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On behalf of VIJÑĀNA PARISHAD OF INDIA and JÑĀNĀBHA Family, we ourselves feel
great honored to publish Special Issue of JÑĀNĀBHA , Vol.53(2) (2023) (Dedicated to Professor V.P. Saxena
on His 80th Birth Anniversary Celebrations)

Professor Vinod Prakash Saxena is an amazing man towering and leading mathematician, well known
topmost eminent figure of Biomathematics and allied topics of Applied Mathematics. He has credit to
introduce I -function (1982) as final generalization of earlier sequence of functions including H-function due
to Charle’s Fox (1962) [first Indian formula of Mathematics applied in the index of American Math. Society
Reviewers].

Professor Saxena is well associated with me since 1964. Both of us as top classmates got M.Sc.
(Mathematics) in 1966 with distinction from Jiwaji University, Gwalior, Madhya Pradesh, India. Then
both of us worked as regular Research Scholar under Research Training Scheme of Ministry of Education,
Government of India in S.A. Technological Institute, Vidisha, Madhya Pradesh [August 01,1966 - July 31,
1969] under Professor P.M. Gupta, and both got Ph.D. from Vikram University, Ujjain, Madhya Pradesh,
India in 1970.

Professor Saxena is well associated with JÑĀNĀBHA since very inception 1971 as an author. He has
credit to be Hon’ble member of Executive Council of VPI in 1988.

He was honored by DISTINGUISHED SERVICE AWARD during 6th Annual Conference of VPI
held at Bundelkhand Institute of Engineering and Technology, Jhansi, Uttar Pradesh, India (December 26-
28,1996). Professor V.P. Saxena has credit to grace the chair of President of VPI (April 2005- March 2008).
He was elected as Honorary Fellow of VPI and honored by title FVPI in 2007 during 12th Annual Conference
of VPI held at JNV University, Jodhpur, Rajasthan, India [October 25-27, 2007]. Professor Saxena was also
honored by Highest Prestigious Award LIFE -LONG ACHIVEMENTS AWARD of VPI during 2nd

International Conference of VPI held at Bundelkhand University, Jhansi, Uttar Pradesh, India (March 09-11,
2018). Professor V.P. Saxena is recently honored by VPI GOLDEN JUBILEE AWARD during Fifth
International Conference and Golden Jubilee Celebration of VPI held at Jawaharlal Nehru University, New
Delhi (June 16-18, 2022). Professor Saxena is also active Hon’ble Senior Member on Editorial Board of
JÑĀNĀBHA . On this great occasion of Professor Saxena’s Birth Anniversary Celebrations, we wish him
a happy, and long joyful life . May he continue to guide, encourage, and enlighten the global Mathematics
community for decades to come.
AT A GLANCE:
PROFESSOR VINOD PRAKASH SAXENA, FISMMCS, FRMS, FVPI
(Ex-Vice-Chancellor Jiwaji University, Gwalior)
E-mail: vinodpsaxena@gmail.com
Mob. 9425109044, Ph: 0755-4055277
Resi: B-147, New Minal Residency,
J.K. Road, Bhopal-462023, India

1 PERSONAL DATA:
Date of Birth : December 11, 1943
Place of Birth : Shivpuri (M.P.), India
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2 EDUCATIONAL DATA:
(A) Basic

Ph.D. 1970 Vikram University Ujjain Faculty: Engineering
Subject: Applied Mathematcs
Topic : Integral Transforms and Their Technical
Applications

M.Sc. 1966 Jiwaji Univeristy Gwalior Faculty: Science
Subject: Mathematcs
Position : First Division with Distinction. Stood
Second in the University Merit

(B) Post-Doctoral Fellowships/Visitor ship/Training
POSTDOCTORAL
VISITING SCIENTIST ’Worked as CSIR Senior Research Fellow and Post Doctor Research Fellow at SATI,
Vidisha and M.A. College of Technology Bhopal from May 1969 to July 1971. Did research and taught
post-graduate classes during this period.
Worked at the University of Cambridge, England as visiting scientist in 1978 under British Council UGC
(India) exchange of Young Scientists programme and worked under Sir James Light hill, (Lucasian Professor)
of the University.
SHORT-TERM TRAININGS
Participated in several advanced short term courses on Management, Mathematics and Computer Science
at leading Institutions like I.I.M., Ahmedabad; I.I.T., Delhi; I.I.T., Kanpur and MANIT, Bhopal

3 PROFESSIONAL AND ADMINISTRATIVE ASSIGNMENTS
Lecturer :
Worked as Associate Lecturer/Lecturer of Mathematics at S.V. Regional College of Engineering and
Technology, Surat during July 1971 to May 1980.
Associate Professor
Worked as Associate Professor of Mathematics at P.A. University, Ludhiana during May 1980 to March 1984
Professor
Professor of Mathematics at Jiwaji University, Gwalior during March 1984 to December, 2005.
Dean
Dean Faculty of Science, Jiwaji University, Gwalior during 1984-86 and 1990-92.
Vice-chancellor
Took over as emergency Vice-Chancellor, Jiwaji University under Section 52 during August 9, 2000.
Director/Principal

• Worked as Director/Principal, Yagyavalkya Institute of Technology, Jaipur from August, 2007 to
August 2008.

• Director, Sagar Institute of Research, Technology and Science, Bhopal, from August 2008 to January
2012.

Advisor
• Appointed as Advisor, Research and Development, Sharda Group of Institutions (Anand Engineering

College, Agra) in April, 2006.
• Appointed as Advisor and Coordinator (Research) Sagar Group of Institutions (SIRT, SIRTS, and

SIRTE) in January 2012.
Additional Assignments/Positions

i) Worked as the Head, School of Mathematics and Allied Sciences, Jiwaji University, Gwalior since
March 1984 till August 2000.

ii) Worked as Director, Computer Centre, Jiwaji University, Gwalior during 1998-99.
iii) Worked as Coordinator, M.Sc. Computer Science Programme of Jiwaji University, Gwalior during

1992-2000.
iv) Founder Head of Computer Centre, Jiwaji University, Gwalior from 1987 to 1994.
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v) Appointed Proctor, Jiwaji University, Gwalior in 1994 for two years.
vi) Coordinator, M.P. Council of Science and Technology (Gwalior) for two terms 1987-91.

Supporting Positions:
i) Member, Executive Council, Jiwaji University, Gwalior, first during 1984-86 and second time in 1990-

93.
ii) Chairman, Board of Studies in Mathematics, Jiwaji University, Gwalior during 1984 to 2001.
iii) Chairman, Board of Studies in Computer Science, Jiwaji University, Gwalior for two years.
iv) Member, Board of Governors, Madhav Institute of Technology and Science, Gwalior since 1994.
v) Member of several other University bodies like Academic Council, Standing Council Board of Studies

of affiliated colleges etc.
vi) Chairman, UGC-NAAC peer team since March 2002 and evaluated an accredited more than 75

Universities and Colleges.
Academic Positions Held in Other Institutions:

i) Expert Member, Standing Committee, UGC COSIST program in Mathematics at Jodhpur University
for two terms.

ii) Expert Member of Board of Studies of several Universities like Rajasthan, Agra, Vikram, Bhopal etc.
iii) Expert Member of Research Degree Committees of several Universities like Srinagar (Garhwal),

Gurukul Kangri, Bhopal, Rewa, JAYPEE Univesity etc.
iv) Member, Advisory Board of UGC Centre on Mathematical Modelling in Jadavpur University, Calcutta.
v) Advisor, Ansal Institute of Technology, Gurgaon.

4 FOREIGN VISITS:
i) During 1978 visited Imperial College (London) (Prof. C.G. Caro), Brunel University (Uxbridge) (Prof.

J.R. Whiteman), University of Glasgow (Prof. I.N. Sneddon) and University of Stratnelyde (Glasgow)
(Prof. R.M. Keneddy). These visits have helped to establish collaboration on long term basis with
eminent British Scientists.

ii) Also visited Xian-Jiaotong University, China in 1988 to deliver lecture and participate in International
Conference on Biomathematics.

iii) Visited National University of Singapore, Singapore in 1996 to participate in International Conference.
iv) First ever Indian invited to deliver Plenary lecture in International Congress of Bio-mathematics,

delivered three lectures in 8th International Congress Bio-mathematics at Panama in 1997.
v) Delivered lectures in Argentina University and National Health Institute, Buenos Aires, Argentina in

1997.
vi) Delivered lectures in Beykent University and other Universities of Istanbul, Turkey in 2001.

vii) Visited Cyprus in 2001 to participate in Commonwealth Universities Vice-Chancellors’ Conference.
viii) Visited and delivered lecture in the University of Cambridge (U.K.) IN 2006.
ix) Visited and delivered lecture at Fraunhaufer Institute, Kaiserslautern, Germany in December 2007.
x) Visited Isaac Newton Centre of applied mathematics at the University of Cambridge and also presented

research tutorials at Second IASTED International conference in July 2011.
xi) Delivered a plenary lecture at American University in the Emirates in the International conference on

Transnational Education and Cultural Effects, organized by Eurasian Universities Union in 2014 at
Dubai (UAE).

5 TEACHING and RESEARCH:
Specializations in Teaching:
Teaching : Analysis, Biomathematics, Numerical Methods, Mathematical Methods, Neural Networks,
Simulation, Mathematical Modelling, Air Pollution and other areas of Mathematics and theoretical computer
science.
Research Areas:

i) Physiological Heat Transfer
ii) Mathematical Ecology (including Population Modelling)
iii) Atmospheric Pollution
iv) Epidemiology
v) Pharmaco-Kinetics
vi) Theoretical Computer Science
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vii) Mathematical Finance
viii) Higher Transcendental Functions
Research Projects Completed:

i) “Temperature Distribution in Skin and Subcutaneous Tissues” supported by South Gujrat University,
Surat under UGC unassigned grant (1974-76).

ii) “Mathematical and Numerical Approach to Physiological heat Flow Problems” supported by UGC,
New Delhi (1985-88).

iii) “Quantitative Study of Effect of Growth of Population and Pollution on Rural Ecosystem” supported
by M.P. Council of Science and Technology, Bhopal (1989-91).

iv) “Mathematical Approach to the Thermal Studies of Abnormal Growths and Heat Injuries in a Human
Body” supported by UGC, New Delhi (1995-1998)

v) “Mathematical Modelling in the Study of Ecological Effects of Pollution on the Existence of Interacting
Species Systems” supported by UGC, New Delhi (2002-onwards).

vi) Mathematical study of Wild Life Population with Special Reference to Shivpuri District of M.P.
Supported by M.P. Council of Science and Technology since 2002.

vii) “A Study on the Ecological Determinants and Their Impact on Human Population in Industrial
Complexes near Gwalior” supported by DST, New Delhi (1993-1996).

Most Significant Contribution to Mathematical Sciences
Introduced and Defined a New Formula/Function: “I-Function” (1982) which is final generalization of
Hypergeometric functions in the sequence of E-Function (MacRobert, 1937), G-Function (Meijers, 1944)
and H-Function (Fox, 1962) which is adopted as a research topic by many mathematicians throughout.
First Indian’s formula of Mathematics appeared in the index of American Mathematical Society Reviewers.
Prizes and Honours
(A) Won following prizes / honours for research work.

> Nominated fellow of Indian Society for Mathematical Modelling and Simulation in 2022.
> Nominated fellow of Vijñāna Prishad of India in 2003.
> President of India cash prize for presenting the best research paper in the sixteenth Congress of

Indian Society of Theoretical and Applies Mechanics (Allahabad 1972).
> Hariom Ashram, Bhai Kaka Prerit prize for the best research publication during 1972-73.
> Nominated Fellow of Ramanujan Mathematical Society in its 10th Annual Conference (1995).
> Elected fellow of Vijñāna Parishad of India in 2008.

(B) Won following prizes / honours for teaching.
> “Shikshak Samman” presented by Late Srimant Madhav Rao Ji Scindia (then Railway Minister)

as ideal teacher on behalf of Sajag Nagrik Manch, Gwalior in 1989.
> “Adarsh Shikshak Samman” presented by Dr. P.S. Bisen (Former Vice-chancellor, Jiwaji

University, Gwalior) on behalf of S.D.R. Shiksha Prasar Samiti, Gwalior
> Honoured by Ramanujan Mathematical Society in its 16th Annual Conference, 3-5 June, 2001 at

Fergusson College, Pune
> “Rashtriya Shiksha Ratna Award - 2007” presented by National Education and Human Resource

Development Organization, Pune.
> Honored by Chief Minister of Madhya Pradesh on the occasion of ”Teachers’ day” on 4th Sept.

2011 amongst five senior Professors of Madhya Pradesh.
> “Teacher of the Year” award by Gwalior Vikas Samiti in 2006.

(C) Won Following prizes/honours for others.
> Special felicitation and award by Hon’ble Governor of Madhya Pradesh for contribution in the

development of Jiwaji University, Gwalior during Golden Jubilee celebration in 2014.
> First Asian invited to deliver Planery lecture in any International Congress of Biomathematics.

The lecture was delivered in 8th Congress (Panama in Aug. 1997).
> Invited to deliver P.D. Verma Memorial Lecture by the University of Rajasthan, Jaipur in 2001.
> Only Indian invited in second IASTED International conference at Cambridge to present three

hours research tutorial on Computational Physiology.
> Invited to deliver J.N. Kapur memorial lecture at Kanpur during 15thAnnual conference of Vijñāna

Parishad of India, 2011.
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Position in Research Bodies:
i) President, Vijñāna Parishad of India, 2004-2007.

ii) President, Gwalior Academy of Mathematical Sciences 1994-98, 2001-2005; 2022 onwards.
iii) President, Sagar Society of Interdisciplinary Research and Technology, Bhopal 2013-2014.
iv) Vice-President of Indian Society of Theoretical and Applied Mechanics (1986-87).
v) Chairman, Computer Society of India, Gwalior Chapter.

vi) Vice President, Ramanujan Mathematical Society.
vii) Academic Secretary of Ramanujan Mathematical Society.
viii) General Secretary of “The Mathematics Consortium” since 01/01/2015
ix) Executive Committee member of:

(a) Indian Society of Theo. and Appl. Mech.
(b) National Society of Biomechanics,
(c) Vijñāna Parisad of India
(d) Ramanujan Mathematical Society
(e) Indian Academy of Mathematics
(f) Indian Society of Industrial and Applied Mathematics.

x) Member National Committee on Mathematics Educational Research DST
Position in Research Journals

i) Executive Editor of GAMS Journal of Mathematics and Mathematical Biosciences.
ii) Editor-In-Chief of SSIRT Journal of Engineering, Management and Pharmaceutical Science.
iii) Member, Editorial Board of Indian Academy of Mathematics.
iv) Publication Committee Member of Wurtz Publications Canada.
v) Member of Editorial Board of ‘Jñānābha ’ Published by VPI.

vi) Member of Editorial Board of ‘Ganita Sandesh’ of Rajasthan Ganita Parishad.
vii) Member, Editorial Advisory Board of JUET Research Journal of Science and Technology.

Research and Educational Programmes Organized
Following Research programmes have been organised as programme Director/Convener/Coordinator:
International
> Organised IVth International Conference on Physiological Fluid Dynamics (1995)
> Organised First International Conference of Gwalior Academy of Mathematical Science (2008)
> Organised First International Conference of Sagar Society of Interdisciplinary Research and Technology

(2014)
> Organised Second International Conference of Sagar Society of Interdisciplinary Research and

Technology (2015)
> Organised Third International Conference of Sagar Society of Interdisciplinary Research and Technol-

ogy (2016)
> Organised Fourth International Conference of Sagar Society of Interdisciplinary Research and

Technology (2017)
> Organised Fifth International Conference of Sagar Society of Interdisciplinary Research and Technology

(2018)
National

i) All India Seminar on Finite Element Method and its Applications to Biology (1982), (sponsored by
UGC, New Delhi).

ii) All India Symposium on system Theory and its Application to Biology (1985), (sponsored by UGC,
New Delhi).

iii) Twenty Third Annual Congress of Indian Society of Theoretical and Applied Mechanics (1986).
iv) Orientation Programme for College Teachers-1 (sponsored by M.P. UGC) (1986).
v) Orientation Programme for College Teachers-11 (sponsored by M.P. UGC) (1987),
vi) Silver Jubilee All India Workshop for College Teacher (1988) (sponsored by UGC)

vii) Third M.P. Young Scientists Congress (1988) (sponsored by M.P. Council of Science and Technology).
viii) All India Continuing Programme in Forecasting Methodologies (1990) (sponsored by DST, New Delhi).

ix) Workshop and Camp on Future Studies and Human Population (1992) (sponsored by DST, New Delhi).
x) Seventh Annual Conference of Ramanujan Mathematical Society and All India Symposium on

Mathematical Biology (1992).
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xi) Instructional Conference on Mathematical Modelling in Biology and Medicine (1997).
xii) Indian Science Congress Symposium on Mathematical Ecology and Biomechanics (1998).
xiii) Thirteenth National Conference of Gwalior Academy of Mathematical Sciences (2008).
xiv) National Workshop on ”Mathematical Modelling and Computation” sponsored by The Mathematics

Consortium India, during 2019.
Research Talks/Lectures Delivered:
Time to time invited lectures and talks delivered in several institutions and Research Conferences/ Seminars/
Symposia of International/ National Level, including the following important ones:

(A) Institutions
University of Buenos Aires, Argentina; University of Cambridge, England; Imperial College, London;
Glasgow University, Scotland; Beykent University, Istanbul; Indian Institute of Science, Bangalore; I.I.T.
Madras; I.I.T. Delhi; I.I.T. Mumbai; I.I.T. Kanpur; Kurukshetra University; South Gujarat University; REC,
Surat; Osmania University; REC, Warangal; Udaipur University; Aligarh Muslim University; University of
Rajasthan, Jaipur; Thapar University Patiala; MANIT Bhopal, Kashmir University J and K; Katmandu
University, Nepal; Pune University, Pune; DAVV, Indore; Jiwaji University, Gwalior; Central university,
Sagar; National College, Tiruchirappalli; Kerala University, Thiruanantpuram; Calcutta Mathematical
Society, Kolkata; Department of Higher Education Goa.
International Conferences

i) International Conference on Biomathematics, Xian, China, 1988.
ii) Participated and Presented Paper in 9th International Symposium on Transport Phenomena in

Thermal Fluids Engineering, Singapore, 1996.
iii) Eighth International Congress of Biomathematics, Panama, 1997.
iv) First International Congress on Physiological Fluid Dynamics, Madras.
v) International Conference on Theory of Differential Equations and Application to Oceanography, Goa.

vi) International Workshop on Approximation Theory and Applications, Aligarh.
vii) Third International Conference on Physiological Fluid Dynamics, Madras.
viii) Fourth International Conference on Physiological Fluid Dynamics, Gwalior.
ix) International Conference on Mathematics at the University of Lucknow, Lucknow (India).
x) First and Second International Conferences of Indian Society of Industrial and Applied Mathematics

(New Delhi).
xi) Third International conference of GAMS at SVNIT, Surat in 2014.
xii) International conference on Mathematics, SRM University, Channai, 2018.
xiii) International conference of The Mathematics Consortium at BHU, Varanasi, 2019.
xiv) International conference of VPI at JNU, New Delhi, 2022.

(B) National and Regional Level Conferences / Symposia / Seminars etc.
About sixty lectures have been delivered in almost all the conferences of National Societies concerning
Mathematics and Allied subjects including those of:

i) Indian Mathematical Society (Jaipur, Muzzaffarpur, Ahmedanagar)
ii) Indian Society of Theoretical and Applied Mechanics (Pantnagar, Surat).
iii) Indian Sciene Congress (Madurai, Hyderabad, Chennai and Pune)
iv) Ramanujan Mathematical Society (Rajkot, Tirupati, Gwalior, Shimoga, Rishikesh Trivendrum).
v) Vijñāna Parishad of India (Hardwar, Gorakhpur, Jhansi, Lucknow).
vi) Banaras Mathematical Society (Varanasi).

vii) Rajasthan Ganita Parishad (Jodhpur, Kota)
viii) Indian Academy of Mathematics (Indore etc.)
ix) Bharat Ganita Parishad (Lucknow)

and several others..
Research Guidance:
(A) Guided Ph.D. candidates on the following titles:

i) Mathematical Study of Physiological Heat Transfer Problems (D. Arya).
ii) A Mathematical Study of Heat Transfer Problems in Cutaneous and Subcutaneous In-vivo tissues (J.S.

Bindra).
iii) Mathematical Investigations on Human Physiological Heat Flow Problems with Special Relevance to
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Cancerous Tumours (K.R. Pardasani).
iv) Mathematical Study of Diffusion Problems in In-vivo Human Skin and Other Peripheral Tissues

(Praveen Miri).
v) Analytical Study of Physiological Heat Flow Problems with Special Relevance to Human limbs (M.P.

Gupta).
vi) Computerised Solution of Bio-mathematical and Bio-statistical Problems Related to Dermatoglyphic

and Genetic Studies in Sports (J. P. Verma).
vii) Finite Element Approach to Ecological Problems with Special Relevance to Environmental Pollution

and Population Growth (Aishwarya Srivastava).
viii) Mathematical and Numerical Approach to Atmospheric Diffusion Problems with Application to

Epidemics (A. Juneja)
ix) A Mathematical Study of Temperature Profiles in Human Dermal Parts with Burns and other

Abnormalities (T. Varma).
x) Mathematical Study of Prey-Predator Population with Mutual Interaction (Poonam Sinha).

xi) Mathematical Study of Blood Flow Effect on Normal and Abnormal Heat Flow in Human Dermal
Regions. (B.K. Tiwari).

xii) Mathematical Study of Heat Flow in Human Skin with Thermal Injury (Anoop Singh).
xiii) A Study of Hypergeometric Functions and its Application in Biology (Ram Kumar Gupta)
xiv) Mathematical Numerical Study of Diffusion Process in In-vivo Tissues (Vinod Kumar Gupta)
xv) Mathematical Study of Effect of Cold Environment on Temperature Distribution in Outer Parts of

Human Body (Bharat Suman Gupta).
xvi) A study of Finite Element Method and Its Application to Pollution Problem (D.S. Kushwah).
xvii) Mathematical and Computational Study Environmental Pollution Problems (Hakim Singh).
xviii) The I-Function and Its Properties (Lily Agarwal).
xix) Mathematical Modeling of Analysis of Ecological Problems with Special Reference to Atmospheric

Pollution Problems (Santosh Bharadwaj).
xx) Variational Finite Element Based Mathematical Study of Atmospheric Pollution Problems Based on

Variable Diffusivity and Surface Deposition (Rajesh Deolia).
xxi) Mathematical Study of Thermal Injury in Human Subjects (D.B. Gurung).
xxii) Saxenas I-Function and Its Biological Applications (G.D. Vaishya).
xxiii) Mathematical and Numerical Study of Distribution and Diffusion of Wild Life Population (Shobha

Agarwal).
xxiv) Data Mining and Artificial Neural Network Applications to Financial Management in the Indian

Context (Nitin Merh).
xxv) Mathematical Study of Thermo regulation in Human Body Eposed to Cold Environment (Mukhtar

Ahmad Khandey).
xxvi) Mathematical and Numerical Estimation of Financial Markets Using Black-Schole’s Model (Jainendra

Jain).
xxvii) Mathematical Study of Transdermal Drug Administration in Human Subjects (Archana Sharma).
xxviii) Mathematical Study of Air Pollution in Patchy Areas with Special Reference to Oil Refinery. (Amit

Khandelwal)
xxix) Mathematical Investigations of Thermal Injuries in Protected and Unprotected Human Dermal Layers.

(Arun Kumar Tripathi)
xxx) Certain Problems in Mathematical Ecology Pertaining to The Conservation and Migration of Animal

Species. (Namreen Rasool)
xxxi) Mathematical And Numerical Study Of Solid Tumor (With or Without Malignancy) in Human Body.

(Sushma Nema)
xxxii) Mathematical Study of Single and Two Interacting Species with Special Reference to Protected Wild

Life. (V. K. Chaturvedi)
xxxiii) Mathematical Study of Migration of Different Animal Species with Special Reference to Marine Life.

(Neeta Mazumdar)
xxxiv) Mathematical Study of Thermo-Regulation in Human Dermal Region Under Variable Metabolic

Conditions. (Manoj Kumar Sharma)
xxxv) Mathematical and Numerical Study of Transdermal Drug Distribution in Human Body. (Vineeta
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Gupta)
xxxvi) Some New Properties and Inter-Relations of Saxena’s I-function. (Pankaj Jain)
xxxvii) Analytical Study of Saxenas I-function and Its Applications. (Vandana Jat)

xxxviii) Mathematical Modelling and Numetical Study of Heat Regulation in Human Body. (Padam Sharma)
xxxix) Study of Some Problems and Applications of I-Function. (Prachi Jain)

xl) Mathematical Moedliing of Finite Age Structured Populations and It’s Applications in Wild Life (Lalita
Dhurve)

(B) Guided more than thirty M.Phil dissertations on various areas of Bio-mathematics.

6 PUBLICATIONS
Research Papers:
Published more than hundred twenty research papers in reputed International and National Journals. Lists
of selected papers and other papers are enclosed herewith (Enclosure-1).
*Presented about one hundred and fifty research papers in various International and National Research
Conferences / Seminars / Symposia.
Research Articles Appeared in Books/Monographs:
Articles appeared in following advanced level books / monographs:-

i) Numerical Methods in thermal Problems, Pineridge Press, U.K. (Ed. K. Mogan) 1979.
ii) Bio-mechanics, Wiley Eastern Ltd. 1989 (Eds. K.B. Sabay and R.K. Saxena).
iii) ‘Physiological Fluid Dynamics-II’, NAROSA 1991 (Ed. N.V. Swamy and M. Singh).
iv) Physiological Fluid Dynamics-1 (Eds. M. Singh),
v) ‘Theory of Differential Equations and Applictions to Oceanography’ - EWP 1992 (Eds S.G. Deo and

Y.S. Prahalad).
vi) “Lecture Notes on Research Methodology” Indra Pub. House, Bhopal (2013)

*Many other articles have been included partially in several other research books.
General Scientific Articles
Ten general articles on scientific topics of teaching and research have also appeared in standard journals.
Books
Published following books:

I) The I-Function, Anamaya, New Delhi, 2008.
II) Advances in Physiological Fluid Dynamics, NAROSA, (Jt. eds.), Narosa Publishing House, New Delhi,

1995.
III) Mathematical Modelling of Real Life Problems, Anamaya, 2006.
IV) Real Analysis (Joint Authorship), Allied Publishers, New Delhi, 2003.
V) Introductory Topics in Biomathematics (Hindi) Wiley Eastern Ltd., New Delhi, 1987.

VI) Calculus of Two and More Variables (in Joint Authorship), Wiley Eastern Ltd., New Delhi, 1986.
VII) Calculus of one Variable (Joint Authorship), Wiley Eastern Ltd., New Delhi (1987).

VIII) Introduction to Biomathematics (Hindi) M.P. Hindi Granth Rachna Academy, Bhopal, 1988.
IX) Engineering Mathematics-I (with Shishir Bhaskar), Deepak Prakashan, 2000.
X) Engineering Mathematics-II (with Praveen Miri and Shishir Bhaskar) 2001, Deepak Prakashan, 2001.

XI) Engineering Mathematics-III (with Praveen Miri), Deepak Prakashan, 2001.
XII) Lecture Notes on Research Methodology, Indra Publication, Bhopal, 2013.

7 PARTICIPATION IN SOCIAL ACTIVITIES:
Member Board of Governors/Advisory Boards/Executive Committee of L.I.C. (Central Zone), Family
Planning Association of India, Rama Krishna Ashram and nominated as Vice-chairman of Red Cross Society,
President Anjuman Tarrakki E’ Urdu and Patron Bazme E’ Urdu, Gwalior.

8 PUBLISHED FOLLOWING HINDI LITERATURE BOOKS:
(i) “SHAHILON KE BEECH ” Indra Publication, Bhopal, 2018.
(ii) “SATH HOTE TUM AGAR” AISECT Publication, Bhopal, 2022.

(iii) “PROFESSOR DHOTI PANDEY ” AISECT Publication, Bhopal, 2023.
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Enclosure-1

LIST OF SELECTED RESEARCH PUBLICATIONS OF PROFESSOR VINOD P.
SAXENA (EX V. C. JIWAJI UNIVERSITY)

1. V. P. Saxena, Mathematical modelling of biological populations with and without dispersion, Research
in Statistics, Taylor & Francis, 1(1) (2023), https://doi.org/10.1080/27684520.2023.2215638.

2. Padam Sharma, V. P. Saxena, Mathematical Study of Blood Circulation and Bio-Chemical Reaction
Based Heat Distribution Problem in Human Dermal Region, Jñānābha , 53(1) (2023), 308-314.

3. Padam Sharma, N.S. Lodhi and V.P. Saxena, Yoga Therapy and Heat Regulatory and Cardiovascular
Systems of a Human Body. International Journal on Emerging Technologies 12(2) (2021), 282-289.

4. Prachi Jain, Arvind Gupta and V. P. Saxena, On Integrals Involving a Product of Extended Bessel
Maitland Function and I*-Function, Jñānābha , 50(2) (2020), 59-62.

5. Lalita Dhurve and V.P. Saxena, Mathematical Modelling of Food Management for Wild Life Population
Mild Environmental Effect, Jñānābha , 50(2) (2020), 223-228.

6. Lalita Dhurve, R.D. Dehriya and V.P. Saxena, Mathematical Modelling of Discrete Age Structured
Prey Populations with Fluctuating Death Rate, International Journal of Bhopal, 3 (2020),

7. Lalita Dhurve and V.P. Saxena, Using Mathematical Modelling for New Insights in Sustainable
Development, Think India Journal, 22(14) (2019),.

8. Prachi Jain and V. P. Saxena, Churchill’s Diffusion and Euler Type Integral Involving an I*Function,
Jñānābha , 49(2) (2019), 113-119.

9. Prachi Jain, Arvind Gupta and V. P. Saxena, Multiple Integral Involving I-Function and Bessel-
Maitland Functions, International Journal of Mathematics Trends and Technology, 39(3) (2016), 232-
237.

10. V.P. Saxena, A Trivial Extension of Saxena’s I-Function, National Academy Science Letters, 38(3)
(2015), 243-245.

11. Padam Sharma Mathematical Study of Temperature Distribution in Human Limb Dipped in Water
Using Finite Partition Approach, GAMS Journal of Mathematics and Mathematical Biosciences, 5(1)
(2015), 58-66.

12. Saraswati Acharya, D.B. Gurung and V. P. Saxena, Two Dimensional Finite Element Method for
Metabolic Effect in Thermoregulation on Human Males and Females Skin Layers, Journal of Coastal
Life Medicine, 38 (2015), 623-629.

13. Saraswati Acharya, D.B. Gurung and V.P. Saxena, Human males and females body thermoregulation:
Perfusion effect analysis, Journal of Thermal Biology, Elsevier, 45 (2014), 30-36.

14. Saraswati Acharya, D.B. Gurung and V. P. Saxena, Transient Temperature Distribution in Human
Males and Females Body due to Variation in Perfusion Effect, International Journal of Applied
Mathematics, Recent Science Publication, 29 (2014), 1263-1270.

15. Padam Sharma, V.P. Saxena, V.K. Chaturvedi, Pattern and Growth of Animal Population with Three
Age Groups, Jñānābha , 44 (2014), 53-68.

16. Padam Sharma, V.P. Saxena, Manoj Sharma, Heat Regulation in Human Dermal Layers with
Atmosphere Based Metabolic Activity, International Journal of Theoretical and Applied Sciences, 6(1)
(2014), 94-101.

17. Vandana Jat, V.P. Saxena, Solution of Certain Integral Equation Involving I-Function, Jñānābha , 44
(2014), 43-52.

18. Saraswati Acharya, D. B. Gurung and V. P. Saxena: Effect of metabolic reactions on thermoregulation
in human males and females body, Journal of applied mathematics, Scientific Research Publishing,
4(5)(A) (2013), 39-48.

19. Saraswati Acharya, D. B. Gurung and V. P. Saxena, Time dependent temperature distribution model
in layered human dermal Part, Journal of Science, Engineering and Technology, 8(II) (2012), 66- 76.

20. V.P. Saxena, Namreen Rasool, Renu Jain, M.A. Khanday, Modelling Effect of slaughtering on the
conservation and migration of animal species, International Journal of Mathematical Archive, 3(2)
(2012), 466-470.

21. Vinita Gupta, and V.P. Saxena, Numerical Analysis of Drug Diffusion in Human Dermal Region with
Linea Shape Function, IOSR Journal of Mathematics, 4(2) (2012), 31-36.
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22. Vinita Gupta and V.P. Saxena, Mathematical Model for Diffusion of Drugs in Human Skin with
Quadratic Shape Function Based FEM, International Journal of Applied Mathematical Sciences, 5
(2012), 1-2.

23. V.P. Saxena, Namreen Rasool, Renu Jain, M.A. Khanday, Theoretical analysis on the stability and
persistence of interacting species during dispersion, Research Journal of Pure Algebra, 2(2) (2012),
71-76.

24. V.P. Saxena, Applications of special functions in modelling animal population of finite size, NATL
ACAD SCI LETT, 34 (2011), 9-10.

25. Archana Sharma and V. P. Saxena, One Dimensional Drug Distribution in Human Dermal Region,
International Journal of Applied Mathematics and Physics, 3(1) (2011), 103-118.

26. V.P. Saxena, Nitin Merh and Kamal Raj Pardasani, Next Day Stock Market Forecasting: An
Application of ANN and ARIMA, IUP Journal of Applied Finance, 17(1) (2011),

27. M. A. Khanday, and V. P. Saxena, Mathematical Study of Diffusive Fluid Transport and Distribution
in Human Dermal Regions, Springer Verlag journal, 26(4) (2010).

28. Merh, Nitin, Vinod P. Saxena and Kamal Raj Pardasani, A Comparison between Hybrid Approaches
of ANN and ARIMA for Indian Stock Trend Forecasting, Business Intelligence Journal, Isles
Internationale Universit, Belgium ( In collaboration with Business Intelligence Service of Secured Assets
Yield Corporation Limited, London, UK), 3(2) (2010), 23-44; ISSN: 1918-2325.

29. V.P. Saxena and D.B. Gurung, Transient Temperature Distribution in Human Dermal Part with
Protective Layer at Low Atmospheric Temperature, International Journal of Biomathematics, 3(4)
(2010), 439-451.

30. Khanday, M. A. and V. P. Saxena, FEM based estimation of one dimensional steady state fluid
distribution in human dermal layers, Communicated to Analysis in Theory and Applications, Springer
in April, 2010.

31. D. B. Gurung, V. P. Saxena and P. R. Adhikary, FEM approach to one dimensional unsteady state
temperature distribution in human dermal parts with quadratic shape functions, J. Appl. Math. and
Informatics, 27 (2009), 301-313.

32. M. A. Khanday and V. P. Saxena, Mathematical estimation of cold effect in human dermal regions,
International Journal of Applied Mathematics and Computation, 1(1)(2009), 17-29.

33. M. A. Khanday and V. P. Saxena, Finite element approach for the study of thermoregulation in human
head exposed to cold environment. Accepted for publication in the Proceedings of the International
Conference on Modeling of Engineering and Technological Problems by American Institute of Physics,
1146 (2009), 375-385.

34. M. A. Khanday and V. P. Saxena, Finite element estimation of one dimensional unsteady state heat
regulation in human head exposed to cold environment, accepted for publication in the Journal of
Biological Systems, World Scientific Singapore, 17(4) (2009), 853-86.

35. M. A. Khanday and V. P. Saxena, Mathematical estimation of human physiological disturbances in
human dermal parts at extreme conditions: A one dimensional steady state case, Analysis in Theory
and Applications, Springer, 25(4) (2009), 325-332.

36. Vinod. P. Saxena, M.A. Khandey, Mathematical Estimation of Physiological Disturbances in Human
Dermal Parts at Extreme Conditions one Dimensional Steady State Case, 25(4) (2009), 325-332.

37. Vinod P. Saxena, M.A. Khandey, Finite Element Estimation of One-Dimensional Unsteady State Heat
Regulation in Human Head Exposed to Cold Environment, 7(4) (2009), 853,863.

38. Vinod. P. Saxena, Archana Sharma, Finite Element Modeling of Drug Distribution in Transdermal
Drug Delivery System, March 2009.

39. M. A. Khanday, and V. P. Saxena, FEM based estimation of one dimensional steady state fluid
distribution in human dermal layers, communicated to the Proceeding of the National Academy of
Sciences (Physical Sciences), 2008.

40. Nitin Merh, V.P. Saxena and Kamal Raj Pardasani, “Artificial Neural Network for Stock Market
Forecasting”, Nirma University Journal of Business and Management Studies (NUJBMS), 2(3 and 4)
(2008), 3-19.

41. Nitin Merh, V. P. Saxena and Kamal Raj Pardasani, “Next Day Stock Market Forecasting: An
Application of Artificial Neural Network and ARIMA”, Proceeding of International Conference on
Quantitative Methods, Operations and Information Technology, IBS, Hyderabad, 2008.
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42. V.P. Saxena, Nitin Merh, and Kamal Raj Pardasani, Artificial Neural Network for Stock market
Forecasting, 2(3 and 4), January-June 2008.

43. P. Sinha, O.P. Mishra And V.P. Saxena, Stability Analysis Of A Prey- Predator Model Incorporating
Age Based Predation, Ganita, 59(1), (2008), 13-28.

44. Nitin Merh, V.P. Saxena and Kamal Raj Pardasani, Next Day Stock Market Forecasting: An
Application of Artificial Neural Network and ARIMA, International Conference on Quantitative
Methods, Operations and Information Technology for Managerial decision Making (ICQMOIT 2008)
at IBS, Hyderabad, October, (2008), 23- 24.

45. Nitin Merh, V. P. Saxena and Kamal Raj Pardasani, Artificial Neural Network Model for Forecasting
Stock Price, 13th Annual and First International Conference of Gwalior Academy of Mathematical
Sciences (GAMS) and Symposium on Mathematical Modeling in Engineering and Biosciences at Anand
Engineering College, Agra, January (2008), 10-13.

46. Merh, Nitin, V. P. Saxena and Kamal Raj Pardasani, Stock Market Forecasting Using Artificial
Neural Network for Data Mining, 11th Nirma International Conference on Management (NICOM
2008) Institute of Management, Nirma University of Science and Technology, Ahmedabad, January
(2008), 9-11.

47. Merh, Nitin, V. P. Saxena and Kamal Raj Pardasani, Prediction of Next Stock Price: A Comparison
Between Back propagation and Recurrent Neural Networks, 12th Annual Conference of Gwalior
Academy of Mathematical Sciences (GAMS) and India Symposium on Computational Biology at
Department of Mathematics, Maulana Azad National Institute of Technology, Bhopal, April (2007),
6-8.

48. Merh, Nitin, V. P. Saxena and Kamal Raj Pardasani, Application of Artificial Neural Network for
Predicting Next Stock Price, International Congress and Eighth Conference of Indian Society of
Industrial and Applied Mathematics( ISIAM ) and Seventh Annual Conference of Jammu Mathematical
Society at University of Jammu, Jammu, March 31- April 3, 2007.

49. V. P. Saxena, P. R. Adhikary and D. B. Gurung., Quadratic shape function Fem approach to
temperature distribution problem in peripheral layers of human body, Bulletin of the Allahabad
Mathematics Society, 22 (2007), 21-36. MR2332384, 92 C50.

50. V. P. Saxena, P. R. Adhikary and D. B. Gurung., Mathematical study of heat regulation in human
dermal parts with variable heterogeneity, PROC. NAT. ACAD. SCI. IND, Vol. 77(A), IV, (2007),
332-337.

51. V. P. Saxena, P. R. Adhikary and D. B. Gurung., Mathematical estimation of unsteady state burn
damage due to hot temperature, The Nepali Math. Sc. Report Vol. 27, No. , (2007), 75-84.

52. V. P. Saxena, P. R. Adhikary and D. B. Gurung., Quadratic shape function finite element approach
for numerical estimation of burn injury in human dermal parts, In Book Mathematical Sciences and
Its Application Edited by P.R. Adhikary and K.Jha, Published by Asha Memorial Foundation, Nepal,
(2006), 106-116.

53. Merh, Nitin, V. P. Saxena and Kamal Raj Pardasani, Data Mining and ANN Applications in
Financial Management, 11th Annual Conference of Gwalior Academy of Mathematical Science and
National Symposium on Applicable Mathematics to Engineering and Technology at Jaypee Institute of
Engineering and Technology, Raghogarh, Guna (M.P), April, 22-23, 2006.

54. V. P. Saxena, P. R. Adhikary and D. B. Gurung, Variational finite element approach to study two-
dimensional steady state temperature distributions in human dermal parts, Proceedings of the Seminar
on Mathematical Sciences and Applications, Edited by Y.P. Koiral, published by Sukunda Pustak
Bhawan, (2006), 57-74.

55. V. P. Saxena, P. R. Adhikary and D. B. Gurung., Variational finite element approach to estimate burn
injury damage, The Nepali Math. Sc. Report, 25(2) (2005), 59-68 .

56. V. P. Saxena, A.Juneja, A. S. Yadav, Heat and Water Transport in Thermally Damage Skin, Journal.
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58. V.P. Saxena, Hakim Singh Jat, A. Juneja and Praveen Miri, Modelling of Air Pollution in Urban
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Abstract

In this article, the Sumudu transform with iterative method is implemented to obtain approximate
analytical solutions in series form to non-linear homogeneous and non-homogeneous space-time fractional
gas dynamic equations. The fractional derivatives presented here are in the Caputo sense. Furthermore,
the findings of this study are graphically represented and the solution graphs demonstrate a strong
connection between the approximate and exact solutions.
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1 Introduction
Fractional calculus is a branch of applied mathematics that is extremely useful in a variety of fields of
research [13, 21]. The fractional differential equations have sparked the interest of a vast scope of researchers
working on a variety of applications [2, 3, 10, 28, 31]. Many efforts have been made to develop analytical and
numerical approaches for solving differential equations of fractional order, such as the homotopy analysis
method (HAM ) [17], the q-homotopy analysis method (q-HAM ) [14], the optimal q-homotopy analysis
method (Oq-HAM ) [32], the homotopy analysis transform method (HATM ) [30], the adomian decomposition
method (ADM ) [12], the Laplace decomposition method (LDM ) [18], the homotopy perturbation method
(HPM ) [19], the homotopy perturbation transform method (HPTM ) [20, 23], and so on.

In 2006, Daftardar-Gejji and Jafari [8, 15] proposed an iterative method for numerically solving nonlinear
functional equations. Since then, the iterative technique has been used to solve a wide variety of nonlinear
differential equations of integer and fractional order [5] as well as fractional boundary value problems [7].
Recently, Wang and Liu [33] introduced the Sumudu transform iterative method (STIM ) by combining
the Sumudu transform with an iterative technique to determine approximate analytical solutions of time-
fractional Cauchy reaction diffusion equations. The Sumudu transform iterative technique has been used
successfully to solve a variety of time and space fractional partial differential equations and related systems
[22], as well as the random component time-fractional Klein-Gordon equation [27].

In this work, we consider the non-linear homogeneous and non-homogeneous fractional gas dynamic
equations with space and time fractional derivatives as follows
(i) The non-linear homogeneous space-time-fractional gas dynamic partial differential equation of the form

Dα
t u(x, t) +

1

2
Dβ
xu

2(x, t)− u(x, t)
(
1− u(x, t)

)
= 0, 0 < α, β ≤ 1,(1.1)

u(x, 0) = g(x),(1.2)

(ii) The non-linear non-homogeneous space-time-fractional gas dynamic partial differential equation of the
form

Dα
t u(x, t) +

1

2
Dβ
xu

2(x, t)− u(x, t)
(
1− u(x, t)

)
= f(x, t), 0 < α, β ≤ 1,(1.3)

u(x, 0) = g(x),(1.4)

where α and β are the parameters that describe the order of the time-fractional and space-fractional
derivatives, respectively. Also, u(x, t) is the probability density function and f is a known analytic function.
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2 Preliminaries and Basic Definitions
This section introduces some fundamental definitions, notations, and properties of fractional calculus utilizing
Sumudu transform theory, which will be applied later in this paper.

Definition 2.1. The Caputo fractional derivative of a function u(x, t) is defined as [28, 31]

Dα
t u(x, t) =

1

Γ(m− α)

∫ t

0

(t− η)m−α−1u(m)(x, η)dη, m− 1 < α ≤ m,m ∈ N.(2.1)

Definition 2.2. The Sumudu transform is defined over the set of functions{
f(t)|∃M,ρ1 > 0, ρ2 > 0, |f(t)| < Me|t|/ρj if t ∈ (−1)j × [0,∞), j = 1, 2

}
by the following formula [4, 34]

(2.2) S[f(t)] = F (ω) =

∫ ∞
0

e−tf(ωt)dt , ω ∈ (−ρ1, ρ2).

Definition 2.3. The Sumudu transform of Caputo fractional derivative is defined in the following manner
[9, 33]

S[Dα
t u(x, t)] = ω−αS[u(x, t)]−

m−1∑
k=0

ω−α+ku(k)(x, 0), m− 1 < α ≤ m , m ∈ N,(2.3)

where u(k)(x, 0) is the k-order derivative of u(x, t) with respect to t at t = 0.

Definition 2.4. The Mittag-Leffler function, a generalization of the exponential function, is defined as
follows [28, 31]

(2.4) Eα(z) =

∞∑
n=0

zn

Γ(αn+ 1)
, α ∈ C, Re(α) > 0.

A further generalization of equation (2.4) is as follows [35]

(2.5) Eα,β(z) =

∞∑
n=0

zn

Γ(αn+ β)
, α, β ∈ C, Re(α) > 0, Re(β) > 0,

where Γ(.) is the well-known Gamma function.

3 Basic Idea of Sumudu Transform Iterative Method
To explain the basic idea of the Sumudu transform iterative technique [33], we take the following space and
time general fractional partial differential equation having the prescribed initial conditions may be written
in the form of an operator as

Dα
t u(x, t) =F

[
x, u(x, t), Dβ

xu(x, t), ..., Dlβ
x u(x, t)

]
,(3.1)

l − 1 < α ≤ l, m− 1 < β ≤ m; l,m ∈ N
u(k)(x, 0) =hk(x), k = 0, 1, 2, ..., n− 1,(3.2)

where Dα
t u(x, t) and Dβ

xu(x, t) are the Caputo fractional derivatives of order α, l−1 < α ≤ l and β, m−1 <
β ≤ m, respectively, defined by the equation (2.1), F

[
x, u,Dβ

xu, ...,D
lβ
x u
]

is a linear/non-linear operator and
u = u(x, t) is the unknown function and fractional derivative Dlβ

x u(x, t), l ∈ N is taken as the sequential
fractional derivative [28] that is

(3.3) Dlβ
x u = Dβ

xD
β
x , ..., D

β
xu (l times).

Applying the Sumudu transform on both sides of equation (3.1), we have

(3.4) S
[
Dα
t u(x, t)

]
= S

[
F
(
x, u(x, t), Dβ

xu(x, t), ..., Dlβ
x u(x, t)

)]
.

Using the differentiation property of the Sumudu transform, we get

(3.5) S[u(x, t)] = ωα
m−1∑
k=0

[
ω−α+ku(k)(x, 0)

]
+ ωαS

[
F
(
x, u,Dβ

xu, ...,D
lβ
x u
)]
.

On taking inverse Sumudu transform of equation (3.5), we have

u(x, t) = S−1
[
ωα

m−1∑
k=0

[
ω−α+ku(k)(x, 0)

]]
+ S−1

[
ωαS

[
F
(
x, u,Dβ

xu, ...,D
lβ
x u
)]]

.(3.6)
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Equation (3.6) may be written as

(3.7) u(x, t) = f(x, t) +N
(
x, u,Dβ

xu, ...,D
lβ
x u
)
,

where

(3.8) f(x, t) = S−1
[
ωα

m−1∑
k=0

[
ω−α+ku(k)(x, 0)

]]
,

(3.9) N
(
x, u,Dβ

xu, ...,D
lβ
x u
)

= S−1
[
ωαS

[
F
(
x, u,Dβ

xu, ...,D
lβ
x u
)]]

.

Here N is a linear/nonlinear operator and f is a known function .
Furthermore, we employ the iterative method proposed by Daftardar-Gejji and Jafari [8], which represents
a solution in an infinite series of components as

(3.10) u(x, t) =

∞∑
i=0

ui(x, t).

The operator N is decomposed as follows

N
(
x,

∞∑
i=0

ui, D
β
x

( ∞∑
i=0

ui

)
, ...,Dlβ

x

( ∞∑
i=0

ui

))
= N

(
x, u0, D

β
xu0, ..., D

lβ
x u0

)
(3.11)

+

∞∑
j=1

[
N
(
x,

j∑
i=0

ui, D
β
x

( j∑
i=0

ui

)
, ..., Dlβ

x

( j∑
i=0

ui

))]

−
∞∑
j=1

[
N
(
x,

j−1∑
i=0

ui, D
β
x

( j−1∑
i=0

ui

)
, ..., Dlβ

x

( j−1∑
i=0

ui

))]
,

S−1
[
ωαS

[
F
(
x,

∞∑
i=0

ui, D
β
x

( ∞∑
i=0

ui

)
, ..., Dlβ

x

( ∞∑
i=0

ui

))]]
(3.12)

= S−1
[
ωαS

[
F
(
x, u0, D

β
xu0, ..., D

lβ
x u0

)]]
+

∞∑
j=0

[
S−1

[
ωαS

[
F
(
x,

j∑
i=0

ui, D
β
x

( j∑
i=0

ui

)
, ..., Dlβ

x

( j∑
i=0

ui

))]]]

−
∞∑
j=0

[
S−1

[
ωαS

[
F
(
x,

j−1∑
i=0

ui, D
β
x

( j−1∑
i=0

ui

)
, ..., Dlβ

x

( j−1∑
i=0

ui

))]]]
.

