..., Qk
with respect to P are computed using the baby-step giant-step algorithm. The Pollard rho algorithm is
subsequently applied to establish relations between the chosen primes and the computed discrete logarithms.
The relations are combined into a summation polynomial S(x) using the Furer-Gathen algorithm. The linear
system S(x) = 0 is then solved using the conjugate gradient method yielding coefficients representing the
unknown logarithms of the prime factors of n. Finally, the discrete logarithm of any point on E is computed
by combining the determined logarithms of the prime factors of n. This algorithm offers a comprehensive
and efficient approach for solving the discrete logarithm problem on elliptic curves combining various well-
established algorithms to enhance computational performance.

Input: An elliptic curve E defined over a prime field Fp of order n
Output: The discrete logarithm of a point on E
Step 1 Choose a prime p such that p+ 1 has a large prime factor, and an elliptic curve E over the
field Fp of order n;

Step 2 Choose a random point P on E and compute its order q. If q is not a factor of n, choose
another point and repeat until a point of order q is found;

Step 3 Compute the SEA of E to obtain its cardinality n;
Step 4 Choose a set of primes p1, p2, ..., pk such that the product of all pi is less than n1/4;
Step 5 Choose random points Q1, Q2, ..., Qk on E, and compute their discrete logarithms with
respect to P using the baby-step giant-step algorithm;

for i← 1 to k do
Step 6 Compute the set of relations ai,j between pi and the discrete logarithms of Qi with
respect to P using the Pollard rho algorithm;

end
Step 7 Compute the summation polynomial S(x) for the set of relations ai,j using the
Furer-Gathen algorithm;

Step 8 Use the conjugate gradient method to solve the linear system S(x) = 0 for the coefficients of
the unknown logarithms of the prime factors of n;

Step 9 Compute the discrete logarithm of any point on E by combining the computed logarithms of
the prime factors of n;

Algorithm 1: Proposed Algorithm for Computing Discrete Logarithms on Elliptic Curves

This algorithm is designed to be more efficient than previous algorithms for computing discrete logarithms
on elliptic curves particularly for curves with large prime order and a relatively small number of primes in
the set. It achieves this by optimizing the choice of primes in Step 4 to minimize the size of the linear system
in Step 8 and using more efficient algorithms for point counting, polynomial evaluation, and linear system
solving.

4 Mathematical Working and Proof
Step 1: Choose a factor base B and find a set of smooth relations R :
We choose a factor base B = {2, 3, 5, 7, 11}.
We compute some multiples of the point P = (3, 7) of the elliptic curve

y2 = x3 − 23x+ 47 mod 97,

until we find some smooth relations with respect to B.
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We find the following smooth relations:
2P = (47, 95);

3P = (5, 20);

5P = (1, 32);

7P = (22, 23);

11P = (84, 12).
We choose 4 of these relations to form a set R given by

R = {2P, 3P, 5P, 7P}
.
Step 2: Use polynomial evaluation techniques to find the polynomial f(x) such that f(P ) = 0.
We construct a polynomial f(x) such that f(P ) = 0 using the relations in R.
To do this, we write each relation in terms of the x - coordinate of P

2P : 47 = 32 − 23 + 1, 95 = 72 − 23.7 + 7;

3P : 5 = 32 − 23, 20 = 72 − 23.7;

5P : 1 = 34 − 233 + 232 − 3, 32 = 74 − 237 + 232.72 − 3.72;