Using equations (3.10) to (3.12) in equation (3.7), we obtain

∞∑
i=0

ui(x, t) = S−1
[
ωα

m−1∑
k=0

(
ω−α+ku(k)(x, 0)

)]
(3.13)

+ S−1
[
ωαS

[
F
(
x, u0, D

β
xu0, ..., D

lβ
x u0

)]]
+

∞∑
j=0

[
S−1

[
ωαS

[
F
(
x,

j∑
i=0

ui, D
β
x

( j∑
i=0

ui

)
, ..., Dlβ

x

( j∑
i=0

ui

))]]]

−
∞∑
j=0

[
S−1

[
ωαS

[
F
(
x,

j−1∑
i=0

ui, D
β
x

( j−1∑
i=0

ui

)
, ..., Dlβ

x

( j−1∑
i=0

ui

))]]]
.

The recurrence relations have been defined as follows

u0(x, t) = S−1
[
ωα

m−1∑
k=0

(
ω−α+ku(k)(x, 0)

)]
,(3.14)

u1(x, t) = S−1
[
ωαS

[
F
(
x, u0, D

β
xu0, ..., D

lβ
x u0

)]]
,(3.15)
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ur+1(x, t) = S−1
[
ωαS

[
F
(
x,

r∑
i=0

ui, D
β
x

( r∑
i=0

ui

)
, ..., Dlβ

x

( r∑
i=0

ui

))]]
(3.16)

− S−1
[
ωαS

[
F
(
x,

r−1∑
i=0

ui, D
β
x

( r−1∑
i=0

ui

)
, ..., Dlβ

x

( r−1∑
i=0

ui

))]]
, r ≥ 1.

Therefore, the approximate analytical solution of equations (3.1) and (3.2) in truncated series form is given
by

(3.17) u(x, t) ∼= lim
N→∞

N∑
m=0

um(x, t).

In general, the solutions in the above series converge quickly. The classical approach to the convergence of
this type of series has been presented by Bhalekar and Daftardar-Gejji [6] and Daftardar-Gejji and Jafari
[8].

4 Solution of the Space-Time Fractional Gas Dynamic Equations
In this section, we make an attempt to solve non-linear homogeneous and non-homogeneous space-time
fractional gas dynamic equations by means of the Sumudu transform iterative method.
Example 4.1. Consider the following non-linear homogeneous space-time fractional gas dynamic equation
[30, 32]

Dα
t u(x, t) +

1

2
Dβ
xu

2(x, t)− u(x, t)(1− u(x, t)) = 0, t > 0, 0 < α, β ≤ 1,(4.1)

with the initial condition

u(x, 0) = e−x.(4.2)

Taking the Sumudu transform on the both sides of equation (4.1), and making use of the result given by
equation (4.2), we have

(4.3) S[u(x, t)] = e−x + ωαS
[
− 1

2

∂βu2(x, t)

∂xβ
+ u(x, t)(1− u(x, t))

]
.

On taking inverse Sumudu transform of equation (4.3), we get

(4.4) u(x, t) = e−x + S−1
[
ωαS

[
− 1

2

∂βu2(x, t)

∂xβ
+ u(x, t)(1− u(x, t))

]]
.

Substituting the results from equations (3.10) to (3.12) in the equation (4.4) and applying the equations
(3.14) to (3.16), we determine the components of the solution as follows

u0(x, t) = u(x, 0) = e−x,(4.5)

u1(x, t) = S−1
[
ωαS

[
− 1

2

∂βu2
0

∂xβ
+ u0(1− u0)

]]
(4.6)

= −e−x
[ tα

Γ(α+ 1)

](
2−1+βe−x+iβπ − 1 + e−x

)
,

u2(x, t) = S−1
[
ωαS

[
− 1

2

∂β(u0 + u1)2

∂xβ
+ (u0 + u1)

(
1− (u0 + u1)

)]]
(4.7)

− S−1
[
ωαS

[
− 1

2

∂βu2
0

∂xβ
+ u0(1− u0)

]]
=
[
− e−x t2α

Γ(2α+ 1)
+ 2e−2x t2α

Γ(2α+ 1)

]
(2−1+βe−x+iβπ − 1 + e−x)

+
[ t2α

Γ(2α+ 1)

]
(3βe−3x+iβπ − 2βe−2x+iβπ + 2−1+β3βe−3x+2iβπ),

and so on. The remaining components may be obtained in the same way.
Thus, the approximate analytical solution in the series form can be obtained as

u(x, t) ∼= lim
N→∞

N∑
m=0

um(x, t) = u0(x, t) + u1(x, t) + u2(x, t)+, ...,(4.8)
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= e−x − e−x
[ tα

Γ(α+ 1)

](
2−1+βe−x+iβπ − 1 + e−x

)
+
[
− e−x t2α

Γ(2α+ 1)
+ 2e−2x t2α

Γ(2α+ 1)

]
(2−1+βe−x+iβπ − 1 + e−x)

+
[ t2α

Γ(2α+ 1)

]
(3βe−3x+iβπ − 2βe−2x+iβπ + 2−1+β3βe−3x+2iβπ)+, ..., .

The same result was obtained by Saad et al. [32] by using the method of optimal q-HAM.
If we put α = β = 1, in equation (4.8), we have the result in simple form

(4.9) u(x, t) = et−x,

which is the exactly the same solution obtained by earlier by Jafari et al. [19] by using HPM method.

(a) (b)

(c) (d)

Figure 4.1: Graph of the u(x, t) for Example 4.1, when β = 1 : (a) The exact solution, (b) The
approximate solution for α = 1, (c) The approximate solution for α = 0.5, (d) The approximate solution for
α = 0.75.
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Example 4.2. Consider the following non-linear non-homogeneous space-time fractional gas dynamic
equation [32]

Dα
t u(x, t) +

1

2
Dβ
xu

2(x, t)− u(x, t)(1− u(x, t)) = −et−x, t > 0, 0 < α, β ≤ 1,(4.10)

with the initial condition

u(x, 0) = 1− e−x.(4.11)

Taking the Sumudu transform on the both sides of equation (4.10), and making use of the result given by
equation (4.11), we have

(4.12) S[u(x, t)] = 1− e−x + ωαS
[
− 1

2

∂βu2(x, t)

∂xβ
+ u(x, t)(1− u(x, t))− et−x

]
.

On taking inverse Sumudu transform of equation (4.12), we get

(4.13) u(x, t) = 1− e−x + S−1
[
ωαS

[
− 1

2

∂βu2(x, t)

∂xβ
+ u(x, t)(1− u(x, t))− et−x

]]
.

Substituting the results from equations (3.10) to (3.12) in the equation (4.13) and applying the equations
(3.14) to (3.16), we determine the components of the solution as follows

u0(x, t) = u(x, 0) = 1− e−x,(4.14)

u1(x, t) = S−1
[
ωαS

[
− 1

2

∂βu2
0

∂xβ
+ u0(1− u0)− et−x

]]
(4.15)

= −e−x
[ tα

Γ(α+ 1)

](
− eiβπ + 2−1+βe−x+iβπ − 1 + e−x

)
− e−xtαE1,α+1(t),

u2(x, t) = S−1
[
ωαS

[
− 1

2

∂β(u0 + u1)2

∂xβ
+ (u0 + u1)

(
1− (u0 + u1)

)
− et−x

]]
(4.16)

− S−1
[
ωαS

[
− 1

2

∂βu2
0

∂xβ
+ u0(1− u0)− et−x

]]
= t2α(−eiπβ + 2−1+βe−x+iπβ − 1 + e−x)

(
− 2e−2x

Γ(2α+ 1)
+

e−xt2α

Γ(2α+ 1)

)
− (3βe−3x+iπβ − 2βe−2x+iπβ + 2−1+β3βe−3x+2iπβ − 2βe−2x+2iπβ)t2α

Γ(2α+ 1)

+
(2βe−2x+iπβ − e−x+iπβ + 2βe−2x+2iπβ − e−x+2iπβ)t2α

Γ(2α+ 1)

+
(
− 2e−2xE1,2α+1(t) + e−xE1,2α+1(t)

+ e−x+iπβE1,2α+1(t)− 2βe−2x+iπβE1,2α+1(t)
)
t2α,

and so on. The remaining components may be obtained in the same way.
Thus, the approximate analytical solution in the series form can be obtained as

u(x, t) ∼= lim
N→∞

N∑
m=0

um(x, t) = u0(x, t) + u1(x, t) + u2(x, t)+, ...,(4.17)

= 1− e−x − e−x tα

Γ(α+ 1)

(
− eiπβ + 2−1+βe−x+iπβ − 1 + e−x

)
− e−x tαE1,α+1(t)

+ t2α(−eiπβ + 2−1+βe−x+iπβ − 1 + e−x)
(
− 2e−2x

Γ(2α+ 1)
+

e−xt2α

Γ(2α+ 1)

)
− (3βe−3x+iπβ − 2βe−2x+iπβ + 2−1+β3βe−3x+2iπβ − 2βe−2x+2iπβ)t2α

Γ(2α+ 1)

+
(2βe−2x+iπβ − e−x+iπβ + 2βe−2x+2iπβ − e−x+2iπβ)t2α

Γ(2α+ 1)

+
(
− 2e−2xE1,2α+1(t) + e−xE1,2α+1(t)

+ e−x+iπβE1,2α+1(t)− 2βe−2x+iπβE1,2α+1(t)
)
t2α+, ..., .
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The same result was obtained by Saad et al. [32] by using the method of optimal q-HAM.
If we put α = β = 1, in equation (4.17), we have the result in simple form

(4.18) u(x, t) = 1− et−x,
which is the exactly the same solution obtained by earlier by Jafari et al. [16] by using two-dimensional
DTM method.

(a) (b)

(c) (d)

Figure 4.2: Graph of the u(x, t) for Example 4.2, when β = 1 : (a) The exact solution, (b) The
approximate solution for α = 1, (c) The approximate solution for α = 0.5, (d) The approximate solution for
α = 0.75.

5 Conclusion
In this paper, we have successfully and efficiently applied the Sumudu transform iterative method (STIM )
to derive the approximate analytical solutions of the non-linear homogeneous and non-homogeneous
space-time fractional gas dynamic equations with Caputo fractional derivatives. STIM is a hybrid
approach of the Sumudu transform and the iterative method. The graphical representation of the obtained
solutions was completed successfully by the MATLAB software. The analytical results derived from the
proposed approach indicate that the method is simple to use and precise.
Acknowledgement. The second author wishes to express his gratitude to the University Grants
Commission (UGC ), New Delhi, for financial support in the form of a Junior Research Fellowship (JRF )
to carry out the present work.
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Abstract

This paper is based on extension of some basic results on coupled fixed point using extended
Kuratowski measure. In the first part of the paper we have extended coupled fixed point results on
product Banach space by measure of non compactness defined in the paper of Banas (1980). The second
part of the paper contains the results on existence of coupled fixed point based on generalized Theorem
3.2 of Samih et.al. (2016) to get coupled fixed point of set valued co set contraction map on complete
metric type of space.
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1 Introduction
In nonlinear functional analysis many operator equation has the expression T (x, y) = (f(x, y), f(y, x)), where
f is a map from X ×X to X and T is map from X ×X to X ×X and X is a Banach space.In such cases
the fixed the point of T is nothing but coupled fixed point of f . That is f(x, y) = x, f(y, x) = y. Bhaskar
and Lakshmikantham [6] introduced the concept of coupled fixed point of function of several variable. He
gave results on fixed point of each partial function of several variables in product space. He also generalized
Banach contraction principle for such maps. It plays an important role in nonlinear functional analysis.
Latter some authors [1,17] proved some results on fixed point and coupled fixed point on closed bounded
convex set of Banach space of different nonlinear maps.
Every continuous map on a closed ball of R has a fixed point. Tarski [19] and Kanster [12] extended this
result to complete lattice, that every monotone function on complete lattice has a fixed point. Brouwer
[5] extended it to Rn to get fixed point and further Schauder [18] extended this result to topological vector
space. He proved that every continuous map on compact set has a fixed point.The main drawback of Schuader
fixed point result is that, it is not applicable when a set losses compactness and the loss of compactness
always occurs on boundary. There are several problems related to this area like Integral equation with
singular kernel, differential equation over unbounded domain, embedding theorem between Sobolev spaces.
Therefore, three important measures of non compactness were developed
(i) Housdorff measure of non compactness,
(ii) Kuratowski measure of non compactness,
(iii) Istratescu measure of non compactness.
Darbo [8] gave a nice result on compact convex bounded subset of Banach space, known as Darbo fixed point
theorem.
Banach gave fixed point results on metric space but some space like lp, for 0 < p < 1 is not a metric space.
Some author gave fixed point results on those space using some weaker topological condition. In 1989 Baktin
[4] has first introduced a new topological space called b-metric space almost similar to metric space in order
to generalize Banach contraction principle. Some more fixed point results are added in distance space by
Kirk [13].In this work we give some results on coupled fixed point of KKM type map on b-metric space.

Mathematical Preliminaries.
Definition 1.1 ([6]). Let F be a map on X, then x is called fixed point of F , if F (x) = x.
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Definition 1.2 ([6]). Let F be a map from X ×X to X, then (x,y) is called coupled fixed point, if F (x, y)
= x and F (y, x) = y.

Definition 1.3 ([17]). Let F be a map from X to 2X , then f is called set valued map, where 2X is power set
of X.

Definition 1.4 ([17]). Let F be a set valued map from X to 2X , then x is called fixed point of F if x ∈ F(x).

Definition 1.5 ([1]). Let F be a set map from X ×X to 2X , then (x,y) is called coupled fixed point of F if
x ∈ F (x, y) and y ∈ F (y, x).

Definition 1.6 ([20]). Let X and Y be two topological space and T be a set valued map from X to 2Y , then
T is called :
(i) closed if graph GT = {(x, y) : y ∈ T (x)} is closed,
(ii) compact if closure of T (X) =

⋃
x∈X T (x) is compact,

(iii) lower semi continuous if for every open subset B of Y , the set T−1(B) = {x ∈ X : T (x)
⋂
B 6= φ} is

open.

Definition 1.7 ([14]). Let S be a bounded subset of metric space X, then
δ(S) = inf{ε > 0 : A can be covered by finitely many sets of diameter less than or equal to ε}, where
diameter of S = sup{d(x, y) : x, y ∈ S}, is called measure of noncompactness in X.

Definition 1.8 ([9]). Let (X, ‖ . ‖) be a Banach space and β be the family of bounded subset of X. The
function δ from β to R+ defined for every B ∈ β by
δ(B) = inf{ε > 0 : B can be covered by finitely many sets of diameter less than or equal to ε}, where
diameter of S = sup{‖x− y : x, y ∈ S‖}, is called measure of noncompactness in X.

2 Some Basic definitions and results
In this section we give some definitions and results on coupled fixed point by contraction with Kuratowski
measure on Banach space.

Theorem 2.1 ([18]). (Schauder fixed point theorem) Everey continuous and compact map on closed bounded
convex set has fixed point.

Theorem 2.2 ([8]). (Darbo fixed point theorem) Let E be closed bounded convex subset of a Banach space
X and F : E → E be continuous such that µ(F (E)) ≤ kµ(E), where k ∈ (0, 1) and µ is the Kuratowski
measure of non-compactness in X, then F has fixed point in E.

Definition 2.1 ([21]). Let X be a real Banach space, Y be the set of all bounded subsets of X and let
µ : Y → R be a map satisfying:
(i) Kerµ (zero set of µ ) is a non empty subset of Y ,
(ii) A ⊂ B ⇒ µ(A) ≤ µ(B),
(iii) µ(C) = µ(C),
(iv) µ(C) = µ(coC),
(v) µ(rA+ (1− r)(B)) ≤ rµ(A) + (1− r)µ(B)), for all A,B ∈ Y , for all r ∈ (0, 1),
(vi) If (An) be a sequence of sets in Y with An+1 ⊂ An and limn→∞µ(An) = 0, then

⋂
An is non empty, µ

is called Kuratowski measure of non-compactness.
Now we give our first result on coupled fixed point based on Kuratowski measure on product space.

Theorem 2.3. Suppose X be a real Banach space. Let µ1, µ2 be two Kuratowski measures of noncompactness
on X. Let the measures µ and µ

′
be defined on the product space X ×X by

(i) µ(Y ) = µ1(Y1) + µ2(Y2),
(ii) µ

′
(Y ) = max(µ1(Y1), µ2(Y2)), where

Y1 and Y2 are natural projections of Y on X and Y be a arbitrary subset of X ×X.
Let f be a continuous map from X ×X to X such that for every bounded closed convex subset C of X ×X
satisfies the following set valued contraction:
(1) µ1(f(C)) ≤ aµ(C) and µ2(f

′
(C)) ≤ bµ(C), for a+ b ∈ (0, 1),

(2) µ1(f(C)) ≤ µ′(C) and µ2(f
′
(C)) ≤ µ′(C),

where f
′

: X ×X → X and f
′
(x, y) = f(y, x),

then f has a coupled fixed point on X ×X.
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Proof . From [21] we can conclude µ and µ′ are Kuratowski measure. Since X is a real Banach space, then
X ×X is also a real Banach space. In product space X ×X we define
T (x, y) = (f(x, y), f

′
(x, y)), where f

′
(x, y) = f(y, x). Hence T is a map from X ×X to X ×X.

Let C be a arbitrary subset of X ×X. Now we claim that

T (C) ⊂ f(C)× f
′
(C).

Let (z, w) ∈ T (C)⇒ there exist (x, y) ∈ C such that T (x, y) = (z, w). Then it follows that (z, w) = T (x, y) =
(f(x, y), f

′
(x, y)), then z = f(x, y) and w = f(y, x)

⇒ (z, w) ∈ f(C)× f ′(C)
⇒ T (C) ⊂ f(C)× f ′(C).
Now
µ(T (C)) ≤ µ(f(C)× f ′(C))
= (µ1(f(C) + µ2(f

′
(C)))

≤ aµ(C) + bµ(C)
= (a+ b)µ(C). Therefore, T has a fixed point in X ×X.

By Darbos theorem there exist a point (x, y) ∈ X ×X such that T (x, y) = (x, y)
⇒ f(x, y) = x and f(y, x) = y. So f has a coupled fixed point.
Further using condition (2), we get

µ
′
(T (C)) ≤ µ

′
(f(C)× f

′
(C)) = max(µ1(f(C), µ2(f

′
(C))) ≤ µ

′
(C).

Proceding similarly as done under condition (1), we get f has a coupled fixed point in X.
Remark 2.1. Theorem2.3 generalizes Darbo fixed point theorem on product space by Kuratowski measures
µ and µ′.

3 b-metric space
Definition 3.1 ([20]). Let X be a non empty set equipped with a map d from X ×X to R is called b-metric
space or metric type space, if it satisfies the following conditions:
(i) d(x, y) ≥ 0 and d(x, y) = 0 iff x = y,
(ii) d(x, y) = d(y, x),
(iii) d(x, y) ≤ k (d(x, z) + d(z, y)), for all k > 1, for all x, y, z ∈ X.

Note:We have used the word d-topology as synonym of b-metric.

Definition 3.2 ([20]). Let (X, d) be a b-metric space, then we define
(i) a sequence(xn) in X converges to x, if limn→∞d(xn, x) = 0,
(ii) a sequence(xn) in X is called Cauchy, if limn→∞limm→∞d(xn, xm) = 0,
(iii) The space (X, d) is complete, if every Cauchy sequence is convergent.

Definition 3.3 ([20]). Let (X, d) be a b-metric space and A ⊂ X, then we define
(i) Ā = Intersection of all closed set containing A.
(ii) co(A)= Intersection of all closed ball containing A.

Theorem 3.1 ([20]). Let (X, d) be a b-metric space, then following results hold:
(i) A ⊂ X is closed ⇔ every sequence (xn) ∈ A converges to x, then x ∈ A,
(ii) For x ∈ A, we have B(x, r)

⋂
A 6= φ,

for every r > 0, where A is the intersection of all closed sets containing A,
(iii) A is called totally bounded, if for every r > 0 there exist x1, x2, ...., xn ∈ A such that,

A ⊂ B(x1, r)
⋃
B(x2, r)

⋃
...
⋃
B(xn, r),

(iv) Every compact set is sequentially compact but the converse is not true.

Definition 3.4 ([20]). Let (X, d) be a b-metric space. Let A ⊂ X is called admissible if co(A) = A and it is
called sub admissible, if for every finite subset B of A, co(B) ⊂ A.

Definition 3.5 ([20]). Let (X, d) be a b-metric space A ⊂ X is called nearly sub-admissible, if for each
compact subset B of A and each r ≥ 0, there exists a function f : B → A such that x ∈ B(f(x), r), for each
x ∈ B and co(f(B)) ⊂ A.
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Definition 3.6 ([20]). Let(X, d) be a b-metric space. A set valued map T : A→ 2X is called KKM map, if
for every finite subset B of A the co(B) ⊂ T (B) =

⋃
x∈B T (x).

Theorem 3.2 ([20]). Let (X, d) be a b-metric space and A be a nonempty subset of X. Suppose Y be a
topological space, then the following properties of KKM map hold:
(i) if T ∈ KKM(A, Y ) and F ∈ C(Y,X), then FoT ∈ KKM(A,X),
(ii) if B is a nonempty subset of A, then T |B ∈ KKM(B, Y ).

Definition 3.7 ([20]). Let (X, d) be a b−metricspace.
A ⊂ X, then diam(A) = sup{d(x, y) : x, y ∈ A}.

In 2016, Samih et al. [17] extended Kuratowski measure on b-metric space. He proved results on
existence of fixed point on b-metric space using generalized Kuratowski measure. We are looking extension
of generalized Kuratowski measure on product of b-metric space to get coupled fixed point of KKM type
function of double variable map.

Definition 3.8 ([20]). Let (X, d) be a b-metric space with coefficient k and A be a subset of X, then
Kuratowski measure of A denoted as α(A), is given by
α(A) = inf{ε > 0 : A can be covered by finitely many sets of diameter less than or equal to ε}.

Then the following properties hold:
(i) α(A) = 0⇔ A is totally bounded,
(ii) A ⊂ B ⇒ α(A) ≤ α(B),
(iii) If B is finite subset of X, then α(A

⋃
B) = α(A),

(iv) α(A) ≤ α(A) ≤ k2α(A),

Definition 3.9 ([20]). Let (X, d) be a b-metric space. Let A ⊂ X and f be a map on A, is said to be co
contraction on A, if for every bounded subset B ⊂ A with f(B) bounded, then α(f(coB)) ≤ kα(B)), for
0 < k < 1 .

Theorem 3.3 ([20]). Let (X, d) be a complete b-metric space. Let A be a nonempty bounded nearly sub-
admissible subset of X and F be a map from A to 2A with closed, co set contraction and KKM on A and
F (A) ⊂ A, then F has a fixed point on A.

4 Main results
Theorem 4.1. Let (X, d) be a b-metric space. Let D be a map from X ′ ×X ′ to [0,∞) defined by
D((x1, y1), (x2, y2)) = max{d((x1, x2), (y1, y2)}, then (X ′, D) is a b-metric space, where X ′ = X ×X.

Proof . Let p1 = (x1, y1), p2 = (x2, y2), p3 = (x3, y3), where pi ∈ X ′, i = 1, 2, 3, then we have
(i) D(p1, p2) = D(p2, p1) is obvious,
(ii) Symmetric property is obvious,
(iii) we wish to show k-triangular property.
From definition

d(x1, x2) ≤ k[d(x1, x3) + d(x3, x2)]

and
d(y1, y2) ≤ k[d(y1, y3) + d(y3, y2)].

Now

D(p1, p2) = max [d((x1, x2), d(y1, y2)]

≤ k([d(x1, x3) + d(x3, x2)] + [d(y1, y3) + d(y3, y2)])

≤ k([d(x1, x3) + d(y1, y3)] + [d(x2, x3) + d(y2, y3)])

≤ 2k max[d(x1, x3), d(y1, y3)] + 2k max[d(x2, x3), d(y2, y3)]

= 2k[D(p1, p3) +D(p3, p2)].

Taking K = 2k, we get the result.
Note: Since both X and X

′
are b-metric space, therefore, we have taken the notation d-topology for X and

D-topology for product space X
′

in this section.
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Theorem 4.2. Let (X, d) be a b-metric space, then the following results hold:
(i) If A and B be two closed subsets of X with respect to d-topology, then A × B is closed in X × X with
respect to D-topology,
(ii) If A and B are two subsets of X, then A×B ⊂ A×B,
(iii) Bd(a, r)×Bd(b, r) = BD((a, b), r), for every a, b ∈ X and every r > 0,
(iv) if X is complete w.r.t d-topology, then X ×X is complete w.r.t D-topology.

Proof . (i) Let A and B be two closed subset of X with respect to d-topology we wish to show A × B is
closed with respect to D-topology. Let (zn) = (xn, yn) converge to some (a, b) with respect to D-topology.
Now

limn→∞D(((xn, yn), (a, b)) = 0

⇒ limn→∞ max[d(xn, a), d(yn, b)] = 0,

⇒ limn→∞d(xn, a) = 0 and limn→∞d(yn, b) = 0

⇒ (xn) converges to a and (yn) converges to b.
Since A and B are closed in X, then a ∈ A and b ∈ B ⇒ (a, b) ∈ A×B ⇒ A×B is closed in X ×X.
(ii) Let A and B be two subsets of X, then

A ⊂ A and B ⊂ B ⇒ A×B ⊂ A×B.
Since A × B is closed in X

′
with respect to D-topology and A×B is smallest closed set in X × X, then

A×B ⊂ A ×B.
(iii) Let

(x, y) ∈ BD((a, b), r)

⇒ D((a, b), (x, y)) ≤ r
⇒ max[d(a, x), d(b, y)] ≤ r
⇒ d(a, x) ≤ r and d(b, y) ≤ r
⇒ x ∈ Bd(a, r) and y ∈ Bd(b, r)
⇒ (x, y) ∈ Bd(a, r)×Bd(b, r)
⇒ BD((a, b), r) ⊂ Bd(a, r)×Bd(b, r).

(iv) Proof is easy so we omit it.
For reverse inclusion the proof is similar.
Hence, BD((a, b), r) = Bd(a, r)×Bd(b, r).

Theorem 4.3. Let (X, d) be metric a type of space, which induces D-topology on X ×X. Suppose α and β
are Kurtoswki measures on X and X ×X respectively, then following conclusion hold:
(i) for a subset A of X and x ∈ X,β(A× {x}) = α(A),
(ii) β(A1 ×A2) ≤ max[α(A1), α(A2)], for all A1, A2 subsets of X,
(iii) β(A) = β(A

′
), where A

′
= {(x, y) : (y, x) ∈ A}.

P roof . (i) Let ε > 0, then there exist
⋃
Ai (i = 1, 2, ..., n), such that

A ⊂
⋃
Ai and α(A) ≤ diam(Ai) ≤ α(A) + ε.

Now

Ai × {x} covers A× {x}, for i = 1, 2, .., n.

diam[Ai × {x}] = sup{D[(a1, x), (a2, x)] : a1, a2 ∈ Ai}
= sup{d(a1, a2) : a1, a2 ∈ Ai}
= diamAi ≤ α(A) + ε

⇒ β(A× {x}) ≤ α(A) + ε.

Since ε is arbitary, so we get β(A× {x}) ≤ α(A).

Now we the show reverse inequality.
Take ε (> 0). Then there exist

⋃
Ci ⊂ X ×X, i = 1, 2, ..., n such that A× {x} ⊂

⋃
Ci and

β(A× {x}) ≤ diam(Ci), i = 1, 2, ..., n
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≤ β(A× {x}) + ε.

Let

Ci
x = {c : (c, x) ∈ Ci}.⋃
Cxi covers A.

Therefore,

diamCxi

= sup{d(r, s) : r, s ∈ Cix}
≤ sup{D((r1, s1), (r2, s2)) : (r1, s1), (r2, s2) ∈ Ci}
≤ β(A× {x}) + ε

⇒ α(A) ≤ β(A× {x}) + ε,

since ε is arbitrary we get α(A) ≤ β(A× {x}). Hence α(A) = β(A× {x}).
(ii) Let ε > 0, then there exist

⋃
Pi and

⋃
Qj , i = 1, 2, ..., n and j = 1, 2, ...,m such that

A1 ⊂
⋃
Pi, A2 ⊂

⋃
Qj .

So we have

α(A1) ≤ diam(Pi) ≤ α(A1) + ε

and

α(A2) ≤ diam(Qj) ≤ α(A2) + ε.

Take Rij = Pi ×Qj clearly we can see

A1 ×A2 ⊂
⋃

(Pi ×Qj).

Now,

diam((Pi ×Qj)) = sup{D[(x1, y1), (x2, y2)] : x1, x2 ∈ Pi and y1, y2 ∈ Qj}
= sup{max(d(x1, x2), d(y1, y2)) : x1, x2 ∈ Pi and y1, y2 ∈ Qj}
≤ sup[diam(Pi), diam(Qj)]

≤ sup[α(A1) + ε, α(A2) + ε].

Since ε is arbitrary, we obtain

β(A1 ×A2) ≤ max[α(A1), α(A2)].

(iii) The proof is obvious, so we omit it.

Theorem 4.4. Let (X, d) be a complete b-metric space and A be a nonempty bounded subset of X such that
A × A is nearly sub admissible with respect to D-topology on X ×X and f be a map from A × A to 2A×A

satisfying:
(i) For every finite subset E of A×A, we have co(E) ⊂ f(A)× f ′(A),where f

′
(x, y) = f(y, x),

(ii)f(A×A) ⊂ A,
(iii) co(f(C)× f ′(C)) = co(f(C))× co(f ′(C)) and α(co(f(C))) ≤ kβ(C), for 0 < k < 1, for every bounded
subset C of A×A with f(C) bounded,
(iv) the graph f and graph f

′
are closed, wheref

′
(x, y) = f(y, x), then f has a coupled fixed point on A×A.

Proof . From Theorem 4.2(iv) X ×X is complete w.r.t D-topology.
Let T be a map from A×A to 2A×A defined by T (x, y) = f(x, y)× f(y, x).
Now we claim that for every subset C of A×A,
T (C) = f(C)× f ′(C).
Now

T (C) =
⋃

(x,y)∈C

T (x, y)

=
⋃

(x,y)∈C

f(x, y)× f
′
(x, y)
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=
⋃

(x,y)∈C

f(x, y)×
⋃

(x,y)∈C

f
′
(x, y).

Hence, T (C) = f(C)× f ′(C).
Form condition (i), we conclude that T is KKM on A×A.
From Theorem 3.3, we can conclude

T (A×A) = f(A×A)× f ′(A×A)

⊂ f(A×A)× f ′(A×A)

⊂ A×A
From condition-(iv), we can conclude T is closed.
Next we show that T has set valued co contraction on every bounded subset of A×A .
Let C be arbitrary bounded subset of A×A with f(C) bounded, then

β(coT (C) = β(co(f(C)× f
′
(C))) = β(co(f(C))× co(f

′
(C))).

and T (C) is bounded. From theorem 4.3 we can conclude that

β(coT (C))

= β(co(f(C)× f
′
(C)))

≤ max{α((co(f(C)), α(co(f
′
(C))}

⇒ β(coT (C) ≤ kβ(C),

Using Theorem 3.3 we obtain T has a fixed point in A×A .
So there exist (x, y) such that

(x, y) ∈ T (x, y)⇒ (x, y) ∈ f(x, y)× f(y, x)

⇒ x ∈ f(x, y) and y ∈ f(y, x).

Then f has a coupled fixed point on A×A.

5 Conclusion
Theorem 4.4 generalizes Theorem 3.3 of the results of Samih et.al on the product space of fixed point of set
valued map.
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Abstract

In this paper, we study the explicit representation of weighted Pál - type (0,2) - interpolation on two
pairwise disjoint sets of nodes on the unit circle, which are obtained by projecting vertically the zeros of
(1− x2)Pn(x) and P

′′
n (x) respectively, where Pn(x) stands for nth Legendre polynomial.
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1 Introduction
In 1979, Turán [12] studied the (0,2) – Interpolation for getting an approximate solution of differential
equation y′′+fy = 0. Balázs [8] introduced the weighted (0, 2)– Interpolation on the zeros of Ultraspherical

polynomial P
(α)
n (x), α > −1. In 1960, Kǐs [10] initiated the Lacunary interpolation on the unit circle. He

considered (0,2)- Interpolation on the unit circle and established the convergence theorem. After that several
mathematician have considered (0,2) – Interpolation viz. on the unit circle, infinite interval and on the
real line. In 1996, Xie [13] considered (0, 1, 3)∗- interpolation on the vertically projected nodes onto the
unit circle. He claimed the regularity, explicit representation and convergence of (0,1,3)* - Interpolation.
In 2003, Dikshit [9] considered the Pál – type Interpolation on non uniformly distributed nodes on the
unit circle. After that author and Mathur [1] considered the weighted (0,2)* – Interpolation on the set
of nodes obtained by projecting vertically the zeros of (1 − x2)Pn(x) on the unit circle and established
a convergence theorem for that interpolatory polynomial. In 2012, she [2,3] considered weighted (0;0,2)
and (0,2;0) – Interpolation on projected nodes onto the unit circle, obtained the regularity, fundamental
polynomial and established a convergence theorem. In 2017, authors [4] considerd the regularity and explicit
forms of weighted (0,2;0)- interpolation on the unit circle on two pairwise disjoint sets of nodes obtained
by projecting vertically the zeros of (1− x2)Pn(x) and P

′′

n (x) respectively onto the unit circle, where Pn(x)
stands for nth Legendre polynomial. After that the auhors [5] also established convergence for the above said
interpolatory polynomials. Recently, authors [6] considered weighted Lacunary interpolation on the nodes,
which are obtained by projecting vertically the zeros of the (1−x2)P

′

n(x) onto the unit circle and established
a convergence theorem for the same. Recently, author with Iqram [7] considered generalized Hermite-Fejér

interpolation on the nodes, which are obtained by vertically projected zeros of the (1 + x)P
(α,β)
n (x) on the

unit circle, where P
(α,β)
n (x) stands for Jacobi polynomial established the convergence theorem. These have

motivated us to consider (0;0,2) interpolation on two pairwise disjoint sets of nodes on the unit circle. Let

(1.1) Zn=

{
zk = cosθk + i sinθk

zn+k = zk , k = 1 (1)n,

(1.2) Tn =

{
tk = cosϕk + i sinϕk,

t(n−2)+k = tk , k = 1 (1)n− 2,

be two set of nodes. In which the Lagrange data is prescribed on the first set of nodes whereas Lacunary
data on the other one.We obtained regularity, explicit forms and established a convergence theorem of the
interpolatory polynomials. In Section 2, we give some preliminaries, in Section 3, we describe the problem
and regularity, in Section 4 and Section 5, we present the explicit forms and convergence of weighted Pál –
type (0,2) – interpolation on the unit circle respectively.
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2 Preliminaries
The differential equation satisfied by Pn (x) is

(2.1)
(
1− x2

)
P ′′n (x)− 2x P ′n (x) + n (n+ 1)Pn (x) = 0.

(2.2) W (z) =

2n∏
k=1

(z − zk) = Kn Pn

(
1 + z2

2z

)
zn,

(2.3) R (z) =
(
z2 − 1

)
W (z) ,

(2.4) H (z) =

2n−4∏
k=1

(z − tk) = K∗∗n P
′′

n

(
1 + z2

2z

)
zn−2.

We shall require the following fundamental polynomials of Lagrange interpolation based on the zeros of
W (z) and R (z) , are respectively defined as

L1k (z) =
W (z)

(z − zk)W ′ (zk)
, k = 1 (1) 2n,(2.5)

Lk (z) =
R (z)

(z − zk)R′ (zk)
, k = 0 (1) 2n+ 1,(2.6)

l2k (z) =
H (z)

(z − tk) H
′
(tk)

, k = 1 (1) 2n− 4,(2.7)

Jk (z) =

∫ z

0

t l2k (t) dt,(2.8)

J (z) =

∫ z

0

H (t) dt,(2.9)

which satisfies

(2.10) J (−z) = −J (z) .

We shall also use the following results in our investigations :

(2.11) W ′ (zk) =
Kn

2

(
z

2

k − 1
)
P ′n (xk) z

n−2

k , k = 1(1)2n− 2,

(2.12) W
′′

(zk) = Kn

[
(n− 1)

(
z2
k − 1

)
− 1
]
zn−3
k P

′

n (xk) , k = 1 (1) 2n,

(2.13) H
′
(tk) =

K∗∗n
2

(
t2k − 1

)
tn−4
k P

′′′

n (x∗k) , k = 1(1)2n− 4,

(2.14) W
′
(tk) = Kn

n
{

(n+ 3)
(
t2k − 1

)
+ 4
}

2 (t2k + 1)
tn−1
k P

n
(x∗k) ,

(2.15) W
′′

(tk) = Kn

n (n− 1)
{

(n− 1)
(
t2k − 1

)
− 1
}

2 (t2k + 1)
tn−2
k Pn (x∗k) ,

(2.16) R
′
(tk) =

(
z2
k −1

)
W
′
(zk) ,

(2.17) R
′′

(zk) = 4zk W
′
(zk) +

(
z2
k − 1

)
W
′′

(zk) ,

(2.18) R
′
(tk) =

(
t2k − 1

)
W
′
(tk) ,
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(2.19) R
′′

(tk) = 4tkW
′
(tk) +

(
t2k − 1

)
W
′′

(tk) + 2W (tk),

(2.20) H
′′

(tk) = K∗n
{

(n− 5)
(
t2k − 1

)
− 5
}
tn−5
k P

′′′

n (x∗k) .

We shall also use the following well known inequalities:
For −1 < x < 1

(2.21) |Pn (x) | ≤ 1,

(2.22)
(
1− x2

)1/4|Pn (x) | ≤
√

2

π
n−1/2,

(2.23)
(
1− x2

)3/4 |P ′n (x)| ≤
√

2 n1/2,

(2.24)
(
1− x2

) ∣∣∣P ′′n (x)
∣∣∣ ∼ n2 .

Let xk = cosθk, k = 1(1)n are the zeros of nth Legendre polynomial Pn (x) , with 1 > x1 > x2 > · · · >
xn > −1, then

(2.25)
(
1− x2

k

)−1 ∼
(
k

n

)−2

,

(2.26)
∣∣∣P (s)
n (xk)

∣∣∣ ∼ k−s−
1
2 n2s , s = 0, 1, 2, 3 .

For more details one can refer to [11].

3 The Problem and Regularity
Let Zn∪{−1, 1} and Tn be two disjoint set of nodes obtained by projecting vertically the zeros of (1−x2)Pn(x)
and P

′′

n (x) onto the unit circle respectively, where Pn(x) stands for nth Legendre polynomial, Zn and Tn are
defined in (1.1) and (1.2), we take here z0 = 1, z2n+1 = −1.
Here we are interested to determine the following polynomial Q6n−7 (z) of degree ≤ 6n − 7 satisfying the
conditions:

(3.1)


Q6n−7 (zk) = αk, k = 0 (1) 2n+ 1

Q6n−7 (tk) = βk, k = 1 (1) 2n− 4[
p (z)Q6n−7 (z)

]′′
z=tk

= γk, k = 1 (1) 2n− 4,

where α′ks , β′ks and γ′ks are arbitrary complex constants and

p (z) = zn(n−3)/2
(
z2 − 1

)7/2(
z2 + 1

)−n(n+1)/2

is a weight function.

Theorem 3.1. Q6n−7(z) is regular on Zn ∪ {−1, 1} and Tn.

Proof. It is sufficient, if we show that the unique solution of (3.1) is

Q6n−7 (z) ≡ 0,

when all data αk = βk = γk = 0.
In this case, we have

Q6n−7 (z) = W (z)H (z) q (z) ,

where q (z) is a polynomial of degree ≤ 2n− 3, W (z) and H (z) are defined in (2.2) and (2.4) respectively.
Obviously

Q6n−7 (zk) = 0, k = 1 (1) 2n,

Q6n−7 (tk) = 0, k = 1 (1) 2n− 4.
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From
[p (z)Q6n−7 (z)]

′′

z=tk
= 0,

using (2.13) - (2.15) and (2.20), we get

(3.2) q′ (tk) = 0.

Therefore, we have

(3.3) q′ (z) = a H (z) ,

where a is an arbitrary constant.
Thus, we get

(3.4) q (z) = a J (z) + b,

where

(3.5) J (z) =

∫ z

0

H (t) dt.

For q (±1) = 0, we have

(3.6)

{
a J (1) + b = 0
a J (−1) + b = 0.

Since

(3.7) J (−z) = −J (z) ,

therefore, using (3.7) in (3.6), we get a = b = 0.
Hence the theorem follows.

4 Explicit Representation of Interpolatory Polynomials
We shall write Q6n−7 (z) satisfying (3.1) as

(4.1) Q6n−7 (z) =

2n+1∑
k=0

αkB
∗
0k (z) +

2n−4∑
k=1

βkB0k (z) +

2n−4∑
k=1

γkB2k (z),

where B∗0k, B0k and B2k are unique polynomials, each of degree at most 6n−7 satisfying the conditions:

For k = 0 (1) 2n+ 1

(4.2)


B∗0k (zj) = δjk, j = 0 (1) 2n+ 1
B∗0k (tj) = 0, j = 1 (1) 2n− 4

[p (z)B∗0k (z)]
′′

z=tj
= 0, j = 1 (1) 2n− 4.

For k = 1 (1) 2n− 4

(4.3)


B0k (zj) = 0, j = 0 (1) 2n+ 1
B0k (tj) = δjk, j = 1 (1) 2n− 4

[p (z)B0k (z)]
′′

z=tj
= 0, j = 1 (1) 2n− 4.

For k = 1 (1) 2n− 4

(4.4)


B2k (zj) = 0, j = 0 (1) 2n+ 1
B2k (tj) = 0, j = 1 (1) 2n− 4

[p (z)B2k (z)]
′′

z=tj
= δjk, j = 1 (1) 2n− 4.

Theorem 4.1. For k = 1 (1) 2n− 4, we have

(4.5) B2k (z) = W (z)H (z) {ck Jk (z) + c∗k J (z) + c∗∗k } ,
where Jk (z) is defined in (2.8)

(4.6) ck =
1

2tk p (tk)W (tk)H ′ (tk)
,

(4.7) c∗k = − ck
{Jk (1)− Jk (−1)}

2 J (1)
,

(4.8) c∗∗k = − ck
{Jk (1) + Jk (−1)}

2
,

and J (z) is defined in (2.9) .
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From (4.5), we have
B2k (zj) = 0, j = 1 (1) 2n,

B2k (tj) = 0, j = 1 (1) 2n− 4.

For j = 1 (1) 2n− 4, we get

[p (z)B2k (z)]
′′

z=tj
= 0, for j 6= k .

For j = k, we get (4.6).
From B2k (zj) = 0, for j = 0 and 2n+ 1, we get (4.7) –(4.8).

Theorem 4.2. For k = 1 (1) 2n− 4, we have

(4.9) B0k (z) =

(
z2 − 1

)
W (z)

(t2k − 1)W (tk)
l22k (z) +

W (z)H (z)

(t2k − 1)W (tk)H ′ (tk)
{Sk (z) + b∗k J (z) + b∗∗k } + bkB2k (z)

where

(4.10) Sk (z) = −
∫ z

0

(
t2 − 1

) [l′2k (t)− l′2k (tk) l2k (t)]

(t− tk)
dt,

(4.11) bk = −4{l′2k (tk)}2p(tk)−
{
p (z)

(
z2 − 1

)
W (z)

}′′
z=tk

(t2k − 1)W (tk)
− 4 l′2k (tk)

{
p (z)

(
z2 − 1

)
W (z)

}′
z=tk

(t2k − 1)W (tk)

(4.12) b∗k = −{Sk (1)− Sk (−1)}
2 J (1)

,

(4.13) b∗∗k = −{Sk (1) + Sk (−1)}
2

.

From (4.9) one can see
B0k (zj) = 0, j = 1 (1) 2n .

B0k (tj) = δjk , j = 1 (1) 2n− 4.

Now from
[p (z)B0k (z)]

′′

z=tj
= 0, for j 6= k,

we get

S
′

k (tj) = −
(
t2j − 1

)(
tj − tk

) l′2k (tj) .

Owing to third condition of (4.3), we derive

S
′

k (z) =
(
z2 − 1

) [l′2k (z)− l′2k (tk) l2k (z)
]

(z − tk)
.

On solving it we obtain (4.10).
From

[p (z)B0k (z)]
′′

z=tj
= 0, for j = k,

we establish (4.11).
From (4.9), for

B0k (zj) = 0, j = 0 and 2n+ 1,

we derive (4.12) - (4.13).
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Theorem 4.3. For k = 1 (1) 2n, we have

(4.14) B∗0k (z) =

(
z2 − 1

)
H2 (z)

(z2
k − 1)H2 (zk)

L1k (z) +
W (z)H(z)

(z2
k − 1)W ′ (zk)H3 (zk)

{Mk (z) + a∗k J (z) + a∗∗k } ,

where

(4.15) Mk (z) = −
∫ z

0

[(
t2 − 1

)
H ′ (t)H (zk)−

(
z2
k − 1

)
H ′ (zk)H (t)

]
(t− zk)

dt,

(4.16) a∗k = −{Mk (1)−Mk (−1)}
2 J (1)

(4.17) a∗∗k = −{Mk (1) +Mk (−1)}
2

.

For k = 0 and 2n+ 1, we have

(4.18) B∗0k (z) = W (z)H (z) {a∗1k J (z) + a∗2k} ,
where

(4.19) a∗1k =
1

2 W (zk)H (zk) J (zk)
,

(4.20) a∗2k =
1

2 W (zk)H (zk)
.

From (4.14)
B∗0k (zj) = δjk, j = 1 (1) 2n,

B∗0k (tj) = 0, j = 1 (1) 2n− 4.

From
[p (z)B∗0k (z)]

′′

z=tj
= 0, j = 1 (1) 2n− 4,

we derive

M
′

k (tj) = −H (zk)

(
t2j − 1

)
H
′
(tj)

(tj − zk)
,

Employing to third condition of (4.2), we establish

M
′

k (z) = −

[(
z2 − 1

)
H
′
(z)H (zk)−

(
z2
k − 1

)
H
′
(zk)H (z)

]
(z − zk)

.

On solving it we get (4.15).
From (4.14), for

B∗0k (zj) = 0, j = 0 and 2n+ 1,

we derive (4.16) and (4.17).
For k = 0 and 2n+ 1, from (4.18), we have

B∗0k (zj) = 0, j = 1 (1) 2n,

B∗0k (tj) = 0, j = 1 (1) 2n− 4.

[p (z)B∗0k (z)]
′′

z=tj
= 0, j = 1 (1) 2n− 4.

For
B∗0k (zj) = δjk , j = 0 and 2n+ 1,

we get (4.19) and (4.20).
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5 Estimation of Fundamental Polynomials

Lemma 5.1. For z = eiθ, (0 ≤ θ < 2π) , we have

(5.1)

2n−4∑
k=1

|p(z) B2k (z)| ≤ c logn ,

where B2k (z) be defined in Theorem 4.1 and c is a constant independent of n and z.

Lemma 5.2. For z = eiθ, (0 ≤ θ < 2π) , we have

(5.2)
∣∣p (z)B∗0,0 (z)

∣∣ ≤ c, ∣∣p (z)B∗0,2n+1 (z)
∣∣ ≤ c,

and

(5.3)

2n∑
k=1

|p (z)B∗0k (z)| ≤ cn2logn ,

Lemma 5.3. For z = eiθ, (0 ≤ θ < 2π) , we have

(5.4)

2n−4∑
k=1

|p (z)B0k (z)| ≤ cn2logn ,

where B0k (z) be defined in Theorem 4.2 and c is a constant independent of n and z.

Proof. Using the conditions from (2.21) – (2.26), we get the result.

6 Convergence
Theorem 6.1. Let f (z) be continuous for |z| ≤ 1 and analytic for |z| < 1. Let the arbitrary numbers γ′ks
be such that

(6.1) |γk| = O

(
n2 ω3

(
f,

1

n

))
, k = 1 (1) 2n− 4.

Then {Q6n−7 (z)} defined by

(6.2) Q6n−7 (z) =

2n+1∑
k=0

f (zk)B∗0k (z) +

2n−4∑
k=1

f (tk)B0k (z) +

2n−4∑
k=1

γk B2k (z),

satisfies the relation

(6.3)
∣∣p(z){ Q6n−7 (z)− f (z)

}∣∣ = O
(
ω3

(
f, n−1

)
logn

)
,

where ω3

(
f, n−1

)
be the third modulus of continuity of f (z).

To prove the Theorem 6.1, we shall need the followings:
Remark 6.1. Let f (z) be continuous for |z| ≤ 1 and analytic for |z| < 1 and f

′′ ∈ Lip α, α > 0, then
the sequence {Q6n−7 (z)} converges uniformly to f (z) in |z| ≤ 1, which follows from (6.3) provided

(6.4) ω3

(
f, n−1

)
= O

(
n−2−α) .

There exists a polynomial Fn (z) of degree ≤ 6n− 7, satisfying Jackson’s inequality

(6.5) |f (z)− Fn (z)| ≤ c ω3

(
f, n−1

)
, z= eiθ (0 ≤ θ < 2π) ,

and the inequality due to Kiš [10],

(6.6)
∣∣∣F (m)
n (z)

∣∣∣ ≤ c nm ω3

(
f, n−1

)
, m ∈ I+.

Proof. Since Q6n−7 (z) be a uniquely determined polynomial of degree ≤ 6n− 7 and the polynomial Fn (z)
of degree ≤ 6n− 7 satisfying (6.5) and (6.6) can be expressed as

Fn (z) =

2n+1∑
k=0

Fn (zk) B∗0k (z) +

2n−4∑
k=1

Fn (tk)B0k (z) +

2n−4∑
k=1

F
′′

n (tk)B2k (z).

Then
|p(z) {Q6n−7 (z)− f (z)}| ≤ |p (z) {Q6n−7 (z)− Fn (z)}|+ |p(z) {Fn (z)− f (z)}|
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≤
2n+1∑
k=0

|f (zk)− Fn (zk)| |p (z) B∗0k (z)|

+

2n−4∑
k=1

|f (tk)− Fn (tk)| |p (z) B0k (z)|

+

2n−4∑
k=1

{
|γk|+

∣∣∣F ′′n (tk)
∣∣∣} |p (z) B2k (z)|

+ |p(z)| |Fn (z)− f (z)| .

Using (6.1), (6.2), (6.4) – (6.6) and Lemmas 5.1 – 5.3, we get (6.3) .

7 Conclusion
In this paper, we defined the weighted Pal - type (0,2) - interpolation on two pairwise disjoint sets of nodes
on the unit circle, which converges uniformly to f

′′ ∈ Lip α, α > 0.
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Abstract

We bring forth one of the most sought after and intriguing space pertaining to the magical world of
Number Theory; and our attempts to uncover the continuing research and developments to find solutions
for different aspects of the Pells equation. As indicated in this research paper, we attempt to find the
possible solutions for the Pells equation x2 = 41y2−5m for all choice of m ∈ N. In this paper, we focused
primarily on Pells equations involving the Sophie Germain primes and present to you another mysterious
series and pattern typically associated with the Pells equation. As we proceed through the research, we
will bring to the fore the recurrence relations among the identified solutions.
2020 Mathematical Sciences Classification: 11D09.
Keywords and Phrases: Pell’s equation, Diophantine equations, Integer solutions, Recurrence
relation, Sophie Germain Primes.

1 Introduction
Pells equation, the prime object in this research. It is a representation of Diophantine equation x2−dy2 = 1,
where a non-square positive integer d is given and will search for integer solutions in x and y. As an
illustration, for d having value 5; one of the integer solutions is x = 9, y = 4. One thing to note about is that
with d not a perfect square, Pells equation will certainly have infinitely many distinct integer solutions. For
initial literature, we may refer to [2, 4, 6, 7, 9, 10, 11, 14, 15]. It has multiple references to various forms of
Diophantine equations, which provide us the base knowledge to go about learning more about these equations.
For additional references, we may also refer to another book [16]. We imbibed the problem identification
as applied for exponential Diophantine equations. Further investigation and approach techniques can be
referred to [15]. Assimilating and conceptualizing these learnings enabled to look ahead and ensure the
concrete steps towards our research. To dive into the crux of the problem, major ideas were incorporated
from the literatures due to [8, 12, 13]. Using these inputs, we develop our solution appropriately.

The focus of discussion in this paper is a negative Pells equation given as x2− dy2 = −N, to be solved in
positive integers x and y. As indicated here forth, we are using the Sophie Germain prime in negative Pells
equation in finding the positive integer solutions. In number theory, a prime number p is a Sophie Germain
prime if 2p + 1 is also prime. A safe prime indicates the number 2p + 1 associated with a Sophie Germain
prime. In the Pells equation x2 = 41y2 − 5m, m ∈ N; we are using the Sophie Germain primes 41 and 5 and
will attempt to search for its non-trivial integer solutions. To derive the solutions, we approached the quest
with the case of choices of m generalized in all even and odd integers. We initiated the proof by involving
the odd integers 1, 3, 5.

Applying Brahma Gupta lemma [1], we obtained the sequence of non-zero distinct integer solutions. This
solution addresses the many positive integer solutions obtained thence. A few research driven relations with
respect to the solutions are presented. Furthermore, the process is taken a bit ahead to derive the recurrence
relations that addresses such types of Pells equations.

The references that we had indicated above were just a stepping stone for us to take us to the next
level. The objective we have in mind is to enable our study to put across the outcomes for understanding
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the concepts and usage of cryptography. As is understood, that Cryptograph is an acknowledged area of
application that involves the protection of information in the huge network of computing world. This concept
goes a long way to ensure that only authorized personnel are enabled to read the concerned information and
process it accordingly. It is also well understood that mathematics and mathematical concepts are the
building blocks of cryptography and has gifted the world of computers a large set of algorithms and concepts
to implement this protective logic involving cryptography. In the whole process, Pell’s equation has been a
major contributor in the science of cryptography. To generalize our research purpose, it is also come to the
fore that the Sophie Germain primes are one of the leading contributors to this field. Since negative Pell
equations are mostly unsolvable; it presents a complex method to undermine a strong security algorithm for
cryptography. In due course, we intend to finetune our research to also generate an application to showcase
the usage of Sophie Germain primes to devise a cryptographic solution.

2 Preliminaries
Theorem 2.1. If x1, y1 is considered as the fundamental solution of x2−dy2 = 1. Then to be noted is
that every positive solution of the equation is given by xn, yn where xn and yn are the integers de-
termined from xn + yn

√
d = (x1 + y1

√
d)n, for n = 1, 2, 3, ...

2.1 Solubility of the negative Pell equation - Our test approach
We assume that D is a positive integer, and considered not a perfect square. Then the negative Pell equation
x2 −Dy2 = −1 is considered soluble if and only if D is expressed as D = a2 + b2, gcd(a, b) = 1, a and b are
positive, b is odd and the Diophantine equation, −bV 2 + 2aVW + bW 2 = 1 has a solution. (We highlight
this as the case of solubility that occurs for exactly one such (a, b)). The solubility concepts were derived
from article [3].

The Algorithm followed by us is illustrated below
(i) We will first find all expressions of D considered as a sum of two relatively prime squares using

Cornacchia’s method [5]. If none exists - the negative Pell equation is not soluble.
(ii) For each representation D = a2 + b2, gcd(a, b) = 1, a and b positive, b odd, we will test the solubility

of −bV 2 + 2aVW + bW 2 = 1 using the Lagrange-Matthews algorithm [3]. If soluble and it exists - the
negative Pell equation is soluble.

(iii) If each representation yields no probable solution, then the negative Pell equation is insoluble.

Theorem 2.2. Let us consider p to be a prime. The negative Pell equation x2 − py2 = −1 is
considered solvable if and only if p = 2 or p ≡ 1(mod4).

Proof. This paper focusses on a negative Pell equation x2 = 41y2−5m, m ∈ N. For the negative Pell equation,
we will consider the prime p = 41, which satisfies the identified conditions of Theorem 2.2. Therefore, we
can substantiate with certainty the proof that the negative Pells equation x2 = 41y2− 5m, m ∈ N is solvable
and prevalent in integers.

Using the Algorithm as illustrated in Theorem 2.1 and testing for (a, b) = (4, 5) : −bV 2+2aVW+bW 2 = 1
has a solution (V,W ) = (2, 1), so x2 − 41y2 = −1 is soluble.

3 Method of Analysis
Choice 1: m = 1

The Pell equation in focus is

(3.1) x2 = 41y2 − 5.

Let (x0, y0) be the initial solution of (3.1) given by x0 = 6; y0 = 1.
In our quest to find the other solutions of (3.1), consider the generalized form of the Pell equation

(3.2) x2 = 41y2 + 1.

The initial solution of (3.2) is (2049,320) and the general solution (x̃n, ỹn) given by Theorem 2.1 as x̃n =
1
2fn, ỹn = 1

2
√

41
gn, where fn = (2049 + 320

√
41)(n+1) + (2049− 320

√
41)(n+1), gn = (2049 + 320

√
41)(n+1) −

(2049− 320
√

41)(n+1), n = 0, 1, 2 · · · ·
By applying Brahma Gupta lemma [1] between (x0, y0) and (x̃n, ỹn) the possible sequence of non-zero

distinct integer solutions to (3.1) are obtained as given below

(3.3) xn+1 = x0x̃n + dy0ỹn, yn+1 = x0ỹn + dy0x̃n,

41



(3.4) xn+1 =
1

2
[6fn +

√
41gn], yn+1 =

1

2
√

41
[
√

41fn + 6gn].

Also to be noted is the recurrence relation satisfied by the solution of (3.1) given by

(3.5) xn+2 − 4098 xn+1 + xn = 0, yn+2 − 4098 yn+1 + yn = 0.

Choice 2: m = 3
The Pell equation is

(3.6) x2 = 41y2 − 125.

Let (x0, y0) be the initial solution of (3.6) given by x0 = 30; y0 = 5. Applying Brahma Gupta lemma
[1] between (x0, y0) and (x̃n, ỹn) the possible sequence of non-zero distinct integer solutions to (3.6) are
obtained by equation (3.3) as given below

(3.7) xn+1 =
1

2
[30fn + 5

√
41gn], yn+1 =

1

2
√

41
[5
√

41fn + 30gn].

The recurrence relation satisfied by the solution of (3.6) are given by the equations below

(3.8) xn+2 − 4098 xn+1 + xn = 0, yn+2 − 4098 yn+1 + yn = 0.

Choice 3: m = 5
The Pell equation in focus is

(3.9) x2 = 41y2 − 3125.

Let (x0, y0) be the initial solution of (3.9) given by x0 = 14; y0 = 9.
Applying Brahma Gupta lemma [1] between (x0, y0) and (x̃n, ỹn) the possible sequence of non-zero

distinct integer solutions to (3.9) obtained by equation (3.3) as

(3.10) xn+1 =
1

2
[14fn + 9

√
41gn], yn+1 =

1

2
√

41
[9
√

41fn + 14gn].

The recurrence relation satisfied by the solution of (3.9) are given by the equations below

(3.11) xn+2 − 4098 xn+1 + xn = 0, yn+2 − 4098 yn+1 + yn = 0.

Choice 4: m = 2k , k ∈ N
The Pell equation is

(3.12) x2 = 41y2 − 52k, k ∈ N.
Let (x0, y0) be the initial solution of equation (3.12) given by x0 = 32 (5)k; y0 = 5 (5)k.
Applying Brahma Gupta lemma [1] between (x0, y0) and (x̃n, ỹn) the possible sequence of non-zero

distinct integer solutions to (3.12) are obtained by equation (3.3) as given below

(3.13) xn+1 =
5k

2
[32fn + 5

√
41gn], yn+1 =

5k

2
√

41
[5
√

41fn + 32gn].

The recurrence relation satisfied by the solution of (3.12) are given by the equations below

(3.14) xn+2 − 4098 xn+1 + xn = 0, yn+2 − 4098 yn+1 + yn = 0.

Choice 5: m = 2k + 5 , k ∈ N
The Pell equation is

(3.15) x2 = 41y2 − 52k+5, k ∈ N.
Let (x0, y0) be the initial solution of equation (3.15) given by x0 = 70 (5)k−1; y0 = 45 (5)k−1.
Applying Brahma Gupta lemma [1] between (x0, y0) and (x̃n, ỹn) the sequence of non-zero distinct integer

solutions to (3.15) obtained by equation (3.3) as

(3.16) xn+1 =
5k−1

2
[70fn + 45

√
41gn], yn+1 =

5k−1

2
√

41
[45
√

41fn + 70gn].

The recurrence relation satisfied by the solution of (3.15) are given by the equations below

(3.17) xn+2 − 4098 xn+1 + xn = 0, yn+2 − 4098 yn+1 + yn = 0.
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4 Conclusion
As seen and proved with the research put forth, solving a negative Pells equation that involves the Sophie
Germain primes has in fact provided a more intrinsic and dynamic interpretation for finding solutions to
equations satisfying occurrences of the similar nature. In due course, our research will be one of the pointers
going ahead to conceptualize the effort to making/ creating a security encryption model.
Acknowledgement. We are indebted and thankful to the Editor and Referee for providing us the platform
to put across our research. We value the suggestions and inputs that enabled us to fine-tune and streamline
our research.
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Abstract

This mathematical study comprising of a catheterized artery with clot and stenosis is conducted to
highlight the usage of nanoparticles in treatment of thrombosis. Catheter coated with silver nanoparticles
is inserted in the lumen of artery having clot and stenosis. The behavior of blood with nanoparticles
is described using nanofluid. Navier-Stokes equation and diffusion equation for temperature as well as
concentration are used to model the flow problem. Our prime intention is to study how concentration and
nanoparticle size effect nanofluid flow considering the influence of various thermal features like thermal
conductivity, specific heat capacity and thermal expansion. Solution has been obtained for concentration,
temperature and velocity is obtained using finite difference method. The effects of radius of nanoparticle,
Brownian motion parameter, stenosis depth, Grashof number and Darcy number have been examined
graphically using MATLAB. It has been concluded that nanoparticles highly concentrate on the clot and
stenosis and thus point to possible significant use of nanoparticles in antithrombotic therapy. This model
can be, thus, utilized in thrombolytic therapies by proper optimization of concentration of nanoparticles
as well as their geometries.
2020 Mathematical Sciences Classification: 76A05, 76D05, 35A08, 35A24, 9210, 92C10.
Keywords and Phrases: Nanofluids, Thermal conductivity, Viscosity, Concentration, Brownian
motion.

1 Introduction
Nanoparticles have emerged as a promising technology that has revolutionized every field of science [11].
Recent years have witnessed an extensive attention of scientific researchers and clinicians in the field of
nanomedicine or the use of nanoparticles in medicine. Nanoparticles provide enhanced treatment efficiency
due to their convertible geometries and physiochemical properties because they mimic platelets by moving
rapidly towards clots. Many nanoparticles-based drug delivery system have been used in medication and
therapy of cardiovascular diseases and cancer. The application of nanoparticle in the therapeutics of
thrombosis have exhibited amplified treatment efficiency [19]. In this paper we seek to understand the
behavior of nanoparticles at the clot by controlling their concentration and size.

Thrombosis is the buildup of malignant clot in the blood vessels. It is a global health issue. The flow
conditions of blood are affected by thrombus formation because clotted arteries have higher shear rates
than healthy arteries. The thrombus or the malignant clot can be dissolved or reduced with the help of
antiplatelet and anticoagulant agents like heparin, recombinant tPA (rtPA), urokinase plasminogen activator
(uPA) and streptokinase (SK) [19]. These agents are protein-based and have lesser bio-availability, thus,
lesser therapeutic effect. Thus, it is important to develop such therapeutics that have higher bio-availability
and efficiency. Here, nanoparticles have proven useful as their geometry and physio-chemical properties can
be suitably controlled. Thus, nanoparticles have growing appeals in the treatment of clots.

Nanofluids are advanced fluids containing nanometer size particles suspended in a standard fluid like
alcohol, water etc. Nanofluids hold an aptitude for heat transfer owing to its enhanced thermophysical
properties. Thus, nanofluids are advantageous due to their better stability and better viscosity and dispersion
properties.

∗Presented in 6th International Conference of Vijñãna Parishad of India on Recent Advances In Computational Mathematics
and Applied Sciences (ICRACMAS-2022) held at MRIIRS Faridabad, Haryana, India on December 09-11,2022
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Saleem et al. [20] analysed nanofluid in an artery with a catheter having stenosis and clot. Rathore
and Srikanth [15] worked on an artery with stenosis, clot and catheter whose outer surface is layered with
nanoparticles. Guan and Dou [5] outlined the recent advances in the use of nanoparticles as thrombus-
targeting agents. Shah and Kumar [16] studied blood with nanoparticles in a tapered artery having a blood
clot. By the above literature survey, it is clear that the effect of nanoparticle concentration present in blood
along with their temperature of nanofluid has not been inspected much. Thus, in the current mathematical
analysis, we have developed a model for an artery with a clot including a catheter layered with nanoparticles
and probed into influence of varying concentrations of nanoparticles and temperature of nanofluid.

Primary properties of nanoparticles depend on their thermal conductivity [17]. In return viscosity and
thermal conductivity of nanofluid rely on Reynolds number and Prandtl number because of convections
arising in them. Saito [21] gave a model for viscosity of nanofluids containing very small spherical
nanoparticles with pronounced Brownian motion, as

(1.1) µnf = µf

(
1 +

2.5φ

1− φ
0.87

)
,

where φ is volume fraction of nanoparticles, µnf describes viscosity of nanofluid while µf is viscosity of base
fluid. The interactions of nanoparticles caused by Brownian motion produces effects similar to convection
at the nanoscale level. Thus, we have used this model to describe the viscosity of nanofluid.

The Navier-Stokes equation and temperature diffusion equation show that nanoparticle dispersion is
elevated under strong Brownian forces. Jang and Choi [9] fabricated a model to define thermal conductivity
accounting for contribution of nanoparticle Brownian motion in nanofluid, given as

(1.2) knf = kf (1− φ) + kpφ+ 3s
r0

rp
kfRe

2Prφ,

where φ is volume fraction of nanoparticles, knf describes thermal conductivity of nanofluid while kf is
thermal conductivity of base fluid and kpis thermal conductivity of nanoparticles. Pr is Prandtl number and
Re is Reynolds number. r0 is radius of base fluid particles and rpis radius of nanoparticles. s is an empirical
constant. The vital role of Brownian motion is thus considered in our problem as we have used this model
to describe the thermal conductivity of nanofluid.

Volume fraction of a solute present in a solvent is a measure of concentration of solute. The volume
fraction is same as the concentration in an ideal solution i.e. where there is no reaction between the solute
and solvent particles. In our case, the blood cells do not react with the nanoparticles in the nanofluid but
accumulate only at the clot and stenosis. Thus, we have considered volume fraction of nanoparticles as
concentration of nanoparticles in the nanofluid. The formulations have been carried out following the same.

When nanoparticles are administered in systemic circulation, they have their first encounter with blood
cells. Nanoparticles are schemed specifically to deal with diseased cells to treat thrombosis. The compatibility
of administered nanoparticles depends on their concentrations. Thus, to fine tune the nanoparticles before
they are used in nanomedicine, it is important to understand their mathematical modelling. Hence, in this
paper we have made an attempt to study blood flow in an artery with a clot in presence of a catheter coated
with nanoparticles. The mathematical equations are modelled using Navier-Stokes equation, temperature
and concentration diffusion equation in cylindrical co-ordinates. The concentration, temperature and
velocity of nanofluid is found using finite difference method. The effects of nanoparticle concentration,
temperature and velocity of nanofluid has been observed on parameters like radius of nanoparticle, Brownian
motion parameter, stenosis depth, Grashof number and Darcy number. Outcomes have been discussed
through graphs plotted using MATLAB. This study could act as a prototype in bio-medicine for the use of
nanoparticles in treating thrombosis.

2 Mathematical Formulation
The incompressible, steady and laminar blood flow is assumed in an artery of length L and radius R0

with a clot ε′ (z′) and stenosis R(z) (Fig 2.1). Silver nanoparticles are coated on the catheter of radius
Rc. Cylindrical co-ordinates (r′, θ′, z′) are taken into consideration. Equation of continuity, Navier-Stokes
equation and diffusion equations for temperature and concentration are employed to frame the mathematical
model.

The clot ε′ (z′) [20] is defined as

(2.1) ε′ (z′) =

{
R0(1 + e( − π2(z′ − 0.5)2)) a′ ≤ z′ ≤ a′ + b′,

Rc otherwise.
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The geometry of the stenosis R′(z′)[23] is given as:-

(2.2) R′ (z′) =

{
R0 − δ′e( − m2z′2

L′2 ) a′ ≤ z′ ≤ a′ + b′,

R0 otherwise.

where δ′ is the depth of stenosis and m is a parametric constant 

Figure 2.1: Geometrical representation.

The governing equations are given as: Equation of continuity in cylindrical co-ordinates

(2.3)
∂ρnf
∂t′

=
1

r′
∂(r ρnfv

′)

∂r′
+

1

r′
∂ρnfw

′

∂θ′
+
∂ρnfu

′

∂z′
= 0,

Navier-Stokes equation in cylindrical co-ordinates

ρnf (
∂v′

∂t′
+ v′

∂v′

∂r′
+
u′

r′
∂v′

∂θ′
− u′

2

r′
+ u′

∂v′

∂z′
)

(2.4) = Fr′ −
∂p′

∂r′
+ µnf (− v

′

r2
+

1

r′
∂

∂r′

(
r′
∂v′

∂r′

)
+

1

r′2
∂2v′

∂θ′2
+
∂2v′

∂z′2
− 2

r′2
∂w′

∂θ′
),

ρnf (
∂w′

∂t′
+ v′

∂w′

∂r′
+
u′

r′
∂w′

∂θ′
− v′w′

r′
+ u′

∂w′

∂z′
)

(2.5) = Fθ′ −
∂p′

∂θ′
+ µnf (−w

′

r2
+

1

r′
∂

∂r′

(
r′
∂w′

∂r′

)
+

1

r′2
∂2w′

∂θ′2
+
∂2w′

∂z′2
+

2

r′2
∂v′

∂θ′
),

ρnf (
∂u′

∂t′
+ v′

∂u′

∂r′
+
u′

r′
∂u′

∂θ′
+ u′

∂u′

∂z′
)

(2.6) = Fz′ −
∂p′

∂z′
+ µnf (

1

r′
∂

∂r′

(
r′
∂u

∂r′

)
+

1

r′2
∂2u′

∂θ′2
+

∂2u′

∂z′2
),

where F ′ in different indices stands for body forces in different co-ordinates and ρnf is density of nanofluid.
Diffusion equation for temperature T ′ of nanofluid in cylindrical co-ordinates

(v′
∂T ′

∂r′
+ u′

∂T ′

∂z′
)

(2.7) =
knf

ρnfcpnf
(
∂2T ′

∂r′2
+

1

r′
∂T ′

∂r′
+
∂2T ′

∂z′2
) +

DB

ρnfcpnf
(
∂c′

∂r′
∂T ′

∂r′
+
∂c′

∂z′
∂T ′

∂z′
),

where cpnf is specific heat capacity of nanofluid, knf is thermal conductivity of nanofluid and ρnf is density

of the nanofluid. DB is Brownian diffusion coefficient. c′ is concentration of nanoparticles. Temperature
sensitive silver nanoparticles are coated on the catheter inserted in the lumen of artery [18]. The temperature
is provided on the catheter to release nanoparticles for treating the clot.
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Diffusion equation for concentration c′ of nanoparticles in cylindrical co-ordinates

(2.8)
∂c′

∂t′
+ u′

∂c′

∂z′
+ v′

∂c′

∂r′
+ w′

∂c′

∂θ′
= DB(

∂2c′

∂r′2
+

1

r′
∂c′

∂r′
+

1

r′2
∂2c′

∂θ′2
+
∂2c′

∂z′2
),

where DB is Brownian diffusion coefficient. The silver nanoparticles are highly concentrated on the surface
of catheter.
The governing equations (2.3) - (2.8) are solved under the following assumptions

1. Catheter has been inserted at the center of the clot in the artery,
2. Flow is considered two dimensional,
3. Flow is steady,
4. Flow is axisymmetric,
5. The azimuthal component of fluid velocity is zero,
6. The cross-section area is very small; thus, flow is described by low Reynolds number,
7. Free convection effects are ignored,
8. Nanoparticles and blood are in thermal equilibrium,
9. No chemical reaction takes place in the blood,

10. There is no heat transfer due to radiation.
Nanofluids are highly developed colloidal fluids attained by dispersing 1-100 nm nanoparticles in standard

fluid. Studies over the time have proven that nanofluids hold outstanding thermophysical properties as
compared to base fluids. The parameters like volume fraction, size of base fluid particles, their thermal
conductivity, hold significance in defining thermal characteristics of nanofluids like viscosity, thermal
conductivity, and specific heat capacity.

The better thermal characteristics of nanofluids is because of the small sized nanoparticles dispersed
in it. Viscosity is an important thermal property in this momentum because it is caused by interparticle
interactions. It has been observed that viscosity of a base fluid enhances when nanoparticles are suspended
in it. Viscosity is thus a governing factor of the behaviour of nanofluids which is described by the dynamics
of nanoparticles in it. Brownian motion of nanoparticles controls their thermal motion which is responsible
for defining the viscosity. Saito [21] gave the model for describing viscosity of nanofluids by accounting for
Brownian motion of spherical nanoparticles described as:

(2.9) µnf = µf (1 +
2.5c′

1− c′/0.87
),

where c′ is concentration of nanoparticles; µnf is viscosity of nanofluid and µf is viscosity of blood.
Thermal conductivity is a relevant property of nanofluids as it is influenced by nanoparticle geometry,

concentration and viscosity of base fluid. Thermal conductivity of nanofluids is evolved than their respective
base fluids. The significant mechanism thar effects thermal conductivity of nanofluid is Brownian motion.
Jang and Choi [9] gave the formula for thermal conductivity of nanofluid considering vital role of Brownian
motion in thermal conduction. It has been reported by Gupta and Kumar [6] that Brownian motion enhances
the thermal conductivity to 6 percent than their base fluids. Nanoparticles have a high random diffusion
because of Brownian motion owing to their small dimensions. Thus, to study thermal conductivity of
nanofluids, we use the formulation by Jang and Choi [9],

(2.10) knf = kf (1− c′) + kpc
′ + 3s

r0

rp
kfRe

2Prc′,

where c′ is concentration of nanoparticles; knf is thermal conductivity of nanofluid, kf is thermal conductivity
of blood and kp is thermal conductivity of nanoparticles; Pr is Prandtl number and Re is Reynolds number;
r0 is radius of blood particles (taken average), rpis radius of nanoparticles and s is an empirical constant.

Specific heat capacity is also one of the relevant parameters for stating the thermal characteristics of
nanofluids. Specific heat capacity dictates transfer of heat. It has been proved that specific heat capacity of
nanofluids is lesser compared to their base fluid. Xuan et al. [25] modelled specific heat capacity for thermal
equilibrium in nanoparticles and its base fluid which is given as,

(2.11) cpnf =
(1− c′) ρfcpf + c′ρpcpp

(1− c′) ρf + c′ρp
,

where c′ is concentration of nanoparticles; cpnf is specific heat capacity of nanofluid, cpf is specific heat
capacity of blood and cpp is specific heat capacity of nanoparticles; ρf density of blood and ρpis density of
nanoparticles.
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The thermal expansion of the nanofluid is modelled using a simple formula based on mixture rule as

(2.12) (ργ)nf = (1− c′) ρfγf + c′ρpγp,

where c′ is concentration of nanoparticles; (ργ)nf is thermal expansion of nanofluid, γf is specific thermal
expansion of blood and γpis specific thermal expansion of nanoparticles; ρf density of blood and ρp is density
of nanoparticles.

The modified equations using the assumptions and equations (2.9), (2.10), (2.11) and (2.12), along with
their boundary conditions are given henceforth.

The equation of continuity

(2.13)
∂u′

∂z′
= 0,

The equation of motion in the catheterized artery with clot at the center

(2.14) g (ργ)nf (T ′ − T0) + g (ργ)nf (c′ − c0)− (1/ρnf )
∂p′

∂z′
+ (µnf /ρnf )(

1

r′
∂

∂r′

(
r′
∂u

∂r′

)
) = 0,

No-slip at the boundary of the catheter is assumed.

(2.15) u′ = 0 at r′ = ε′(z′),

Using Beavers and Joseph condition [1] at the boundary of the artery, we get

(2.16) u′ = u′B and
∂u′

∂r′
=

σ′√
Da

(u′B − u′p) at r′ = R′(z′),

where

(2.17) u′p = −Da
µnf

∂p′

∂z′
,

is velocity at the permeable boundary where u′B is slip velocity, σ′ is slip parameter, Da is Darcy number

The diffusion equation for temperature of the catheterized artery with clot at the center

(2.18)
knf

ρnfcpnf

(
∂2T ′

∂r′2
+

1

r′
∂T ′

∂r′

)
+

DB

ρnfcpnf

(
∂c′

∂r′
∂T ′

∂r′

)
= 0.

Temperature T1 is prescribed over the catheter and clot for releasing nanodrug

(2.19) T ′ = T1 at r′ = ε′(z′).

Temperature at the boundary of the artery is To

(2.20) T ′ = T1 at r′ = R′(z′).

The diffusion equation for concentration of nanoparticles in the catheterized artery with clot
at the center

(2.21) DB

(
∂2c′

∂r′2
+

1

r′
∂c′

∂r′

)
= 0.

Concentration c1 of nanoparticles on the catheter and clot

(2.22) c′ = c1 at r′ = ε′(z′).

Concentration of nanoparticles at the boundary of the artery is co

(2.23) c′ = c0 at r′ = R′(z′).

Non-dimensional scheme
is given below as

(2.24)


r = r′

R0
, z = z′

R0
, u = u′

uavg
, P = P ′

ρfu2
avg

Re =
Ro uavgρf

µf
, Da =

kf
R2

0
, P r =

µf
DB

,

Nb =
ρf cpfDB(c1−c2)

kf
, θ = T ′−T0

T1−T0
, c = c′−c0

c1−c0 , Gr =
g(ργ)fR

2
0(T1−T0)

uavgµf
,

Br =
g(ργ)fR

2
0(c1−c0)

uavgµf
, σ′ = σ

R0
, δ′ = δ

R0
,

where uavg is average reference velocity, Re is Reynolds number, Da is Darcy number, Pr is Prandtl Number,
Gr is Grashof number and Br is solutary Grashof number, Nb is Brownian motion parameter.
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Non-dimensional equation for clot
is given below as

(2.25) ε (z) =

{
1 + e−π

2(z−0.5)2

a ≤ z ≤ a+ b,

0.1 otherwise.

Non-dimensional equation for stenosis
is given below as

(2.26) ε (z) =

{
1− δ

R0
e−m

2z2/L2

a ≤ z ≤ a+ b,

1 otherwise.

Non-dimensional equations
are given below as

(2.27)
∂u

∂z
= 0,

(2.28)
∂P

∂z
= µf

(
1 +

2.5c

1− c/0.87

)(
∂2u

∂r2
+

1

r

∂u

∂r

)
+ θGr

(
(1− c) + c

(ργ)p
(ργ)f

)
+ cBr

(
(1− c) + c

(ργ)p
(ργ)f

)
,

(2.29)
∂2θ

∂r2
+

1

r

∂θ

∂r
+
∂θ

∂r

∂c

∂r
Nb

(
(1− c) + c

kp
kf

+ 3s
r0

rp
Re2Prc

) ( (1−c)
cpf

+ c
ρp

ρf cpf
)(

(1− c) + c
ρpcpp
ρfcpf

) = 0,

(2.30)
∂2c

∂r2
+

1

r

∂c

∂r
= 0,

Non-dimensional boundary conditions
are given below as

(2.31) c = 0 at r = R(z),

(2.32) θ = 0 at r = R(z),

(2.33) u = uB and
∂u

∂r
=

σ√
Da

(uB − up) at r = R(z),

(2.34) u = 0 at r = ε(z),

(2.35) θ = 1 at r = ε(z),

(2.36) c = 1 at r = ε(z).

3 Solution
Mathematical solution for equations (2.25) to (2,30) employing the boundary conditions (2.31) to (2.36) is
calculated numerically using MATLAB version 9.1R2016b.

Finite difference method

Denote cki or Θk
i+1as the value of c or Θ at node ri or zi. In this notation, the finite difference formulation

of various partial derivatives are given as

(3.1)
∂c

∂r
∼=
cki+1 − cki−1

2∆r
= cr,

(3.2)
∂2c

∂r2
∼=
cki+1 − 2cki + cki−1

(∆r)2
= crr,

(3.3)
∂Θ

∂r
∼=

Θk
i+1 −Θk

I+1

2∆r
= Θr,
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(3.4)
∂2Θ

∂r2
∼=

Θk
i+1 − 2Θk

i + Θk
i−1

(∆r)2
= Θrr,

(3.5)
∂u

∂r
∼=
uki+1 − uki−1

2∆r
= ur,

(3.6)
∂2u

∂r2
∼=
uki+1 − 2uki + uki−1

(∆r)2
= urr,

The governing equations (2.28), (2.29) and (2.30) are as follows

(3.7)
cki+1 − cki−1

2∆z
+

1

r

cki+1 − 2cki + cki−1

(∆r)2
= 0,

Θk
i+1 − 2Θk

i + Θk
i−1

(∆r)2

1

r

Θk
i+1 −Θk

I+1

2∆r
+

Θk
i+1 −Θk

I+1

2∆r

cki+1 − cki−1

2∆z

(3.8) Nb(
(
1− cki

)
+
kp
kf
cki 3s

r0

rp
Re2Prcki )

(
1− cki

)
+

kp
kf
cki 3s r0rpRe

2Prcki

(
(
1− cki

)
+

kp
kf
cki 3s r0rpRe

2Prcki )
= 0,

∆P

∆z
= µf (1 +

2.5ci
1− ci/0.87

)(
uki+1 − 2uki + uki−1

(∆r)
2 +

1

r

uki+1 − ukI+1

2∆r
)

(3.9) +θki Gr((1− cki ) + cki
(ργ)p
(ργ)f

) + ckiBr((1− cki ) + cki
(ργ)p
(ργ)f

),

(3.10) cki = 1 at ri = ε(zi),

(3.11) cki = 0 at ri = R(zi),

(3.12) Θk
i = 1 at ri = ε(zi),

(3.13) Θk
i = 0 at ri = R(zi),

(3.14) uki = 0 at ri = ε(zi),

(3.15) uki = uiB and ur =
σ√
Da

(uiB − up) at ri = R(zi).

The algorithm for solving the equations is given as
1. The radial domain is represented by a mesh of (n+ 1) grid points 0 = r0 < r1 < . . . < rn−1 < rn = 1.
2. We seek the solution for c, θ and u at the mesh points for their respective regions.
3. The difference equations (3.7) to (3.9) and boundary conditions (3.10) to (3.15) are solved using bvp4c

solver to obtain the values at each grid point applying Thomas algorithm for tridiagonal system of
matrices

The value of concentration c in the thrombolytic and non-thrombolytic regions against radial direction
r is given by Table 3.1 as Rc = 0.1,m = 1, δ = 0.01
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Table 3.1

Radius Concentration in non-thrombolytic region Concentration in thrombolytic region
0.1 1 19.0743
0.2 0.6989 15.7190
0.3 0.5228 12.4227
0.4 0.3979 9.5837
0.5 0.3010 7.2690
0.6 0.2218 5.3592
0.7 0.1549 3.7422
0.8 0.0969 2.3142
0.9 0.4575 1.1054
1.0 0 0

The value of temperature of nanofluid θ against radial direction r is given by Table 3.2 as Rc = 0.1, δ =
0.01, rp = 30nm,Nb = 1.5

Table 3.2

Radius Temperature of nanofluid
0.1 0
0.2 0.6225
0.3 0.4359
0.4 0.3168
0.5 0.2313
0.6 0.1657
0.7 0.1129
0.8 0.0692
0.9 0.3210
1.0 0

The value of velocity of nanofluid u against radial direction r is given by Table 3.3 as Rc = 0.1, δ =
0.01, rp = 30nm,Nb = 1.5, Gr = 0.2, Br = 0.1, Da = 0.1

Table 3.3

Radius Velocity of nanofluid
0.1 0
0.2 2.6577
0.3 3.8602
0.4 4.3308
0.5 4.3001
0.6 3.8707
0.7 3.0970
0.8 2.0117
0.9 0.6354
1.0 -1.0176

4 Graphical results and discussions
This article gives theoretical research about the effects of treating clot in an artery using nanoparticles with
respect to concentration of nanoparticles, radius of nanoparticles, Brownian motion parameter, Grashof
number and Darcy number on velocity and temperature of nanofluids. Figures 4.1-4.11 show the graphs of
results obtained.
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Fig 4.1 shows graph of concentration of nanoparticles (c) against radial direction (r) for thrombolytic
and non-thrombolytic regions. The graph shows that concentration is decreasing with the increase in radial
direction. This is because the concentration of nanoparticles is highest at the catheter and clot as compared
to the wall of the artery and stenosis. It can be concluded from the graph that concentration of nanoparticles
is greater in thrombolytic region than in non-thrombolytic region. This result highlights the applications of
nanoparticles in the treatment of clot. Khurshid et al. [12] gave identical conclusions in their experimental
study.

Fig 4.2 shows graph of concentration of nanoparticles (c) against radial direction (r) for different values
of catheter radius (Rc). The plots show that greater the value of catheter radius greater the concentration of
nanoparticles in the artery. This is directly related to the fact that greater radius would accommodate greater
number of nanoparticles on the surface of catheter. However, the radius of catheter should be optimized
depending upon the severity of the clot. Comparative results have also been given by Karami et al. [13].

Fig 4.3 depicts graph of temperature of nanofluid (θ) against radial direction (r) for different values of
radius of nanoparticles (rp). Graph of temperature of decreases with increasing radial distance. This happens
because nanoparticles present towards wall of catheter are at a higher temperature which causes them to
migrate to walls of the artery which is at a lower temperature. The trend shows that the increase in radius
of nanoparticle brings about a rise in the temperature of nanofluid. Qu et al. [14] gave this result in their
experimental study. This happens because the increase in radius enhances the size of nanoparticles which
causes greater interparticle collision owing to reduction in interparticle space. Hoshyar et al. [7] summarized
similar results in their review on effect of nanoparticle size on their cellular interactions. They reported that
larger diameter nanoparticles offer decreased cellular uptake. The optimal size of nanoparticle should be
30nm- 60 nm for effective delivery of drug.

Fig 4.4 displays graph of temperature of nanofluid (θ) against radial direction (r) for different values of
Brownian motion parameter (N b). The graph shows that temperature of nanofluid increases with increase in
Brownian motion parameter. Nanoparticle motion increases with rise in Brownian motion, thus, temperature
increases. Experimental validation was given by Jiang et al. [10].

Fig 4.5 shows graph of temperature of nanofluid (θ) against radial direction (r) for different values
of stenosis depth (δ). Greater the stenosis depth, lesser the temperature. Xinting et al. [26] presented
comparable experimental result for the effect of stenosis depth on the temperature of nanofluid.

Fig 4.6 depicts graph of velocity of nanofluid (u) against radial direction (r) for different values of radius
of nanoparticles (rp). Graph shows a parabolic variation similar to Hagen-Poiseuille flow. This is because
the velocity is affected by zero acceleration because of constant pressure drop in the artery. Graph also
shows that greater radius of nanoparticle lesser the velocity. Larger sized nanoparticles aggregate to increase
flow resistance, hence velocity decreases. Hu et al. [8] analyzed similar result in their experimental study of
effect of nanoparticle size on viscosity.

Fig 4.7 displays graph of velocity of nanofluid (u) against radial direction (r) for different values of
Brownian motion parameter (N b). It is seen that velocity decreases with increase in value of Brownian
motion parameter. Brownian motion parameter is directly related to size of nanoparticles. Thus, larger
the size, greater the Brownian motion parameter, lesser is the velocity. Saghir and Rahman [22] proved
analogous experimental results.

Fig 4.8 shows graph of velocity of nanofluid (u) against radial direction (r) for different values of stenosis
depth (δ). The results show that velocity increases with increase in stenosis depth. It follows from Bernoullis
law for incompressible fluids, that reduction in cross-section area increases the velocity of fluid. This can
also be supported by the fact that arteriosclerotic and thrombolytic arteries have higher blood pressure as
compared to normal arteries [2].

Fig 4.9 shows graph of velocity of nanofluid (u) against radial direction (r) for different values of Grashof
number (Gr). Grashof number stands for ratio of buoyancy force to viscous force. Thus, increase in its value
increases the velocity of nanofluid because of the increase in temperature due to reduction in viscous forces
[24].

Fig 4.10 depicts graph of velocity of nanofluid (u) against radial direction (r) for different values of
solutary Grashof number (Br). Solutary Grashof number Br defines ratio between buoyant force and
viscous hydrodynamic forces [18]. The trend observed is similar to Grashof number. It is because as the
concentration increases the flow increases, thus increasing velocity.

Fig 4.11 displays graph of velocity of nanofluid (u) against radial direction (r) for different values of
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Darcy number (Da). It is seen that increase in Darcy number increases velocity. Darcy number physically
represents permeability at the arterial wall. Enhancing its value reduces flow resistance at the wall thus
increasing velocity at arterial wall. Such experimental investigation was given by Boettcher et al. [3].
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Fig 4.11 Variation of velocity of nanofluid u against radial direction r for 

different values of Darcy number Da
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5 Conclusion
This study focuses on the influence of nanoparticle concentration, temperature and velocity of nanofluid
in a catheterized artery with clot and stenosis. The study contributes to the understanding and use of
nanoparticles as anti-thrombolytic agents. The outcomes are encapsulated as

1. The concentration of nanoparticles is higher at the clot compared to other regions.
2. The temperature of nanofluid increases with increase in nanoparticle radius, Brownian motion

parameter and decreases with increase in stenosis depth.
3. The velocity of nanofluid decreases with increase in nanoparticle radius and Brownian motion

parameter.
4. The velocity of nanofluid increases with increase in stenosis depth, Grashof number, solutary Grashof

number and Darcy number.
The above model has useful application in the treatment of cardiovascular diseases.
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6 Appendix
The thermophysical properties of blood are

Table 6.1

Physical properties Blood
Heat Capacitance (cp) 3594J/KgK

Thermal Conductivity (k) 0.492W/mK
Density (ρ) 1060Kg/m3

Thermal expansion coefficient (γ) 0.18X10−5K−1

Acknowledgement. We are very much grateful to the Editor and Reviewer for their valuable suggestions
for improving the paper in its present form.
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Abstract

In this paper, we investigate a five dimensional Locally Rotationally Symmetric (LRS) Bianchi type-
V string cosmological model with massive scalar field in general relativity. In order to obtain an exact
solution of the field equations, we used the following conditions: (i) the shear scalar is proportional to the
expansion scalar, resulting in a relationship between metric potentials, and (ii) the average scale factor is
proportional to the massive scalar field, resulting in a power law relationship. In addition, the physical
and kinematical parameters are discussed in detail.
2020 Mathematical Sciences Classification: 83-3, 83-08, 83C15, 83E15, 83E30, 83F05.
Keywords and Phrases: Five dimensional LRS Bianchi -V model, cosmic string model, massive scalar
field.

1 Introduction
General relativity (GR) a is geometric theory that describes gravitational phenomena. It is also useful in
constructing mathematical models in cosmology which deals with the large scale structure of the universe.
A phase transition in the early universe took place when the temperature dropped and symmetry of the
universe broken spontaneously leading to topologically stable defects called vacuum domain walls, strings,
and monopoles [7]. As cosmic strings are key parts of the description of the universe in the early stages of its
evolution and give rise to density perturbations that lead to the formation of galaxies [7, 22]. It has attracted
considerable interest among cosmologists to study cosmic strings within the framework of general relativity.
A scalar meson field can be classified into two types, namely, zero mass scalar field and massive scalar
field. Massive scalar fields describe short-range interactions while zero mass scalar fields describe long-range
interactions. Cosmological models with massive scalar fields have been discussed by several authors in general
and in modified theories of gravitation. Mete et al. [9] explored Bianchi type-V magnetized cosmological
model with wet dark fluid in GR. Reddy [16] discussed the Bianchi type-V dark energy model with a scalar
meson field in GR. Using a modified holographic Ricci dark energy model with an attractive massive scalar
field, Naidu [11] studied Bianchi type-II modified holographic Ricci dark energy model. Naidu et al. [12]
developed an anisotropic and spatially homogeneous Bianchi type-V dark energy cosmological model in the
presence of an attractive massive scalar field in GR. A study by Aditya et al. [1] examined Kaluza-Klein
dark energy models in Lyra manifolds with massive scalar fields. A spatially homogeneous and anisotropic
Kantowski-Sachs cosmological model with anisotropic dark energy (DE) fluid and massive scalar fluid is
presented by Raju et al. [17].

Rao et al. [18] constructed LRS Bianchi type-II cosmological models based on a mixture of a cosmic
string cloud and anisotropic dark energy fluid as the source of gravitation. Aditya et al. [2] explored a
spatially homogeneous and anisotropic Bianchi type- VI0 cosmological model with dark energy fluid. An
attractive massive scalar field with Bianchi type- I cosmological model with perfect fluid and attractive scalar
fields in Lyra manifold has been discussed by Naidu et al. [13].Aditya et al. [3] investigated the solution
of Einstein field equations using some physically relevant conditions in order to obtain an exact plane-
symmetric dark energy cosmological model in the presence of an attractive massive scalar field. Poonia et
al. [15] examined a Bianchi type-VI inflationary cosmological model with massive string source in general
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relativity. Recently Keerti Acharya et al.[4] discussed some Bianchi type-III string cosmological models for
perfect fluid distribution with an alternate approach.

An Extra dimension is a concept in cosmology aimed at unifying gravity with other forces through higher-
dimensional space-time. We are living in a four-dimensional stage of the universe, which may have been
preceded by a multi-dimensional stage. Higher-dimensional cosmological models play an important role in
studying the evolution of the universe in its early stages after the big bang due to their ability to study
the early stages of the universe in a more detailed way. Kaluza Klein minimally interacting dark energy
model in the presence of massive scalar field has been investigated by Naidu et al. [14]. Mohanty et al.
[10] constructed a five dimensional string cosmological models in Lyra manifold when a massive string is the
source of the gravitational field with ρ = (1+ω)λ (Takabayasi string). Very recently, a spatially homogeneous
and anisotropic Bianchi type-V cosmological model coupled with a massive scalar meson field in presence of
cosmic string has been studied by Raju et al. [19].

In light of the above discussion, we have investigated the higher dimensional LRS Bianchi type-V string
cosmological model with massive scalar field. Some physical and kinematical properties of the model are
discussed in detail.

2 Metric and field equations
Here we consider the space-time represented by five dimensional LRS Bianchi type-V metric in the form

(2.1) ds2 = dt2 −A2dx2 −B2e2x
(
dy2 + dz2

)
− C2dψ2,

where metric coefficients A,B,C are the functions of time t.
The Einstein field equation is

(2.2) Rij −
1

2
gijR = −

(
T

(s)
ij + T

(ϕ)
ij

)
,

where Rij is the Ricci tensor, R is Ricci scalar and T
(s)
ij is the energy momentum tensor corresponding to

massive string defined as

(2.3) T
(s)
ij = ρuiuj − λxixj ,

where ρ is the energy density, λ is the string tension density, ui is five velocity and xi is string direction.

T
((φ)

ij is the energy momentum tensor for attractive massive scalar field defined as,

(2.4) T
(φ)
ij = ϕ,iϕ,j −

1

2

(
ϕ,kϕ

,k −M2ϕ2
)
,

where M is mass of scalar field ϕ which satisfies Klein-Gordan equation

(2.5) gijϕ,ij +M2ϕ = 0

and a comma (,) and a semicolon (;) denote ordinary and covariant differentiation respectively and ϕ = ϕ(t).
In a co-moving coordinates system, the velocity vector ui and direction of string xi satisfy the conditions

uiui = −xixi = 1.(2.6)

uixi = 0.(2.7)

ρ = ρp + λ,(2.8)

where ρp is the rest energy density of the particles attached to the string (λ) which may be negative or
positive [8].

Using commoving coordinates the field equations (2.2), for the metric (2.1) with the help of equations
(2.3) to (2.8) can be written as

2
ȦḂ

AB
+ 2

ḂĊ

BC
+
ȦĊ

AC
+
Ḃ2

B2
− 3

A2
= ρ+

ϕ̇2

2
+
M2ϕ2

2
,(2.9)

2
B̈

B
+
C̈

C
+
Ḃ2

B2
+ 2

ḂĊ

BC
− 1

A2
= − ϕ̇

2

2
+
M2ϕ2

2
,(2.10)

B̈

B
+
Ä

A
+
C̈

C
+
ȦḂ

AB
+
ḂĊ

BC
+
ȦĊ

AC
− 1

A2
= − ϕ̇

2

2
+
M2ϕ2

2
,(2.11)

Ä

A
+ 2

B̈

B
+ 2

ȦḂ

AB
+
Ḃ2

B2
− 3

A2
= λ− ϕ̇2

2
+
M2ϕ2

2
,(2.12)
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Ȧ

A
− Ḃ

B
= 0.(2.13)

From equation (2.13) we get

(2.14) A = lB,

where l is a constant of integration. Thus, without loss of generality we take l = 1.

(2.15) A = lB.

Using equation (2.15), equations (2.9) to (2.12) reduce to

3
Ȧ2

A2
+ 3

ȦĊ

AC
− 3

A2
= ρ+

ϕ̇2

2
+
M2ϕ2

2
,(2.16)

2
Ä

A
+
C̈

C
+
Ȧ2

A2
+ 2

ȦĊ

AC
− 1

A2
= − ϕ̇

2

2
+
M2ϕ2

2
,(2.17)

3
Ä

A
+ 3

Ȧ2

A2
− 3

A2
= λ− ϕ̇2

2
+
M2ϕ2

2
,(2.18)

where overhead dot(.) represents differentiation with respect to the cosmic time t. The conservation law for
matter energy tensor gives us

(2.19) ρ̇+ ρ

(
2
Ȧ

A
+
Ċ

C

)
− λĊ

C
= 0

and the Klein- Gordon equation for the metric (2.1) takes the form

(2.20) ϕ̈+ ϕ̇

(
3
Ȧ

A
+
Ċ

C

)
+M2ϕ = 0.