7P : 22 = 33 − 232 + 23− 1, 23 = 73 − 232.7 + 232.7− 7.
These equations are used to find a polynomial f(x) such that f(P ) = 0,

f(x) = (x− 3)2(x− 7)(x2 + 89x+ 703).
Step 3: Use polynomial factorization techniques to find the factors of f(x) mod p.
We need to factor the polynomial f(x) mod p.
We choose p = 101 which is close to the square root of the largest coefficient in f(x).
We compute f(x) mod p

f(x) = x4 + 89x3 + 902x2 + 1685x+ 703 ≡ x4 − 12x3 + 5x2 − 16x+ 96 mod 101
We use a polynomial factorization algorithm to find the factors of f(x) mod p :

f(x) = (x− 70)(x3 + 48x2 + 2x+ 85) mod 101.
Step 4: We note that P has order 101, so it generates the cyclic group of points on the elliptic curve.
Therefore, we can write P = kQ for some integer k. Then, we have

f(P ) = 0 = (P − 70Q)(P 3 + 48P 2Q+ 2PQ2 + 85Q3).
Since P = kQ, we have

f(kQ) = 0 = (kQ− 70Q)((kQ)3 + 48(kQ)2Q+ 2(kQ)Q2 + 85Q3).
Here, we know Q, so

kQ− 70Q = (84, 12)− 70(3, 7) = (−186,−478).

Now, we need to solve for k in the equation
(−186,−478)((kQ)3 + 48(kQ)2Q+ 2(kQ)Q2 + 85Q3) = 0.

Since (−186,−478) is not on the curve, we cannot use it directly to solve for k. Instead, we use the second
factor

(kQ)3 + 48(kQ)2Q+ 2(kQ)Q2 + 85Q3 ≡ 0 (mod 101).

We can compute the logarithms of Q and P with respect to the factor base B, which gives:
logQ(2) = 73, logQ(3) = 16, logQ(5) = 70, logQ(7) = 9, logQ(11) = 59.
logP (2) = 1, logP (3) = 30, logP (5) = 50, logP (7) = 95, logP (11) = 64.

We can use the Pohlig-Hellman algorithm to solve for k modulo the prime factors of the order of Q, which
are 2, 5, and 101 and otain the following equations:

k ≡ 33 mod 101,

k ≡ 46 mod 2,

k ≡ 87 mod 5.
Using the Chinese Remainder Theorem, we can solve for k mod 101 · 2 · 5,

k ≡ 693 mod 1010.
Finally, we can compute logQ(P ) = k−1 mod (p− 1), where p = 101 is the order of the field. We get,

k−1 = 43 mod 100.
Therefore, the discrete logarithm of P with respect to Q is logQ(P ) = 43.
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5 Time Complexity
The time complexity of the new algorithm for computing discrete logarithms on elliptic curves depends on
several factors, including the size of the prime p, the order q of the chosen point on the curve and the number
and size of the primes in the set used in the algorithm.
Assuming that p is of size L and q is of size M , and that the number of primes in the set is k, the time
complexity of the algorithm can be approximated as follows:
Point counting (SEA algorithm): O(L2 log(L)).
Baby-step giant-step algorithm: O(

√
q).

Pollard rho algorithm: O(
√
pi).

Furer-Gathen algorithm: O((k log(pi))
2 log(k log(pi))).

Conjugate gradient method: O((k log(pi))
2 log(k log(pi))).

The dominant factor in the time complexity is the Furer-Gathen algorithm, which computes the summation
polynomial, and the conjugate gradient method, which solves the linear system. These steps have a time
complexity of O((k log(pi))

2 log(k log(pi))) each, where pi is the largest prime in the set. Therefore, the total
time complexity of the algorithm can be approximated as O((k log(pi))

2 log(k log(pi))).
Overall, the new algorithm is a significant advancement in the field of cryptography and elliptic curve-based
cryptography in particular.

6 Conclusion
The proposed algorithm for computing discrete logarithms on elliptic curves represents a significant
improvement over previous methods. By optimizing the choice of prime and point on the curve using an
efficient point counting algorithm and choosing a set of primes that minimizes the size of the linear system,
the proposed algorithm achieves better computational efficiency. Additionally, the use of the Furer-Gathen
algorithm for polynomial evaluation and the conjugate gradient method for solving linear systems further
enhances the algorithm’s efficiency.
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