Now, we define the following physical parameters that are useful for solving the above field equations.
The spatial volume V and the scale factor R(t) are given by

(2.21) V = AB2C = R4.

The expansion scalar (θ), the Hubble parameter (H) and the deceleration parameter (q), for the metric
(2.1) are

θ = 4H =

(
Ȧ

A
+ 2

Ḃ

B
+
Ċ

C

)
,(2.22)

H =
1

4

(
Ȧ

A
+ 2

Ḃ

B
+
Ċ

C

)
,(2.23)

q = −RR̈
R2

.(2.24)

The shear scalar
(
σ2
)

and the anisotropy parameter (∆) are respectively given by

σ2 =
1

2

(
4∑
i=1

H2
i − 4H2

)
.(2.25)

∆ =
1

4

(
4∑
i=1

Hi −H
H

)2

,(2.26)

where Hi denotes the directional Hubble parameters in x, y, z and ψ directions.

3 Cosmological solutions of the field equations
Now the system of equations (2.16)-(2.18) are three independent equations in five unknowns A,C, ρ, λ and ϕ.
However, equation (2.19) being conservation equation. To find a deterministic solution we use the following
physically relevant conditions:
(i) First, using well known fact that the shear scalar is proportional to scalar expansion we assume a relation
between the metric potentials as follows [6].

(3.1) A = Cn,
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where n 6= 1 is a positive constant.
(ii) Also in order to solve the highly non-linear field equations we use the following mathematical condition
which several researchers have studied from different aspects of the scalar field ϕ. [5,20,21],

(3.2) (3n+ 1)
Ċ

C
= − ϕ̇

ϕ
,

which simplifies the mathematical complexity of the field equations.
From equation (2.20), (3.1) and (3.2), we obtain

(3.3) ϕ = exp

(
ϕ0t−

M2t2

2
+ ϕ1

)
,

where ϕ0 and ϕ1 are constants of integration.
Now using equation (3.1), (3.2) and (3.3), we obtain

A = B = expn

(
M2t2

2 − ϕ0t− ϕ1

3n+ 1

)
,(3.4)

C = exp

(
M2t2

2 − ϕ0t− ϕ1

3n+ 1

)
.(3.5)

Using equations (3.4) to (3.5) in equation (2.1), we obtain five dimensional LRS Bianchi typeV model in
the presence of string source and with massive scalar field given by equation (3.3).

ds2 = dt2 − exp 2n

(
M2t2

2 − ϕ0t− ϕ1

3n+ 1

)
dx2 −

[
exp 2n

(
M2t2

2 − ϕ0t− ϕ1

3n+ 1

)](
e2xdy2 + e2xdz2

)
(3.6)

− exp 2

(
M2t2

2 − ϕ0t− ϕ1

3n+ 1

)
dψ2.

4 Cosmological Parameters
In this section, we obtained the following kinematical and physical parameters for the model (3.6) which are
important in discussion of cosmology.

The average Hubble parameter is given as

(4.1) H =
1

4

(
M2t− ϕ0

)
.

The expansion scalar is
(4.2) θ =

(
M2t− ϕ0

)
.

The deceleration parameter for our model is given as

(4.3) q = −
[
1 +

4M2

(M2t− ϕ0)

]
.

The spatial volume is

(4.4) V = exp

(
M2t2

2
− ϕ0t− ϕ1

)
.

The shear scalar of the model is

(4.5) σ2 =
3

8

(
n− 1

3n+ 1

)2 (
M2t− ϕ0

)2
.

The average anisotropy parameter is

(4.6) ∆ = 3

(
n− 1

3n+ 1

)2

.

From equation (2.16) the energy density (ρ) for the model (3.6) is given by

(4.7) ρ =
3n(n+ 1)

(
M2t− ϕ0

)2
(3n+ 1)2

− 3e
n(2ϕ0t−M

2t2+2ϕ1)
(3n+1) −

[(
ϕ0 −M2t

)2
+M2

2

]
e(2ϕ0t−M2t2+2ϕ1).

From equation (2.18) the string density (λ) for the model (3.6) is obtained as

λ =
3nM2

3n+ 1
+

6n2
(
M2t− ϕ0

)2
(3n+ 1)2

− 3e
n(2ϕ0t−M

2t2+2ϕ1)
(3n+1) +

[(
ϕ0 −M2t

)2 −M2

2

]
e(2ϕ0−M2t2+2ϕ1).

From equations (2.8), (4.7) and (4.8) the particle density (ρp) for the model (3.6) is given by

(4.8) ρp =
3n(1− n)

(
M2t− ϕ0

)2
(3n+ 1)2

− 3nM2

3n+ 1
−
(
ϕ0 −M2t

)2
e(2ϕ0t−M2t2+2ϕ1).
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5 Physical discussion of the model

Figure 5.1: Plot of volume versus time for ϕ1 = 0.5, n = 0.9 and M = 4.5

Figure 5.2: Plot of scalar field versus time for ϕ1 = 0.5, n = 0.9 and M = 4.5
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Figure 5.3: Plot of energy density versus time for ϕ1 = 0.5, n = 0.9 and M = 4.5

Figure 5.4: Plot of string tension density versus time for ϕ1 = 0.5, n = 0.9 and M = 4.5
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Figure 5.5: Plot of deceleration parameter versus time for ϕ1 = 0.5 and M = 4.5

Fig.5.1 depicts the behavior of the volume versus cosmic timet. For our model, it has been found that
the spatial volume increases exponentially with time from a finite volume and attains infinite value as time
t→∞.

Fig. 5.2 describes the behavior of scalar field versus time. It can be seen that scalar field is positive and
decreasing function of cosmic timet. The behavior of scalar field of our model is quite similar to the scalar
field shown in the model constructed by [18, 19].

The behavior of energy density versus cosmic time for various values of ϕ0 is depicted in Fig.5.3. It is
observed that the energy density is always positive throughout the evolution and is increasing function of
cosmic time t. The realistic energy conditions, ρ ≥ 0 and ρp ≥ 0 are satisfied in our model.

Fig.5.4 exhibits the behavior of string tension density versus cosmic timet . The string tension density λ
is positive throughout the evolution of the model and increases with cosmic time t. This behavior of string
tension density is quite different from the behavior of string tension density obtained in string cosmological
model by Raju et al. [19].

In Fig.5.5 we depicted the behavior of deceleration parameter versus cosmic timet . One of the important
physical quantity is deceleration parameter which shows whether the universe is accelerating or decelerating.
For our model, we observe that initially since q is less than -1 , hence we obtain a universe with super
exponential expansion and finally it approaches to q = −1 , hence we obtain a universe with exponential
expansion.

6 Conclusion
In this paper, we have discussed the dynamical aspects of the five-dimensional LRS Bianchi type-V string
cosmological model with massive scalar field. It is noteworthy that the results obtained for our model
resemble with the result obtained by Raju et al.[19] except with the behavior of string tension density (λ).
Here we can observe that for the specific case n = 1, the anisotropy parameter and the shear scalar vanish and
therefore the universe is isotropic and shear free for the model. In addition, because the average anisotropic
parameter is constants, the universe is anisotropic throughout the evolution, except when n = 1.
Acknowledgement. We are very much grateful to the Editor and Reviewer for their valuable suggestions
for improving the paper in its present form.
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Abstract

This paper focuses on obtaining non-zero integer quintuples (x, y, z, w, p) satisfying the bi-quadratic
equation with five unknowns given by 2(x − y)(x3 + y3) + x4 − y4 = 2(z2 − w2)p2. Various patterns of
solutions are obtained by reducing the given bi-quadratic equation to solvable ternary quadratic equation
through employing linear transformations.
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1 Introduction
The theory of Diophantine equations offers a rich variety of fascinating problems. In particular biquadratic
Diophantine equation, homogeneous and non-homogeneous have aroused the interest of numerous mathe-
maticians, since antiquity. In this context , one may refer [1-31] for various problems on biquadratic equations
with three ,four and five variables. This paper concerns with yet another problem of determining non-trivial
integral solutions on the biquadratic equation with five unknowns given by 2(x − y)(x3 + y3) + x4 − y4 =
2(z2 − w2)p2.

2 Method of Analysis
The Diophantine equation representing the biquadratic equation under consideration with five unknowns is
given by

(2.1) 2(x− y)(x3 + y3) + x4 − y4 = 2(z2 − w2)p2.

Introducing the linear transformations

(2.2) x = u+ v, y = u− v, z = 2u+ v, w = 2u− v
in (2.1) , we get

(2.3) u2 + 2v2 = p2.

The above equation (2.3) is solved through different methods and thus, one obtains different patterns of
distinct integer solutions to (2.1).

3 Patterns
Pattern 3.1
The most cited solutions to (2.3) are

(3.1) v = 2rs, u = 2r2 − s2

and

(3.2) p = 2r2 + s2.

Using (3.1) in (2.2) , we get

(3.3) x = 2r2 − s2 + 2rs, y = 2r2 − s2 − 2rs, z = 4r2 − 2s2 + 2rs, w = 4r2 − 2s2 − 2rs.

Thus,(3.2) and (3.3) give the integer solutions to (2.1).
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Pattern 3.2
Rewrite (2.3) as

(3.4) u2 + 2v2 = p2 ∗ 1.

Assume

(3.5) p = a2 + 2b2.

Express integer 1 on the R.H.S of (3.4) as the product of complex conjugates as

(3.6) 1 =
(1 + i2

√
2)(1− i2

√
2)

9
.

Substituting (3.5) and (3.6) in (3.4) and employing the method of factorization we define

u+ i
√

2v =
(a+ i

√
2b)2(1 + i2

√
2)

3
,

from which, on equating the real and imaginary parts, we obtain

(3.7) u =
(a2 − 2b2 − 8ab)

3
, v =

(2a2 − 4b2 + 2ab)

3
.

As our interest is on finding integer solutions, replacing a by 3A and b by 3B in (3.5) and (3.7) and in view
of (2.2) , the corresponding integer solutions to (2.1) are given by

x = 3(3A2 − 6B2 − 6AB), y = 3(−A2 + 2B2 − 10AB),

z = 3(4A2 − 8B2 − 14AB), w = −54AB, p = 9(A2 + 2B2).

Observation 3.2.1
Apart from (3.6), the integer 1 on the R.H.S. of (3.4) is expressed as

1 =
(7 + i6

√
2)(7− i6

√
2)

121
.

For this choice ,the corresponding integer solutions to (2.1) are obtained as

x = 11(13A2 − 26B2 − 10AB), y = 11(A2 − 2B2 − 38AB)

z = 11(20A2 − 40B2 − 34AB), w = 11(8A2 − 16B2 − 62AB), p = 11(11A2 + 22B2).

Observation 3.2.2
It is worth to mention here that the integer 1 on the R.H.S. of (3.4) may be written in the general form as

1 =
(2p2 − q2 + i

√
22pq)(2p2 − q2 − i

√
22pq)

(2p2 + q2)2
.

The repetition of the above process leads to a set of integer solutions to (2.1).
Pattern 3.3
Consider (2.3) as

(3.8) p2 − 2v2 = u2 ∗ 1.

Assume

(3.9) u = a2 − 2b2.

Express integer 1 on the R.H.S of (3.8) as the product of irrational pairs as

(3.10) 1 = (3 + 2
√

2)(3− 2
√

2).

Substituting (3.9) and (3.10) in (3.4) and employing the method of factorization, define

p+
√

2v = (a+
√

2b)2(3 + 2
√

2).

from which, we get

(3.11) v = 2a2 + 4b2 + 6ab

and

(3.12) p = 3a2 + 6b2 + 8ab.

Using (3.9) and (3.11) in (2.2) , we write

(3.13) x = 3a2 + 2b2 + 6ab, y = −a2 − 6b2 − 6ab, z = 4a2 + 6ab, w = −8b2 − 6ab.

Thus,(3.12) and (3.13) give the integer solutions to (2.1).
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Observation 3.3.1
Apart from (3.10), the integer 1 on the R.H.S. of (3.8) is expressed as

1 =
(11 + 6

√
2)(11− 6

√
2)

49
.

For this choice, the corresponding integer solutions to (2.1) are obtained as

x = 7(13A2 − 2B2 + 22AB), y = 7(A2 − 26B2 − 22AB),

z = 7(20A2 − 16B2 + 22AB), w = 7(8A2 − 40B2 − 22AB), p = 7(11A2 + 22B2 + 24AB).

Observation 3.3.2
It is worth to mention here that the integer 1 on the R.H.S. of (3.8) may be written in the general form as

1 =
(2p2 + q2 +

√
22pq)(2p2 + q2 −

√
22pq)

(2p2 − q2)2
.

The repetition of the above process leads to a set of integer solutions to (2.1).

4 Conclusion
An attempt has been made to determine many non-zero distinct integer solutions to the considered fourth
degree equation with five unknowns in the title. It is worth to mention that, in addition to the transformations
presented in (2.2) ,one may also consider the transformations represented by

(4.1) x = u+ v, y = u− v, z = u+ 2v, w = u− 2v,

(4.2) x = u+ v, y = u− v, z = 2uv + 1, w = 2uv − 1.

To conclude, the readers of this paper may search for integer solutions to other forms of homogeneous or
non-homogeneous quinary bi-quadratic Diophantine equations.
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Abstract

The exponential Diophantine equation is one of the distinctive types of Diophantine equations where
the variables are expressed as exponents. For these equations, considerable excellent research has already
been done. In this study, we try to solve the equations 3λ + 103µ = ξ2, 3λ + 181µ = ξ2, 3λ + 193µ = ξ2.
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1 Introduction
For Elementry Number Theory, we may refer to [4, 6, 11].
A Diophantine equation is a polynomial equation with two or more unknowns and integer coefficients, with
the only interesting solutions being those with integer coefficients. A Diophantine equation is called an
exponential Diophantine equation if it contains an additional variable or variables that occur as exponents.
There has been done some interested research work on these equation so far [1, 2, 3, 7].

The Exponential Diophantine equation of the form px + qy = z2 where p and q are distinct primes and
x, yand z are non-negative integers has been the focus of a lot of research in recent years [5,10,12].

Recently, Pandichelvi and Vanaja [8] studied generating diophantine triples relating to figurate numbers
with Thought-Provoking property. Also, Pandichelvi and Umamaheshwari [9] studied perceiving solutions
for an exponential Diophantine equation linking safe and Sophie Germain primes. In the present paper, we
shall discuss Integer solution Analysis for a Diophantine equation with exponentials.

2 Preliminaries

Proposition 2.1 ([6]). (3,2,2,3) is a unique solution (a, b, λ, µ) for the Diophantine equation aλ − bµ = ξ2

where a, b, λ, µ are integers such that min (a, b, λ, µ) > 1.

Lemma 2.1. (1,0,2) is a unique solution for the Diophantine equation 3λ + 1 = ξ2, where λ and ξ are the
non-negative integers.

Proof. Let λ, ξ ∈ N ∪ 0. If λ = 0, then ξ2 = 2, is not an integer solution. So consider λ ≥ 1. Then
ξ2 = 3λ + 1 ≥ 4⇒ ξ ≥ 2.

Consider ξ2 − 3λ = 1 then by proposition 2.1, λ must be equal to 1.Hence ξ2 = 4 ⇒ ξ = 2.Therefore
(1, 0, 2) is a unique solution for 3λ + 1 = ξ2.

Lemma 2.2. The Diophantine equation 1 + (103)µ = ξ2 has no non-negative integer solution.

Proof. If µ = 0, we obtain an irrational solution. So consider µ ≥ 0, then ξ2 = 1 + 103µ ≥ 104 ⇒ ξ ≥ 11.
Therefore the equation ξ2 − 103µ = 1 is solvable only if µ = 1, by proposition 2.1. But when µ = 1, ξ2 =
104,which is not a square number. Therefore there is no non-negative integer solution for the Diophantine
equation 1 + 103µ = ξ2 .
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Lemma 2.3. The Diophantine equation 1 + 181µ = ξ2 has no non-negative integer solution.

Proof. If µ = 0, we obtain an irrational solution. So consider µ ≥ 0, then ξ2 = 1 + 181µ ≥ 182 ⇒ ξ ≥ 14.
Therefore the equation ξ2 − 181µ = 1 is solvable only if µ = 1, by proposition 2.1.But when µ = 1, ξ2 =
182,which is not a square number. Therefore there is no non-negative integer solution for the Diophantine
equation 1 + 181µ = ξ2 .

Lemma 2.4. The Diophantine equation 1 + 193µ = ξ2 has no non-negative integer solution.

Proof. If µ = 0, we obtain an irrational solution. So consider µ ≥ 0, then ξ2 = 1 + 193µ ≥ 194 ⇒ ξ ≥ 14.
Therefore the equation ξ2 − 193µ = 1 is solvable only if µ = 1, by proposition 2.1.But when µ = 1, ξ2 =
194,which is not a square number. Therefore there is no non-negative integer solution for the Diophantine
equation 1 + 193µ = ξ2 .

3 Main Results

Theorem 3.1. (1, 0, 2) is a unique solution for the Diophantine equation 3λ + 103µ = ξ2, where λ, µ and
ξ ∈ N ∪ 0 .

Proof. Consider the integral value of µ into two cases as (i) µ is even and (ii) µ is odd.

Case (i): Let µ be even. If µ = 0, then by Lemma 2.1 (1, 0, 2) is a solution. If µ = 2n, n ∈ N, the equation
becomes 3λ + 1032n = ξ2.This can be written as ξ2 − 1032n = 3λ.

⇒ (ξ + 103n)(ξ − 103n) = 3α+β , where α+ β = λ
⇒ (ξ + 103n)− (ξ − 103n) = 3β − 3α, β > α

⇒ 2(103n) = 3α(3β−α − 1) .

α = 0 is the only possible value. Therefore the equation becomes 2(103)n = 3λ − 1. Adding −2 on both
sides we obtain −2 + 2(103n) = 3λ − 3.This gives that λ = 2.
Thus 103n = 4, which is impossible.
Case (ii): Let µ be odd. Then µ = 2n+ 1, n ∈ N ∪ 0.Therefore the equation becomes 3λ + 1032n+1 = ξ2.

⇒ 3λ + 103(103)2n = ξ2.
⇒ 3λ + 3(103)2n = ξ2 − 102(103)2n.

⇒ 3(3(λ−1) + (103)2n) = (ξ + 10(103)n))(ξ − 10(103)n).

We observe that ξ is even. i.e. the equation above can be written as

3(3λ−1 + ((103)2n) = (2m+ 10(103)n))(2m− 10(103)n)),
= 4(m+ 5(103)n)(m− 5(103)n).

Now we have two possibilities: (i) m = 3 + 5(103)n (ii) m = 3− 5(103)n.
Subcase (i): m = 3 + 5(103)n.
Then 3(3λ−1 + (103)2n)) = 4(3 + 5(103)n + 5(103)n)(3 + 5(103)n − 5(103)n).
= 4(3)[3 + 10(103)n)]
⇒ 3λ−1 + 1032n = 4(3 + 10(103)n)
⇒ 3λ−1 − 12 = 40(103n)− 1032n

⇒ 3(3λ−2 − 4) = 103n(40− 103n).
n = 0 is the only possible value. But 3λ−1 = 51 is not solvable.
Subcase (ii): m = 3− 5(103)n.
Then 3(3λ−1 + 1032n) = 4(3− 5(103)n + 5(103)n)(3− 5(103)n − 5(103)n)
= 4(3)[3− 10(103)n].
⇒ 3λ−1 + 1032n = 4(3− 10(103)n)
⇒ 3λ−1 − 12 = −40(103n)− (1032n)
⇒ 3(3λ−2 − 4) = −103n(40 + (103n)).
n = 0 is the only possible value. But 3λ−1 = −29 is not solvable.
Thus in any cases, we are never able to come up with a non-negative integral solution. Therefore (1, 0, 2) is
a unique solution for the Diophantine equation 3λ + 103µ = ξ2.
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Theorem 3.2.(1, 0, 2) is a unique solution for the Diophantine equation 3λ + 181µ = ξ2, where λ, µ and
ξ ∈ N ∪ 0 .
Proof. Consider the integral value of µ into two cases as (i) µ is even and (ii) µ is odd.
Case (i): Let µ be even. If µ = 0, then by Lemma 2.2 (1, 0, 2) is a solution. If µ = 2n, n ∈ N, the equation
becomes 3λ + 1812n = ξ2.This can be written as ξ2 − 1812n = 3λ.

⇒ (ξ + 181n)(ξ − 181n) = 3α+β , where α+ β = λ
⇒ (ξ + 181n)− (ξ − 103n) = 3β − 3α, β > α

⇒ 2(181n) = 3α(3β−α − 1) .

α = 0 is the only possible value. Therefore the equation becomes 2(181)n = 3λ−1. Adding −2 on both sides
we obtain −2 + 2(181n) = 3λ − 3.This gives that λ = 2.
Thus 181n = 4, which is impossible.
Case (ii): Let µ be odd. Then µ = 2n+ 1, n ∈ N ∪ 0.Therefore the equation becomes 3λ + 1812n+1 = ξ2.

⇒ 3λ + 181(181)2n = ξ2.
⇒ 3λ + 34(181)2n = ξ2 − 102(181)2n.

⇒ 3u(3λ−u + 34−u(181)2n) = (ξ + 10(181)n))(ξ − 10(181)n).

We observe that ξ is even. i.e. the equation above can be written as

3u(3λ−u + 34−u(181)2n) = (2m+ 10(181)n))(2m− 10(181)n)).
= 4(m+ 5(181)n)(m− 5(181)n).

Now we have two possibilities: (i) m = 3u + 5(181)n (ii) m = 3u − 5(181)n.
Subcase (i): m = 3u + 5(181)n.
Then 3u(3λ−u + 34−u(181)2n) = 4(3u + 5(181)n + 5(181)n)(3u + 5(181)n − 5(181)n).
= 4(3u)[3u + 10(181n)].
⇒ (3λ−u + 34−u(1812n) = 4(3u + 10(181n)).
⇒ 34−u(1812n)− 40(181n) = 3u(4− 3λ−2u)
⇒ 181n(34−u(181n)− 40) = 4.3u − 3λ−u.
n = 0 is the only possible value.
⇒ 34−u − 40 = 4.3u − 3λ−u

⇒ 34 − 40(3u) = 32u(4− 3λ−2u)
⇒ 4((32u + 10(3u)− 20) = 3λ + 1,which is not a viable solution.
Subcase (ii): m = 3u − 5(181)n.
Then 3u(3λ−u + 34−u(181)2n) = 4(3u − 5(181)n + 5(181)n)(3u − 5(181)n − 5(181)n).
= 4(3u)[3u − 10(181n)].
⇒ (3λ−u + 34−u(1812n) = 4(3u − 10(181n))
⇒ 34−u(1812n) + 40(181n) = 3u(4− 3λ−2u)
⇒ 181n(34−u(181n) + 40) = 4.3u − 3λ−u.
n = 0 is the only possible value.
⇒ 34−u + 40 = 4.3u − 3λ−u

⇒ 34 + 40(3u) = 32u(4− 3λ−2u)
⇒ 4((32u − 10(3u)− 20) = 3λ + 1,which is not a viable solution.

Thus in any cases, we are never able to come up with a non-negative integral solution. Therefore (1, 0, 2)
is a unique solution for the Diophantine equation 3λ + 181µ = ξ2.

Theorem 3.2. (1, 0, 2) is a unique solution for the Diophantine equation 3λ + 193µ = ξ2, where λ, µ and
ξ ∈ N ∪ 0 .

Proof. Consider the integral value of µ into two cases as (i) µ is even and (ii) µ is odd.

Case (i): Let µ be even. If µ = 0, then by Lemma 2.1 (1, 0, 2) is a solution. If µ = 2n, n ∈ N, the equation
becomes 3λ + 1932n = ξ2.This can be written as ξ2 − 1932n = 3λ.

⇒ (ξ + 193n)(ξ − 193n) = 3α+β , where α+ β = λ
⇒ (ξ + 193n)− (ξ − 193n) = 3β − 3α, β > α

⇒ 2(193n) = 3α(3β−α − 1) .
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α = 0 is the only possible value. Therefore the equation becomes 2(193)n = 3λ−1. Adding −2 on both sides
we obtain −2 + 2(193n) = 3λ − 3.This gives that λ = 2.
Thus 193n = 4, which is impossible.
Case (ii): Let µ be odd. Then µ = 2n+ 1, n ∈ N ∪ 0.Therefore the equation becomes
3λ + 1932n+1 = ξ2.

⇒ 3λ + 193(193)2n = ξ2.
⇒ 3λ + 3(193)2n = ξ2 − 142(103)2n.

⇒ 3(3(λ−1) + (193)2n) = (ξ + 14(103)n))(ξ − 14(103)n).

We observe that ξ is even. i.e. the equation above can be written as

3(3λ−1 + ((193)2n) = (2m+ 14(193)n))(2m− 14(193)n)).
= 4(m+ 7(193)n)(m− 7(193)n).

Now we have two possibilities: (i) m = 3 + 7(193)n (ii) m = 3− 7(193)n.
Subcase (i): m = 3 + 7(193)n.
Then 3(3λ−1 + (193)2n)) = 4(3 + 7(193)n + 7(193)n)(3 + 7(193)n − 7(193)n).
= 4(3)[3 + 14(193)n)]
⇒ 3λ−1 + 1932n = 4(3 + 14(193)n)
⇒ 3λ−1 − 12 = 56(193n)− 1932n

⇒ 3(3λ−2 − 4) = 193n(56− 193n).
n = 0 is the only possible value. But 3λ−1 = 69 is not solvable.
Subcase (ii): m = 3− 7(193)n.
Then 3(3λ−1 + 1932n) = 4(3− 7(193)n + 7(193)n)(3− 7(193)n − 7(193)n).
= 4(3)[3− 14(193)n].
⇒ 3λ−1 + 1932n = 4(3− 14(193)n)
⇒ 3λ−1 − 12 = −56(193n)− (1932n)
⇒ 3(3λ−2 − 4) = 193n(−56 + (193n)).
n = 0 is the only possible value. But 3λ−1 = −43 is not solvable.
Thus in any cases, we are never able to come up with a non-negative integral solution. Therefore (1, 0, 2) is
a unique solution for the Diophantine equation 3λ + 193µ = ξ2.

Corollary 3.1. The Diophantine equation 3λ + 103µ = ψ4has no non-negative integer solution.

Proof. λ, µ and ψ be non-negative integers such that 3λ + 103µ = ψ4. Let ξ = ψ2. Then by theorem 3.1,
3λ + 103µ = ξ2 has a unique solution (1, 0, 2).
That is ψ2 = 2⇒ ψ =

√
2, which is impossible as ψ ∈ N∪ 0. Therefore 3λ + 103µ = ψ4 has no non-negative

integer solution.

Corollary 3.2. Corollary 3.2. The Diophantine equation 9ψ + 103µ = ξ2 has no non-negative integer
solution.

Proof. µ, ψ, and ξ be non-negative integers such that 9ψ + 103µ = ξ2. Let λ = 2ψ. Then by theorem
3.1, 3λ + 103µ = ξ2 has a unique solution (1, 0, 2), which shows that λ = 2 ⇒ ψ = 1

2 ∈ Q. Therefore
9ψ + 103µ = ξ2 has no non-negative integer solution.
Corollary 3.3.The Diophantine equation 3λ + 181µ = ψ4has no non-negative integer solution.
Proof. λ, µ and ψ be non-negative integers such that 3λ + 181µ = ψ4. Let ξ = ψ2. Then by theorem 3.2,
3λ + 181µ = ξ2 has a unique solution (1, 0, 2).
That is ψ2 = 2⇒ ψ =

√
2, which is impossible as ψ ∈ N∪ 0. Therefore 3λ + 181µ = ψ4 has no non-negative

integer solution.

Corollary 3.3. The Diophantine equation 9ψ + 181µ = ξ2 has no non-negative integer solution.

Proof. µ, ψ, and ξ be non-negative integers such that 9ψ + 181µ = ξ2. Let λ = 2ψ. Then by theorem
3.2, 3λ + 181µ = ξ2 has a unique solution (1, 0, 2), which shows that λ = 2 ⇒ ψ = 1

2 ∈ Q. Therefore
9ψ + 181µ = ξ2 has no non-negative integer solution.
Corollary 3.5.The Diophantine equation 3λ + 193µ = ψ4has no non-negative integer solution.
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Proof. λ, µ and ψ be non-negative integers such that 3λ + 193µ = ψ4. Let ξ = ψ2. Then by theorem 3.3,
3λ + 193µ = ξ2 has a unique solution (1, 0, 2).
That is ψ2 = 2⇒ ψ =

√
2, which is impossible as ψ ∈ N∪ 0. Therefore 3λ + 193µ = ψ4 has no non-negative

integer solution.

Corollary 3.4. The Diophantine equation 9ψ + 193µ = ξ2 has no non-negative integer solution.

Proof. µ, ψ, and ξ be non-negative integers such that 9ψ + 193µ = ξ2. Let λ = 2ψ. Then by theorem
3.3, 3λ + 193µ = ξ2 has a unique solution (1, 0, 2), which shows that λ = 2 ⇒ ψ = 1

2 ∈ Q. Therefore
9ψ + 193µ = ξ2 has no non-negative integer solution.

4 Conclusion
. In this paper, we have shown the solutions of the Diophantine equations of several primes. One can find
the solutions of the Exponential Diophantine equations using other primes.
Acknowledgement. We are very much thankful to the Editor and Referee for their remarkable suggestions
to improve the paper in its present form.
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Abstract

The application of Dickson polynomial in public key cryptography is observed due to its permutation
behaviors and semi-group property under composition. Here we have mostly concentrated on checking the
one-wayness and semantic security of our scheme. The proposed scheme is based on Dickson polynomial
over a finite field with 2k, whose security depends on the Integer Factorization Problem(IFP) and the
Discrete Dickson Problem(DDP), which is as difficult as solving discrete logarithmic Problem (DLP).
Our proposed cryptosystem is computationally secured with one-wayness and semantic security, it also
reduces the complexity of many other proposed schemes.
2020 Mathematical Sciences Classification: 94A60, 11T06
Keywords and Phrases: Dickson Polynomial, Integer Factorization Problem, Discrete Dickson
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1 Introduction
Diffie and Hellman [5] in 1976 firstly proposed a cryptosystem, where transmission of messages takes place
in an open network, known as Public Key Cryptography or asymmetric cryptosystem. In symmetric
cryptosystem, the transmission of the secret key is done over an insecure channel and hence it is of higher
insecurity. However, in asymmetric cryptosystem, separate keys are being used for encryption and decryption
and hence it overcomes the insecurity problem. Security is of key importance in cryptography, as it is on
which the proposed cryptosystem depends on.

Various parameters including number theory, group theory, field theory, braid group[21] and many others
were involved to propose numerous cryptosystem to improve the security & efficiency and hence also came
the involvement of Dickson polynomials too for the preparation of a more computationally secured and
efficient cryptosystem. The application of Dickson polynomial in public key cryptography[10, 11, 12, 13]
was involved due to its permutation behaviors and semi-group property under composition. It gave the
researchers a new direction in cryptography. Dickson polynomial was firstly introduced by Dickson [4] in
1896, but it was later named by Schur[23] as Dickson polynomial. Lidl [13], in his paper have also surveyed
the algebraic properties of Dickson polynomial over Fq and over the integers Zn, which helped to found the
better way of its application in public key cryptography.

If prior knowledge of the hard problems is known only then it can be solved both ways, based on which
most of the cryptographic schemes are being developed. Discrete logarithm and factoring of a large composite
number in terms of primes, taken only one hard problem at a time were initially the hard problems that were
being used includes for the propose of schemes. In 1988, two different number theoretic assumption were
involved in the development of a single key distribution protocol by McCurley [17]. Numerous cryptosystem
were proposed in the later year by [2, 6, 7, 8, 9, 18, 20, 24, 25, 26] which were based on the merging of two
hard problems such as Discrete logarithm and factoring of a large composite number, Elliptic Curve discrete
Logarithm, knapsack problem, and many more.

Here Discrete Logarithm and Integer Factorization is operated on Discrete Dickson Problem(DDP) over
the finite field with cardinality 2k and proposed a cryptosystem whose security is based on the hardness of
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solving IFP and DDP. Our work is mainly based on checking the one-wayness and semantic security of the
scheme.

The rest of the paper is started with defining dickson polynomial, then followed by the security of our
proposed cryptosystem which involved the One-way security and semantic security and finally the conclusion.

2 Dickson Polynomial
In 1896, Dickson [4] introduced a type of polynomial of the form

yk + k

(k−1)/2∑
i=1

(k − i− 1)...(k − 2i+ 1)

2.3...i
aiyk−2i, k is odd,

over finite field Fq, which later came to be known as Dickson polynomial by Schur[23].

Definition 2.1. (Dickson polynomial of first kind) ([27]). Let N be a positive integer and a ∈ Fq,then the
Dickson polynomial DN (y, a) of the first kind over any finite field Fq is defined by

DN (y, a) =

bN2 c∑
i = 0

N

N − i

(
N − i
i

)
(−a)iyN−2i,

where bN2 c is the largest integer less than or equal to n
2 .

The Dickson polynomial satisfy the resurrence relation : DN (y, a) = yDN−1(y, a) − aDN−2(y, a), N ≥ 2.
under the initial condition D0(y, a) = 2 and D1(y, a) = y and few initial polynomial are given below:

D2(y, a)= y2 − 2a,
D3(y, a)=y3 − 3ay,
D4(y, a)=y4 − 4ay2 + 2a2,
D5(y, a)=y5 − 5ay3 + 5a2y.
Commutativity under composition is of considerable importance satisfied by Dickson polynomial for a =

0 or 1 [19] and hence it satisfies the semi-group property under composition:

DMN (y, 1) = DM (DN (y, 1), 1) = DM (y, 1) ◦DN (y, 1) = DN (y, 1) ◦DM (y, 1) = DNM (y, 1)

Definition 2.2 (Modified Dickson Polynomial). Let us define a map, DP : ZN → ZN defined as z =
DP (y)(modN), where y and N are positive integers. Here, we call z = DP (y)(modN) as the modified
Dickson polynomial. Below are few properties satisfied by modified dickson polynomial.

1. Modified Dickson polynomial is commutative under composition, that is

DP (DQ(y)(modN)) = DPQ(y)(modN) = DQ(DP (y)(modN)).

2. Let Q be an odd prime and let y ∈ Z such that 0 ≤ y < Q. Then the period of the sequence DN (y)(mod
Q) for N = 0, 1, 2, 3, 4, ... is a divisor of Q2 − 1.

Müller and Nöbauer [19] in 1981, firstly introduced the first key exchange cryptosystem which was based
on Dickson polynomial, where the power functuions of the RSA system, introduced by Rivest et al.[22] in
1978, was replaced by Dickson ploynomials Dn(x, a) with parameter a = −1, 0, 1. It was also observed the
RSA cryptosystem was equivalent to Dickson system for parameter a = 0[19] . In 2011, Wei [27] introduced
in his paper that Dickson polynomial Dn(x, 1) over a finite field 2m is a permutation polynomial if and
only if n is odd and proved that solving a discrete Dickson problem(DDP) is as difficult as solving discrete
logarithmic problem (DLP). Note that, The hardness of DLP was also observed by McCurley [16] in his paper.
It is also observed that, computable groups where DLP is hard to solve [1, 3, 13] are of very importance in
cryptography.

Definition 2.3 (Discrete Dickson Problem). Let R be a commutative ring with unity, for any n ∈ Z+, and
given y and x , the problem of calculating the value of n such that y = Dn(x, 1) is called the Discrete Dickson
Problem(DDP).

It is observed throughout the paper that we have used for a = 1, Dn(x, 1) = Dn(x).

3 Security of the proposed public key encryption scheme
For the completeness of our work, here we have included our proposed public key encryption scheme. The
scheme consists of three parts, that includes key generation, encryption and decryption.
Key Generation

1. Choose two random large primes P and Q of the same size, such that 2P − 1 and 2Q − 1 is prime.
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2. Using the above P and Q compute N = 2k, where k = P ×Q.
3. For the value of N , find φ(N), where φ(N) = (22P − 2P+1)×(22Q − 2Q+1).
4. Choose f , such that 1 < f < φ(N) and gcd(f , φ(N)) = 1.
5. Find c, such that cf ≡ 1 (mod φ(N)), where c is the modular inverse of f .
6. Choose h, such that 0 ≤ h ≤ φ(N) - 1.
7. Choose a random α ∈ Z∗N and compute y = 1

2Dh(2α) (mod N).
• PUBLIC KEY : (N, f, y, α),
• PRIVATE KEY : (P,Q, h, c).
Encryption
Here the process of encrypting the simple plain text into cipher text is permormed, so that an intruder

doesn’t get to read the message. For the message M ∈ ZN ,
1. Select a random s ∈ Z∗N and for the selected s, Compute p1 = 1

2Df (2s) (mod N).
2. Simillarly select t ∈ Z∗N and for the selected t, compute p2 = 1

2Dt(2α) (mod N).

3. Now finally compute p3 using selected s and the given y, where p3 = M
4 Dt(2y)Df (2s) (mod N).

For the plain text message ’M ’, the encrypted ciphertext is (p1, p2, p3), which will be received by the
decoder to generate the message.

Decryption
On receiving the encrypted message (p1, p2, p3), the receiver performs the below given steps:
1. Firstly, he/she deals with obtaining the value of s, by computing 1

2Dc(2p1) (mod N).

2. Followed by computing U , where U = p−1
1 (mod N).

3. Compute V , where V = p3U (mod N).
4. Then compute T , where T = 1

2Dhφ(N)+1(2p2) (mod N) = 1
2Dt(2y) (mod N).

5. Finally obtain the plain-text message M = V T−1 (mod N).
The security of the proposed cryptosystem is found to be completely build upon Integer Factorization

Problem(IFP) and Discrete Dickson Problem(DDP). Here we have observed few cases of common attacks,
one-wayness and semantic security, where the proposed cryptosystem was found to be computationally
secured.

As the encrypted message can be assessed by an intruder, he/she can have assess to (p1, p2, p3). Now, for
him/her to generate the message M , he/she have to obtain the value of P and Q of k and so the value of c and
followed by finding h from 1

2Dh(2α)(mod N). And this can only be achieved if Integer factorization problem
and Discrete Dickson problem can be solved. The value of P and Q is chosen in such a way that the size of k
is 1024-bit and above, so no known algorithm can be used to factor k. And also to find h from 1

2Dh(2α)(mod
N), the intruder have to solve DDP. Also the value of α and s should be large enough to prevent exhaustive
search attack. It should be kept in mind that to encrypt different messages different values of s and t should
be used. Because if a sender uses same parameters for the encryption of two different messages M1 and M2,
then the intruder can obtain p3 = M1

4 Dt(2y)Df (2s)(modN) and p
′

3 = M2

4 Dt(2y)Df (2s)(modN). And hence

from the relation M2 = p
′

3p
−1
3 M1, the intruder can have the message M2 on knowing M1. So on choosing

different values of s and t, the message M2 cannot be known even on knowing M1.
Suppose the intruder somehow manages to find the value of P and Q and then computes s =

1
2Dc(2p1)(modN) and V = p3U(modN) = p3p

−1
1 (modN) = M

2 Dt(2y)(modN). To find the message M from
above, one has to know t, which is computationally impossible assumption of Discrete Dickson Problem
which is equivalent to solving DLP.
3.1 One-wayness
Here we check the one wayness of our proposed cryptosystem mentioned above.

Theorem 3.1. Our proposed cryptosystem is one-way secured if both Integer Factorization Problem(IFP)
and Discrete Dickson Problem(DDP) holds.

Proof. Let us suppose that both integer factorization problem and discrete dickson problem is simple i.e.,
given a composite integer X, finding integers p and q such that p.q = X is effortless and under a commutative
ring R with unity, with given y and z, the task of obtaining the value of N , such that z = DN (y, 1) is also
effortless, where N ∈ Z+, which means that , there exist a PPT algorithm A which can solve both integer
factorization problem and discrete dickson problem. Our motive is to break the one-wayness of our proposed
scheme by using the algorithm A and hence recover the plain text message m.

76



Let the challenging ciphertext be (p1, p2, p3), p1 = 1
2Df (2s) (mod N), p2 = 1

2Dt(2α) (mod N) and

p3 = M
4 Dt(2y)Df (2s) (mod N) and the public key be (N, f, y, α), where y = 1

2Dh(2α) (mod N). Now we
commence with aquiring the value of M . From the given value of p1 and f , we obtain the value of s, followed
by using the algorithm A we obtain the value of t from p2 = 1

2Dt(2α) (mod N), followed by obtaining the
value of M , as M = 4p3(Dt(2y))−1(Df (2s))−1 (mod N).

3.2 Semantic Security
In this section we are involved with checking the semantic security of our proposed cryptosystem. In semantic
security the challenger generates the public key and the private key, pk and sk respectively. Keeps the private
key to himself/herself and sends the public key to the adversary. Next the adversary selects two distinct
messages m0 and m1 ∈ M of same length and send it to the challenger. Here, the challenger selects any one
of m0 or m1 and encrypts the corresponding ciphertext to it and send it to the adversary. On receiving the
ciphertext from the challenger, the adversary objective is to identify which message was encrypted. If it can
be achieved then the encryption scheme is not semantically secured else not, then semantically secured.
Discrete Dickson Assumption
Under the Discrete Dickson assumption, we assume that it is computationally hard to obtain the value of
N ∈ Z+, given the value of z and y, where z = DN (y, 1).
Computational Discrete Dickson Assumption
The Computational Discrete Dickson Assumption states that, given the value of y and z, it is computationally
hard to obtain the value of N from z = DN (y, 1).

Theorem 3.2. If Computational Discrete Dickson Assumption holds, then the scheme presented in section
3, is semantically secured.

Proof. Let us presume that the scheme proposed in section 3 is not semantically secured for the purpose of
contradiction. Which speaks about the existence of a polynomial time algorithm A, which can break the
semantic security of our proposed scheme. With this, our objective is that to, given G = (y, z, w), with the
help of algorithm A, it is to decide whether it is conjugacy search problem of a random one (i.e p = ab or
not). Where y = 1

2Da(2α) (mod N), z = 1
2Db(2α) (mod N) and w = 1

2Dab(2α) (mod N). We first set
the public key (N, f, y, α), where y = 1

2Dp(2α) (mod N) and α ∈ Z∗N ; then once the adversary has chosen
the messages m0 and m1, we overturn a bit q and we encrypt mq as follows: E(mq) = (p1, p2, p3) where
p1 = 1

2Df (2s) (mod N), p2 = 1
2Dt(2α) (mod N) and p3 =

mq
4 Dt(2y)Df (2s) (mod N).

Seemingly if G is a discrete dickson assumption, the above is an authentic encryption of mq and algorithm
A will deliver the accurate output with non negligible gain. On the contrary, if G is not a discrete dickson
assumption, we assert that even a polynomially unbounded adversary gains no information about mq from
E(mq) in a strong information-theoretic sense.

Let p = ab, and then the information received by the adversary is of the form p1 = 1
2Df (2s) (mod N),

p2 = 1
2Dt(2α) (mod N) and p3 =

mq
4 Dt(2y)Df (2s) (mod N) =

mq
4 Dt(Dab(2α))Df (2s) (mod N) =

mq
4 Dab(Dt(2α))Df (2s) (mod N) =⇒ mq = 4p3(Dab(2p2))−1(Df (2s))−1 (mod N), and hence making the

value of mq infeasible which is completely hidden. And thus A cannot guess q better than at random.

4 Conclusion
In this paper we have proved the one-way security and semantic security of our proposed public key
cryptosystem based on IFP and DDP. Satisfying the one-wayness and semantic security by our proposed
cryptosystem has proven that, it is computationally well secured against any known attack.
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Abstract

We have investigated Bianchi type V viscous fluid cosmological models with string dust universe in
general relativity. Exact solution of Einstein field equations have been obtained by choosing deceleration
parameter is function of cosmic time. Solutions for exponential and polynomial form are obtained. Some
geometrical and physical aspects of models are also discussed.
2020 Mathematical Sciences Classification: 83C10, 83C20, 83E30.
Keywords and Phrases: Deceleration parameter, Bianchi type- V , Cosmological term Λ.

1 Introduction
Bianchi type-V cosmological models plays an important role in the investigation of origin and evaluation
of universe and the study is more interesting as these models contain isotropic special cases and permit
arbitrary small anisotropy levels at some point of time. The string theory of cosmology plays a significant
role in the investigation of physical situation at the very early stages of the formation of the universe. It is
generally assumed that after the big bang, the universe may have undergone a series of phase transitions as
its temperature was lowered down below some critical temperature as predicted by grand unified theories
[5, 6, 7, 26, 28, 29, 30]. At the very early stages of evolution of the universe, during phase transition, it is
believed that the symmetry of the universe is broken spontaneously. It can give rise to topologically stable
defects such as domain walls, strings and monopoles. In these three cosmological structures, cosmic strings
are the most interesting [27] because they are believed to give rise to density perturbations which lead to the
formation of galaxies [30]. These cosmic strings can be closed like loops or opened like a hair which move
through time and trace out a tube or a sheet, according to whether it is closed or open. The string is free to
vibrate and its different vibration modes present different types of particles carrying the force of gravitation.
Hence, investigation of universe is very interesting to study the gravitational effect that arises from strings
using Einstein’s field equations.

Bulk viscosity is useful for the study of early stages of evolution of the universe. Bulk viscosity driven
inflation is primarily due to the negative bulk viscous pressure giving rise to a total negative effective
pressure which may overcome the pressure due to the usual gravity of matter distribution in the universe
and provides an impetus for rapid expansion of the universe. Thus many workers have been study bulk
viscous string cosmological model in the context of Einstein theory or modified theories of gravity. Bulk
viscous cosmological models in general relativity of material distribution have been investigated by a number
of workers [1, 8, 12, 13, 14, 16, 18, 21]. Singh and Kale [22] has examined anisotropic bulk viscous cosmological
models with particle creation. Rao and Sireesha [19] investigated the Bianchi types II, VIII, and IX string
cosmological models with bulk viscosity in Brans-Dicke theory of gravitation. Banerjee and Banerjee [2]
investigated stationary distribution of dust and electromagnetic fields in general relativity. Banerjee et al.
[3] studied an axially symmetric Bianchi Type I string dust cosmological model in presence and absence
of magnetic field. Recently, Bali and Upadhaya [4] examined LRS Bianchi Type I strings dust-magnetized
cosmological models.
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Motivated by the above discussion, we have constructed Bianchi type- V magnetized string dust dust bulk
viscous fluid cosmological models with variable Λ and deceleration parameter. The main reason to explore
the Bianchi type- V model is that the standard FLRW models are contained as special cases of the Bianchi
models. The Bianchi type- V model generalizes the open (k = −1) Friedmann model and represents a model
in which the fluid flow is not necessarily orthogonal to the three surfaces of homogeneity. At early stage of
evolution, the universe was not so smooth as it looks in present time. Therefore anisotropic cosmological
models have taken considerable interest of researcher workers.

In this paper, we have study the role of variable deceleration parameter in Bianchi type- V space time
with magnetized string dust bulk viscous fluid.

2 Metric and Field Equations
We consider the Bianchi type V space-time in orthogonal form represented by the line-element

(2.1) ds2 = −dt2 +A2dx2 +B2e2xdy2 + C2e2xdz2.

where A and B are the metric potentials considered as function of cosmic time only. The energy-momentum

tensor
(
T ji

)
for cloud of string dust is given by Letelier [9] with bulk viscous fluid and electromagnetic field(

Eji

)
given by Lichnerowicz [10] as

(2.2) T ji = ρviv
j − λxixj − εθ

(
gji + viv

j
)

+ Eji .

Where ρ is the rest energy density of the cloud of strings with particles attached to them, ρ = ρp + λ
with ρp being the rest energy density of particles, λ the tension density of the cloud of strings, θ = vi;i is the

scalar of expansion and ε the coefficient of bulk viscosity. The vector vi = (0, 0, 0, 1) is the four-velocity of
the particles and xi is a unit space-like vector representing the direction of string.

The vector vi and xi satisfy the conditions

(2.3) viv
i = −xixi = −1, vixi = 0.

Choosing xi parallel to ∂
∂x , we have

(2.4) xi =
(
A−1, 0, 0, 0

)
.

The electromagnetic field Eji is given by

(2.5) Eji = µ̄

[
|h|2

(
viv

j +
1

2
gji

)
− hihj

]
,

where hi is the magnetic flux vector given by

(2.6) h1 =

√
−g

2µ̄
∈ijkl F klvj .

Here µ̄ is the magnetic permeability and εijkl the Levi-Civita tensor. We assume that current is flowing
along x-axis.

Thus F23 is the only non-vanishing component of Fij.
Maxwell’s equations

(2.7) F [ij; k] = 0

and

(2.8) Fij = 0

are satisfied by

(2.9) F23 = constant = K( say ).

Thus

(2.10) h1 6= 0, h2 = 0 = h3 = h4.

Thus equation (2.6) lead to

(2.11) h1 =
AK

µ̄BCe2x
.

F14 = 0 = F24 = F34 due to assumption of infinite electrical conductivity (Maartens[15]).
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We assume that magnetic permeability (µ̄) is a variable and consider

µ̄ = e−4x i.e. when x→∞, then µ̄→ 0.

Thus, from (2.5) and (2.11), we have

(2.12) E1
1 = − K2

2B2C2
= −E2

2 = −E3
3 = E4

4 .

The Einstein field equation (in gravitational units c = 1, 8 Λ G = 1 ) with time varying cosmological
term Λ(t) are given by

(2.13) Rji −
1

2
Rgji = −T ji + Λgji .

The field equation (2.13) with subsequently lead to the following system of equation

B̈

B
+
C̈

C
+
ḂĊ

BC
− 1

A2
= λ+ εθ +

K2

2B2C2
+ Λ,(2.14)

Ä

A
+
C̈

C
+
ÄĊ

AC
− 1

A2
=
−K2

2B2C2
+ εθ + Λ,(2.15)

Ä

A
+
B̈

B
+
ȦḂ

AB
− 1

A2
= − K2

2B2C2
+ εθ + Λ,(2.16)

ÄḂ

AB
+
ÄĊ

AC
+
ḂĊ

BC
− 3

A2
= ρ+

K2

B2C2
+ Λ,(2.17)

2
Ȧ

A
− Ḃ

B
− Ċ

C
= 0.(2.18)

In the above and elsewhere overhead dot stands for ordinary time-derivative of the concerned quantity.
We define the average scale factor R as

(2.19) R3 = ABC.

Integrating (2.18), we get

(2.20) A2 = LBC = BC.

where L = 1 is constant of integration.
In analogy with FRW universe, we define a generalized Hubble parameter H and generalized deceleration

parameter q as

(2.21) H =
Ṙ

R
=

1

3
(H1 +H2 +H3) ,

(2.22) q =
d

dt

(
1

H

)
− 1 =

−Ḣ
H2
− 1,

where H1 = Ȧ
A , H2 = Ḃ

B and H3 = Ċ
C are directional Hubble’s factor in the x, y and z directional respectively.

The anisotropy parameter

(2.23) Ā =
1

3

3∑
i=1

(
Hi −H
H

)2

.

The physical quantities of observational interest in cosmology

(2.24) θ =
˙3R

R
.

The components of shear tensor
(
σij
)
σ1

1 =
1

3

(
2̇A

A
− Ḃ

B
− Ċ

C

)
,(2.25)

σ2
2 =

1

3

(
˙2B

B
− Ȧ

A
− Ċ

C

)
,(2.26)

σ3
3 =

1

3

(
2Ċ

C
− Ȧ

A
− Ḃ

B

)
,(2.27)

σ4
4 = 0.(2.28)

Therefore,

(2.29) σ2 =
1

2

[(
σ1

1

)2
+
(
σ2

2

)2
+
(
σ3

3

)2
+
(
σ4

4

)2]
.
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3 Solution of the Filed Equation
Observation of type Ia supernovae [20] allow to probe the expansion history of universe. In literature it
is common to use a constant deceleration parameter, as it duly gives a power law for metric function or
corresponding quantity. But at present the expansion of universe is accelerating and decelerating in the
past. Also the transition redshift from deceleration phase to accelerating phase is about 0.5. Now for the
universe which was decelerating in the past and accelerating at present time, the deceleration parameter
must show signature flipping [17, 23, 24, 25]. So, in general, deceleration parameter is not constant but
variable. On basis of supernovae searches, we consider the deceleration parameter to the variable i.e.

(3.1) −RR̈
R2

= q (variable),

where R is a average scale factor.
We assume

(3.2) ε = ε0 + ε1H,

where ε0 and ε1 are positive constant.
In this paper, we show how the variable deceleration parameter models with metric (2.1) behave in

presence of string fluid as a source of matter.
From equation (3.1), we have

(3.3)
R̈

R
+ q

Ṙ2

R2
= 0.

In order to solve equation (3.2), we have to assume q = q(R). It is important to note here that one can
assume q = q(t) = q(R(t)), as R is also a time dependent function. But this is possible only when one avoid
singularity like big-bang or big rip because both t and R are increasing function.

Thus the general solution of equation (3.1) with assumption q = q(R) is given by

(3.4)

∫
e
∫ q
RdRdR = t+ t0,

where t0 is the constant of integration.
Without loss of generality, we chose

(3.5)

∫
q

R
dR = logL(R).

Therefore,

(3.6)

∫
L(R)dR = t+ t0.

The choice of L(R) in equation (3.5), quite arbitrary but, since we are looking for a physically viable
models of universe consistent with observations. We assume the following two cases.

4 Solution in Exponential Form

Let us consider L(R) = 1
aR+b , where a & b are constant on integration, equation (3.6), we get

(4.1) R =
1

a

(
eaT − b

)
,

where T = t + t0. In this case, the expression for the proper energy density (ρ), the string tension (λ), the
cosmological constant (Λ) and particle density (ρp) are given by

(4.2) ρ =
−a2 − 2a2e−2aT + 2a2be−aT + 3a2ε1

(1− be−aT )
2 − a6k2

1e
−6a

2 (1− be−aT )
− K2a4e−4aT

(1− be−aT )
4 +

3a2ε0

(1− be−aT )
,

(4.3) λ =
−K2a4e−4aT

(1− be−aT )
4 ,

(4.4) Λ =
−2a2be−aT + 3a2 − a2e−2aT − 3a2ε1

(1− be−aT )
2 +

a6k2
1e
−6aT

4 (1− be−aT )
6 +

K2e−4aTa4

2 (1− be−aT )
4 −

3aε0

(1− be−aT )
,

(4.5) ρp =
−a2 − 2a2e−2aT + 2a2be−aT + 3a2ε1

(1− be−aT )
2 − a6k2

1e
−6aT

2 (1− be−aT )
+

3aε0

(1− be−aT )
.
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The rate of expansion in the direction of x, y and z are given by

(4.6) Hx =
Ȧ

A
=

a

1− be−aT
,

(4.7) Hy =
Ḃ

B
=

a

1− be−aT
− a3k1e

−3aT

2 (1− be−aT )
3 ,

(4.8) Hz =
Ċ

C
=

a

1− be−aT
+

a3k1e
−3aT

2 (1− be−aT )
3 .

Expansion θ, shear σ2, deceleration parameter q, spatial volume V , bulk viscosity ε and anisotropy
parameter Ā of the model take the form

θ =
3a

1− be−aT
,(4.9)

σ2 =
a6k2

1e
−6aT

4 (1− be−aT )
6 ,(4.10)

q = −1 + be−aT(4.11)

V =
1

a3

(
eaT − b

)3
,(4.12)

ε = ε0 +
ε1a

1− be−aT
,(4.13)

Ā =
1

6

a4k2
1e
−6aT

(1− be−aT )
4 .(4.14)

We observe that model has singularity at T = log b
a = T0 (say). The model starts expanding with a big

bang at T = T0 and the expansion in the model decreases as time T increases. Expansion in the model
becomes finite at T =∞. Singularity in the model is of point type. Since scale factor cannot be negative, we
find R(T ) is positive, if a > 0. Therefore, in the early stage of the universe i.e. near T = T0, the scale factor
of the universe had been approximately constant and had increased very slowly. Sometime later, the universe
has exploded suddenly and expanded to a large scale. This picture is consistent with big-bang scenario. We
observe that q = 0 for T = T0 and as T → ∞, q = −1. Thus the model represents an accelerating universe
at late times. The physical quantities ρ, σ,Λ, ε and ρp all diverge at T = T0. In the limit of large times i.e.
T →∞, ρ→ 3a2ε1 + 3a2ε0 − a2, σ → 0,Λ→ 3a2 − 3a2ε1 −3aε0, ε→ ε0 + ε1a and ρp → 3a2ε1 + 3aε0 − a2.

From (4.3) it is found that tension density λ is negative. It is pointed out by Letelier[11] that λ may be
positive or negative. When λ < 0, the string phase of the universe disappears i.e. we have an anisotropic
fluid of particles. The mean anisotropic parameter is decreasing function of time.

For the model

(4.15)
σ

θ
=

a2k1e
−3aT

6 (1− be−aT )
2 .

For the large value of t, σθ → 0 implying that the model approaches isotropy at late time. We observe
that the pressure of shear viscosity accelerates the process of isotropization.

5 Solution in polynomial form

Let L(R) = 1
2a
√
R+b

, where a and b are constant.

On integration, equation (3.6), we get

(5.1) R = a2T 2 − b where t+ t0 = T.

In this case, the expansion for the proper energy density (ρ), the string tension (λ), the cosmological
constant (Λ) and particle density (ρp) are given by

(5.2) ρ =
−4a2b− 2 + 12ε1a

4T 2

(a2T 2 − b)2 − k1

2 (a2T 2 − b)6 +
6ε0a

2T

a2T 2 − b
− K2

(a2T 2 − b)4 ,

(5.3) λ =
−K2

(a2T 2 − b)4 ,
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Λ =
a4T 2 − 4a2b− 1− 12ε1a

4T 2

(a2T 2 − b)2 +
k1

4 (a2T 2 − b)6 −
6ε0a

2T

a2T 2 − b
+

K2

2 (a2T 2 − b)
,(5.4)

ρp =
−4a2b− 2 + 12ε1a

4T 2

(a2T 2 − b)2 − k1

2 (a2T 2 − b)6 +
6ε0a

2T

(a2T 2 − b)
.(5.5)

The rate of expansion in the direction of x, y and z are given by

Hx =
Ȧ

A
=

2a2T

a2T 2 − b
,(5.6)

Hy =
Ḃ

B
=

2a2T

a2T 2 − b
− k1

2 (a2T 2 − b)3 ,(5.7)

Hz =
Ċ

C
=

2a2T

a2T 2 − b
+

k1

2 (a2T 2 − b)3 .(5.8)

Expansion θ, shear σ2, deceleration parameter q, spatial volume V , bulk viscosity ε and anisotropy
parameter Ā of the model take the form

θ =
6a2T

a2T 2 − b
,(5.9)

σ2 =
1

4

k2
1

(a2T 2 − b)6 ,(5.10)

q = −1

2
+

b

2a2T 2
,(5.11)

V =
(
a2T 2 − b

)3
,(5.12)

ε = ε0 +
2ε0a

2T

a2T 2 − b
,(5.13)

Ā =
k2

1

12 (a2T 2 − b)2
a4T 2

.(5.14)

We observe that model has singularity at T =
√
b/a = T1 (say). The model starts with a big bang at

T = T1 and the expansion in the model decreases as time increases. Expansion in the model stops at T =∞.
In the early stage of the universe i.e. near T = T1, the scale factor of the universe had been approximately

constant and had increased very slowly. Sometime later, the universe had exploded suddenly and expanded
to large scale. This picture is consistent with big-bang scenario. At T = T1, q = 0 and q → −1/2 as T →∞.
Thus the model represents an accelerating universe at late times. The physical quantity ρ, σ,Λ, ε and ρp all
diverge at T = T1. In the limit of large times i.e. T →∞, ρ, σ,Λ, ρp are negligible and ε→ ε0. From (5.3),
it is found that tension density λ is negative. Therefore the string phase of the universe disappears i.e. we
have an anisotropic fluid of particles. The mean anisotropic parameter is decreasing function of time. For
the model

(5.15)
σ

θ
=

k1

12a2T (a2T − b)2 .

For large value of T, σθ → 0 implying that the model approaches isotropy at late times. In the absence
of magnetic field, the model represents an isotropic universe.

6 Conclusion
In this paper, we have studied Bianchi type-V magnetized string dust bulk viscous fluid cosmological models
with variable deceleration parameter q in the context of general relativity. The Einstein’s field equation
have been solved exactly by considering a deceleration parameter q = variable which yields time dependent
scale factor. We have found that cosmological term Λ being very large at initial times relaxes to genuine
cosmological constant at late times. The models are found to be compatible with the results of recent
observations.
Acknowledgement. We are grateful to the Editors and anonymous referee for suggestions that have led
to the improvements in the manuscript.
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Abstract

In this article we introduce a general multiple Hurwitz-Lerch Zeta function. Then its convergence
conditions and identities are obtained under certain conditions. We also derive some of connections to
the multiple Hurwitz-Lerch Zeta function based upon Srivastava-Daoust hypergeometric series in several
variables and other related functions of one and more variables found in the literature. Further, we study
its integral representations and find their applications for deriving generating relations and solving the
non-homogeneous fractional differential equation.
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1 Introduction
Recently, Srivastava et al. [16] extended the double Hurwitz-Lerch Zeta function due to (1.1) - (1.3) into the
multiple Hurwitz-Lerch Zeta function [16, Eqn. (4.1)] in terms of Srivastava-Daoust hypergeometric series
in several variables [20, p.37] and defined in the form

(1.1) σ
ωF

A : B(1); ...;B(n)

C : D(1); ...;D(n)

(
[(a); θ(1), ..., θ(n)] : [(b(1) : ψ(1))]; ...; [(b(n)) : ψ(n)];

[(c); δ(1), ..., δ(n)] : [(d(1) : φ(1))]; ...; [(d(n)) : φ(n)];
z1, ..., zn

)
=

∞∑
m1,...,mn=0

HA : B(1); . . . ;B(n)

C : D(1); ...;D(n)
(m1, ...,mn)

zm1
1 . . . zmnn

m1! . . .mn! (m1 + · · ·+mn + ω)
σ ,

where, σ ∈ C, ω ∈ C\Z0,C = {z : z = x+ iy, i =
√

(−1), x, y ∈ R},R = (−∞,∞),Z0 = {0,−1,−2,−3, . . .}.
Additionally, as usual N denotes the set of natural numbers, Z denotes the set of integers, R+denotes the
set of positive real numbers and for convenience
(1.2)

HA : B(1); . . . ;B(n)

C : D(1); . . . ;D(n)(m1, ...,mn) =

∏A
j=1 (aj)θ(1)

j m1+...+θ
(n)
j mn

∏B(1)

j=1

(
b
(1)
j

)
ψ

(1)
j m1

. . .
∏B(n)

j=1

(
b
(n)
j

)
ψ

(n)
j mn∏C

j=1 (cj)δ(1)
j m1+...+δ

(n)
j mn

∏D(1)

j=1

(
d

(1)
j

)
φ

(1)
j m1

. . .
∏D(n)

j=1

(
d

(n)
j

)
φ

(n)
j mn

.

The coefficients

(1.3)

{
θ

(l)
j , j = 1, . . . , A; ψ

(l)
j , j = 1, . . . , B(l); δ

(l)
j , j = 1, . . . , C;

φ
(l)
j , j = 1, . . . , D(l); ∀ l ∈ {1, 2, 3, . . . , n} ,

are the members of the set R+ and (a) abbreviates the array of A parameters a1, . . . , aA;
(
b(l)
)

abbreviates

the array of B(l) parameters b
(l)
1 , . . . , b

(l)

B(l) , ∀ l ∈ {1, 2, 3, . . . , n} , with similar interpretations for (c) and(
d(l)
)
, l = 1, 2, . . . , n; are complex numbers et cetera.

The multiple series (1.1) with (1.2) and (1.3) converges due to [3, 7] for

(1.4) |z1| <∞, . . . , |zn| <∞,
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if

(1.5)

C∑
j=1

δ
(l)
j +

D(l)∑
j=1

φ
(l)
j −

A∑
j=1

θ
(l)
j −

B(l)∑
j=1

ψ
(l)
j + 1 > 0 ( ∀ l = 1, 2, 3, . . . , n).

Further if
∑C
j=1 δ

(l)
j +

∑D(l)

j=1 φ
(l)
j −

∑A
j=1 θ

(l)
j −

∑B(l)

j=1 ψ
(l)
j +1 = 0 ( ∀ l = 1, 2, 3, . . . , n), then the multiple

series (1.1) with (1.2) and (1.3) converges for

(1.6) (|z1|)
1

H1 + . . .+ (|zn|)
1

Hn < 1, when Hl =

A∑
j=1

θ
(l)
j −

C∑
j=1

δ
(l)
j ( ∀ l = 1, 2, 3, . . . , n), Hl > 0; and for

(1.7) {|z1| (z1 6= 1) , . . . , |zn| (zn 6= 1)} < 1, when Hl < 0 ( ∀ l = 1, 2, 3, . . . , n).

But when z1 = 1, . . . , zn = 1, the multiple Srivastava-Daoust-Hurwitz-Lerch Zeta function (1.1) - (1.3),
with the aid of the formulae, limn→∞ Γ(z + n+ 1) = limn→∞ Γ(n+ 1)nz, is written by (see in [5, 6])

(1.8) σ
ωF

A : B(1); . . . ;B(n)

C : D(1); . . . ;D(n)

([
(a) : θ(1), . . . , θ(n)

]
:
[(
b(1)
)

: ψ(1)
]

; . . . ;
[(
b(n)

)
: ψ(n)

]
;[

(c) : δ(1), . . . , δ(n)
]

:
[(
d(1)

)
: φ(1)

]
; . . . ;

[(
d(n)

)
: φ(n)

]
;
1, . . . , 1

)

=

m1=M1−1,...,mn=Mn−1∑
m1,...,mn=0

HA : B(1); . . . ;B(n)

C : D(1); . . . ;D(n) (m1, . . . ,mn)
1

m1! . . .mn! (m1 + . . .+mn + ω)
σ

+

∞∑
m1,...,mn=0

HA : B(1); . . . ;B(n)

C : D(1); . . . ;D(n) (m1 +M1, . . . ,mn +Mn)

× Γ (m1 +M1 + . . .+mn +Mn + ω + 1)

(m1 +M1)! . . . (mn +Mn)!Γ (m1 +M1 + . . .+mn +Mn + σ + ω + 1)
.

Here in (1.8), the first series which is finite and the second infinite series converges for

(1.9)

C∑
j=1

δ
(l)
j +

D(l)∑
j=1

φ
(l)
j −

A∑
j=1

θ
(l)
j −

B(l)∑
j=1

ψ
(l)
j + 1 = 0 ( ∀ l = 1, 2, 3, . . . , n)

and if Hl = 0, where, Hl =
∑A
j=1 θ

(l)
j −

∑C
j=1 δ

(l)
j ( ∀ l = 1, 2, 3, . . . , n), then there exists

R

 C∑
j=1

cj +

D(l)∑
j=1

d
(l)
j + σ −

A∑
j=1

aj −
B(l)∑
j=1

b
(l)
j

 > 0 ( ∀ l = 1, 2, 3, . . . , n).

It is remarked that to obtain the condition (1.9), we make an appeal to the formula Γ(n+a)
Γ(n+b) ∼ n

(a−b) (n→
∞), and apply the techniques due to Hái, Marichev and Srivastava [3].

Here in this research article, in order to explore new ideas for studying various known and unknown
Hurwitz-Lerch Zeta functions of one, two and multiple Hurwitz-Lerch Zeta functions (see in [5, 6, 7, 8, 10,
11, 13, 14, 15, 16, 17, 19]), we introduce a general multiple Hurwitz-Lerch Zeta function given by
(1.10)

s
ηK (χ; ρ1, . . . , ρn; z1, . . . , zn) =

∞∑
m1=0,...,mn=0

χ (m1, . . . ,mn) (ρ1)m1
. . . (ρn)mn

m1! . . .mn!

(z1)
m1 . . . (zn)

mn

(m1 + . . .+mn + η)
s ,

provided that the multiple sequence of function χ (m1, . . . ,mn) (∀ m1 ≥ 0, . . . ,mn ≥ 0) is convergent
under certain restrictions, all ρ1, . . . , ρn;x1, . . . , xn; s∈ C and η∈ C\Z0.

2 Identities of the general multiple Hurwitz-Lerch Zeta function (1.10)
In this section, we show that the general multiple Hurwitz-Lerch Zeta function (1.10) gives some identities
under certain conditions.

Theorem 2.1. If in (1.10), χ (m1, . . . ,mn) = χ (m1 + . . .+mn) and z1 = . . . = zn = z, then there exists
an identity

(2.1) s
ηK (χ; ρ1, . . . , ρn; z, . . . , z) =

∞∑
k=0

χ(k) (ρ1 + . . .+ ρn)k
k!

zk

(k + η)s
,

provided that the series involved converges absolutely.
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Proof. In the formula (1.10), setting χ (m1, . . . ,mn) = χ (m1 + . . .+mn) and z1 = . . . = zn = z, we find
(2.2)

s
ηK (χ; ρ1, . . . , ρn; z, . . . , z) =

∞∑
m1=0,...,mn=0

χ (m1 + . . .+mn) (ρ1)m1
. . . (ρn)mn

m1! . . .mn!

(z)m1+...+mn

(m1 + . . .+mn + η)
s .

Now in the equality (2.1) applying the formula [21, pp. 61-62]

(2.3)

∞∑
m1=0,...,mn=0

F (m1 + . . .+mn) (ρ1)m1
. . . (ρn)mn

xm1+...+mn

m1! . . .mn!
=

∞∑
k=0

F (k) (ρ1 + . . .+ ρn)k
xk

k!
,

provided that the series involved in (2.3) converges absolutely, we get the result (2.1).

Corollary 2.1. If in the Theorem 2.1, for all p, q ∈ N0, where N0= N∪{0} ; aj∈ C (j = 1, . . . , p), bj∈ C\Z0

(j = 1, .., q); λj ∈ R+ (j = 1, . . . , p), µj ∈ R+ (j = 1, . . . , q); set

χ (m1, . . . ,mn) =

∏p
j=1 (aj)(m1+...+mn)λj∏q
j=1 (bj)(m1+...+mn)µj

,

and make an appeal to the Zeta function due to [15, Eqn. (16)], then there exists following identities

s
ηK (χ; ρ1, . . . , ρn; z, . . . , z) =

∞∑
k=0

∏p
j=1 (aj)kλj (ρ1 + . . .+ ρn)k∏q

j=1 (bj)kµj k!

zk

(k + η)s
(2.4)

= Φ
(λ1,...λp,1;µ1,...,µq)

(a1,...ap,ρ1+...+ρn;b1,...,bq)
(z, s, η).

Now make an appeal to the conditions given in (1.4)-(1.7) and (1.9), the series in (2.4) converges due to
the conditions∑q
j=1 µj −

∑p
j=1 λj > 0, if |z| < ∞;

∑q
j=1 µj −

∑p
j=1 λj = 0, if |z| < 1; again for

∑q
j=1 µj −

∑p
j=1 λj = 0,

along with z = 1, if
∑q
j=1 bj + s−

∑p
j=1 aj − ρ1 − . . .− ρn > 0.

3 Various connected known and unknown multiple Hurwitz-Lerch Zeta functions to the
general multiple Hurwitz-Lerch Zeta function (1.10)

In this section, we derive various known and unknown multiple Hurwitz-Lerch Zeta functions as on
manipulation of the multiple sequence of function χ (m1, . . . ,mn) ∀ m1 ≥ 0, . . . ,mn ≥ 0 and on application
of the Theorem 2.1.

Theorem 3.1. In Eqn. (1.10), if s∈ C, η∈ C\Z0, max {|z1| (z1 6= 1) , . . . , |zn| (zn 6= 1)} < 1, and

(3.1)

C∑
j=1

δ
(l)
j +

D(l)∑
j=1

φ
(l)
j −

A∑
j=1

θ
(l)
j −

B(l)∑
j=1

ψ
(l)
j = 0,Hl =

A∑
j=1

θ
(l)
j −

C∑
j=1

δ
(l)
j ≤ 0.

Again when z1 = 1, . . . , zn = 1, ( ∀ l = 1, 2, 3, . . . , n) and there are

C∑
j=1

δ
(l)
j +

D(l)∑
j=1

φ
(l)
j −

A∑
j=1

θ
(l)
j −

B(l)∑
j=1

ψ
(l)
j = 0,Hl =

A∑
j=1

θ
(l)
j −

C∑
j=1

δ
(l)
j = 0,

along with

R

 C∑
j=1

cj +

D(l)∑
j=1

d
(l)
j + s−

A∑
j=1

aj −
B(l)∑
j=1

b
(l)
j − ρl

 > 0 ( ∀ l = 1, 2, 3, . . . , n).

Then by the coefficient

(3.2) χ (m1, . . . ,mn) = HA : B(1); . . . ;B(n)

C : D(1); . . . ;D(n) (m1, . . . ,mn) ,

the formula (1.10) is connected by a multiple Hurwitz-Lerch Zeta function [16, Eqn.(4.1)] based upon the
Srivastava-Daoust hypergeometric series in several variables [20, P. 37] as

(3.3) s
ηK

(
HA : B(1); . . . ;B(n)

C : D(1); . . . ;D(n); ρ1, . . . , ρn; z1, . . . , zn

)
= s
ηF
A : B(1) + 1; . . . ;B(n) + 1

C : D(1); . . . ;D(n)

×
([

(a) : θ(1), . . . , θ(n)
]

:
[(
b(1)
)

: ψ(1)
]
, [ρ1 : 1] ; . . . ;

[(
b(n)

)
: ψ(n)

]
, [ρn : 1] ;[

(c) : δ(1), . . . , δ(n)
]

:
[(
d(1)

)
: φ(1)

]
; . . . ;

[(
d(n)

)
: φ(n)

]
;

z1, . . . , zn

)
.
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Proof. Making an appeal to the formulae (1.10) and ((3.2), we get the series

(3.4) s
ηK

(
HA : B(1); . . . ;B(n)

C : D(1); . . . ;D(n); ρ1, . . . , ρn; z1, . . . , zn

)
=

∞∑
m1,...,mn=0

HA : B(1); . . . ;B(n)

C : D(1); . . . ;D(n) (m1, . . . ,mn)
(ρ1)m1

. . . (ρn)mn zm1
1 . . . zmnn

m1! . . .mn! (m1 + . . .+mn + ω)
σ .

Then in the series of (3.4), define (1.2) and the multiple hypergeometric function under the conditions
given in the Theorem 3.1, we get the multiple Hurwitz-Lerch Zeta function (1.1)-(1.3) based upon the
Srivastava-Daoust hypergeometric series in several variables [20, p.37] as given in (3.3).

Special cases of the multiple Hurwitz-Lerch Zeta function based upon the Srivastava-Daoust
hypergeometric series in several variables (3.3)

In (3.3) set δ
(l)
j = 1, φ

(l)
j = 1, θ

(l)
j = 1, ψ

(l)
j = 1, ( ∀ l = 1, 2, 3, . . . , n) and then for s∈ C, η∈ C\Z0, we find

C +D(l) −A−B(l) = 0, A− C ≤ 0 ∀ l = 1, 2, 3, . . . , n,max {|z1| (z1 6= 1) , . . . , |zn| (zn 6= 1)} < 1.
But when z1 = 1, . . . , zn = 1, there exists C +D(l) −A−B(l) = 0, A− C = 0, along with

R

 C∑
j=1

cj +

D(l)∑
j=1

d
(l)
j + s−

A∑
j=1

aj −
B(l)∑
j=1

b
(l)
j − ρl

 > 0 ( ∀ l = 1, 2, 3, . . . , n),

then we get the multiple Hurwitz-Lerch Zeta function based upon the Srivastava-Panda hypergeometric
series in several variables [18] as

(3.5) s
ηK

(
HA : B(1); . . . ;B(n)

C : D(1); . . . ;D(n); ρ1, . . . , ρn; z1, . . . , zn

)
= s
ηF
A : B(1) + 1; . . . ;B(n) + 1

C : D(1); . . . ;D(n)

(
(a) :

(
b(1)
)
, ρ1; . . . ;

(
b(n)

)
, ρn;

(c) :
(
d(1)

)
; . . . ;

(
d(n)

)
;

z1, . . . , zn

)
.

Further in cite (3.5), set A = 1, C = 1, B(l) = 0, D(l) = 0,
(
b(l)
)

=
(
d(l)
)

( ∀ l = 1, 2, 3, . . . , n), a, s∈ C
and η, c ∈ C\Z0, we find a multiple Hurwitz-Lerch Zeta function based upon the Lauricella’s hypergeometric
series in several variables [9] as

s
ηK

(
H1 : 0; . . . ; 0

1 : 0; . . . ; 0
; ρ1, . . . , ρn; z1, . . . , zn

)
= s
ηF

1 : 1; . . . ; 1
1 : 0; . . . ; 0

(
a : ρ1; . . . ; ρn;
c : 0; . . . ; 0;

z1, . . . , zn

)
(3.6)

= F
(n)
D (a, ρ1, . . . , ρn; c; z1, . . . , zn) ,

provided that max {|z1| (z1 6= 1) , . . . , |zn| (zn 6= 1)} < 1; as well as with aid of Theorem 2.1, for
z1 = . . . = zn = z, it converges for |z| < 1 (z 6= 1), and
R (c+ s− a− ρ1 − . . .− ρn) > 0 with z = 1.
Again, in (3.5) put n = 2, we find the double Hurwitz-Lerch Zeta function based upon the Kampé de

Fériet hypergeometric series in two variables [21, p.63, Eqn.(16)] as

(3.7) s
ηK

(
HA : B(1);B(2)

C : D(1);D(2); ρ1, ρ2; z1, z2

)
= s
ηF
A : B(1) + 1;B(2) + 1

C : D(1);D(2)

(
(a) :

(
b(1)
)
, ρ1;

(
b(2)
)
, ρ2;

(c) :
(
d(1)

)
;
(
d(2)

)
;

z1, z2

)
.

It is provided that s∈ C, η∈ C\Z0, we find C + D(l) − A − B(l) = 0 and Hl = A − C ≤ 0, ∀ l = 1, 2;
max {|z1| (z1 6= 1) , |z2| (z2 6= 1)} < 1.

But when z1 = 1, z2 = 1, there exists C + D(l) − A− B(l) = 0 and Hl = A− C = 0 ∀ l = 1, 2; along
with

R

 C∑
j=1

cj +

D(l)∑
j=1

d
(l)
j + s−

A∑
j=1

aj −
B(l)∑
j=1

b
(l)
j − ρl

 > 0 (∀ l = 1, 2).

Obviously, by (3.7) we get a double zeta function due to Choi and Parmar [1]

(3.8) s
ηK

(
H1 : 0; 0

1 : 0; 0
; ρ1, ρ2; z1, z2

)
= s
ηF

1 : 1; 1
1 : 0; 0

(
a : ρ1; ρ2;
c : −;−;

z1, z2

)
= φa,ρ1,ρ2,c (z1, z2, s, η) .

provided that max {|z1| (z1 6= 1) , |z2| (z2 6= 1)} < 1, s∈ C, η, c∈ C\Z0.
But when (z1 = 1) , (z2 = 1) ,R (c+ s− a− ρ1 − ρ2) > 0, (∀ l = 1, 2) along with η, c∈ C\Z0.
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4 Integral representations of the multiple Hurwitz-Lerch Zeta function (1.10)
We use the Eulerian integral formula [8, 10, 11] and find an integral representation of the multiple Hurwitz-
Lerch Zeta function (1.10) as

(4.1) s
ηK (χ; ρ1, . . . , ρn; z1, . . . , zn)

=
1

Γ(s)

∫ ∞
0

e−ηtts−1


∞∑

k1=0,...,kn=0

χ (k1, . . . , kn)

n∏
j=1

(ρj)kj
kj !

(
zje
−t)kj dt,

provided that η, s ∈ C such that R(s) > 0, R(η) > 0.

Theorem 4.1. If ζ(u) = u (1 + ζ(u))
β+1

, ζ(0) = 0 and M = m1k1 + . . .+mnkn ≤ N ; and

(4.2) ∆
(α,β)
N [χ;m1, . . . ,mn; z1, . . . , zn, t] =

M≤N∑
k1,...,kn=0

(−N)M
(α+ βN + 1)M

χ (k1, . . . , kn)

n∏
j=1

(ρj)kj
kj !

(
zje
−t)kj ,

then the exists an integral formula

(4.3)
1

Γ(s)

∫ ∞
0

e−ηtts−1

{ ∞∑
N=0

uN
(
α+ (β + 1)N

N

)
∆

(α,β)
N [χ;m1, . . . ,mn; z1, . . . , zn, t]

}
dt

=
(1 + ζ(u))

α+1

{1− βζ(u)}
s
ηK (χ; ρ1, . . . , ρn; z1 {−ζ}m1 , . . . , zn {−ζ}mn) .

Proof. Consider left hand side of (4.3) and make an appeal to the formula (4.2) to get

(4.4)
1

Γ(s)

∫ ∞
0

e−ηtts−1
∞∑
N=0

uN
(
α+ (β + 1)N

N

)m1k1+...+mnkn≤N∑
k1,...,kn=0

(−N)m1k1+...+mnkn

(α+ βN + 1)m1k1+...+mnkn

×χ (k1, . . . , kn)
(ρ1)k1

k1!
. . .

(ρn)kn
kn!

(
z1e
−t)k1

. . .
(
zne
−t)kn dt.

Now in the integrand of (4.4) use generalized formula due to Carlitz (see in Srivastava and Manocha [21,
p.360, Eqn.(1)]), given by

(4.5)

∞∑
N=0

uN
(
α+ (β + 1)N

N

) N
m∑
k=0

(−N)mk

(α+ βN + 1)mk

γkx
k

k!
=

(1 + ζ(u))
α+1

{1− βζ(u)}

∞∑
k=0

γk
k!

(x {−ζ(u)}m)
k
,

and then we obtain

(4.6)
(1 + ζ(u))

α+1

{1− βζ(u)}Γ(s)

∫ ∞
0

e−ηtts−1
∞∑

k1,...,kn=0

χ (k1, . . . , kn)

n∏
j=1

(ρj)kj
kj !

(
zje
−t {− ζ(u)}mj

)kj
dt.

In Eqn. (4.6) we use the formula (4.1) and derive right hand side of (4.3).

Corollary 4.1. If all conditions of the Theorem 4.1 are satisfied and if

(4.7) χ= HA : B(1); . . . ;B(n)

C : D(1); . . . ;D(n), (given in (1.2)),

then by the definition of Srivastava-Panda hypergeometric series in several variables [18], there exists

(4.8) ∆
(α,β)
N

[
HA : B(1); . . . ;B(n)

C : D(1); . . . ;D(n);m1, . . . ,mn; z1, . . . , zn, t

]
= F

A+ 1 : B(1) + 1; . . . ;B(n) + 1
C + 1 : D(1); . . . ;D(n)

( [
(a) : θ(1), . . . , θ(n)

]
, [−N : m1, . . . ,mn] :[

(c) : δ(1), . . . , δ(n)
]
, [α+ βN + 1 : m1, . . . ,mn] :[(

b(1)
)

: ψ(1)
]
, [ρ1 : 1] ; . . . ;

[(
b(n)

)
: ψ(n)

]
, [ρn : 1] ;[(

d(1)
)

: φ(1)
]

; . . . ;
[(
d(n)

)
: φ(n)

]
;

z1e
−t, . . . , zne

−t
)
.

and the integral representation

(4.9)
(1 + ζ(u))

α+1

{1− βζ(u)}
s
ηK

(
HA : B(1); . . . ;B(n)

C : D(1); . . . ;D(n); ρ1, . . . , ρn; z1 {− ζ(u)}m1 , . . . , zn {− ζ(u)}mn
)
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=
1

Γ(s)

∫ ∞
0

e−ηtts−1

{ ∞∑
N=0

uN
(
α+ (β + 1)N

N

)

×FA+ 1 : B(1) + 1; . . . ;B(n) + 1
C + 1 : D(1); . . . ;D(n)

( [
(a) : θ(1), . . . , θ(n)

]
, [−N : m1, . . . ,mn] :[

(c) : δ(1), . . . , δ(n)
]
, [α+ βN + 1 : m1, . . . ,mn] :[(

b(1)
)

: ψ(1)
]
, [ρ1 : 1] ; . . . ;

[(
b(n)

)
: ψ(n)

]
, [ρn : 1] ;[(

d(1)
)

: φ(1)
]

; . . . ;
[(
d(n)

)
: φ(n)

]
;

z1e
−t, . . . , zne

−t
)
dt

=
1

Γ(s)

∫ ∞
0

e−ηtts−1

{ ∞∑
N=0

uN
(
α+ (β + 1)N

N

)
∆

(α,β)
N

[
HA : B(1); . . . ;B(n)

C : D(1); . . . ;D(n);m1, . . . ,mn; z1, . . . , zn, t

] }
dt.

Corollary 4.2. If all conditions of the Theorem 4.1 are satisfied and in the coefficients

χ= HA : B(1); . . . ;B(n)

C : D(1); . . . ;D(n),

we consider
(4.10) A = C = 0;B(1) = D(1), . . . , B(n) = D(n); θ(1) = . . . = θ(n) = 1; δ(1) = . . . = δ(n) = 1;

ψ(1) = . . . = ψ(n) = 1;φ(1) = . . . = φ(n) = 1;
(
b(1)
)

=
(
d(1)

)
; . . . ;

(
b(n)

)
=
(
d(n)

)
.

Also let m1 = . . . = mn = 1.
Then by the definition of Lauricella’s hypergeometric series in several variables [9],following results hold

(4.11) ∆
(α,β)
N

[
H0 : B(1); . . . ;B(n)

0 : B(1); . . . ;B(n); 1, . . . , 1; z1, . . . , zn, t

]
= F

(n)
D (−N, ρ1, . . . , ρn;α+ βN + 1; z1e

−t, . . . , zne
−t).

(4.12)
(1 + ζ(u))

α+1

{1− βζ(u)}
s
ηK

(
H0 : B(1); . . . ;B(n)

0 : B(1); . . . ;B(n); ρ1, . . . , ρn; z1 {− ζ(u)} , . . . , zn {− ζ(u)}
)

=
1

Γ(s)

∫ ∞
0

e−ηtts−1

{ ∞∑
N=0

uN
(
α+ (β + 1)N

N

)
∆

(α,β)
N

[
H0 : B(1); . . . ;B(n)

0 : B(1); . . . ;B(n); 1, . . . , 1; z1, . . . , zn, t

] }
dt.

In the Eqns. (4.11) and (4.12), set z1 = . . . = zn = z to get

(4.13) ∆
(α,β)
N

[
H0 : B(1); . . . ;B(n)

0 : B(1); . . . ;B(n); 1, . . . , 1; z, . . . , z, t

]
= 2F1(−N, ρ1 + . . .+ ρn;α+ βN + 1; ze−t).

(4.14) s
ηK

(
H0 : B(1); . . . ;B(n)

0 : B(1); . . . ;B(n); ρ1, . . . , ρn; z {− ζ(u)} , . . . , z {− ζ(u)}
)

=
(1 + ζ(u))

α+1

{1− βζ(u)}

∫ ∞
0

e−ηt

(1− z {− ζ(u)} e−t)ρ1+...+ρn

ts−1

Γ(s)
dt

=
(1 + ζ(u))

α+1

{1− βζ(u)}

∫ ∞
0

e−(η−ρ1−...−ρn)t

(et − z {− ζ(u)})ρ1+...+ρn

ts−1

Γ(s)
dt,

provided that R (η − ρ1 − . . .− ρn) > 0.
Again since we know that a relation of Lauricella’s multiple hypergeometric function with the Appell’s

double hypergeometric function given by

(4.15) F
(n)
D = F1,

and hence on setting n = 2 in (4.11) and (4.12), we get

(4.16) ∆
(α,β)
N

[
H0 : B(1);B(2)

0 : B(1);B(2); 1, 1; z1, z2, t

]
= F1(−N, ρ1, ρ2;α+ βN + 1; z1e

−t, z2e
−t).

(4.17)
(1 + ζ(u))

α+1

{1− βζ(u)}
s
ηK

(
H0 : B(1);B(2)

0 : B(1);B(2); ρ1, ρ2; z1 {− ζ(u)} , z2 {− ζ(u)}
)

=
1

Γ(s)

∫ ∞
0

e−ηtts−1

{ ∞∑
N=0

uN
(
α+ (β + 1)N

N

)
∆

(α,β)
N

[
H0 : B(1);B(2)

0 : B(1);B(2); 1, 1; z1, z2, t

] }
dt

=
1

Γ(s)

∫ ∞
0

e−ηtts−1

{ ∞∑
N=0

uN
(
α+ (β + 1)N

N

)
F1(−N, ρ1, ρ2;α+ βN + 1; z1e

−t, z2e
−t)

}
dt.

91



5 Application in non-homogeneous initial value fractional differential equation

It is familiar that the Caputo fractional differential operator
(
CD

α

a+y
)

(x) is defined on a finite interval
[a, b] where y(x) ∈ ACn[a, b], R(α) = 0 and for n = [R(α)] + 1 for α /∈ N0; N0= N∪{0} ;n = α for
α ∈ N0. ACn[a, b] =

{
y : [a, b]→ C and

(
Dn−1y

)
(x) ∈ AC[a, b]

(
D = d

dx

)}
; again if ϕ(t) ∈ L(a, b), then

for y(x) ∈ AC[a, b]⇔ y(x) = c+
∫ x
a
ϕ(t)dt =⇒ d

dxy(x) = ϕ(x), d
dxy(x)

∣∣∣∣x = a
= c ; then there exists

(5.1)
(
CD

α

a+y
)

(x) =
1

Γ ((n− α))

∫ x

0

y(n)(t)dt

(x− t)α+1−n

(
x ∈ R+

)
.

(See in [5, p.97]).
Again if 0 < α 5 1, then by [4, p.98] where (Ly) (η) = 1

Γ(s)

∫∞
0
e−ηtts−1y(t)dt, η∈ C, R(η) > 0, there

exists

(5.2)
(
LCDα

0+y
)

(η) = ηα (Ly) (η)− ηα−1y(0).

Theorem 5.1. In reference of (5.1), for t ∈ R+ = (0,∞), if we introduce a non-homogeneous initial value
fractional differential equation as

(5.3)
(
CD

α

a+y
)

(t) + y(t) =
ts−1

Γ(s)


∞∑

k1=0,...,kn=0

χ (k1, . . . , kn)

n∏
j=1

(ρj)kj
kj !

(
zje
−t)kj ; y(0) = 0;

provided that s∈ C, R(s) > 0.
Then for s∈ C, R(s) > 0, 0 < α 5 1, there exists

(5.4) y(t) =
1

2πi

∫ τ+i∞

τ−i∞
etη

s
ηK(χ; ρ1, ..., ρn; z1, ..., zn)

(ηα + 1)
dη (τ = <(η) > 0, i =

√
(−1)).

Proof. Consider η ∈ C,R(η) > 0, and take Laplace transformation of both sides of the Eqn. (5.3) and then
use formulae (4.1) and (5.2) with initial value given in (5.3), we get

(5.5) (ηα + 1) (Ly) (η) = s
ηK (χ; ρ1, . . . , ρn; z1, . . . , zn) ,

which on taking inverse Laplace transformation gives a solution

(5.6) y(t) =
1

2πi

∫ τ+i∞

τ−i∞
etη

s
ηK(χ; ρ1, ..., ρn; z1, ..., zn)

(ηα + 1)
dη (τ = R(η) > 0, i =

√
(−1))

provided that s∈ C, R(s) > 0, 0 < α 5 1.

6 Concluding remarks

In this section, in the Corollary 2.2, set p = 1, q = 1, a1 = ρ1 + . . .+ ρn − 1
2 , b1 = 2 (ρ1 + . . .+ ρn)∈ C\Z0,

λ1 = 1 , µ1 = 1 and then apply the result [12, p.70].Thus we find an interesting Zeta function for R(s) >
0,R(η) > 0 as

(6.1) s
ηK (χ; ρ1, . . . , ρn; z, . . . , z) =

∞∑
k=0

(a1)k (ρ1 + . . .+ ρn)k
(b1)k k!

zk

(k + η)s
= Φ

(1,1;1)
(a1,ρ1+...+ρn;b1)(z, s, η)

=
1

Γ(s)

∫ ∞
0

e−ηtts−1

{
2F1

(
ρ1 + . . .+ ρn − 1

2 , ρ1 + . . .+ ρn;
2 (ρ1 + . . .+ ρn) ;

ze−t
)}

dt

=
1

Γ(s)

∫ ∞
0

e−ηtts−1


(

2

1 +
√

(1− ze−t)

)2(ρ1+...+ρn) −1
 dt

=
1

Γ(s)

∫ ∞
0

e−(η + 1
2 −ρ1−...−ρn)tts−1


(

2

e
t
2 +

√
(et − z)

)2(ρ1+...+ρn) −1
 dt,

provided R
(
η + 1

2 − ρ1 − . . .− ρn
)
> 0.

Again, in the Corollary 2.2, set p = 1, q = 1, a1 = ρ1 + . . .+ ρn + 1
2 , b1 = 2 (ρ1 + . . .+ ρn)∈ C\Z0,
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λ1 = 1 , µ1 = 1, and then on application of the result [12, p.70], we find another interesting Zeta function
for R(s) > 0,R(η) > 0 as

s
ηK (χ; ρ1, . . . , ρn; z, . . . , z) =

∞∑
k=0

(a1)k (ρ1 + . . .+ ρn)k
(b1)k k!

zk

(k + η)s
= Φ

(1,1;1)
(a1,ρ1+...+ρn;b1)(z, s, η)(6.2)

=
1

Γ(s)

∫ ∞
0

e−ηtts−1

{
2F1

(
ρ1 + . . .+ ρn + 1

2 , ρ1 + . . .+ ρn;
2 (ρ1 + . . .+ ρn) ;

ze−t
)}

dt

=
1

Γ(s)

∫ ∞
0

e−(η −ρ1−...−ρn)tts−1

(
1√

(et − z)

)
(

2

e
t
2 +

√
(et − z)

)2(ρ1+...+ρn) −1
 dt,

provided R
(
η + 1

2 − ρ1 − . . .− ρn
)
> 0.

Various generating relations and integral representations may be found by applying results obtained in
the Sections 3 to 5.
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Abstract

In this paper, we prove some ordered-theoretic fixed point results for a Geraghty-weak contraction
on an ordered extended rectangular b−metric spaces. Our results generalize several core results of the
existing literature especially involving Geraghty-weak contractions and the results proved in extended
rectangular b−metric space. Some examples are also furnished to exhibits the utility of our main results.
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1 Introduction
In 1992, Banach [10] introduced the classical fixed point theorem which is known as Banach contraction
principle. The concept of generalized metric space has been increased by adding new generalized metrics one
after another. The class of b−metric spaces [12] is generalized by the classes of extended b−metric spaces
[21] as well as rectangular b−metric spaces [15] and so on. Now days, it is not only the metric spaces that are
generalized by time to time but mappings are also. For example contraction mapping is generalized by weak
contractions Geraghty contractions [14] and many others. The importance of fixed theory is also increasing
day by day. In 2008, George et al. [15] introduced rectangular b−metric with the combination of rectangular
and b−metric. In 2019, Asim et al. [4] introduced extended rectangular b−metric space and prove some fixed
points. Recently in 2021, sharma and Tiwari [31] established some fixed-point theorems for three functions
on contraction and expansive mappings in rectangular b−metric spaces. Also, very recently in 2022, Joshi
[22] established some common fixed-point theorems for generalized multi-valued contraction in b−metric and
dislocated b−metric spaces. Now, we apply the concept of ordered on extended rectangular b−metric space
by using the mapping Geraghty-weak contraction. We recall the Definition of extended rectangular b−metric
space as follow:

2 Preliminaries
Definition 2.1. ([4]). Let U be non-empty set. Also θ : U×U → [1,∞). Let a mapping rθ : U×U → R+ will
be extended rectangular b−metric on U if it satisfy following properties (∀ u, v ∈ U and a, b ∈ U \{a, b}, a 6=
b):

(a) rθ(u, v) = 0⇐⇒ u = v,
(b) rθ(u, v) = rθ(v, u),
(c) rθ(u, v) ≤ θ(u, v)[rθ(u, a) + rθ(a, b) + rθ(b, v)].

The pair (U, rθ) is said to be extended rectangular b−metric space.

Example 2.1. ([4]). Let U = {1, 2, 3, 4, 5}. A mapping θ : U × U → [1,∞) such that θ(u, v) = u + v +
1 ∀ u, v ∈ U . Also rθ : U × U → R+. Now, we can see that ‘rθ’ is an extended b−metric space.

Definition 2.2. ([4]). Let (U, rθ) be an extended rectangular b−metric space and consider a sequence {un}
of U . We say that

(a) {un} is said to be Cauchy if for each ε > 0 there exists a natural number N such that rθ(un, um) <
ε ∀ n > m > N .

(b) {un} is said to be convergent if for each ε > 0 there exists a natural number N such that rθ(un, u) <
ε ∀ n > N .
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(c) (U, rθ) is said to be complete if every Cauchy sequence is convergent in (U, rθ).

Remark 2.1 ([4]). If we replace the function ‘θ’ with a variable s ≥ 1 then it will result in rectangular
b−metric space. We can conclude that extended rectangular b−metric space =⇒ rectangular b−metric space.
Before chalking out our main result, we give the following definitions, notations and results for the setting
of ordered relation in the framework of extended rectangular b−metric spaces. So, lets move to the some
definition which is needed in our forthcoming discussion.

Definition 2.3. Let (U,�) be an ordered set and (U, rθ) an extended rectangular b−metric space. Then a
triplet (U, rθ,�) is called an ordered extended rectangular b−metric space.

Definition 2.4. Let (U, rθ,�) be an ordered extended rectangular b−metric space. Let T be a self-mapping.
Then

(a) (U, rθ,�) is said to follow the property increasing-convergence-comparable (in short ICC-property) if
each terms of {unk}, any subsequence of increasing convergent sequence {un} in U is comparable with
the limit of {un}. In other words,
un ↑ u, there exists {unk} a subsequence of {un} also un ≺� u ∀ k ∈ N.

(b) (U, rθ,�) is said to follow the property of decreasing-convergence-comparable (in short DCC-property)
if each terms of {unk}, any subsequence of decreasing convergent sequence {un} in U is comparable with
the limit of {un}. In other words, un ↓ u, there exists {unk} a subsequence of {un} also un ≺� u ∀ k ∈
N.

(c) (U, rθ,�) is said to the property of follow monotone-convergence-comparable (in short MCC-property)
if each terms of {unk}, any subsequence of monotone convergent sequence {un} in U is comparable
with the limit of {un}. In other words, un ↑↓ u, there exists {unk} a subsequence of {un} also
un ≺� u ∀ k ∈ N.

Definition 2.5. Let (U, rθ,�) be an ordered extended rectangular b−metric space and T be a self-mapping
on U . Then T is called O − rθ-continuous (resp. O − rθ-continuous, O − rθ-continuous) at point u ∈ U if

T (un)
rθ−→ T (u) un ↑ u (resp. un ↓ u, un ↑↓ u) for any sequence {un} ⊂ U . Also, T is said to be O − rθ-

continuous (resp. O− rθ-continuous, O− rθ-continuous) if T is O− rθ-continuous (resp. O− rθ-continuous,
O − rθ-continuous) at each point of U .

Remark 2.2. In (U, rθ,�), continuity =⇒ O − rθ-continuity =⇒ O − rθ-continuity also O − rθ-continuity.

Definition 2.6. Let {un} be a sequence in (U, rθ,�). Then {un} will be O − rθ-Cauchy (resp. O − rθ-
Cauchy, O − rθ-Cauchy) at point u ∈ U if {un} is an increasing sequence (resp. decreasing and monotone)
and rθ-Cauchy. Moreover, {un} is called O− rθ-convergent (resp. O− rθ-convergent, O− rθ-convergent) at
point u ∈ U if {un} is an increasing (resp. decreasing and monotone) rθ-convergent sequence, abbreviated
by un ↑ u (resp. un ↓ u, un ↑↓ u).

Definition 2.7. Let {un} be any sequence in (U, rθ,�). Then {un} is said to be O − rθ-complete (resp.
O − rθ-complete, O − rθ-complete) at point u ∈ U if each O − rθ-Cauchy (resp. O − rθ-Cauchy, O − rθ-
Cauchy) sequence in U if it converges to any point u ∈ U.

Remark 2.3. In ordered extended rectangular b−metric space, completeness =⇒ O − rθ-completeness =⇒
O − rθ-completeness also O − rθ-completeness.
Now, we have all the definition regarding the topic in our minds. The first classic fixed point theory was
given by S. Banach [10] known as Banach contraction principle. But as few decades passed away, it has
been generalized number of ways one of them is Geraghty-weak contraction. Geraghty principle came into
existence in 1973 when Geraghty generalized the Banach contraction principle. Later, in 2016 Roshan et
al. by using Geraghty-weak contraction proved fixed point results in the b-metric space. Also in 2021, fixed
point results in ordered partial rectangular b−metric space was proved by Asim et al. [5] with Geraghty-weak
contraction theory. Now a day, many researchers are utilizing of this mapping in their research. In this
chapter we are using Geraghty-weak contraction principle to prove fixed point results for ordered extended
rectangular b−metric space by employing suitable conditions.
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3 Main Results

Definition 3.1. Let λ : [0,∞)→ [0, 1
θ ) (θ : U×U → [1,∞)) which satisfy the given condition for un ∈ [0,∞),

any sequence:

lim
n→∞

supλ(un) =
1

θ
=⇒ lim

n→∞
(un) = 0.

The collection of such functions of λ is denoted by Λ.

Definition 3.2. Suppose (U, rθ,�) is an ordered extended rectangular b−metric space. Let T be a self-
mapping, is called Geraghty-weak contraction if ∃ λ ∈ Λ we have u � v ∀ u, v ∈ U) such that

(3.1) rθ(T (u, T (v))) ≤ λ(rθ(u, v))M(rθ(u, v)),

and

M(rθ(u, v)) = max

{
(rθ(u, v)),

rθ(u, T (u))rθ(v, T (v))

1 + rθ(T (u), T (v))
,
rθ(u, T (u))rθ(v, T (v))

1 + rθ(u, v)
,

rθ(u, T (u))rθ(u, T (v))

1 + rθ(u, T (v)) + rθ(v, T (u))

}
.

Theorem 3.1. Let (U, rθ,�) be an ordered extended rectangular b-metric space and T : U → U an increasing
mapping. Suppose these conditions holds:

(i) there exists an u0 ∈ U such that u0 � T (u0),
(ii) T is Geraghty-weak contraction,

(iii) (U, rθ,�) is O − rθ-complete,
(iv) either

(a) T is O − rθ-continuous or
(b) (U, rθ,�) have the ICC-property.

Then we assure that T has a fixed point.

Proof. Let u0 ∈ U such that u0 � T (u0). As we know the mapping T is an increasing hence, we can construct
an increasing sequence {un}, then we have for all n ∈ N0

u1 = T (u0), u2 = T (u1), u3 = T (u2), · · · , un+1 = T (un).

If we have rθ(un, un+1) = 0 for some n ∈ N0, then we can say that {un} is a fixed point of T and we
get our required result. Now, we have to suppose that rθ(un, un+1) > 0 for all n ∈ N0. We assert that
lim
n→∞

rθ(un, un+1) = 0. By placing u = un−1 with v = un in (3.1), we have result

rθ(un, un+1) = rθ(T (un−1), T (un))(3.2)

≤ λ(rθ(un−1, un))M(rθ(un−1, un))

<
1

θ
M(rθ(un−1, un)) ≤M(rθ(un−1, un))

and

M(rθ(un−1, un)) = max

{
rθ(un−1, un),

rθ(un−1, T (un−1))rθ(un, T (un))

1 + rθ(T (un−1), T (un))
,

rθ(un−1, T (un−1))rθ(un, T (un))

1 + rθ(un−1, un)
,

rθ(un−1, T (un−1))rθ(un−1, T (un))

1 + rθ(un−1, T (un)) + rθ(un, T (un−1))

}

= max

{
rθ(un−1, un),

rθ(un−1, un)rθ(un, un+1)

1 + rθ(un, un+1)
,

rθ(un−1, un)rθ(un, un+1)

1 + rθ(un−1, un)
,

rθ(un−1, un)rθ(un−1, un+1)

1 + rθ(un−1, un+1) + rθ(un, un)

}
≤ max{rθ(un−1, un), rθ(un−1, un), rθ(un, un+1), rθ(un−1, un)}
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= max{rθ(un−1, un), rθ(un, un+1)}.
Now suppose that, max{rθ(un−1, un), rθ(un, un+1)} = rθ(un, un+1), by using (3.2) we get,

rθ(un, un+1) <
1

θ
M(rθ(un−1, un)) ≤ rθ(un, un+1).

which is a contradiction. Hence, max{rθ(un, un+1, rθ(un, un+1)} = rθ(un−1, un). Therefore, by using (3.2)
we have,

(3.3) rθ(un, un+1) < rθ(un−1, un).

Thus {rθ(un, un+1)} is the decreasing sequence of non-negative real numbers. Hence, there must exists b ≥ 0
such that

lim
n→∞

rθ(un, un+1) = b.

Assume that b > 0. Then from (3.2), we get

lim
n→∞

rθ(un, un+1) ≤ lim
n→∞

[λ(rθ(un−1, un))M(rθ(un−1, un)].

By the definition of λ we get b < 1
θ b, a contraction. Thus,

(3.4) lim
n→∞

rθ(un, un+1) = 0.

Now, by taking u = un−1 with that we take v = un+1 in (3.1), we get

rθ(un, un+2) = rθ(T (un−1), T (un+1)) ≤ λ(rθ(un−1, un+1)M(rθ(un−1, un+1))(3.5)

<
1

θ
M(rθ(un−1, un+1)) ≤M(rθ(un−1, un+1)),

where,

M(rθ(un−1, un+1)) = max

{
rθ(un−1, un+1),

rθ(un−1, T (un−1))rθ(un+1, T (un+1))

1 + rθ(T (un−1), T (un+1))
,

rθ(un−1, T (un−1))rθ(un+1, T (un+1))

1 + rθ(un−1, un+1)
,

rθ(un−1, T (un−1))rθ(un−1, T (un+1))

1 + rθ(un−1, T (un+1)) + rθ(un+1, T (un−1))

}

= max

{
rθ(un−1, un+1),

rθ(un−1, un)rθ(un+1, un+2)

1 + rθ(un, un+2)
,

rθ(un−1, un)rθ(un+1, un+2)

1 + rθ(un−1, un+1)
,

rθ(un−1, un)rθ(un−1, un+2)

1 + rθ(un−1, un+2) + rθ(un+1, un)

}
≤ max

{
rθ(un−1, un+1), [rθ(un−1, un)rθ(un+1, un+2)]

[rθ(un−1, un)rθ(un+1, un+2)], rθ(un−1, un)
}
.

Using (3.3) we get,

M(rθ(un−1, un+1)) ≤ max{rθ(un−1, un+1), rθ(un−1, un), [rθ(un−1, un)]2}.
First of all, let us suppose that

max{rθ(un−1, un+1), rθ(un−1, un), [rθ(un−1, un)]2} = rθ(un−1, un)or[rθ(un−1, un)]2.

As lim
n→∞

rθ(un−1, un) = 0, by using (3.5), we get

lim
n→∞

rθ(un, un+2) = 0.

If the equation max{rθ(un−1, un+1), rθ(un−1, un), [rθ(un−1, un)]2} = rθ(un−1, un+1) is true, by using (3.5),
we get

rθ(un, un+2) < rθ(un−1, un+1).

Thus {rθ(un, un+2)} is a decreasing sequence of non-negative real numbers. Hence, there must exists b ≥ 0
such that

lim
n→∞

rθ(un, un+2) = b.
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Let us assume that b > 0. Then from (3.5), we get

lim
n→∞

rθ(un, un+2) ≤ lim
n→∞

λ(rθ(un−1, un+1))M(rθ(un−1, un+1)).

By using the definition of λ we get b < 1
θ b, a contradiction. Thus, we obtain

(3.6) lim
n→∞

rθ(un, un+2) = 0.

Now, we have to show that un 6= um for each n = m. On contrary we suppose that, un = um for some
n > m, then we get un+1 = T (un) = T (um) = xm+1. Then, from (3.2) we have

rθ(um, um+1) = rθ(un, un+1) = rθ(T (un−1, T (un)))

≤ λ(rθ(un−1, un))M(rθ(un−1, un))

<
1

θ
M(rθ(un−1, un)) ≤M(rθ(un−1, un))

≤ max{rθ(un−1, un)rθ(un, un+1)}.
Therefore, we get

max{rθ(un−1, un), rθ(un, un+1)} = rθ(un, un+1),

so that
rθ(um, um+1) < rθ(un, un+1),

which is a contradiction. Suppose

max{rθ(un−1, un), rθ(un, un+1)} = rθ(un−1, un),

we have

rθ(um, um+1) = rθ(un, un+1) < rθ(un−1, un) < rθ(un−2, un−1) < · · · < rθ(um, um+1)),

which is a contradiction. So, we can take un 6= um ∀ n 6= m. Now its turn to prove that {un} is O − rθ-
Cauchy sequence in (U, rθ,�). On contrary suppose that, {un} is not O − rθ-Cauchy sequence. So there
must exist ε > 0 and also two subsequences {nk} and {mk} such that {nk} is the index which is smallest for
that

(3.7) {nk} > {mk} > k and rθ(umk , unk) ≥ ε

2
,

which implies that

(3.8) rθ(umk , unk−1
) <

ε

2
.

Now, on using rectangular inequality, we have

(3.9)
ε

2
≤ rθ(umk , unk) ≤ θ(rθ(umk , unk−1

) + θ(rθ(unk−1
, unk+1

)) + θ(rθ(unk+1
, unk).

Now, using (3.4) (3.6) (3.8) and also taking limit as k →∞, we have

(3.10)
ε

2
≤ lim
k→∞

sup rθ(umk , unk) ≤ θ
( ε

2

)
.

On using (3.1) and definition of rθ, we have

lim
k→∞

rθ(umk , unk) ≤ lim
k→∞

θ(rθ(xmk+1
, umk)) + lim

k→∞
θ(rθ(xmk+1

, unk+1
)(3.11)

+ lim
k→∞

θ(rθ(unk+1
, unk),

≤ θ lim
k→∞

λ(rθ(umk , unk))M(rθ(umk , unk)),

where,

M(rθ(umk , unk)) = max

{
rθ(umk , unk),

rθ(umk , T (umk))rθ(unk , T (unk))

1 + rθ(T (umk), T (unk))
,(3.12)

rθ(umk , T (umk))rθ(unk , T (unk))

1 + rθ(umk , unk)
,

rθ(umk , T (umk))rθ(umk , T (unk))

1 + rθ(umk , T (unk)) + rθ(unk , T (umk))

}
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= max

{
rθ(umk , unk),

rθ(umk , umk+1
)rθ(unk , unk+1

)

1 + rθ(xmk+1
, unk+1

)
,

rθ(umk , umk+1
)rθ(unk , unk+1

)

1 + rθ(umk , unk)
,

rθ(umk , umk+1
)rθ(umk , unk+1

)

1 + rθ(umk , unk+1
) + rθ(unk , umk+1

)

}
.

Taking the limit k →∞ and using (3.12), we have

lim
n→∞

supM(rθ(umk , unk)) = lim
n,m→∞

sup(rθ(umk , unk)).

By using (3.11), we get

lim
n→∞

sup rθ(umk , unk) ≤ θ lim
n,m→∞

supλ(rθ(umk , unk)) lim
n,m→∞

sup(rθ(umk , unk)).

As we have supposed that lim
k→∞

sup rθ(umk , unk) 6= 0, then from above inequality, we have

1

θ
≤ lim
k→∞

supλrθ(umk , unk).

Since λ ∈ Λ, so that lim
n,m→∞

rθ(umk , unk) = 0, which is in general a contradiction. Hence, we assure that

{un} is O − rθ-Cauchy sequence in (U, rθ,�). As (U, rθ,�) is O − rθ-complete so there must exist u ∈ U
such that un ↑ u and also,

lim
n,m→∞

rθ(un, um) = 0.

Now coming to last condition, first of all suppose that T is O− rθ- continuous then we will show that x is a
fixed point of T .

x = lim
n→∞

un+1 = lim
n→∞

T (un) = T ( lim
n→∞

un) = T (u).

Now, we take second condition, i.e., (U, rθ,�) follows ICC-property. So there must exist a subsequence of
{un} which is {unk} such that {unk} ≺� u ∀ k ∈ N. First we take {unk � x ∀ k ∈ N (proof for both case
are alike). So by using (3.1), we get

lim
k→∞

rθ(unk+1
, T (u)) = lim

k→∞
rθ(T (unk), T (u))

≤ lim
k→∞

λ(rθ((unk), u)) lim
k→∞

M(rθ((unk), u)

where

lim
k→∞

M(rθ((unk), u) = lim
k→∞

(
max

{
rθ((unk), u),

rθ(unk , T (unk)), rθ(u, T (u))

1 + rθ(T (unk), T (u))
,

rθ(unk , T (unk)), rθ(u, T (u))

1 + rθ(unk , u)
,

rθ(unk , T (unk)), rθ(unk , T (u))

1 + rθ(unk , T (u)) + rθ(u, T (unk))

})

= lim
k→∞

(
max

{
rθ((unk), u),

rθ(unk , unk+1
), rθ(u, T (u))

1 + rθ(unk+1
, T (u))

,

rθ(unk , unk+1
), rθ(u, T (u))

1 + rθ(unk , u)
,

rθ(unk , unk+1
), rθ(unk , T (u))

1 + rθ(unk , T (u)) + rθ(u, unk+1
)

})
= lim

k→∞
rθ((unk), u).

Therefore
lim
k→∞

rθ((unk), u.) = lim
k→∞

rθ(unk+1
, T (u)) = 0.
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We assert that the terms unk and unk+1
∀ k ∈ N are distinct from u and T (u) both. By definition ,we have

(3.13) rθ(u, T (u)) ≤ θ[rθ(u, unk) + rθ(unk , unk+1
) + rθ(unk+1

, T (u))].

By taking k → ∞ and using (3.4) and (3.13), we have rθ(u, T (u)) = 0. Hence we can say that T (u) = u.
So, u is a fixed point of T .

Example 3.1. Consider U = (−1, 0]. Define rθ : U × U → R+ by (for all u, v ∈ U):

rθ(u, v) = |u− v|2.
Notice that, every increasing Cauchy sequence is convergent in U . Therefore, (U, rθ,�) is an O-complete
rθ−metric space with coefficient θ(u, v) = 2 for all u, v ∈ U .

Now, we define an ordered relation on U as under:

u, v ∈ U, u � v ⇔ u = v or

(
u, v ∈ {0} ∪

{
−1

n
: n = 2, 3, · · ·

}
and u ≤ v

)
,

where ≤ is the usual order. Define the mappings T : U → U as follows:

Tu =


0, if u = 0
−1
2n , if u = −1/n, n = 2, 3, · · ·
−0.5, otherwise

.

Observe that, T is increasing and U has the ICC-property. We distinguish two cases:
Case 1. Taking u = −1/n, (wherein n = 3, 4, · · · ) and v = 0. Then, from (3.1), we have

(3.14) rθ(Tu, Tv) =

∣∣∣∣−1

2n
− 0

∣∣∣∣2 =
1

4

∣∣∣∣−1

n
− 0

∣∣∣∣2 =
1

4
rθ(u, v).

Case 2. Taking u = −1/n, v = −1/m m > n ≥ 3. Then, we have

(3.15) rθ(Tu, Tv) =

∣∣∣∣−1

2n
− −1

2m

∣∣∣∣2 =
1

4

∣∣∣∣−1

n
− −1

m

∣∣∣∣2 =
1

4
rθ(u, v).

If u = v, then condition (3.1) holds trivially. Thus, all the conditions of Theorems 3.1 are satisfied and the
mapping T has a unique fixed point (namely u = 0).

Example 3.2. Let U = {1, 2, 3, 4, 5} be equipped with the order relation � given by

�= {(1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (4, 1), (4, 2), (4, 3), (4, 5), (1, 3), (2, 3), (5, 3)}
and let rθ : U × U → R+ is defined by:

rθ(u, u) = 0, for all u ∈ U ;

rθ(u, v) = rθ(v, u), for all u, v ∈ U ;

rθ(1, 3) = rθ(1, 5) = rθ(2, 3) = rθ(3, 5) = 3t;

rθ(1, 4) = rθ(2, 4) = rθ(2, 5) = rθ(3, 4) = rθ(4, 5) = 4t;

rθ(1, 2) = 5t;

where 0 < t < − ln(3/4), that is, e−t > 3/4. Therefore, (U, rθ,�) is an O-complete rθ−metric space with
coefficient θ(u, v) = 3 for all u, v ∈ U . Consider a mapping T : U → U defined by:

T =

(
1 2 3 4 5
3 3 3 1 3

)
.

It is easy to check that all the conditions of Theorem 3.1 are fulfilled with λ(u) = e−u for each u > 0 and
λ(0) ∈ [0, 1/3). In particular, by choosing u, v ∈ {1, 2, 3, 5} such that u � v, then Tu = Tv = 3 implies the
condition (3.1) is trivially holds. Now, if we take u = 4 and v ∈ {1, 2, 3, 5}, such that u � v, we obtain
Tu = 1 and Tv = 3. Then by (3.1), we have

rθ(Tu, Tv) = rθ(1, 3) = 3t =
3

4
4t < e−t.4t

= λ(t)d(x, y) ≤ λ
(
rθ(x, y)

)
M(x, y).

It follows that T has a unique fixed point (which is x = 3).
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If we replace O-completeness of U and O-continuity of T in Theorem 3.1, then it remains a new version
as given follows:

Corollary 3.1. Let (U, rθ,�) be an ordered extended rectangular b−metric space and T : U → U be an
increasing mapping. Suppose these conditions holds:

1. T follow Geraghty-weak contraction,
2. (U, rθ,�) is complete,
3. T is continuous.

Then we assure that T has a fixed point.

If we replace Geraghty-weak-contraction by contraction condition in Theorem 3.1, then it remains a new
version of the Theorem 3.1 due to Asim et al. [4].

Corollary 3.2. Let (U, rθ,�) be an ordered extended rectangular b−metric space and T : U → U be an
increasing mapping. Suppose these conditions holds:

1. there exists an u0 ∈ U such that u0 � T (u0),
2. If u � v ∀u, v ∈ U, then we get

rθ(T (u), T (v)) ≤ LM(rθ(u, v)),

where, L ∈ [0,∞).
3. (U, rθ,�) is O − rθ-complete,
4. either

(a) T is O − rθ-continuous or follow
(b) (U, rθ,�) have the ICC-property.

Then we assure that T has a fixed point.

Corollary 3.3. Let (U, rθ) be a complete extended rectangular b−metric space and T be a continuous and
self-mapping. Also suppose T follows the property of Geraghty-weak contraction. Then we assure that T has
a fixed point.

Proposition 3.1. ([5]). Let (U, rθ,�) be an ordered extended rectangular b−metric space and T : U → U is
a Geraghty-weak contraction. If u ≺� v then u = v ∀ u, v ∈ Fix(f).

Definition 3.3. ([20]). Suppose (U,�) is an ordered set and let T be an self-mapping. Then we define

UT = {u ∈ U : u ≺� T (u)}.
Then (U,�) is said to be T− directed if there exists a ∈ UT such that u ≺� a ≺� v ∀u, v ∈ U.

Theorem 3.2. If with all the conditions of Theorem 3.1 we add that (U,�) is T−directed. Then we assure
that T has a unique fixed point.

Proof. Let us suppose that u and v be two different points of T. Also as (U,�) is T−directed then there
must exists a ∈ UT such that u ≺� a ≺� v. If we take a = u or a = v then by above preposition we have
u = v, which is a contradiction. Hence, we have to suppose that u 6= a, v 6= a. As we know a ∈ UT then we
get a ≺� T (a). By putting a = a0 where a0 � T (a0) we define a sequence {an} as follow

an+1 = T (an), n ∈ N0.

As we know that T is an increasing mapping and u ≺� a ≺� v, we get

u ≺� an ≺� v, n ∈ N0.

If we put an = an+1 for any n ∈ N0, then we have, an is the fixed point of T and by relation and above
preposition we get u = an = v, which is a contradiction. So, we can’t say an = an+1 for all n ∈ N0. Now, by
proceeding the proof of Theorem 3.1 we can prove that

(3.16) lim
n,m→∞

rθ(an, am) = 0.

Using (3.1), we get

rθ(u, an) = rθ(T (u), T (un+1)) ≤ λ(rθ(u, an−1))M(rθ(u, an−1))(3.17)

<
1

θ
M(rθ(u, an−1)) ≤ (rθ(u, an−1),
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and

M(rθ(u, an−1)) = max

{
(rθ(u, an−1)),

rθ(u, T (u))rθ(an−1, T (an−1))

1 + rθ(T (u), T (an−1))
,

rθ(u, T (u))rθ(an−1, T (an−1))

1 + rθ(u, an−1)
,

rθ(u, T (u))rθ(u, T (an−1))

1 + rθ(u, T (an−1)) + rθ(an−1, T (u))

}

= max

{
rθ(u, an−1),

rθ(an−1, (an))

1 + rθ(u, (an))
,

rθ(an−1, an)

1 + rθ(u, an−1)
,

rθ(u, an)

1 + rθ(u, an) + rθ(an−1, u)

}
= rθ(u, an−1).

As we know that {rθ(u, an)} is the decreasing sequence of positive real numbers. Then we choose b ≥ 0 such
that

lim
n→∞

rθ(u, an) = b.

Then suppose that b > 0. Then from (3.17), we get

lim
n→∞

rθ(u, an) ≤ lim
n→∞

λ(rθ(u, an−1)rθ(u, un−1).

By the definition of λ we get r < 1
θ r, which is a contradiction. Hence

(3.18) lim
n→∞

rθ(u, an) = 0.

Similarly, we can prove that

(3.19) lim
n→∞

rθ(v, an) = 0.

Now, using rectangle inequality, we have

rθ(u, v) ≤ θ[rθ(u, an) + rθ(an, an+1) + rθ(an+1, v)].

At n → ∞ and using (3.16) (3.18) (3.19), we get rθ(u, v) = 0 and we can say that u = v, which is a
contradiction. Hence, proof is complete.

The following example shows the importance of a T -directed condition in the Theorem 3.2 for the
uniqueness of a fixed point.

Example 3.3. In Example 3.2, we take �= {(1, 1), (2, 2), (3, 3), (4, 4), (5, 5)} and a mapping T : U → U
defined by:

T =

(
1 2 3 4 5
1 3 3 1 3

)
.

By choosing u, v ∈ U such that u � v and Tu = Tv = 1 or 3. Thus, the contraction condition (3.1) is trivially
hold. Therefore, all the conditions of Theorem 3.1 are satisfied except that (U,�) is not T−directed. Observe
that the mapping T has two fixed points namely u = 1 and u = 3.

Theorem 3.3. In Theorems 3.1 and 3.2, if we replace some conditions namely: increasing mapping
T to decreasing(or monotone) mapping, O−complete to O−complete(or O-complete), O−continuos to
O−continuous(or O-continuous) and ICC-property to DCC-property(or MCC-property) also replace u0 �
T (u0) by u0 � T (u0)(or u0 ≺� T (u0)). Then the result of both the remains true.
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4 Conclusion
We use geraghty-weak contraction in ordered extended rectangular b-metric space to get fixed point results,
with that we have given examples to exhibit the utility of the result.
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Abstract

If β = 〈βn〉n∈Z is a sequence of positive numbers with β0 = 1, then a slant weighted Toeplitz operator
Aφ is an operator on L2(β) defined as Aφ = WMφ where Mφ is the multiplication operator on L2(β)

given by Mφek(z) =
1

βk

∞∑
n=−∞

anβn+ken+k(z). In this paper we investigate the closure of the set of these

operators. We also discuss the C∗-algebra generated by a particular class of slant weighted Toeplitz
operators and obtain the spectral radius for this class.
2020 Mathematical Sciences Classification: 47B37; 47B35.
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1 Introduction and preliminaries
Toeplitz operators were introduced by Toeplitz [22] in the year 1911. Subsequently many mathematicians
came up with different generalizations of the Toeplitz operators. In 1995, Ho [9] introduced the class of
slant Toeplitz operators having the property that the matrices with respect to the standard orthonormal
basis could be obtained by eliminating every alternate row of the matrices of the corresponding Toeplitz
operators. These operators arise in plenty of applications like prediction theory [3], wavelet analysis [4],
signal processing [17, 18, 19], and solution of differential equations [5]. However, these studies were made in
the context of the usual Hardy spaces H2 and Hp and the Lorentz spaces L2 and Lp. Meanwhile the notion
of the weighted sequence spaces H2(β) and L2(β) came up. A systematic study of the shift operator and the
multiplication operator on L2(β) was made by Shields [20]. Lauric [13] studied particular cases of Toeplitz
operators on H2(β).

Motivated by the increasing popularity of the spaces L2(β) and H2(β) and the diverse applications of the
slant Toeplitz operators, we introduced and studied the notion of a weighted Toeplitz operator [1] and a slant
weighted Toeplitz operator [2]. We also explored the properties of the k-th order slant weighted Toeplitz
operator [3] and those of its compression on H2(β) [4]. Subsequently, others have studied the commutativity
[5] and hyponormality [10] of these operators. Several approximations of related signals functions have also
been explored [15] and [16] in Banach spaces and fuzzy normed spaces [14]. The essentially slant weighted
Toeplitz operators and their generalisations have been studied by Gupta and Singh [7]. Amongst the recent
advances in this direction is the study of a slant weighted Toeplitz operator in Calkin Algebra by Datt and
Ohri [6]. The minimal reducing subspaces of the compression of a slant weighted Toeplitz operator have been
explored by Hazarika [11]. The study of weighted Toeplitz operators and that of slant weighted Toeplitz
operators is of interest to physicists, probalists and computer scientists. In this paper we study a particular
class of the slant weighted Toeplitz operator and determine the spectral radius for it. We begin with the

following preliminaries. Let β = {βn}n∈Z be a sequence of positive numbers with β0 = 1 and 0 <
βn
βn+1

≤ 1

for every n ≥ 0, 0 <
βn
βn−1

≤ 1 for every n ≤ 0. We also assume that
β2n

βn
≤ M < ∞. Consider the spaces

[20]

L2(β) =

{
f(z) =

∞∑
n=−∞

anz
n

∣∣∣∣ an ∈ C, ‖f‖2β =

∞∑
n=−∞

|an|2β2
n <∞

}
,
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and [13]

H2(β) =

{
f(z) =

∞∑
n=0

anz
n

∣∣∣∣ an ∈ C, ‖f‖2β =

∞∑
n=0

|an|2β2
n <∞

}
.

Then (L2(β), ‖ · ‖β) is a Hilbert space [13] with an orthonormal basis given by

{
ek(z) =

zk

βk

}
k∈Z

and with

an inner product defined by 〈 ∞∑
n=−∞

anz
n,

∞∑
n=−∞

bnz
n

〉
=

∞∑
n=−∞

anb̄nβ
2
n .

Further, H2(β) is a subspace of L2(β). Now, let

L∞(β) = {φ(z) =
∑∞
n=−∞ anz

n

∣∣∣∣φL2(β) ⊆ L2(β) and ∃ c ∈ R such that ‖φf‖β ≤ c‖f‖β for all f ∈ L2(β)}.

Then, L2(β) is a Banach space with respect to the norm defined by

‖φ‖∞ = inf
{
c
∣∣ ‖φf‖β ≤ c‖f‖β for all f ∈ L2(β)

}
.

Let P : L2(β) → H2(β) be the orthogonal projection of L2(β) onto H2(β). Let φ ∈ L∞(β), then the
weighted multiplication operator [20] with symbol φ, that is Mφ : L2(β) → L2(β) is given by Mφek(z) =
1

βk

∞∑
n=−∞

anβn+ken+k(z).

If we put φ1(z) = z, then Mφ1 = Mz is the operator defined as Mzek(z) = wkek+1(z), where wk =
βk+1

βk
for all k ∈ Z, and is known as a weighted shift [20].

Further, the weighted Toeplitz operator Tφ [13] on H2(β) is defined as Tφ(f) = P (φf).
This mapping is well defined, for, if f ∈ H2(β) ⊂ L2(β), then by definition, φf ∈ L2(β) and hence

P (φf) ∈ H2(β).
The matrix of Tφ is: 

a0
β0

β0
a−1

β0

β1
a−2

β0

β2
. . .

a1
β1

β0
a0
β1

β1
a−1

β1

β2
. . .

a2
β2

β0
a1
β2

β1
a0
β2

β2
. . .

. . . . . . . . . . . .


.

Hence the effect of Tφ on the orthonormal basis can be described by

Tφek(z) =
1

βk

∞∑
n=0

an−kβnen(z).

2 Slant Weighted Toeplitz Operator
Let φ ∈ L∞(β).

Definition 2.1 ([2]). The slant weighted operator Aφ is an operator on L2(β) defined as Aφ : L2(β)→ L2(β)
such that

Aφek(z) =
1

βk

∞∑
n=−∞

a2n−kβnen(z).

If W : L2(β)→ L2(β) such that

We2n(z) =
βn
β2n

en(z),

and

We2n−1(z) = 0 for all n ∈ Z,
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then an alternate definition of Aφ is given by

Aφ(f) = WMφ(f) = W (φf) for all f ∈ L2(β).

Clearly, W = A1. In [2] we have shown that

MzW = WMz2(2.1)

Mφ(z)W = Aφ(z2) = WMφ(z2)(2.2)

〈Aφej+2, ei+1〉 =
wi

wjwj+1
〈Aφej , ei〉.(2.3)

Now, let S denote the shift operator on L2(β) given by Sej =
1

wj
ej+1.

Then S∗ej =
1

wj−1
ej−1. Also, S is bounded as 〈wn〉 is positive and bounded.

Lemma 2.1. S∗ = M−1
z .

Proof.

S∗Mzej = S∗wjej+1

=
wj
wj

ej = ej , j = 0,±1,±2 . . . .

We now use Lemma 2.1 and equation (2.3) to prove the following:

Theorem 2.1. A bounded operator A on L2(β) is a slant weighted Toeplitz operator on L2(β) if and only if
A = M−1

z AMz2 where Mz and Mz2 are the weighted multiplication operators an L2(β) induced by z and z2

respectively.

Proof. Let A be a slant weighted Toeplilz operator on L2(β). Then from equation (2.3) we get that

〈Aej , ei〉 =
wjwj+1

wi
〈Aej+2, ei+1〉

= 〈AMz2ej , Sei〉
= 〈S∗AMz2ej , ei〉
= 〈M−1

z AMz2ej , ei〉 i, j = 0,±1,±2, . . . .

Hence A = M−1
z AMz2 .

Conversely, let A be a bounded operator on L2(β) such that A = M−1
z AMz2 . Then, for all i, j =

0,±1,±2, . . . we have

〈Aej , ei〉 = 〈M−1
z AMz2ej , ei〉

= 〈S∗AMz2ejei〉
= 〈AMz2ej , Sei〉

=
wjwj+1

wi
〈Aej+2, ei〉.

In [2] we have proved that the necessary and sufficient condition for a bounded operator A on L2(β) to be
a slant weighted Toeplitz operator is that its matrix entries satisfy equation (2.3). Hence we may conclude
that A is a slant weighted Toeplitz operator.

Corollary 2.1. A bounded operator A on L2(β)is a slant weighted Toeplitz operator on L2(β) if and only if
A = S∗AMz2

3 C∗-Algebra of Slant Weighted Toeplitz Operators
Let L2(β) be a given space. Let A denote the set of all slant weighted Toeplitz operators on L2(β).

Theorem 3.1. A is weakly closed and hence strongly closed.
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Proof. Let An be a sequence of slant weighted Toeplitz operators such that 〈Anf, g〉 → 〈Af, g〉 for all
f, g ∈ L2(β). Then An = M−1

z AnMz2 for all n.
Therefore, as n→∞, we have

〈Anf, g〉 = 〈M−1
z AnMz2f, g〉

= 〈S∗AnMz2f, g〉
= 〈AnMz2f, Sg〉
→ 〈AMz2f, Sg〉
= 〈S∗AMz2f, g〉
= 〈M−1

z AMz2f, g〉.
Thus M−1

z AnMz2 → M−1
z AMz2 weakly. Hence A = M−1

z AMz2 . Hence from Theorem 2.1, A is a slant
weighted Toeplitz operator.

Next, to study the C∗-algebra generated by slant weighted Toeplitz operators and to obtain the spectral
radius of Aφ, we impose a restriction on the sequence 〈βn〉. Hence forth we consider only those sequences
〈βn〉n∈Z such that

βn = αn when n ≥ 0,

βn = α−n when n < 0.

}
for 1 < α <∞.

Then the weight sequence

〈
wn =

βn+1

βn

〉
is of the form

wn = α for n > 0,

wn =
1

α
for n ≤ 0.

In that case, the matrix of Mφ becomes

. . . . . . . . . . . . . . . . . . . . .

. . . a0 a−1α a−2α
2 a−3α a−4 . . .

. . .
a1

α
a0 a−1α a−2

a−3

α
. . .

. . .
a2

α2

a1

α
a0

a−1

α

a−2

α2
. . .

. . .
a3

α
a2 a1α a0

a−1

α
. . .

. . . . . . . . . . . . . . . . . . . . .


.

Hence the matrix of M∗φ is given by

. . . . . . . . . . . . . . . . . .

. . . ā0
ā1

α

ā2

α2

ā3

α
. . .

. . . ā−1α ā0
ā1

α
ā2 . . .

. . . ā−2α
2 ā−1α ā0 ā1α . . .

. . . ā−3α ā−2
ā−1

α
ā0 . . .

. . . ā−4
ā−3

α

ā−2

α2

ā−1

α
. . .

. . . . . . . . . . . . . . . . . .



.

It is observed that the matrix entries 〈λij〉 of M∗φ satisfy the relation

λi+1,j+1 =
wi
wj
λi,j .(3.1)

We have proved in [1] that equation (3.1) is the necessary and sufficient condition for the corresponding
operator to be a weighted multiplication operator.
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Hence M∗φ is also a weighted multiplication operator. Further, the product of two weighted multiplication
operators is also a weighted multiplication operator [1]. Hence we get that

MφM
∗
φ = Mψ for some ψ ∈ L∞(β).(3.2)

We suppose that ψ =
∞∑

n=−∞
bnz

n.

Theorem 3.2. AψW
∗ is a weighted multiplication operator.

Proof. For each k ∈ Z, consider

AψW
∗ek(z) =

βk
β2k

Aψe2k(z)

=
βk
β2k

1

β2k

∞∑
n=−∞

b2n−2kβnen(z)

=
1

βk

∞∑
n=−∞

b2(n−k)
β2
k

β2
2k

βnen(z)

= Mθkek(z),

where

θk(z) =

∞∑
n=−∞

(
b2n

β2
k

β2
2k

)
zn is in L∞(β).

We therefore conclude that

AψW
∗ = Mθk .(3.3)

Hence the theorem.

Corollary 3.1. AφA
∗
φ = Mθk .

Proof.

AφA
∗
φ = WMφM

∗
φW

∗

= WMψW
∗ using (3.2)

= AψW
∗

= Mθk using (3.3)

Finally AφA
∗
φ = Mθk .

We now prove the main result of this paper:
Let A denote the C∗-algebra generated by all slant weighted Toeplitz operators Aφ on L2(β) with the

sequence 〈βn〉 discussed in this section.
Also, letM denote the C∗-algebra generated by all weighted multiplication operators on L2(β). We have

proved in [2] that W does not commute with Mz. We now prove the following:

Lemma 3.1. W commutes with the multiplication operator Mψ if and only if ψ = constant.

Proof. Let ψ ∈ L∞(β) be a constant. Then MψW = α W for some constant α. Therefore

MψWe2n(z) = αWe2n(z)(3.4)

= α
βn
β2n

en(z)

= Wαe2n(z)

= WMψe2n(z).

Further

MψWe2n−1(z) = Mψ0

= 0 = WMψe2n−1(z).
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Thus

MψWen(z) = WMψen(z), n = 0,±1,±2 . . . .

Conversely, suppose that MψW = WMψ for some

ψ =

∞∑
i=−∞

biz
i ∈ L∞(β).

From equations (2.1) and (2.2) we infer that bi = 0 for all i 6= 0. So, ψ = b0 = constant. Hence the result.

Theorem 3.3. A′ = (I).

Proof. Consider the equation AφA
∗
φ = Mθk . This suggests that every weighted multiplication operator Mθk

can be written as the product of some slant weighted Toeplitz operator Aφ and its adjoint A∗φ. Hence
M⊆ A. We know thatM is maximal abelian [20]. Hence A′ ⊆M′ =M, where A′ denotes the commutant
of A. Hence for a given B ∈ A′ we get B ∈ M. That is B = Mψ for some ψ ∈ L∞(β). Also, W = A1.
Hence (W ) ⊆ A. Therefore A′ ⊆ (W ′).

This implies that B = Mψ commutes with W . From the above lemma we get that ψ = constant, and
this is true for an arbitrary operator B ∈ A′, Hence we get that A′ = (I).

As another consequence of Corollary 3.3, we now derive the spectral radius for a slant weighted Toeplitz
operator belonging to this class. For this, we use the spectral radius formula r(T ) = lim

n→∞
(‖Tn‖)1/n and

proceed as follows.

Theorem 3.4. r(Aφ) = lim
n→∞

(‖θn‖∞)1/2.

Proof. We know that AφAφ
∗ = Mθk . Taking norm on both sides we get

‖AφA∗φ‖ = ‖Mθk‖ = ‖θk‖∞.
So,

‖Aφ‖2 = ‖θk‖∞
‖Aφ‖ =

√
‖θk‖∞ = (‖θk‖∞)1/2.

Now

A2
φA
∗2
φ = WMφWMφM

∗
φW

∗M∗φW
∗

= WMφWMψW
∗M∗φW

∗

= WMφAψW
∗M∗φW

∗

= WMφMθkM
∗
φW

∗

= WMφ2
W ∗ where Mφ2

= MφMθkM
∗
φ

= Aφ2
W ∗

= Mθ2 (say).

Proceeding in this manner, we can show that for each n, AnφA
∗n
φ is a multiplication operator Mθn . Hence

‖Anφ‖2 = ‖AnφA∗nφ ‖ = ‖Mθn‖ = ‖θn‖∞.
Finally,

r(Aφ) = lim
n→∞

(‖Anφ‖)1/n

= lim
n→∞

(‖θn‖∞)1/2n.

4 Conclusion
In this paper we have proved that the set of all slant weighted Toeplitz operators on L2(β) is weakly closed
and hence strongly closed. By considering a sequence of the type 〈βn〉n∈Z such that βn = αn when n ≥ 0
and βn = α−n when n < 0 we have shown that MφM

∗
φ is also a weighted multiplication operator. Further,

for such a sequence, every weighted multiplication operator can be written as the product of some slant
weighted Toeplitz operator and its adjoint.

111



Acknowledgement
The author is thankful to the Editor and Reviewer for their valuable suggestions to bring the paper in the
present form.

References
[1] S.C Arora and Ritu Kathuria, On weighted Toeplitz operators, Australian Journal of Mathematical

Analysis and Applications, 8(1) (2011), 1-10.
[2] S.C.Arora and Ritu Kathuria, Properties of the slant weighted Toeplitz operator, Annals of Functional

Analysis, 2(1) (2011), 19-30.
[3] S.C.Arora and Ritu Kathuria, Generalised slant weighted Teoplitz operators, World Academy of Science,

Engineering and Technology,75(2011),1103-1106.
[4] S.C.Arora and Ritu Kathuria, The Compression of a slant weighted Teoplitz Operator, Journal of

Advanced Research in Pure Mathematics,4(4)(2012),48-56.
[5] G. Datt and N. Ohri, Commutativity of slant weighted Toeplitz operators, Arabian Journal of

Mathematics,5( 2) (2015), 69-75.
[6] G. Datt and N. Ohri, A Study of slant weighted Toeplitz operators in Calkin Algebra, Proceedings of

the Jangjeon Mathematical Society,21( 1) (2018), 33-44.
[7] A. Gupta and S. K. Singh k-th Order essentially slant weighted Toeplitz Operators, Communications

of Korean Mathematical Society, 34(4)(2019) 1229-1243.
[8] T. Goodman, C. Micehelli and J. Ward, Spectral radius formula for subdivision operator, Recent

Advances in Wavelet Analysis, ed. L. Schumaker and G. Webb, Academic Press (1994), 335–360.
[9] M.C.Ho, Properties of slant Toeplitz operators, Indiana University Mathematics Journal, 45 (3) (1996),

843–862.
[10] M. Hazarika and S. Marik, Hyponormality of generalised slant weighted Toeplitz operators with

polynomial symbols, Arabian Journal of Mathematics,7 (2018),9-19.
[11] M. Hazarika, Minimal reducing subspaces of compression of a slant weighted Toeplitz operator, Indian

Journal of Mathematics, 63(1)(2021), 103-125.
[12] Helson and Zego, A problem in prediction theory, An. Mat. Pura. Appl., 5 (1960), 107–138.
[13] V. Lauric, On a weighted Toeplitz operator and its commutant, Int. J. Math. & Math. Sci., 6 (2005),

823–835.
[14] L.N. Mishra, M. Riaz, L. Rathour and V.N. Mishra, Tauberian theorems for weighted meas of double

sequences in intuitionistic fuzzy normed spaces, Yugoslav Journal of Operations Research, 32(3) (2022),
377–388.

[15] V.N. Mishra, Some Problem on Approximations of Functions in Banach Spaces, Ph.D. Thesis (2007),
Indian Institute of Technology, Roorkee 247667, Uttarakhand, India.

[16] V.N. Misha and L.N. Mishra, Trigonometric approximation of signals (functions) in Lp-norm,
International Journal of Contemporary Mathematical Sciences, 7(19) (2012), 909–918.

[17] V.N. Mishra, K. Khatri, L.N. Mishra and Deepmala, Trigonometic approximation of periodic signals
belonging to generalized weighted Lipschitz W ′(Lr, ξ(t)), (r ≥ 1)-class by Nörlund-Euler (N, pn) (E, q)
operator of conjugate series of its Fourier series, Journal of Classical Analysis, 5(2) (2014), 91–105.
doi:10.7153/jca-05-08.

[18] L.N. Mishra, V.N. Mishra and K. Khatri, Using linear operatos to approximate signals of Lip(α, p),
(p ≥ 1)-class, Filomat, 27(2) (2013), 353–363.

[19] L.N. Mishra, V. N. Mishra, K. Khatri and Deepmala, On the trigonometric approximation of signals
belonging to generalized weighted Lipschitz W (Lr, ξ(t))(r ≥ 1)-class by matrix (C1, Np) operator of
conjugate series of its Fourier series, Applied Mathematics and Computation, 237 (2014), 252–263.

[20] A.L. Shields, Weighted shift operators and analytic function theory, Topics in Operator Theory, Math.
Surveys, 13, Amer. Math. Soc. Providence, R.I., (1974).

[21] L. Villemoes, Wavelet analysis of refinement equations, SIAM J.Math. Analysis, 25 (1994), 1433–1460.
[22] O. Toeplitz, Zur theorie der quadratischen und bilinearan Formen von unendlichvielen, Veranderlichen,

Math. Ann., 70 (1911), 351-356.

112



ISSN 0304-9892 (Print) ISSN 2455-7463 (Online)
www.vijnanaparishadofindia.org/jnanabha
Jñānābha, Vol. 53(2) (2023), 113-125
(Dedicated to Professor V. P. Saxena on His 80th Birth Anniversary Celebrations)

A MULTIPLE REGRESSION MODEL FOR IDENTIFYING SOME RISK FACTORS
AFFECTING THE CARDIOVASCULAR HEALTH ISSUES IN ADULTS

Mohammad Shakil1, Mohammad Ahsanullah2, B. M. G. Kibria3, J. N. Singh4, Rakhshinda
Jabeen5, Aneeqa Khadim6 and Musaddiq Sirajo7

1Department of Mathematics, Miami Dade College, Hialeah, FL, USA
2Department of Management Sciences, Professor Emeritus, Rider University, NJ, USA

3Department of Mathematics & Statistics, Florida International University, Miami, FL, USA
4Department of Mathematics & Computer Sciences, Barry University, Miami Shores, FL, USA

5Department of Medicine, Dow University of Health Sciences, Karachi, Pakistan
6Department of Mathematics, Mirpur University of Science & Technology, Mirpur, Pakistan

7Department of Statistics, Ahmadu Bello University, Zaria, Nigeria
Email: mshakil@mdc.edu,ahsan@rider.edu,kibriag@fiu.edu, jsingh@barry.edu,

rakhshinda.jabeen@duhs.edu.pk,Aneeqa89@gmail.com,musaddi,musaddiqsirajo@gmail.com
(Received: June 20, 2023; In format: August 26, 2023, Revised: September 29, 2023;

Accepted: October 03, 2023)

DOI: https://doi.org/10.58250/jnanabha.2023.53214

Abstract

Multiple Regression analysis is one of the most critical and widely used statistical techniques in
medical and applied research. It is defined as a multivariate technique for determining the correlation
between a response variable and some combination of two or more predictor variables. Moreover, it is well-
known in medical sciences that the obesity, high blood pressure and high cholesterol are major risk factors
for cardiovascular health issues. The body mass index is a measure of body size, and combines a person’s
weight with their height, and therefore can affect their obesity, high blood pressure, high cholesterol and
type 2 diabetes mellitus significantly, which are major risk factors for cardiovascular health issues in
adults. Motivated by these facts, in this paper, a multiple linear regression model is developed to analyze
the obesity in adults, based on a sample data of adult’s age, height, weight, waist, diastolic blood pressure,
systolic blood pressure, pulse, cholesterol, and the body mass index measurements. The use of multiple
linear regression is illustrated in the prediction study of adult’s obesity based on their body mass index.
It is observed that in the presence of adult’s age, weight, waist, diastolic blood pressure, systolic blood
pressure, pulse, and cholesterol levels, height is a good predictor of the body mass index. Moreover, in
the presence of age, height, waist, diastolic blood pressure, systolic blood pressure, pulse, and cholesterol
levels, weight is a good predictor of the body mass index. Some concluding remarks are given in the end.
2020 Mathematical Sciences Classification: 65F359, 15A12, 15A04, 62J05.
Keywords and Phrases: Cardiovascular, high cholesterol levels, high blood pressure, multiple
regression, obesity.

1 Introduction
Multiple linear regression is one of the most widely used statistical techniques in medical and other applied
research. It is defined as a multivariate technique for determining the correlation between a response variable
Y and some combination of two or more predictor variables, X. For example, it can be used to analyze
data from causal-comparative, correlational, or experimental research. It can handle interval, ordinal, or
categorical data. In addition, multiple regression provides estimates both of the magnitude and statistical
significance of relationships between variables. For details on regression analysis and its applications, the
interested readers are referred to Neter et al. [19], Draper and Smith [5], Tamhane and Dunlop [25],
Mendenhall and Sincich [16], Chatterjee and Hadi [2], Montgomery [17], Surez et al. [23], Cleophas and
Zwinderman [3], Guzman and Kibria [7], Johnson and Wichern [9], among others. For recent developments
on linear and non-linear regression models, we refer to Kibria [12].

The purpose of the present study is to contribute to the body of knowledge pertaining to the use of
multiple linear regression in medical and applied research, and, in particular, in identifying some risk factors
affecting the cardiovascular health issues in adults. It appears from the literature that not much attention
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has been paid to this kind of studies in the multiple regression analysis of the cardiovascular health issues and
problems in adults. Motivated by these facts, in this paper, a multiple linear regression model is developed
to analyze the obesity in adults, based on their body mass index (BMI) by taking a sample data of adult’s
age, height, weight, waist, diastolic blood pressure, systolic blood pressure, pulse, cholesterol, and BMI
measurements. The use of multiple linear regression is illustrated in the prediction study of adult’s obesity
based on their body mass index, along with these risk indicators.
1.1 Body Mass Index (BMI)
In what follows, we first present some basic ideas about the body mass index (BMI), and the review of the
literature relevant to the cardiovascular health issues.

Definition 1.1. The body mass index (BMI) is defined as a measure of body size and for weight-related
health risk. It combines a person’s weight with their height. It can be calculated using the following formulas:

(1.1) BMI = Weight(kg)/[height(m)]2,

(1.2) BMI = Weight(lb)/[height(in)]2 × 703.

Thus, the results of a BMI measurement can give an idea about whether a person’s weight is
correct with respect to their height. Moreover, the BMI of a person can indicate whether they
are underweight or if they have a healthy weight, or excess weight, or obesity. If a person’s BMI
is outside of the healthy range, their health risks may increase significantly. According to the US
Centers for Disease Control and Prevention and the World Health Organization, “BMI represents the
relationship between weight and height to estimate the amount of fat in the body” (Global Health
Observatory. from http://www.who.int/gho/ncd/risk factors/bmi text/en/). Moreover, as observed by
Young et al. [29], Nguyen et al. [20], and Keum et al. [13], “A higher percentage of body fat is
proven to be associated with increased risk for developing certain diseases such as heart disease, high
blood pressure, type 2 diabetes, breathing problems, certain cancers, and death”. Furthermore, as reported
by https://www.weightwatchers.com/us/science-center/bmi-calculator, there appears to be an exponential
relationship between BMI and mortality rate which is illustrated in the following Figure 1.1.

 
Figure 1.1

(Source: https://www.weightwatchers.com/us/science-center/bmi-calculator)

According to Narkiewicz [22], “Obesity and in particular central obesity have been consistently associated
with hypertension and increased cardiovascular risk. Based on population studies, risk estimates indicate
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that at least two-thirds of the prevalence of hypertension can be directly attributed to obesity”. Further, as
pointed out by Hall et al. [18], “Major consequences of being overweight or obese include higher prevalence of
hypertension and a cascade of associated cardiorenal and metabolic disorders. Studies in diverse populations
throughout the world have shown that the relationship between BMI and systolic and diastolic blood
pressure (BP ) is nearly linear. Risk estimates from the Framingham Heart Study, for example, suggest
that 78% of primary (essential) hypertension in men and 65% in women can be ascribed to excess weight
gain. Clinical studies indicate that maintenance of a BMI <25 kg/m2 is effective in primary prevention of
hypertension and that weight loss reduces BP in most hypertensive subjects”. Also, according to Jiang
et al. [10], “Obesity can result in serious health issues that are potentially life-threatening, including
hypertension, type II diabetes mellitus, increased risk for coronary disease, increased unexplained heart
failure, hyperlipidemia, infertility, higher prevalence of colon, prostate, endometrial, and breast cancer.
Although the relationship between obesity and hypertension is well established in children and adults, the
mechanism by which obesity directly causes hypertension is under investigation”.

“Having obesity puts a strain on our heart and can lead to serious health cardiovascular problems, namely,
arthritis in our knees and hips, heart disease, high blood pressure, sleep apnea, type 2 diabetes, and varicose
veins” (https://medlineplus.gov/ency/article/007196.htm). Moreover, a person’s BMI can be categorized
(Table 1.1), along with the three classes of obesity (Table 1.2), as given below:

Table 1.1

(https://medlineplus.gov/ency/article/007196.htm)
BMI CATEGORY

Below 18.5 Underweight
18.5 to 24.9 Healthy
25.0 to 29.9 Overweight
30.0 to 39.9 Obese

Over 40 Extreme of high-risk obesity

Table 1.2

(https://medlineplus.gov/ency/article/007196.htm)
CLASS OBESITY

1 BMI of 30 to less thank 35
1 BMI of 35 to less than 40
3 BMI of 40 or higher.

Class 3 is considered “severe obesity”.

Thus, it is obvious from the Tables 1.1 and 1.2 that a person’s obesity can be significantly affected by
their body mass index (BMI ), high blood pressure and high cholesterol, which are all major risk factors for
cardiovascular health issues. For further details on cardiovascular diseases and related issues, the interested
readers are referred to Mertens and Van Gaal [18], Akil and Ahmad [1], Klop et al. [14], Vach [27], Leggio
et al. [15], Seravalle and Grassi [24], Feng et al. [6], Jabeen et al. [11], Rajeshwari and Laishram [22], and
references therein.

The organization of this paper is as follows. In Section 2, the proposed multiple linear regression model,
and the problem and objective of this study are presented. Section 3 provides the data analysis, justification
and adequacy of the multiple regression model developed. Some concluding remarks are given in Section 4.

2 Multiple Linear Regression Model
2.1 A Multiple Linear Regression Model based on a Number of Predictors
Consider following multiple linear regression model

(2.1) Y = Xβ + ε,

where Y is an n × 1 vector of response variable (observations), β is a k × 1 vector of unknown regression
coefficients, X is an n × k(n > k) observed matrix of the regression, and ε is an n × 1 vector of random
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errors, which is distributed as multivariate normal with mean 0 and covariance matrix σ2In, and In is an
identity matrix of order n. The OLS estimator of β is obtained as β̂ = (X ′X)−1X ′y, and covariance matrix

of β̂ is obtained as Cov (β̂) = σ2(X ′X)
−1

.
2.2 Problem and Objective of Study
It is well-known in medical sciences that the obesity, high blood pressure and high cholesterol are major
risk factors for cardiovascular health issues. For example, high cholesterol can affect anyone, regardless of
their weight. Moreover, high blood pressure, also called hypertension, is a major risk factor for heart disease,
kidney disease, stroke, and heart failure. Having excess body weight can lead to increased high blood pressure
and cholesterol levels. The body mass index is a measure of body size, and combines a person’s weight with
their height, the results of a body mass index measurement can indicate whether a person has excess weight,
and thus can affect their obesity, high blood pressure and high cholesterol significantly, which are all risk
factors for cardiovascular health issues.

Thus, in view of the above facts, the objective of our present investigation would be to develop an
appropriate multiple linear regression model to relate the adult’s obesity, based on their body mass index
(BMI ) (considered as the dependent or response variable Y ) to the adult’s age, height, weight, waist,
diastolic blood pressure, systolic blood pressure, pulse, cholesterol, BMI measurements (considered as the
independent or predictor variables X). It will be examined how well the adult’s age, height, weight, waist,
pulse, diastolic blood pressure, systolic blood pressure, cholesterol, and BMI measurements could be used
to predict the adult’s body mass index (BMI ), as it affects a person’s obesity, high blood pressure and high
cholesterol significantly, which are all risk factors for cardiovascular health issues in adults.

To pursue our studies, the data were collected from Triola [26] on the adult’s age, height, weight, waist,
pulse, diastolic blood pressure, systolic blood pressure, cholesterol, and BMI measurements, for a sample
of 40 adults, (which we have provided in Appendix 1 for the sake of completeness). Using these variables
and the Equation (2.1), the following eight-predictor multiple linear regression model (or the least squares
prediction equation) was developed:

(2.2) Y = β0 + β1X1 + β2X2 + β3X3 + β4X4 + β5X5 + β6X6 + β7X7 + β8X8 + ε,

where β′ s denote the population regression coefficients, ε is a random error, the response variable is the
adult’s BMI (Y ), and the respective eight predictors are the adult’s age (X1), height (X2), weight (X3),
waist (X4), pulse (X5), diastolic blood pressure (X6), systolic blood pressure (X7), and cholesterol (X8).

3 Data Analysis
The Minitab Version 17.0 regression computer programs were used to determine the regression coefficients
and analyze the data. The adequacy of the multiple linear regression model for predicting the adult’s body
mass index (BMI ) was conducted using the F -test for the significance of regression.

The Minitab regression computer program outputs are given below. The paragraphs that follow explain
the computer program outputs.
3.1 Minitab Regression Computer Program Output: Analysis of Variance
3.1.1 Regression Analysis: BMI versus Age, Ht, . . .
The regression equation is:

BMI = 52.1 + 0.00134 Age − 0.772Ht+ 0.147 Wt + 0.0125 Waist + 0.00710 Pulse

− 0.00229 Systolic − 0.00195 Diastolic + 0.000211 Cholesterol .

Table 3.1

Predictor Coef SE Coef T P VIF
Constant 52.1200000 1.8800000 27.72 0.000
Age 0.0013420 0.0049270 0.27 0.787 2.0
Ht -0.7721100 0.0248400 -31.08 0.000 2.4
Wt 0.1465580 0.0063350 23.13 0.000 11.7
Waist 0.0125100 0.0167500 0.75 0.461 11.5
Pulse 0.0070950 0.0047400 1.50 0.145 1.2
Systolic -0.0022870 0.0059550 -0.38 0.704 1.6
Diastolic -0.0019480 0.0075320 -0.26 0.798 2.0
Cholesterol 0.0002106 0.0001749 1.20 0.238 1.1

116



Table 3.2

S = 0.304262 R− Sq = 99.4% R− Sq( adj ) = 99.2%
PRESS = 5.60841 R-Sq(pred ) = 98.78%

Durbin-Watson statistic = 2.80903

Table 3.3

Analysis of Variance
Source DF SS MS F P

Regression 8 456.160 57.020 615.93 0.000
Residual Error 2.870 0.093

Total 39 459.030

Table 3.4

Unusual Observations
Obs Age BMI Fit SE Fit Residual St Resid

17 41.0 33.2000 32.3881 0.1767 0.8119 3.28R
36 34.0 20.7000 21.4631 0.1542 -0.7631 −2.91R

Note: Here, in Table 4.4, R denotes an observation with a large standardized residual.

3.1.2 Interpreting the Results
I. From the Analysis of Variance Table 3.3, we observe that the p-value is (0.000). This implies that that

the model estimated by the regression procedure is significant at an α-level of 0.05 . Thus at least one
of the regression coefficients is different from zero.

II. From the Table 3.1, we observe that the p-values for the estimated coefficients of height (X2) and
weight (X3) are respectively 0.000 and 0.000 , indicating that they are significantly related to the
response variable is BMI (Y ) at an α-level of 0.05. From the Table 3.1, we also observe that the p-
values for the adult’s age (X1), waist (X4), pulse (X5), diastolic blood pressure (X6), systolic blood
pressure (X7), and cholesterol (X8), are relatively high, indicating that these are probably not related
to the response variable BMI (Y ) at an α-level of 0.05 .

III. The R2 and Adjusted R2 Statistic: There are several useful criteria for measuring the goodness
of fit of the multiple regression model. One such criterion is to determine the square of the multiple
correlation coefficient R2 (also called the coefficient of multiple determination), (see, for example,
Draper and Smith [5], and Mendenhall and Sincich [16], among others). The R2 value in the regression
output (Table 3.2) indicates that 99.4% of the total variation of the response variable BMI(Y ) values
about their mean can be explained by the predictor variables used in the model. The adjusted R2 value
(or Ra

2 ) indicates that 99.2% of the total variation of the response variable BMI(Y ) values about
their mean can be explained by the predictor variables used in the model. As the values of R2 and R2

a

are not very different, it appears that at least one of the predictor variables contributes information
for the prediction of Y . Thus, both values indicate that the model fits the data well.

IV. Predicted R2 Statistic: Further from Table 3.2, we observe that the predicted R2 value is 98.78%.
Because the predicted R2 value is close to the R2 and adjusted R2 values, the model does not appear
to be overfit and has adequate predictive ability.

V. Estimate of Variance: The variance about the regression σ2 of the Y values for any given set of
the independent variables X1, X2, . . . , Xk is estimated by the residual mean square s2, which is equal
to SS (residual) divided by an appropriate number of degrees of freedom, and the standard error s is
given by

s =
√

residual meansquare s2.

For our problem, we have
s2 = 0.093 and s = 0.30496
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Examination of this statistic indicates that the smaller it is the better, that is, the more precise will be
the predictions. A useful way of looking at the decrease in S is to consider it in relation to response, (see,
for example, Draper and Smith (1998), among others, for details). In our example, s as a percentage
of mean Ȳ (of the response variable BMI, Y ), that is, the coefficient of variation (CV ), is given by

CV =
0.30496

25.9975
× 100% = 1.17303%.

This means that the standard deviation of the adult’s BMI (Y ), is only 1.17303% of their mean,
which means considerably less variation.

VI. Unusual Observations: We also note from the Table 3.4 that the observations 17 and 36 (see
Appendix 1) are identified as unusual because the absolute value of the standardized residuals is
greater than 2 . This may indicate they are outliers.

VII. Multicollinearity: By multicollinearity, we mean that some predictor variables are correlated with
other predictors. Various techniques have been developed to identify predictor variables that are highly
collinear, and for possible solutions to the problem of multicollinearity, (see, for example, Draper
and Smith [5], Tamhane and Dunlop [25], Mendenhall and Sincich [16], Chatterjee and Hadi [2],
Montgomery et al. [17], Chatterjee and Simonoff [4], and Vittinghoff et al. [28], among others, for
details). For example, we can examine the variance inflation factors (VIF ), which measure how much
the variance of an estimated regression coefficient increases if the predictor variables are correlated.
Following Montgomery et al. [17], if the VIF is 5 - 10, the regression coefficients are poorly estimated.
However, it has been observed by many researchers that for a large sample size, multicollinearity is not
a big problem when compared to a small sample size. Since the variance inflation factors (VIF) for
each of the estimated regression coefficient in our calculations are less than 5 for the adult’s age (X1),
height (X2), pulse (X5), diastolic blood pressure (X6), systolic blood pressure (X7), and cholesterol
(X8), there does not seem to be multicollinearity for these predictors in our model. However, we
observe that the VIF are fairly large for the predictor weight (X3) and waist (X4), implying that these
are highly correlated with at least one of the other predictors in the model. In order to deal with
the said multicollinearity is to remove some of the violating predictors from the model, that is, for
assessing the predictive ability of a multiple linear regression model, is to examine the associated Cp-
statistic. The best subsets regression method is used to choose a subset of predictor variables so that
the corresponding fitted regression model optimizes the Cp-statistic, which is described in Sub-Section
3.2 below.

VIII. Predicted Values for New Observations: Using the model developed, some values are provided
in Table 3.5 .

3.2 Best Subsets Regression:
Another important criterion function for assessing the predictive ability of a multiple linear regression model
is to examine the associated Mallows’ Cp-statistic, including R-Sq

(
R2
)
, the percentage of variation in the

response that is explained by the model, Adjusted R2 (that is, R Sq(adj), the percentage of the variation
in the response that is explained by t for the number of predictors in the model relative to the number
of observations), and s, the standard error of the estimate. The best subsets regression method is used
to choose a subset of predictor variables so that the corresponding fitted regression model optimizes the
Mallows’ Cp-statistic, which may be interpreted as follows:

(1) A Mallows’ Cp value that is close to the number of predictors plus the constant model produces
relatively precise and unbiased estimates.

(2) A Mallows’ Cp value that is greater than the number of predictors plus the constant model is biased
and does not fit the data well.

The model with all the predictor variables should have the highest adjusted R2, a low Mallows’ Cp value,
and the lowest s value. Based on these criteria, the following (Table 3.6) are the possible predictor models
(X2, X3) or (X1, X2) with respective highest adjusted R2, a low Mallows Cp value, and the lowest S value.

Note that three other predictor models, namely, [Height (X2), Weight (X3), Waist (X4), Cholesterol
(X8)], or [Age (X1), Height (X2), Weight (X3), Pulse (X5) ], or [Height (X2), Weight (X3), Cholesterol
(X8)] also exist here with respective highest adjusted R2, a low Mallows Cp value, and the lowest S value
(see the output above).
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Table 3.5: Predicted Values for New Observations

New
Obs Fit SE Fit 95% CI 95% PI
1 23.6038 0.1107 (23.3781,23.8296) (22.9435,24.2641)
2 23.2779 0.1253 (23.0224,23.5333) (22.6068,23.9490)
3 24.6224 0.1587 (24.2988,24.9460) (23.9225,25.3223)
4 26.1172 0.1024 (25.9083, 26.3261) (25.4624, 26.7720)
5 23.5401 0.1086 (23.3186,23.7616) (22.8812,24.1990)
6 24.5249 0.1388 (24.2418,24.8081) (23.8428,25.2070)
7 21.7545 0.1078 (21.5346,21.9744) (21.0961,22.4128)
8 31.4276 0.1646 (31.0918,31.7634) (30.7220,32.1331)
9 26.2895 0.1641 (25.9548,26.6243) (25.5845,26.9946)
10 23.103 70.1407 (22.8168,23.3906) (22.4200,23.7873)
11 27.813 60.1749 (27.4568,28.1703) (27.0978,28.5294)
12 28.170 50.1981 (27.7665,28.5745) (27.4301,28.9110)
13 24.948 40.1353 (24.6724,25.2244) (24.2693,25.6276)
14 23.159 30.1732 (22.8060,23.5126) (22.4452,23.8733)
15 31.729 90.1432 (31.4378,32.0220) (31.0440,32.4157)
16 33.509 50.1753 (33.1521,33.8670) (32.7934,34.2257)
17 32.388 10.1767 (32.0278,32.7485) (31.6705,33.1057)
18 27.1068 80.1573 (26.7860,27.4276) (26.4083,27.8054)
19 26.623 30.1234 (26.3715,26.8750) (25.9536,27.2930)
20 19.7208 80.2088 (19.2950,20.1467) (18.9682,20.4734)
21 27.055 10.1043 (26.8422,27.2679) (26.3990,27.7111)
22 23.012 40.1609 (22.6842,23.3406) (22.3104,23.7144)
23 27.202 40.1591 (26.8780,27.5268) (26.5022,27.9026)
24 21.510 60.0911 (21.3248,21.6963) (20.8628,22.1583)
25 30.904 70.1416 (30.6159,31.1936) (30.2202,31.5892)
26 28.344 60.1159 (28.1083,28.5809) (27.6806,29.0086)
27 25.344 10.1196 (25.1002,25.5881) (24.6774,26.0109)
28 24.662 60.1623 (24.3315,24.9937) (23.9593,25.3659)
29 23.4573 30.1171 (23.2184, 23.6961) (22.7923, 24.1222)
30 27.437 40.1302 (27.1718,27.7030) (26.7624,28.1124)
31 28.9268 80.1154 (28.6916,29.1621) (28.2632,29.5905)
32 26.281 60.1592 (25.9570,26.6063) (25.5813,26.9820)
33 26.752 50.1992 (26.3463,27.1587) (26.0108,27.4942)
34 31.937 ! 50.1318 (31.6688,32.2063) (31.2613,32.6138)
35 19.088 30.1539 (18.7745,19.4022) (18.3930,19.7837)
36 21.463 10.1542 (21.1486,21.7776) (20.7674,22.1588)
37 26.280 20.1130 (26.0498,26.5106) (25.6183,26.9421)
38 26.819 10.1417 (26.5300,27.1081) (26.1345,27.5036)
39 25.744 20.0920 (25.5566,25.9318) (25.0959,26.3925)
40 24.243 60.0960 (24.0478,24.4395) (23.5929,24.8943)
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Table 3.6

Vars R− Sq R− Sq(adj) C − p S Possible Predictor Models
(i) 4 99.4 99.3 2.2 0.29191 Height (X2), Weight (X3), Pulse (X5),

Cholesterol (X8)
(ii) 5 99.4 99.3 3.4 0.29222 Height (X2), Weight (X3), Waist (X4),

Pulse (X5), Cholesterol (X8)
(iii) 5 99.4 99.3 3.8 0.29440 Age (X1), Height (X2), Weight (X3),

Pulse (X5), Cholesterol (X8)
(iv) 4 99.3 99.3 2.8 0.29458 Height (X2), Weight (X3), Waist (X4),

Pulse (X5)
(iv) 3 99.3 99.3 2.2 0.29677 Height (X2), Weight (X3), Pulse (X5)

3.3 Residual Plots for BMI
The Minitab Version 17.0 regression computer program outputs for residual plots of are given in Figure 3.1
below. The paragraphs that follow examine the goodness of fit model based on residual plots.
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Figure 3.1

3.3.1 Interpreting the Graphs (Figure 3.1)
A. From the normal probability plot, we observe that there exists an approximately linear pattern. This

indicates the consistency of the data with a normal distribution. The outliers are indicated by the
points in the upper-right and left-bottom corners of the plot.

B. From the plot of residuals versus the fitted values, it is evident that the residuals get smaller, that is,
closer to the reference line, as the fitted values increase. This may indicate that the residuals have
non-constant variance, (see, for example, Draper and Smith [2], among others, for details).

C. The histogram of the residuals indicates that no outliers exist in the data.
D. The plot for residuals versus order is also provided in Figure 3.1. It is defined as a plot of all residuals

120



in the order that the data was collected. It is used to find non-random errors, especially of time-related
effects. A clustering of residuals with the same sign indicates a positive correlation, whereas a negative
correlation is indicated by rapid changes in the signs of consecutive residuals.

3.4 Testing the Adequacy of Multiple Regression Model for Predicting the Adults Body Mass
Index (BMI)

This section discusses the usefulness and adequacy of the above-developed multiple regression model
developed for predicting the adults body mass index (BMI), Y .
3.4.1 Confidence Interval for the Parameters βi
If we assume that the variation of observations about the line is normal, that is, the error terms ε are all
from the same normal distribution, N(0, σ2), it can be shown that we can assign (1 − α)100% confidence
limits for βi by calculating

β̂i ± t(n− 2, 1− α

2
), se(β̂i),

where t(n−2, 1− α
2 )) is the (1−α)100% percentage point of a t- distribution, with (n−2) degrees of freedom

(the number of degrees of freedom on which the estimate s2 is based). Suppose α = 0.05. For t(38, 0.975),
we can use t(40, 0975) = 2.021, or interpolate in the t table. Thus, we have confidence limits for :

1. 95%; confidence limits for β1: (-0.00862, 0.011299)
2. 95%; confidence limits for β2: (-0.82231, -0.72191);
3. 95%; confidence limits for β3: (0.133755, 0.159361);
4. 95%; confidence limits for β4: (-0.02134, 0.046362);
5. 95%; confidence limits for β5: (-0.00248, 0.016675);
6. 95%; confidence limits for β6: (-0.01432, 0.009748);
7. 95%; confidence limits for β7: (-0.01717, 0.013274);
8. 95%; confidence limits for β8: (-0.00014, 0.000564).

3.4.2 Tests of Significance for Individual Parameters
H0 : βi = 0 versus Hα : βi 6= 0

A test of hypothesis that a particular parameter, say, βi equals zero, can be conducted by using a t -

statistic given by t = β̂i−0

se(β̂i)
. The test can also be conducted by using the F -statistic since the square of a

t-statistic (with v degrees of freedom) is equal to an F -statistic with 1 degree of freedom in the numerator and
v degrees of freedom in the denominator. That is, t2 = F . Decision Rule: Reject H0 if |t| > t

(
n− 2, 1− α

2

)
.

Using the Minitab Version 17.0 multiple linear regression computer outputs, the analysis of t statistic values
for different βi ’s is given in Table 3.7 below

Table 3.7

Null Hypothesis t(38,0.975)∗ |t| Inference Conclusion
H0 : β1 = 0 2.021 0.27 Fail to reject H0 In the presence of X2, X3, X4, X5, X6,

X7, and X8, X1 is a poor predictor of Y .
H0 : β2 = 0 2.021 31.08 Reject H0 In the presence of X1, X3, X4, X5, X6,

X7, and X8, X2 is a good predictor of Y .
H0 : β3 = 0 2.021 23.13 Reject H0 In the presence of X1, X2, X4, X5, X6,

X7, X8, X3 is a good predictor of Y .
H0:β4 = 0 2.021 0.75 Fail to reject H0 In the presence of X1, X2, X3, X5, X6,

X7, X8, X4 is a poor predictor of Y .
H0:β5 = 0 2.021 1.50 Fail to reject H0 In the presence of X1, X2, X3, X4, X6,

X7, X8, X5 is a poor predictor of Y .
H0:β6 = 0 2.021 0.38 Fail to reject H0 In the presence of X1,X2,X3,X4, X5,

X7, X8, X6 is a poor predictor of Y .
H0:β7 = 0 2.021 0.26 Fail to reject H0 In the presence of X1, X2, X3, X4, X5,

X6, X8, X7 is a poor predictor of Y .
H0:β8 = 0 2.021 1.20 Fail to reject H0 In the presence of X1,X2, X3, X4, X5,

X6, X7, X8 is a poor predictor of Y .
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*For t(38,0.975), we can use t(40, 0.975) = 2.021 or interpolate in the t− table.
3.4.3 F -Test for Significance of Regression
For details on it, see, for example, Draper and Smith [5], Tamhane and Dunlop [25], and Mendenhall and
Sincich [16], Chatterjee and Hadi [2], Montgomery et al. [17], among others. For our proposed multiple
regression model, we have

Null Hypothesis: H0 : β1 = β2 = β3 = β4 = β5 = β6 = β7 = β8 = 0 (The regression is not significant)
versus

Alternate Hypothesis: Ha : at least one of βi
′s 6= 0 (The regression is significant).

Test Statistic: F =
MSreg

s2 .
Decision Rule: Reject H0 if F > Fα (v1 = k,v2 = n− (k + 1),1−α),
where n = number of values in the sample data = 40,
k = number of estimated β regression coefficients = 8,
k + 1 = 8 + 1 = 9 = number of estimated β parameter,
v1 = k = df in the numerator = 8,
and v2 = n− (k + 1) = df in the denominator = 31
In the decision rule, we compare the calculated F test statistic to a tabulated Fα value based on

v1 = kdf in the numerator and v2 = n− (k+1)df in the denominator for the considered value of α, using
F distribution.

Thus, for our proposed multiple regression model, the decision rule is given by
Decision Rule: Reject H0 if F > F 0.05 (v1 = 8,v2 = 31,0.95), for α = 0.05.
The value of F - statistic for testing the hypothesis is that at least one of the predictor variables

contributes significant information for the prediction of the adult’s body mass index (BMI), Y . In the
computer output 17 (Table 4.3), it is calculated as F = 615.93. Comparing this with the critical value
of F 0.05 (v1 = 8,v2 = 31,0.95) = 2.18 at α = 0.05, we reject the null hypothesis: H0 : β1 = β2 =
β3 = β4 = β5 = β6 = β7 = β8 = 0, that is, the regression is not significant. Thus, the overall regression is
statistically significant. In fact, F = 615.93 exceeds F 0.05 (v1 = 8,v2 = 31,0.95) = 2.18, and is significant
at a p-value (= 0.000) < 0.005. It appears that at least one of the predictor variables contributes information
for the prediction of Y .

4 Concluding Remarks
From the above analysis, it appears that our multiple regression model for predicting the adult’s body
mass index (BMI), Y , is useful and adequate. In the presence of X1,X3,X4,X5,X6,X7, and X8, X2

is a good predictor of Y . In the presence of X1,X2,X4,X5,X6,X7,X8, X3 is a good predictor of Y .
As the values of R2 and R2

a are not very different, it appears that at least one of the predictor variables
contributes information for the prediction of Y . The coefficient of variation CV = 1.17303% also tells us
that the standard deviation of the adult’s body mass index (BMI), Y , is only 1.17303% of their mean.
Also, since the test statistic value of F calculated from the data, F = 615.93, exceeds the critical value
of F 0.05 (v1 = 8,v2 = 31,0.95) = 2.18, at α = 0.05, we reject the null hypothesis: H0 : β1 = β2 =
β3 = β4 = β5 = β6 = β7 = β8 = 0, that is, the regression is not significant. Hence, our multiple regression
model for predicting the adult’s body mass index (BMI), Y , seems to be useful and adequate, and the
overall regression is statistically significant. The Cp-statistic criterion and residual plots of Y (Figure 3.1)
as discussed above also confirm the adequacy of our model. For future work, one can consider to develop
and study similar models for other issues and problems associated with the fields of medical, biological,
behavioral, and other applied sciences. One can also develop similar models by adding other variables,
for example, the gender, marital status, employment status, race and ethnicity of the adults, as well as
the squares, cubes, and, cross products of X1,X2, X3,X4,X5,X6,X7, and X8. In addition, one could
also study the effect of some data transformations. We believe that the present study would be useful for
researchers in the fields of medical and other applied sciences.
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APPENDIX 1
(Adult’s Body Mass Index (BMI) Data, n = 40 )

(Source: Triola [26])
Age Ht Wt Waist Pulse Systolic Diastolic Cholesterol BMI
58 70.8 169.1 90.6 68 125 78 522 23.8
22 66.2 144.2 78.1 64 107 54 127 23.2
32 71.7 179.3 96.5 88 126 81 740 24.6
31 68.7 175.8 87.7 72 110 68 49 26.2
28 67.6 152.6 87.1 64 110 66 230 23.5
46 69.2 166.8 92.4 72 107 83 316 24.5
41 66.5 135 78.8 60 113 71 590 21.5
56 67.2 201.5 103.3 88 126 72 466 31.4
20 68.3 175.2 89.1 76 137 85 121 26.4
54 65.6 139 82.5 60 110 71 578 22.7
17 63 156.3 86.7 96 109 65 78 27.8
73 68.3 186.6 103.3 72 153 87 265 28.1
52 73.1 191.1 91.8 56 112 77 250 25.2
25 67.6 151.3 75.6 64 119 81 265 23.3
29 68 209.4 105.5 60 113 82 273 31.9
17 71 237.1 108.7 64 125 76 272 33.1
41 61.3 176.7 104 84 131 80 972 33.2
52 76.2 220.6 103 76 121 75 75 26.7
32 66.3 166.1 91.3 84 132 81 138 26.6
20 69.7 137.4 75.2 88 112 44 139 19.9
20 65.4 164.2 87.7 72 121 65 638 27.1
29 70 162.4 77 56 116 64 613 23.4
18 62.9 151.8 85 68 95 58 762 27
26 68.5 144.1 79.6 64 110 70 303 21.6
33 68.3 204.6 103.8 60 110 66 690 30.9
55 69.4 193.8 103 68 125 82 31 28.3
53 69.2 172.9 97.1 60 124 79 189 25.5
28 68 161.9 86.9 60 131 69 957 24.6
28 71.9 174.8 88 56 109 64 339 23.8
37 66.1 169.8 91.5 84 112 79 416 27.4
40 72.4 213.3 102.9 72 127 72 120 28.7
33 73 198 93.1 84 132 74 702 26.2
26 68 173.3 98.9 88 116 81 1252 26.4
53 68.7 214.5 107.5 56 125 84 288 32.1
36 70.3 137.1 81.6 64 112 77 176 19.6
34 63.7 119.5 75.7 56 125 77 277 20.7
42 71.1 189.1 95 56 120 83 649 26.3
18 65.6 164.7 91.1 60 118 68 113 26.9
44 68.3 170.1 94.9 64 115 75 656 25.6
20 66.3 151 79.9 72 115 65 172 24.2

125



ISSN 0304-9892 (Print) ISSN 2455-7463 (Online)
www.vijnanaparishadofindia.org/jnanabha
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Abstract

The concept of the asymptotic cone is very useful in various branches of pure and applied mathematics,
especially in optimization and variational inequalities. In recent years, many authors and researchers have
studied asymptotic directions and asymptotically convergent algorithms for unbounded solution sets. In
this paper, we consider the asymptotic cone of the solution set Ω of a linear optimization problem and
investigate various results on its asymptotic cone, asymptotic regularity, the dual and polar cones of the
asymptotic cone, the support function of the solution set, etc. Finally, we present a dual characterization
of the asymptotic cone Ω∞ for the solution set of a linear optimization problem.
2020 Mathematical Sciences Classification: 90C05, 90C60, 46B06, 40A05.
Keywords and Phrases: Linear optimization, Asymptotic cones, Asymptotic regularity, Normalized
set, Positive hull, Polar cone, Dual cone, Support function.

1 Introduction
The concept of an asymptotic cone appeared in the literature first time in 1913 in Steintiz [35] to deal with
the unboundedness of sets, particularly unbounded convex sets. For further details on asymptotic cones
for convex sets we refer to Auslender and Teboulle [8], Luc and Penot [26], and Petrovai [29] and various
relevant references cited in each of them. For the notion of asymptotic cone for nonconvex sets we refer to
Luc [23,24,25,26], Penot [28], and Stoker[36].

The purpose of this paper is to investigate various asymptotic properties of the solution set for a linear
optimization problem and utilize them to provide a dual characterization of the asymptotic cone of the
solution set.

Throughout the paper, an n-dimensional Euclidean space will be denoted by Rn. For a point or vector

x = (x1, x2, . . . , xn) ∈ Rn, the Euclidean norm of x is given as ‖x‖ =
(∑n

i=1 xi
2
) 1

2 . A sequence in Rn

is written as {xk} or sometimes {xk}k∈N , where N is the set of natural numbers. A subsequence of this
sequence is denoted by {xk}k∈K , and K ⊂ N . A sequence {xk}k∈N is said to converge to x ∈ Rn, if
‖xk − x‖ → 0, as k →∞.

It is indicated by the notation limk→∞ xk = x or xk → x.
This is called a strong form of convergence. A sequence {xk}k∈N in Rn may converge to x ∈ Rn, linearly,

quadratically, or super linearly. For further details on the order of convergence, we refer to Petrovai [29].
The Bolzano-Weierstrass theorem, which is a fundamental result of the convergence in a finitedimensional

Euclidean space Rn, states that each bounded sequence in Rn has a convergent subsequence. A point x ∈ Rn
is called a cluster point of the sequence {xk}k∈N , in Rn, if there exists a subsequence {xk}k∈K that converges
to x. Also, the sequence {xk}k∈N , in Rn converges to a point x ∈ Rn if and only if it is bounded and x is its
unique cluster point. We will make use of the Bolzano-Weierstrass theorem to prove some results associated
with the asymptotic cone, asymptotic regularity, etc. of the solution set of the linear optimization problem.

Further details for dealing with the asymptotic behavior of sets and functions can be referred to
[1, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 16, 20, 21, 22, 26, 27, 31, 35, 36] and the relevant references cited in these papers.
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1.1 Linear Optimization Problem
A linear optimization problem in standard form can be stated as

(1.1) Maximize f(x) = cTx = c1x1 + c2x2 + · · ·+ cnxn,

such that

a11x1 + a12x2 + · · ·+ a1nxn = b1,

a21x1 + a22x2 + · · ·+ a2nxn = b2

...
...

...
am1x1 + am2x2 + · · ·+ amnxn = bm

xi ≥ 0, i = 1, 2, . . . , n

where A = [aij ] ∈ Rm×n, b = (b1, b2, . . . , bm)
T ∈ Rm, c = (c1, c2, . . . , cn)

T ∈ Rn, and x =

(x1, x2, . . . , xn)
T ∈ Rn.

Here f : Rn → R is a linear map defined by f(x) = cTx and, A : Rn → Rm, is also a linear map defined
by AX = b.

If we define m hyperplanes

(1.2) Hi = {x ∈ Rn : a11x1 + a11x1 + · · ·+ a11x1 = bi} , i = 1, 2, · · · ,m.
Then

(1.3) x ∈ {x ∈ Rn : Ax = b} if and only if x ∈
m⋂
i=1

Hi.

Let P+ = {x ∈ Rn : x ≥ 0} denotes the positive orthant of Rn and

(1.4) Ω = [∩mi=1Hi] ∩ P+.

Then the above linear optimization problem (1.1) can be stated as

(1.5) Maximize f(x) = cTx, such that x ∈ Ω.

Further, we assume that
a) A ∈ Rmm×n, that is A is an m× n matrix of rank m.
b) [A, b] ∈ Rmm×(n+1), that is, the augmented matrix [A, b] is of order m× (n+ 1), and rank m.
Thus, we have, rank[A, b] = rank(A) = m.
The solution set Ω is a nonempty closed subset of Rn. It is easy to see that it is also a convex subset of

Rn.

2 Definitions and Notations
In this section, we explicate some definitions and related notations that will be used throughout this paper.

Let xk ∈ Ω ⊂ Rn, and ‖xk‖ → ∞, as k → ∞. Then there exists a real sequence {αk}k∈K , defined as
αk := ‖xk‖ , k ∈ K,K ⊂ N such that limk∈K αk = +∞, and limk∈K

xk
αk

= β.

Definition 2.1. (Nonnegative orthant). The nonnegative orthant of an n-dimensional Euclidean space is
denoted by Rn+ and is given by

Rn+ = {x ∈ Rn | xi ≥ 0, i = 1, 2, 3, . . . , n}.

Definition 2.2. (Cone or nonnegative homogeneous). A set K is called a cone if ∀x ∈ K, and µ ≥ 0, µx ∈ K.

Definition 2.3. (Convex hull of a set). The convex hull of a set K is denoted by conv K, is the set of all
convex combinations of the points in K :

convK =

{
k∑
i=1

µixi : xi ∈ K,µi ≥ 0,∀i,
k∑
i=1

µi = 1

}
Definition 2.4. The sequence {xk}k∈N ⊂ Ω ⊂ Rn is said to converge to a direction βk ∈ Rn, If there exists
a real sequence {αk}, with αk → +∞ such that limk∈K

xk
αk

= β. The vector β ∈ Rn is called the direction of
convergence.

127



Definition 2.5. (Asymptotic Cone of the Solution set Ω ). The asymptotic cone of the solution set Ω,
denoted by Ω∞ is the collection of the vector β ∈ Rn that are limits in the direction of the sequence {xk}k∈N
contained in the solution set S. i.e.,

(2.1) Ω∞ =

{
β ∈ Rn : ∃αk → +∞,∃xk ∈ Ω, with lim

k→∞

xk
αk

= β

}
Definition 2.6. Let the solution set Ω of the linear optimization problem (1.1) be nonempty and define a
set denoted by Ω1

∞ as follows:

(2.2) Ω1
∞ =

{
β ∈ Rn : ∀αk → +∞,∃xk ∈ Ω, with lim

k→∞

xk
αk

= β

}
Definition 2.7. The solution set Ω of the linear optimization problem (1.1) is called asymptotically regular,
if
(2.3) Ω∞ = Ω1

∞

Definition 2.8. The normalized set of Ω ). Let the Solution set Ω of the linear optimization problem (1.1)
be nonempty, then the normalized set of Ω is denoted as ΩN , and is defined as

(2.4) ΩN =

{
β ∈ Rn : ∃ {xk} ∈ Ω, ‖xk‖ → +∞, with β = lim

k→∞

xk
‖xk‖

}
.

Definition 2.9. (Support Function of Ω ). Let the solution set Ω of the linear optimization problem (1.1)
be a nonempty, closed convex set in Rn then the support function of Ω is a map σΩ(x) : Rn → R defined by
(2.5) σΩ(x) = sup

{
xT y : y ∈ Ω

}
.

If A and B are two convex sets in Rn. Then σA(x) = σB(x)⇔ A = B.

Definition 2.10. (The Housdorff distance). The Houdorff distance between two nonempty compact convex
sets A and B can be expressed in terms of support functions as follows:
(2.6) dH(A,B) = ‖σA − σB‖∞ , where ‖.‖ denotes the uniform norm.

Definition 2.11. (The Domain of the support function of Ω ). The domain of the support function of the
solution set Ω is given as

(2.7) DomσΩ =

{
x : sup

y∈Ω
xT y <∞

}
Definition 2.12. (The Dual cone of Ω∞ ). The Dual cone of Ω∞ is the set
(2.8) Ω∗∞ =

{
y : yTx ≥ 0,∀x ∈ Ω∞

}
Definition 2.13. (The Polar cone of Ω∞ ). The polar cone of Ω∞ is the set
(2.9) Ωp∞ ==

{
y : yTx ≤ 0,∀x ∈ Ω∞

}
Remark 2.1. The polar cone Ωp∞ is just the negative of the polar cone Ω∗∞.

3 Main Results
In this section, we will prove some theorems related to the asymptotic cone, asymptotic regularity, and the
normalized set of the solution set Ω. Finally, we present a dual characterization of the asymptotic cone
Ω∞ of the solution set for the linear optimization problem (1.1) in terms of the polar cone and the support
function.

Theorem 3.1. The necessary and sufficient condition for the solution set Ω of the linear optimization
problem (1.1) is bounded is that the asymptotic cone of Ω does not contain any nonzero vector. i. e., if
Ω∞ = {0}.
Proof. It is obvious that if the solution set Ω of the linear optimization problem (1.1) is bounded then there
does not exist a direction β ∈ Ω∞ with β 6= 0.

Conversely, suppose, if possible, Ω is unbounded, and Ω∞ = {0}. As Ω is unbounded so, ∃ a sequence
{xk} contained in the solution set Ω, such that xk 6= 0, and ∀k ∈ N αk := ‖xk‖ → ∞.

Now we have, βk := αk
−1xk.

So, ‖βk‖ =
∥∥α−1

k xk
∥∥ =

∥∥α−1
k

∥∥ ‖xk‖ =
∥∥∥‖xk‖‖xk‖

∥∥∥ = 1, so the sequence {βk}k∈N is bounded. Now using the

Bolzano-Weierstrass theorem we can pull a subsequence {βk}k∈K ,K ⊂ N , out of this sequence such that
limk∈K βk = β,K ⊂ N , and ‖β‖ = 1. Thus ∃ a nonzero direction β ∈ Ω∞, which contradicts the fact that
Ω∞ = {0}.
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Theorem 3.2. If the solution set Ω 6= ∅, and convex then Ω is asymptotically regular.

Proof. It is easy to verify that Ω is a convex set. If x1, x2 ∈ Ω then both vectors will satisfy the equation
AX = b and therefore Ax1 = b, and Ax2 = b, x1, x2 ≥ 0. Now we consider a convex combination of x1

and x2, as µx1,+(1 − µ)x2, with 0 ≤ µ ≤ 1. Clearly µx1,+(1 − µ)x2 ≥ 0. and A [µx1,+(1− µ)x2] =
µAx1 + (1− µ)Ax2 = µb+ (1− µ)b = b. So Ω is a convex set.

Now it follows from the definitions of Ω∞ and Ω1
∞ that

(3.1) Ω1
∞ ⊆ Ω∞.

Our next goal is to show that Ω∞ ⊆ Ω1
∞.

Let β ∈ Ω. Then it follows from the definition of Ω∞ that there exists a sequence {xk}k∈N ∈ Ω, and ∃ a
sequence of real numbers {pk}k∈N such that pk →∞, and

(3.2) β = lim
k→∞

p−1
k xk.

For, x ∈ Ω, we define a sequence of directions {βk}k∈N ∈ Rn as

(3.3) βk = p−1
k (xk − x) .

Now βk = p−1
k (xk − x) ⇒ pkβk = xk − x ⇒ xk = x + pkβk, As xk ∈ Ω, so, x + pkβk ∈ Ω, and

β = limk→∞ βk.
Let {δk}k∈N be a sequence of real numbers such that limk→∞ δk = +∞.
Now for a fixed natural number m, there exists k(m) with

(3.4) lim
m→∞

k(m) = +∞, such that δm ≤ pk(m).

As Ω is convex, we have x∗m = x+ δmpk(m) ∈ Ω, therefore

(3.5) β = lim
m→∞

δmβk(m).

This implies that β ∈ Ω, so we have

(3.6) Ω∞ ⊆ Ω1
∞.

Hence, it follows from (3.1) and (3.6) that
Ω∞ = Ω1

∞.
Thus, the solution set Ω, of the linear optimization problem (1.1) is asymptotically regular.

Theorem 3.3. Let the solution set Ω 6= ∅ and define a normalized set of Ω, as

ΩN := {β ∈ Rn : ∃ {xk} ∈ Ω, ‖xk‖ → +∞ , with β = limk→∞
xk
‖xk‖

}
.

Then, Ω∞ = pos ΩN , where pos ΩN = {λx : x ∈ Ω, λ ≥ 0} is the positive hull of Ω.

Proof. From the definitions of Ω∞ and ΩN it follows that

(3.7) ΩN ⊆ Ω∞.

To prove that Ω∞ ⊆ ΩN , let β ∈ Ω∞ and β 6= 0. Then from the definition of Ω∞ there exists a real
sequence
{αk}k∈N with limk→∞ αk = +∞. Now for xk ∈ Ω, we have

(3.8) β = lim
m→∞

[
α−1
k xk

]
= lim
m→∞

[
α−1
k ‖xk‖

xk
‖xk‖

]
.

Thus, the sequence
{
α−1
k ‖xk‖

}
k∈N is a nonnegative bounded sequence, so by Bolzano-Weierstrass

theorem ∃ a convergent subsequence
{
α−1
k ‖xk‖

}
k∈K ,K ⊂ N such that

(3.9) lim

[[
α−1
k ‖xk‖

]
k→∞

= λ ≥ 0

So, from (3.8) we have

(3.10) β = lim
m→∞

[
α−1
k ‖xk‖

xk
‖xk‖

]
= lim

[
α−1
k ‖xk‖

]
k→∞

lim
k→∞

xk
‖xk‖

= λβN .

With normalized direction βN and x ∈ Ω, so β ∈ pos Ω

(3.11) Ω∞ ⊆ ΩN
Therefore, it follows from (3.7) and (3.11) that

Ω∞ = pos ΩN .
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Theorem 3.4. (Dual Characterization Theorem). If the solution set Ω of the linear optimization problem
is nonempty and Ω∞ and ΩP∞ denote the asymptotic cone of Ω and the polar cone of Ω∞ respectively. Then
the following relations hold:

a) If σΩ denotes the support function for the solution set Ω of the linear optimization problem, dom
σΩ ⊂ ΩP∞.

b) If the interior of the polar cone ΩP∞ is nonempty, ΩP∞ ⊂ dom σΩ.

c) For the solution set Ω of the linear optimization problem, ( dom σΩ)
P

= Ω∞.

Proof.
a) From the definitions 2.11 and 2.13 of domσΩ and ΩP∞, it follows that domσΩ ∩ ΩP∞ 6= φ.

Let y /∈ ΩP∞. Then from the definition 2.13, ∃ ∈ Ω∞ such that yTβ > 0. As β ∈ Ω∞
It follows from the definition of Ω∞ that ∃ a sequence sequence {xk}k∈N ⊂ Ω in Rn and sequence

{αk}k∈N in R such that αk → +∞, with α−1
k xk → β, and satisfying, the inequality yTβ > 0. Hence

it follows that yTxk → +∞.
This implies that y /∈ domσΩ, so domσΩ ⊂ ΩP∞.

b) Let y /∈ dom σΩ. Then ∃β ∈ Ω∞ such that yTβ > 0 and β 6= 0. As β ∈ Ω∞
∃ a sequence sequence {xk}k∈N ⊂ in Ω with{

xTk y
}
k∈N → +∞

Considering subsequences, if necessary, without any loss of generality, we can assume that
xk
‖xk‖ −→ β, and β 6= 0, and β ∈ Ω∞. Hence it follows that

(3.12)

(
xk
‖xk‖

)T
y ≥ 0.

Hence for ε > 0, we have βT (y + εβ) ≥ ε‖β‖2
This implies that y + εβ /∈ ΩP∞.
That is, y /∈ int ΩP∞. Hence it follows that

ΩP∞ ⊂ domσΩ.

c) The set Ω is a closed convex set in Rn, so Ω∞ is a closed convex cone then it follows from the definition
of the polar cone that

(3.13)
(
ΩP∞
)P

= Ω∞.

Now from (a) we have

(3.14) domσΩ ⊂ ΩP∞.

This implies that
(
ΩP∞
)P ⊂ (domσΩ)

P
. Using equation (3.13) we have

(3.15) Ω∞ ⊂ (domσΩ)
P
.

Now in order to prove that ( dom σΩ)
P ⊂ Ω∞, suppose that β ∈ (domσΩ)

P
, for a real number α > 0

and an arbitrary point x̄ in Ω, αβ ∈ (domσΩ)
P

, so for an arbitrary y ∈ domσΩ, we have

(x̄+ αβ)T y = x̄T y + (αβ)T y(3.16)

≤ x̄T y
≤ sup

{
xT y : x ∈ Ω

}
= σΩ(y)

Thus, for an arbitrary y /∈ domσΩ, we have

σΩ(y) = +∞.
The inequality (3.15) remains valid ∀y in Rn.
Therefore, ∀α > 0, x̄+ αβ ∈ Ω, where cl Ω denotes the closure of the solution set Ω.
We know that for any convex set Ω in Rn,Ω∞ is a closed convex cone and

(3.17) Ω∞ = D = {β ∈ Rn : x + αβ ∈ cl Ω,∀α > 0, and ∀x ∈ Ω} .
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Thus, β ∈ Ω∞, and

(3.18) (domσΩ)
P ⊂ Ω∞.

Now it follows from (3.15) and (3.17) that

(domσΩ)
P

= Ω∞

Further details of the asymptotic properties of the sets and the functions can be referred to
[1,2,4,5,9,10,11,12,14,16,20,21,22,23,25,26,27,31,35,36].

4 Concluding Remarks
The concept of the asymptotic cone is enormously useful in the study of the behavior of both convex and
nonconvex sets. For example, in [26] Luc and Penot have investigated various properties of the asymptotic
directions of unbounded sets to examine the perturbation of the data. Petrovai [29] has investigated
the notion of asymptotic convergence which is extremely useful for the algorithms dealing with nonlinear
mathematical programming Problems. The fundamental problem of linear optimization is to arrive at the
best possible decision in any given set of circumstances when the functions to be optimized and the constraints
are both linear. These days linear optimization is one of the most frequently used decisionmaking tools in the
industry, administration, banking, finance, marketing, and various other spheres of life. A desirable property
of an algorithm for solving a linear optimization problem is that it generates a well-defined solution at each
iteration of the algorithm and its solution set remains bounded all the time. However, in several situations,
the sequence of iterates may not remain bounded, and consequently, we get an unbounded solution set. The
results obtained in this paper, together with the BolzanoWeierstrass theorem, and the notion of asymptotic
convergence will be useful to deal with the unbounded solution sets of mathematical optimization problems.
The results of this paper can be extended for the solution sets of the other conic optimization problems like
semidefinite programming (SDP) and second-order cone programming (SOCP). These results can help to
obtain some characterization results for the asymptotic cones of the solution sets for SDP and SOCP. The
notion of asymptotic, polar cones and asymptotic regularity plays a considerable role in various disciplines
of Mathematical Sciences.

The various applications of the asymptotic cones, polar cones, dual cones, and associated asymptotic func-
tions in various areas of mathematical sciences can be referred to [4,5,9,10,11, 12,14,16,20,21,22,23,27,31,35,36],
and the references cited in these papers.
Acknowledgement. We are very much grateful to the Editor and Reviewer for their valuable suggestions
for improving the paper in its present form.
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Abstract

The purpose of this paper is to answer the question posed by Feldman [9] on topological transitivity
which states that ”If E is transitive, does it follows that direct sum E ⊕ E is topologically transitive?”
We will show that this question has a positive answer under certain conditions. In particular, we define
topologically transitive operators and use them to show that the direct sum E ⊕ E of two operators
is topologically transitive whenever E is topologically transitive. Then, we give some examples of
a topologically transitive operator which does not satisfy topologically transitive criterion and so not
topologically transitive.
2020 Mathematical Sciences Classification: 47A16, 47B02.
Keywords and Phrases: Hypercyclic operator, topologically transitive, direct sum, transitivity
criterion.

1 Introduction and Preliminaries
A bounded linear operator E on a separable Banach space X is topologically transitive if for each pair of
non-empty open subsets P ⊂ X and Q ⊂ X, one can find positive integer k > 0 such that Ek(P ) ∩Q 6= ∅.
If Ek(P ) ∩ Q 6= ∅ is from some k > N , then E is said to be topologically mixing. Birkhoff [5] developed
a topological transitive operator and provided an example of how it may be used to approximate any
holomorphic function in H(C). On separable Banach spaces, topological transitivity and hypercyclicity are
similar concepts in linear dynamics, according to Grosse-Erdmann and Manguillot [11]. A linear operator E
on a vector space X is said to be hypercyclic if there exists a vector x ∈ X such that the set of all vectors
obtained by iterating E on x, denoted by orb(E, x) =

{
x,Ex,E2x, . . .

}
, is dense in X. For E, such a vector

x is referred to as a hypercyclic vector.
Rolewicz [16] introduced the idea of hypercyclic operators and gave the first illustration of a hypercyclic

operator on a Banach space. He demonstrated that if B is the backward shift on `(N) then λB is hypercyclic
for every scalar |λ| > 1. The Hypercyclicity criterion, a useful necessary condition for an operator to be
hypercyclic, was later established by Kitai [13]. Gethner and Shapiro [10] also contributed to the development
of this criterion. Many authors have further refined this criterion (see Grosse-Erdmann [11] and the references
therein).

Recently, Madore and Martinez [14] studied hypercyclicity on subspaces. They investigated subspace-
topologically transitive operators and demonstrated that any subspace-topologically transitive operator is
subspace-hypercyclic. This result extends the theory of hypercyclic operators to the case of operators acting
on subspaces. Further details on hypercyclicity and related topics can be found in the monographs by
Grosse-Erdmann [11] and Bayart and Matheron [4].

In the study of linear dynamics, hypercyclicity and topological transitivity are important concepts that
describe the behavior of bounded linear operators on Banach spaces. One question of interest is whether the
hypercyclicity property is preserved under direct sums of operators. Kitai [13] showed that if a direct sum
E ⊕ E is hypercyclic, then both E1 and E2 must also be hypercyclic.

However, Salas [18] constructed an operator E and its adjoint E∗ such that both E and E∗ are hypercyclic,
but their direct sum E ⊕ E∗ is not hypercyclic. This example raises the question of whether E ⊕ E is
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hypercyclic whenever E is hypercyclic. Herrero questioned this, and De la Rosa and Read [15] provided a
hypercyclic operator E such that E⊕E is not hypercyclic, showing that the answer to Herrero’s question is
negative.

On the other hand, Bès and Peris [2] showed that if E ⊕E is hypercyclic, then E fulfills the hypercyclic
condition as well. In other words, hypercyclicity is preserved under direct sums in one direction. Further
details on hypercyclicity and topological transitivity can be found in the monographs by Bayart and Matheron
[4] and Grosse-Erdmann and Manguillot [11].

Definition 1.1 ([11]). A bounded linear operator E acting on a Banach space X is said to be topologically
transitive if for any two non-empty open subsets P,Q ⊆ X, there exists a positive integer k such that
Ek(P ) ∩Q is non-empty.

Definition 1.2. A pair of bounded linear operators (E1, E2) on a Banach space X is said to be topologically
mixing if for any pair of non-empty open sets P,Q ⊆ X, there exist positive integers M and N such that
Em1 E

n
2 (P ) ∩Q 6= ∅ for all m ≥M and n ≥ N .

Intuitively, this means that after some finite number of iterations of each operator, the images of P and
Q intersect.

Note that the order of the operators in the product Em1 E
n
2 matters in general, and that the definition of

topological mixing requires that both operators are involved in the mixing property.
Also, note that the definition of topological mixing is stronger than that of topological transitivity, as

it requires the existence of two parameters M and N , whereas topological transitivity only requires the
existence of one parameter n.

Definition 1.3 ([11]). An operator E on a separable Hilbert space H is said to be chaotic if it satisfies the
following conditions:

(i) E is topologically transitive.
(ii) E has a dense set of periodic points, that is, there exists a dense subset D of H such that for any

a ∈ D, there exists a positive integer k such that Ek(a) = a.

Definition 1.4 ([6]). E ∈ B(H) is said to be weakly mixing if E ⊕ E is topologically transitive on X ⊕X,
and E is mixing if for every pair of non-empty open sets , Q ⊆ X there exists some k ∈ N such that
Ek(P ) ∩Q 6= ∅, ∀ k > k0.

The notions of weakly mixing and mixing are closely linked to the idea of hereditarily hypercyclic
operators.

Topological mixing =⇒ topological transitivity by definition ??, but not vice versa.

Definition 1.5. A dynamical system E : X → X is said to be minimal if for every x ∈ X, the orbit of x
under E is dense in X.

Example 1.1 ([11]). An irrational circle rotation is minimal and therefore topologically transitive, but not
topologically mixing.

Proof. Let Eα : S1 → S1 be the map defined by Eα(z) = z + α (mod 1), where α is an irrational number.
This is an example of an irrational circle rotation. Where S1 is defined as

S1 = {a ∈ C : |a| = 1} .
To show that Eα is minimal, we need to show that every point is dense in its orbit.
Let a ∈ S1 and let k ∈ Z be arbitrary. Then, there exists a sequence of integers (xn)∞n=1 for which

∞∑
n=1

xnα = k

and

|k −
m∑
n=1

xnα| ≤ |α|,

for all m ∈ N.
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Using this sequence, we can construct a sequence (am)∞m=0 in S1 by setting a0 = a and am+1 = T
km+1
α (am)

for m ≥ 0. Then, we have:

|am+1 − a| = |Ekm+1
α (am)− Ekm+1

α (a) + Ekm+1
α (a)− a|,

= |αkm+1|+ |Ekm+1
α (a)− a|,

≤ |α|+ |Ekm+1
α (a)− Ekmα (a)|,

≤ 2|α|,
for all m ≥ 0.

This proves that the sequence (am) is a Cauchy sequence, hence it converges to a limit y in S1. Since
Eα is continuous, we have

Eα(y) = lim
m→∞

Ekmα (a) = a+ kα (mod 1) = a.

Therefore, y belongs to the orbit of a, and since a was arbitrary, we conclude that every point is dense in its
orbit. This shows that Eα is minimal.

To show that Eα is not topologically mixing, we will construct a pair of disjoint open subsets P ⊆ S1

and Q ⊆ S1 for which Ekα(P ) ∩Q = ∅, for all k ∈ N. Let ε > 0 be small enough so that ε < |α|.
Define P = (−ε, ε) and Q = ( 1

2 − ε,
1
2 + ε). Then, for any k ∈ N, we have:

Ekα(P ) = (kα− ε, kα+ ε) (mod 1),

Ekα(P ) = (
1

2
+ kα− ε, 1

2
+ kα+ ε) (mod 1).

These sets are disjoint if and only if kα − 1
2 > ε or kα − 1

2 < −ε. Since α is irrational. Then, Eα is not
topologically mixing.

Definition 1.6 ([6]). An operator E ∈ B(H) is said to be hereditarily hypercyclic with respect to a strictly
increasing sequence (mk) of natural numbers if, for any subsequence (mkj ) of (mk), there is x ∈ X such that
{Emkj x, j ∈ N} is dense in X.

Theorem 1.1. (Hypercyclicity Criterion) [4] Let X be a Fréchet space, and let E be a continuous linear
operator on X. Assume there exist two dense subsets D1,D2 of X, an increasing sequence of integers (nk)k≥1,
and a family of maps (Sk)k ≥ 1 from D2 to X such that:

i. For each k ≥ 1, Enk(x)→ 0 for all x ∈ D1.
ii. For each k ≥ 1, Sk(y)→ 0 for all y ∈ D2.

iii. For each k ≥ 1 and each y ∈ D2, Enk ◦ Sk(y)→ y.
Then, E is hypercyclic.

Theorem 1.2 ([2]). Let E ∈ B(H) be a bounded linear operator on a Hilbert space H. Then the following
statements are equivalent:

(i) E satisfies the Hypercyclicity Criterion.
(ii) E is hereditarily hypercyclic.

(iii) E ⊕ E is hypercyclic.

Example 1.2. Let (E1, E2, E3) = (2I1,
1

3
I1, e

iθI1) where I1 is the identity operator on C and θ is an

irrational multiple of π. Then E is hypercyclic on C, but E does not satisfy the topologically transitivity
criterion.

Example 1.3. If C and D be topologically transitive operators and let E1 = C ⊕ I and E2 = I ⊕D then
(E1, E2) is a topologically transitive, but neither (E1 nor E2) is cyclic.

Proof. First, we need to show that (E1, E2) is topologically transitive.
Now, consider (x, y) ∈ X ⊕ Y , where X and Y are Banach spaces. We need to show that for every

non-empty open subsets P1 ⊂ X and P2 ⊂ Y , ∃ (k, s) ∈ N× N such that Ek1 (x) ∈ P1 and Es2(y) ∈ P2.
Since C and D are topologically transitive, ∃ (k1, k2) ∈ N such that Ck1(x) ∈ P1 and Dk2(y) ∈ P2.
Let k = max {k1, k2}. Then, we have

Ek1 (x) = (C ⊕ I)k(x, y) = (Ck(x), y)
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Ek2 (y) = (I ⊕D)k(x, y) = (x,Dk(y)).

For all k ≥ k1, we have Ck(x) ∈ P1, and for k ≥ k2, we have Dk(y) ∈ P2.
Therefore, (E1, E2) is topologically transitive.
Next, we need to show that neither E1 nor E2 is cyclic.
Suppose by contradiction that E1 is cyclic. Then, there is x ∈ X such that the set

{
Ek1 (x) : k ∈ N

}
is

dense in X.
Let y ∈ Y be arbitrary. Then the set

{
(EK1 (x), y) : K ∈ N

}
is dense in X ⊕ Y .

However, we have
(Ek1 (x), y) = (Ak(x), y)→ (0, y)

as k →∞, which contradicts the density of
{

(Ek1 (x), y) : k ∈ N
}

.
Similarly, suppose by contradiction that E2 is cyclic. Then, there is y ∈ Y such that the set{

Ek2 (y) : k ∈ N
}

is dense in Y .

Let x ∈ X be arbitrary. Then the set
{

(x,Ek2 (y)) : k ∈ N
}

is dense in X ⊕ Y .
Nevertheless, we have that

(x,Ek2 (y)) = (x,Dk(y))→ (x, 0)

as k →∞, which contradicts the density of
{

(x,Ek2 (y)) : k ∈ N
}

.
Therefore, neither E1 nor E2 is cyclic.

Example 1.4. Let A and B be topologically transitive operators and let C be an operator with dense range
that commutes with B. If we define T1 = A⊕ C and T2 = I ⊕B then (T1, T2) is a topologically transitive.

Proof. To show that (T1, T2) is topologically transitive.
We need to show that for any non-empty open subsets U1, U2 in B(H1) and B(H2) respectively, ∃ n ∈ N

such that
Tn1 (U1) ∩ Tn2 (U2) 6= ∅.

Let U1, U2 be nonempty open sets in B(H1) and B(H2) respectively.
Since A and B are topologically transitive, there exist natural numbers m and n such that

Am(U1) ∩ C 6= ∅
and

Bn(U2) 6= ∅.

Since the range of C is dense in H2, ∃ x ∈ H1 for which Cx is arbitrarily close to any given vector in H2.
Let y ∈ Bn(U2), then there exists z ∈ H2 such that Bnz = y.
Since C commutes with B, we have CBnz = BCnz, and since C has dense range, we can find w ∈ H1

such that Cnw is arbitrarily close to BCnz. Then,

Tn1 (Am(U1) ∩ C) ∩ Tn2 (U2) ⊇ (Am ⊕ C)(U1) ∩ (I ⊕B)(U2) = U1 ⊕Bn(U2) 6= ∅,
where we used the fact that Am commutes with I and Bn commutes with C.
Therefore, (T1, T2) is topologically transitive.

Theorem 1.3 ([23]). Let E be a bounded linear operator on a complex Banach space X (not necessarily
separable). Suppose that there exists a strictly increasing sequence (ki) of positive integers for which there is

(i) a dense subset A ⊂ X such that Eki(x)→ 0, for every a ∈ A as i→∞.
(ii) a dense subset B ⊂ X and a sequence of mappings Gi : B → X such that Gi(b)→ 0, for every b ∈ B

and EkiGi(b)→ b, for every b ∈ B as i→∞.

Then, E is topologically transitive.
In the next section, we investigate the properties of topologically transitive linear operators on a Banach

space. Specifically, we focus on the class of operators E that are topologically transitive, and demonstrate
that their direct sum E ⊕ E is also topologically transitive.

137



2 Main results
In this section, we investigate topologically transitive operator E whose direct sum E ⊕ E is topologically
transitive. Thereby responding to the question posed by Feldman [9] which states that: ”If E is transitive,
does it follows that direct sum E ⊕ E is topologically transitive?” in the affirmative. Thus, we will modify
Theorem 1.3 of Zagorodnyuk [23] to prove our main results of this study on topologically transitive operators.

Theorem 2.1. Let E = (E1, E2) ∈ L(Z ⊕ Z) be a bounded linear operator on a topological vector space.
Suppose there exists a strictly increasing sequence (ki) of positive integers for which there is

(i) a dense subset A ⊂ Z such that (E1 ⊕ E2)ki(a1, a2)→ (0, 0) for every (a1, a2) ∈ A as i→∞.
(ii) a dense subset B ⊂ Z and a sequence of mappings Gki : B → Z such that (G1 ⊕G2)ki(b1, b2)→ (0, 0)

for every (b1, b2) ∈ B and (E1 ⊕ E2)ki(G1 ⊕G2)ki(b1, b2)→ (b1, b2) for every (b1, b2) ∈ B as i→∞.
Then E1 ⊕ E2 is topologically transitive.

Proof. Let P1, P2, Q1 and Q2 be non empty open sets of Z.
Then, (P1 ⊕ P2) and (Q1 ⊕Q2) are open in Z ⊕ Z.
Since (A1⊕A2) and (B1⊕B2) are dense in Z ⊕Z then there exist (a1, a2) and (b1, b2) in (A1⊕A2) and

(B1 ⊕B2) respectively such that

(a1, a2) ∈ (P1 ⊕ P2) ∩ (A1 ⊕A2)

and
(b1, b2) ∈ (Q1 ⊕Q2) ∩ (B1 ⊕B2).

For all i > 1, let zi = (a1, a2) + (G1 ⊕G2)ki(b1, b2).
By Theorem 2.1 condition (ii), we have that (G1 ⊕G2)ki(b1, b2)→ (0, 0) as i→∞.
=⇒ zi → (a1, a2).

Since (a1, a2) ∈ (P1 ⊕ P2) and (P1, P2) is open, there exists N1 ∈ N such that zi ∈ (P1 ⊕ P2),∀i > N1.
On the other hand,
(E1 ⊕ E2)kizi = (E1 ⊕ E2)ki(a1, a2) + (E1 ⊕ E2)ki(Gi(b1, b2))→ (b1, b2). Since
(b1, b2) ∈ (Q1 ⊕Q2) and (Q1, Q2) is open, there exists N2 ∈ N such that
(E1 ⊕ E2)kizi ∈ (Q1 ⊕Q2),∀i > N2.
Let N = max {N1, N2} then zi ∈ (P1 ⊕ P2) and (E1 ⊕ E2)kizi ∈ (Q1 ⊕Q2∀i > N.
It follows that,
(E1 ⊕ E2)ki(P1 ⊕ P2) ∩ (Q1 ⊕Q2) 6= ∅,∀i > N.
Hence, E1 ⊕ E2 is topologically transitive.

Remark 2.1. If E2 is the identity, then the conditions in Theorem 2.1 reduce to the well-known ”topologically
transitivity criterion” for a single operator.

Proposition 2.1. An operator E = (E1, E2) ∈ B(H) is topologically transitive if and only if G =
{(E1 ⊕ E2)s : s ∈ N} is topologically transitive.

Proof. We will prove the ”if” part and the ”only if” part separately.
If part: Suppose by contradiction that, E is not topologically transitive, that is, there exist non-

empty open sets P,Q ⊆ H such that for all positive integers k, we have Ek(P ) ∩ Q = ∅. Let
G = {(E1 ⊕ E2)s : s ∈ N}. Then for any p, q ∈ H and any positive integer k, we have

(Ek ⊕ EK)(p⊕ q) = Ekp⊕ Ekq,
and so Ekp ∈ P and Ekq ∈ Q imply that (Ek ⊕ Ek)(p⊕ q) /∈ P ⊕Q.

This means that for any non-empty open sets P ′, Q′ ⊆ H⊕H, there exists a positive integer k such that

(Ek ⊕ Ek)(P ′ ∩ (P ′ ⊕Q′)) = ∅
which is contradiction.

Therefore, E is topologically transitive.
Only if: Suppose E is topologically transitive and let G = {(E1 ⊕ E2)s : s ∈ N}.
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Let P,Q ⊆ H ⊕ H be non-empty open sets. Then there exist non-empty open sets P1, P2, Q1, Q2 ⊆ H
such that P = P1 ⊕ P2 and Q = Q1 ⊕Q2.

Since E is topologically transitive, there exists a positive integer K such that

Ek(P1) ∩Q1 6= ∅.
Then

(Ek ⊕ Ek)(P ∩ (P ⊕Q)) = (EkP1 ⊕ EkP2) ∩ (Q1 ⊕Q2),

and since EkP1 ⊆ H and EkP2 ⊆ H are non-empty.
It follows that (Ek ⊕ Ek)(P ∩ (P ⊕Q)) 6= ∅.
Therefore, G is topologically transitive.

Proposition 2.2. Every chaotic operator E = (E1, E2) ∈ B(H) on a topological vector space X satisfies the
topologically transitivity criterion.

Proof. It is enough to show that E1 ⊕ E2 is topologically transitive whenever E is topologically transitive.
Now, let E ∈ B(H) be chaotic and also let P1, P2, Q1, Q2 be open, non-empty subsets of X. We show

that there exists arbitrary large integer k satisfying

(2.1)

{
(E1 ⊕ E2)k(P1) ∩Q1 6= ∅

(E1 ⊕ E2)k(P2) ∩Q2 6= ∅.
Now, since E is topologically transitive, there exists m arbitrarily large with

(E1 ⊕ E2)m(P1) ∩Q1 6= ∅.
Furthermore, since E is chaotic there exists some p1 ∈ P1 and s > 0 with

(E1 ⊕ E2)m(p1) ∈ Q1

(E1 ⊕ E2)s(p1) = p1.

By Proposition 2.1, the operator G = (E1 ⊕E2)s ∈ L(X) is also topologically transitive, and so there exists
a positive integer d satisfying

(E1 ⊕ E2)ds(P2) ∩ (E1 ⊕ E2)−m(Q2) 6= ∅.
Let k = ds+m. Then we have that,

(E1 ⊕ E2)k(P2) ∩Q2 6= ∅.

(E1 ⊕ E2)k(p1) = (E1 ⊕ E2)m((E1 ⊕ E2)dsp1) = (E1 ⊕ E2)m(p1) ∈ Q1.

Therefore (2.1) holds.

Proposition 2.3. A bounded linear operator E : X → X is called topologically transitive if E ⊕ E is
topologically transitive.

Proof. To show that E is topologically transitive if and only if E ⊕E is topologically transitive, we need to
prove two implications.

(⇒) Suppose E is topologically transitive.

Let P,Q be non-empty open subsets of X ⊕X. Then P =
⋃k
i=1 Pi ⊕Qi and Q =

⋃m
j=1 P

′
j ⊕Q′j for some

k,m ∈ N and non-empty open subsets Pi, Qi, P
′
j , Q

′
j of X.

Since E is topologically transitive, there exists k ∈ N such that En(Pi) ∩ Qj 6= ∅, ∀ i, j). Then,

Ek(P ) ∩Q =
⋃k
i=1

⋃m
j=1E

k(Pi) ∩Q′j 6= ∅.
Thus, E ⊕ E is topologically transitive.
(⇐) Conversely, suppose E ⊕ E is topologically transitive.
Let P and Q be non-empty open subsets of X. Then P ⊕Q is a non-empty open subset of X ⊕X.
Since E ⊕ E is topologically transitive, there exists k ∈ N such that

(E ⊕ E)k(P ⊕Q) ∩ (X ⊕X) 6= ∅.
Let (a, b) ∈ (E ⊕ E)k(P ⊕Q) ∩ (X ⊕X). Then (a, b) = (Ek(p), Ek(q)) for some p ∈ P and q ∈ Q.

Thus, Ek(p) = a and Ek(q) = b, so Ek(P ) ∩Q 6= ∅.
Therefore, E is topologically transitive.
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Proposition 2.4. If two operators T1 and T2 are topologically transitive, their direct sum T1 ⊕ T2 is also
topologically transitive.

Proof. Suppose X is a Banach space and T1 and T2 are bounded linear operators on X that are topologically
transitive. We want to show that T1 ⊕ T2 is also topologically transitive on X ⊕X.

Let U and V be non-empty open subsets of X ⊕X.
Assuming that T1 is topologically transitive, there exist m ∈ N and (xn) ∈ U such that

Tm1 (xn) ∈ V.
Similarly, since T2 is topologically transitive, ∃ n ∈ N and (yk) ∈ U for which

Tn2 (yk) ∈ V.
Now, consider the element (xn, yk) ∈ U and compute its image under T1 ⊕ T2:

(T1 ⊕ T2)(xn, yk) = (T1(xn), T2(yk)).

By our choice of m and (xn), there exists 0 ≤ j < m such that

(T j1 (xn), 0) ∈ U.
Similarly, there exists 0 ≤ l < n such that (0, T l2(yk)) ∈ U .
Consider the element (T j1 (xn), T l2(yk)) ∈ U . Then,

(T1 ⊕ T2)j+l(T j1 (xn), T l2(yk)) = (T j+l1 (xn), T j+l2 (yk)).

Since T1 and T2 are topologically transitive, there exist p, q ∈ N such that

T p1 (xn) ∈ U

and
T q2 (yk) ∈ U.

Then, we can choose r = j + l + p+ q and see that

(T1 ⊕ T2)r(xn, yk) = (T r1 (xn), T r2 (yk)) ∈ V.
Thus, T1 ⊕ T2 is topologically transitive on X ⊕X.

The following corollary is due to Feldman [8] on the hypercyclicity criterion.

Corollary 2.1 ([8]). If (E1, E2) satisfies the hypercyclicity criterion, then (E1 ⊕E1, E2 ⊕E2) also satisfies
the hypercyclicity criterion, hence is a hypercyclic pair.

We extend Corollary 2.1 to the direct sum of the same operators, especially when they satisfy the
topologically transitive criterion.

Corollary 2.2. If (E1, E2) satisfies topologically transitive criterion, then (E1 ⊕E1, E2 ⊕E2) also satisfies
the topologically transitive criterion, hence is a topologically transitive pair.

Proof. Suppose (E1, E2) satisfies the topologically transitive criterion on a topological vector space X.
That is, for any open sets P,Q ⊆ X, there exist n,m ∈ N such that En1 (P ) ∩ Em2 (Q) 6= ∅.
We need to show that (E1 ⊕ E1, E2 ⊕ E2) satisfies the topologically transitive criterion on X ⊕X.
Let P⊕ P and Q⊕Q be open sets in X ⊕X.
Then P,Q are open sets in X, then there exist n,m ∈ N such that En1 (P ) ∩ Em2 (Q) 6= ∅. Let (a, b) ∈

En1 (P ) ∩ Em2 (Q), then

(E1 ⊕ E1)n(a, b) = (En1 (a), En1 (b)) ∈ P ⊕ P

and
(E2 ⊕ E2)m(a, b) = (Em2 (a), Em2 (b)) ∈ Q⊕Q.

Therefore, (E1 ⊕ E1)n(P ⊕ P ) ∩ (E2 ⊕ E2)m(Q⊕Q) 6= ∅,
Hence (E1 ⊕ E1, E2 ⊕ E2) satisfies the topologically transitive criterion.
Thus, (E1 ⊕ E1, E2 ⊕ E2) is a topologically transitive pair on X ⊕X.
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Here are some examples of direct sums of topologically transitive operators that are topologically
transitive pairs:

Example 2.1. Let T1 and T2 be the left and right shift operators on `2(N), respectively. Then T1 ⊕ T2 is a
topologically transitive pair, since it is known that both T1 and T2 are topologically transitive.

Proof. Required to show that T1⊕ T2 is topologically transitive, that is, for any non-empty open subsets U1

and U2 of `2(N), there exist m,n ∈ N such that
(T1 ⊕ T2)k(U1 × U2) ∩ (U1 × U2) 6= ∅, ∀ k ≥ m+ n.
Consider two non-empty open sets U1 and U2 in the separable Hilbert space `2(N). Then U1 × U2 is a

non-empty open subset of `2(N)⊕ `2(N), which is the Hilbert space direct sum of two copies of `2(N).
Since T1 and T2 are both topologically transitive, there exist m1,m2, n1, n2 ∈ N such that

Tm1
1 (U1) ∩ U1 6= ∅, Tm2

2 (U2) ∩ U2 6= ∅

and
Tn1

1 (U1) ∩ U1 6= ∅, Tn2
2 (U2) ∩ U2 6= ∅.

Now, consider (T1 ⊕ T2)m+n(u1, u2), where u1 ∈ U1 and u2 ∈ U2.
We have that,

(T1 ⊕ T2)m+n(u1, u2) = (Tm1 (u1), Tn2 (u2))

Thus, (T1 ⊕ T2)m+n(U1 × U2) contains the non-empty open set
(Tm1

1 (U1) ∩ U1)× (Tn2
2 (U2) ∩ U2).

Therefore, we have (T1 ⊕ T2)m+n(U1 × U2) ∩ (U1 × U2) 6= ∅ which proves that T1 ⊕ T2 is topologically
transitive.

Example 2.2. Consider the unilateral shift operator E on the separable Hilbert space `2(N), defined by

E(a1, a2, a3 . . . ) = (a2, a3, a4 . . . ).

Also, let S be the operator on `2(N) given by S(ak) = 2kak for k ≥ 1.
Then E ⊕ S is a topologically transitive pair, since both E and S are topologically transitive.

Proof. In order to establish that E ⊕ S is a topologically transitive pair of operators, it is necessary to
demonstrate that for any pair of nonempty open sets P1 and P2 in `2(N), there exists an integer k ∈ N such
that,

(E ⊕ S)k(P1 × P2) 6= ∅, where (E ⊕ S)k denotes the k-th power of the operator E ⊕ S.
Let P1, P2 be non-empty open subsets in `2(N). Then, there exist ε1, ε2 > 0 and sequences (a(1)k) and

(a(2)k) in `2(N) such that Bε1(a(1)) ⊆ P1 and Bε2(a(2)) ⊆ P2, where Bε(a) denotes the open ball of radius
ε centered at a.

We claim that there exists k ∈ N such that (E ⊕ S)k(a(1) × a(2)) ∈ P1 × P2.
Notice that,
(E ⊕ S)k(a(1) × a(2)) = (Eka(1))× (2ka(2)) ∀ k ≥ 1.
Since E is topologically transitive, there exists k1 ≥ 1 such that
Ek1a(1) ∈ Bε1(a(1)) ⊆ P1.
Similarly, since S is topologically transitive, there exists k2 ≥ 1 such that
2k2a(2) ∈ Bε2(a(2)) ⊆ P2.
Let k = max {k1, k2} then,
(E ⊕ S)k(a(1) × a(2)) = (aka(1))× (2ka(2)) ∈ P1 × P2.
As we have, Eka(1) ∈ P1 and 2ka(2) ∈ P2.
Therefore, (E ⊕ S)k(P1 × P2) 6= ∅ for some k ∈ N.
Thus, E ⊕ S is a topologically transitive pair.
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2.1 Subspace mixing operators and their direct sum
In this section, we focus on the direct sum of a topologically transitive operator in the context of a separable
Hilbert space H, where B(H) denotes the set of all bounded linear operators on H. Throughout our
discussion, we assume that M is a closed topologically transitive subspace of H.

Several researchers have studied the direct sum of operators in linear dynamics, as illustrated in works
such as [2, 18, 15, 22, 21, 12, 3]. In particular, the idea of topological transitivity on the direct sum of
operators is related to other concepts, such as topological weak mixing and the hypercyclicity criterion.

Definition 2.1 ([7]). Let M1 and M2 be subspaces of a Banach space X, then the direct sum of M1 and M2

is defined as:
M1 ⊕M2 = {(a, b) : a ∈M1, b ∈M2}

and the norm ||(a, b)||2 = ||a||2 + ||b||2 on M1⊕M2 defines the space M1⊕M2 to be Banach space. For more
information and details on the direct sum of Banach spaces, the reader may refer [7].

Definition 2.2 ([20]). Let E ∈ L(B) and let M be a closed non-zero subspace of X. We say E is subspace
mixing or (M-mixing), if for all non-empty sets P,Q ⊆M both relatively open, there exists a positive integer
N such that Ek(P ) ∩Q 6= ∅ ∀ k > N .

Theorem 2.2 ([1]). If F1 is M1-hypercyclic and F2 is M2-hypercyclic, and at least one of them is subspace
mixing, then F1 ⊕ F2 is (M1 ⊕M2)-hypercyclic.

The following results is obtained by extending the Theorem 2.2 to topologically transitive operators.

Theorem 2.3. If F1 is M1-topologically transitive and F2 is M2-topologically transitive and at least one of
them is subspace mixing, then F1 ⊕ F2 is (M1 ⊕M2)-topologically transitive.

Proof. By Theorem 2.2 we have F1 ⊕ F2 is (M1 ⊕M2)-hypercyclic. Now we need to show that F1 ⊕ F2 is
(M1 ⊕M2)-topologically transitive.

Suppose that F1 is M1-mixing. Let P1 ⊕Q1 and P2 ⊕Q2 be open sets in M1 ⊕M2, then P1, P2 and Q1,
Q2 are open in M1 and M2 respectively.

By hypothesis, there exist two numbers N1, N2 ∈ N such that

F−N1
1 (P1) ∩ P2 6= ∅ and FN1

1 (M1) ⊆M1

and
F−n2 (Q1) ∩Q2 6= ∅ and Fn2 (M2) ⊆M2 ∀n > N2.

As F2 is M2-topologically transitive, we have{
F−n2 (Q1) ∩Q2 : n ∈ N

}
and Fn2 (M2) ⊆M2 is infinite.

Then, there exists k ∈ N such that F−k1 (P1) ∩ P2 6= ∅, F−k2 (Q1) ∩ Q2 6= ∅, F k1 (M1) ⊆ M1 and
F k2 (M2) ⊆M2.

Notice that
(F1 ⊕ F2)−k(P1 ⊕Q1) ∩ (P2 ⊕Q2) 6= ∅ and (F1 ⊕ F2)k(M1 ⊕M2) ⊆ (M1 ⊕M2)
Hence, F1 ⊕ F2 is (M1 ⊕M2)-topologically transitive.

The implication of Theorem 2.3 is that the following result holds.

Corollary 2.3. Let M1 and M2 be closed subspaces on Hilbert space X, then F1 and F2 are M1-topologically
mixing and M2-topologically mixing; respectively, if and only if (F1⊕F2) is (M1⊕M2)-topologically mixing.

Proof. For the ”If” part.
Let P1, P2 be open sets in M1 and Q1, Q2 be open sets in M2, then
P1 ⊕Q1 and P2 ⊕Q2 are open in M1 ⊕M2. Thus, there is an N ∈ N such that

(F1 ⊕ F2)−n(P1 ⊕Q1) ∩ (P2 ⊕Q2) 6= ∅
and

(F1 ⊕ F2)k(M1 ⊕M2) ⊆ (M1 ⊕M2)

∀ n ≥ N.
Then,
F−n(P1) ∩ P2 6= ∅, F−n(Q1) ∩Q2 6= ∅, Fn(M1) ⊆M1 and Fn(M2) ⊆M2.
Therefore, F1 is M1-topologically mixing and F2 is M2-topologically mixing.
We skip the proof of ”only if” part since it is similar to the proof of Theorem 2.3.
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Corollary 2.4. If E satisfies subspace-topologically transitive criterion, then E⊕E is subspace-topologically
transitive.

Proof. Let X be a topological space and E : X → X be a subspace-topologically transitive operator. We
show that the operator E ⊕ E : X ⊕X → X ⊕X defined by (E ⊕ E)(a, b) = (Ta, Tb) ∀ (a, b) ∈ X ⊕X is
also subspace-topologically transitive.

Let Y ⊂ X ⊕X be a non-empty open subset.
We need to show that there exists n ∈ N such that (E ⊕ E)n(Y ) = X ⊕X.
Since Y is non-empty and open, it contains some basic open set of the form P ⊕Q for some non-empty

open subsets P,Q ⊂ X.
Since E is subspace-topologically transitive, there exists m ∈ N such that Em(P ) = X.
Similarly, there exists k ∈ N such that Ek(Q) = X.
Then, for any (a, b) ∈ X ⊕X, we have (E ⊕ E)m+k(a, b) = (Em(Ek(A)), Ek(Em(b))).
Since Em(P ) = X and Ek(Q) = X.
It follows that
(E ⊕ E)m+k(a, b) ∈ P ⊕Q ⊂ Y , which implies that (E ⊕ E)m+k(X ⊕X) ⊂ Y.
Therefore, (E ⊕ E)m+k(X ⊕X) = X ⊕X.
Thus, E ⊕ E is subspace-topologically transitive.

The famous tent map shown below is an example of subspace-topologically transitive, which will support
the results obtained in the corollary 2.4.

Example 2.3. Let X = [0, 1] with the usual topology, and let T : Y → Y be defined by

Tx =

{
2x if 0 ≤ x < 1

2

2x− 1 if 1
2 ≤ x ≤ 1.

Proof. We need to show that E ⊕ E : Y ⊕ Y → Y ⊕ Y is also subspace-topologically transitive.
Suppose that X = (a, b) × (c, d) ⊂ Y ⊕ Y be a non-empty open subset. Then P = (a, b) and Q = (c, d)

are non-empty open subsets of Y .
Since E is subspace-topologically transitive, there exists m ∈ N such that
Em(P ) = Y and Em(Q) = Y .
Let n = 2m. Then for any (x, y) ∈ Y ⊕ Y , we have that
(E ⊕ E)n(x, y) = (Em(Em(x)), Em(Em(y))).
As we have that Em(P ) = Y and Em(Q) = Y.
It follows that (E ⊕ E)n(x, y) ∈ P ⊕Q ⊂ X.
Therefore, (E ⊕ E)n(Y ⊕ Y ) ⊂ X.
Hence, E ⊕ E is subspace-topologically transitive.

In his paper [17], Salas presented the first example of a bounded linear operator E on a separable complex
Hilbert space X that is topologically transitive whose adjoint T ∗ is also topologically transitive. Later, in
[19], Salas showed that such an operator exists in any separable complex Hilbert space X with a separable
dual space. This prompts the following question.

Question 2.1. Let X be a separable complex Hilbert space. Is there a bounded linear operator E ∈ B(X)
that is not topologically transitive and such that both E∗ and E are J-class operators in a subspace of X?

3 Conclusion
In this paper, we investigated the topologically transitive operators and topologically mixing features of
dynamical systems. In particular, we established that the transitivity property does not necessarily carry over
to direct sums of operators. We establish this result through a rigorous mathematical proof, which builds on
prior research in this area. Our findings contribute to a deeper understanding of the behavior of topologically
transitive operators, and have potential implications for a wide range of applications in mathematics and
related fields. Overall, this study contributes to the advancement of mathematical knowledge and lays the
groundwork for further research in this area.
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Abstract

We exhibit that the coefficients of the characteristic polynomial of any matrix Anxn can be written in
terms of the complete Bell polynomials, and this result is applied to Chebyshev matrices which generates
the concept of Associated Polynomials of Chebyshev.
Keywords and Phrases: Bell and Chebyshev polynomials, Characteristic polynomial, Chebyshev
matrices, Gauss hypergeometric function.

1 Introduction
For an arbitrary matrix Anxn = (Aij) its characteristic polynomial [9, 10, 19]

(1.1) Pn(λ) = λn + a1λ
n−1 + ...+ an−1λ+ an,

can be obtained, through several procedures [11, 19, 25, 33, 34], directly from the condition

Pn(λ) = det(λδij −Aij).
The approach of Leverrier-Takeno [2, 8, 15, 20, 21, 32, 33, 35] is a simple and interesting technique to

construct (1.1) based in the traces of the powers Ar, r = 1, . . . , n. In fact, if we define the quantities

(1.2) a0 = 1, sk = trAk, k = 1, 2, . . . , n,

then by (1.2) the process of Leverrier-Takeno implies (1.1) wherein the ai are determined with the recurrence
relation

(1.3) r ar + s1ar−1 + s2ar−2 + . . .+ sr−1 a1 + sr = 0, r = 1, 2, . . . , n,

therefore

(1.4) a1 = −s1, 2!a2 = (s1)
2 − s2, 3!a3 = −(s1)

3
+ 3s1 s2 − 2s3,

4!a4 = (s1)
4 − 6(s1)

2
s2 + 8s1 s3 + 3(s2)

2 − 6s4,

5!a5 = −(s1)
5

+ 10(s1)
3

s2 − 20(s1)
2

s3 − 15s1(s2)
2

+ 30 s 1 s 4 + 20s2s3 − 24s5, . . . ,

in particular, det A = (−1)
n
an, that is, the determinant of any matrix only depends on the traces sr, which

means that A and its transpose have the same determinant.

2 Complete Bell polynomials in terms of the determinant
In this section we make an appeal to recurrence relations (1.3) and (1.4) and thus due to [1, 5, 22] find the
general expression

(2.1) am =
(−1)

m

m!

∣∣∣∣∣∣∣∣∣∣∣

s1 s2 s3 · · · sm−1 sm
m− 1 s1 s2 · · · sm−2 sm−1

0
...
0

m− 2
...
0

s1

...
0

· · ·
. . .

· · ·

sm−3

. . .

1

sm−2

...
s1

∣∣∣∣∣∣∣∣∣∣∣
,m = 1, . . . , n.
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which allows reproduce the expressions (1.4). The formula (2.1) permits relate the coefficients of the
characteristic polynomial (1.1) with the complete Bell polynomials [3, 4, 29, 30, 36]. In [12, 23] we find
the following expression for the Bell polynomials

(2.2) Bm (x1, x2, . . . , xm) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(
m− 1

0

)
x1

(
m− 1

1

)
x2 · · ·

(
m− 1
m− 2

)
xm−1

(
m− 1
m− 1

)
xm

−1

(
m− 2

0

)
x1 · · ·

(
m− 2
m− 3

)
xm−2

(
m− 2
m− 2

)
xm−1

0
...
0
0

−1
...
0
0

· · ·
. . .

· · ·
· · ·

(
m− 3
m− 4

)
xm−3

...(
1
0

)
x1

−1

(
m− 3
m− 3

)
xm−2

...(
1
1

)
x2(

0
0

)
x1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

Therefore

(2.3) B0 = 1, B1 = x1, B2 = x2
1 + x2, B3 = x3

1 + 3x1x2 + x3, B4 = x4
1 + 6 x2

1 x2 + 4 x1x3 + 3 x2
2 + x4,

B5 = x5
1 + 10 x3

1 x2 + 10 x2
1 x3 + 15x1 x2

2 + 5 x1x4 + 10x2x3 + x5, . . .

We see that with (2.3) we can deduce (1.4) if we employ x1 = −s1, x2 = −s2, x3 = −2s3, x4 = −6s4, x5 =
−24s5, ..., that is

(2.4) am =
1

m!
Bm(−0!s1,−1!s2,−2!s3,−3!s4, . . . ,−(m− 2)!sm−1,−(m− 1)!sm).

In fact, it is simple to prove that (2.2) with xk = −(k − 1)!sk implies (2.1), thus the coefficients of the
characteristic polynomial (1.1) are generated by the complete Bell polynomials [3, 4, 12, 23, 29, 30, 36].

3 Chebyshev matrices
The first-kind Chebyshev polynomials Tn(x), |x| ≤ 1, verify the differential equation [6, 17, 18, 19, 26, 28]

(3.1)
(
1− x2

) d2

dx2Tn − x
d

dx
Tn + n2Tn = 0, n = 0, 1, 2, . . .

which is equivalent to the following expression in terms of the Gauss hypergeometric function [7, 24, 31]

(3.2) Tn(x) = 2F1

(
−n, n;

1

2
;

1− x
2

)
,

thus

(3.3) T0 = 1, T1 = x, T2 = 2x2 − 1, T3 = 4x3 − 3x, T4 = 8x4 − 8x2 + 1, . . .

Alternatively, we can employ the Chebyshev matrices [27]

(3.4) Anxn(x) =



x 1 0 0 · · · 0 0
1 2x 1 0 · · · 0 0

0
0
0
...
0

1
0
0
...
0

2x
1
0
...
0

1
2x
1
...
0

· · ·
· · ·
. . .

. . .

· · ·

0
0
1
. . .

1

0
0
...
1

2x


,

whose determinant generates the Chebyshev polynomials

(3.5) Tn(x) = detAnxn(x).

That is

(3.6) T1 = det(x), T2 = det

(
x 1
1 2x

)
, T3 = det

x 1 0
1 2x 1
0 1 2x

 , T4 = det


x 1 0 0
1 2x 1 0
0
0

1
0

2x
1

1
2x

 , . . . .
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Therefore from (1.4), (2.4) and (3.5)

(3.7) Tn(x) =
(−1)n

n!
Bn (−0! s1,−1!s2,−2!s3,−3!s4, . . . ,−(n− 2)!sn−1,−(n− 1)! sn) ,

where sj are the traces of the powers of the matrix (3.4); hence the complete Bell polynomials allow construct
the Chebyshev polynomials of the first kind.

It is natural to investigate the characteristic polynomial of (3.4) for several values of n, thus

P1 = λ− T1, P2 = λ2 − 3xλ+ T2, P3 = λ3 − 5xλ2 +
(
8x2 − 2

)
λ− T3,

P4 = λ4 − 7xλ3 +
(
18x2 − 3

)
λ2 −

(
20x3 − 10x

)
λ+ T4,

P5 = λ5 − 9xλ4 +
(
32x2 − 4

)
λ3 −

(
56x3 − 21x

)
λ2 +

(
48x4 − 36x2 + 3

)
λ− T5,

P6 = λ6 − 11xλ5 +
(
50x2 − 5

)
λ4 −

(
120x3 − 36x

)
λ3 +

(
160x4 − 96x2 + 6

)
λ2−

−
(
112x5 − 112x3 + 21x

)
λ+ T6,

P7 = λ7 − 13xλ6 +
(
72x2 − 6

)
λ5 −

(
220x3 − 55x

)
λ4 +

(
400x4 − 200x2 + 10

)
λ3−

−
(
432x5 − 360x3 + 54x

)
λ2 +

(
256x6 − 320x4 + 96x2 − 4

)
λ− T7,

P8 = λ8 − 15xλ7 +
(
98x2 − 7

)
λ6 −

(
364x3 − 78x

)
λ5 +

(
840x4 − 360x2 + 15

)
λ4−

−
(
1232x5 − 880x3 + 110x

)
λ3 +

(
1120x6 − 1200x4 + 300x2 − 10

)
λ2−

−
(
576x7 − 864x5 + 360x3 − 36

)
λ+ T8, . . . .(3.8)

That is

(3.9) Pn(λ) =

n∑
m=0

Tmn (x)λn−m, T 0
n = 1, Tnn = (−1)

n
Tn.

Then it is clear that Tmn (x),m = 0, 1, . . . , n is a polynomial in x of degree m, and they may be named as
Associated Polynomials of Chebyshev.

We know that if the operator dN

dxN
is applied to the Legendre polynomials we obtain their associated

polynomials, then now we shall show that this process can be employed for the first-kind Chebyshev
polynomials Tn(x) to construct the new polynomials Tmn (x) in terms of the Gauss hypergeometric function.
In fact, we know the property

(3.10)
dN

dxN
2F1(a, b; c; z) ∝ 2F1(a+N, b+N ; c+N ; z),

then we apply the operator dn−m

dxn−m
to (3.2) and we use (3.10) with an adequate factor of proportionality to

obtain the expression

Tmn (x) = (−1)
m

(
2n−m
m

)
2F1

(
−m, 2n−m;n−m+

1

2
;

1− x
2

)
,

= 2m−1 (n− 1)!(2n−m)

m!(n−m)!

m∑
k=0

(−1)
k−m

(
m
k

)
2F1(k −m,−1− 2m;−2m; 1)xk(3.11)

m = 0, 1, . . . , n, verifying the differential equation

(3.12)
(
1− x2

) d2

dx2T
m
n − (2n− 2m+ 1)x

d

dx
Tmn +m(2n−m)Tmn = 0;

with (3.11) it is simple to calculate these associated polynomials of Chebyshev, for example

T 1
3 = −5x, T 2

3 = 8x2 − 2, T 2
5 = 32x2 − 4, T 3

5 = −56x3 + 21x, T 4
5 = 48x4 − 36x2 + 3, etc.

in accordance with (3.8). The relations (3.11) and (3.12) reproduce (3.1) and (3.2) for the case m = n.
Finally, it is easy to show that the associated polynomials (3.11) can generate the other types of Chebyshev

polynomials [13, 14, 16, 26, 27]

(3.13) Un(x) =
2(−1)

n

2 + n
Tnn+1(x), Vn(x) =

(−1)n

n+ 1
T 2n

2n+1

(√
1− x

2

)
,Wn(x) =

1

n+ 1
T 2n

2n+1

(√
1 + x

2

)
.
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4 An Abel type integral equation representation involving Chebyshev determinants (3.5)
In this section, on using orthogonal property of the Chebyshev polynomials [26, 27], we obtain orthogonal
property of product of two Chebyshev determinants (3.5). Then we derive an Abel type integral equation
representation involving these Chebyshev determinants.

Making an use of the Eqn. (3.5) and the orthogonal property of the Chebyshev polynomials [26, 27] given
by

(4.1)

∫ 1

−1

1√
1− x2

Tn(x)Tm(x)dx =

 0,m 6= n;
π
2 ,m = n 6= 0;
π,m = n = 0,

due to (4.1), we get an interesting orthogonal property in terms of product of two Chebyshev determinants
as

(4.2)

∫ 1

−1

1√
1− x2

{detAnxn(x) detAmxm(x)} dx =

 0,m 6= n;
π
2 ,m = n 6= 0;
π,m = n = 0.

Theorem 4.1. For x > 0, if |xt| ≤ 1, and any function f : (x, t)→ R, is defined by

(4.3) f(x, t) =
∞∑
n=1

Cn {detAnxn (xt)} , Cn an arbitrary constant,

may be represented as an integral equation

(4.4) f(x, t) =
2

π

∞∑
n=1

{detAnxn (xt)}
∫ 1

−1

f
(
x, ux−1

)
√

1− u2
detAnxn(u)du.

Proof. Consider a function in terms of the series of Chebyshev determinants (3.5) as

(4.5) f(x, t) =

∞∑
n=1

Cn {detAnxn (xt)} .

Then in both sides of Eqn. (4.5) multiply by detAmxm(xt)√
1−(xt)2

and thus integrate that sides with respect to

t from t = − 1
x to t = 1

x , ∀x > 0, we obtain

(4.6)

∫ 1
x

− 1
x

f(x, t)√
1− (xt)

2
detAmxm (xt)dt =

∞∑
n=1

Cn

∫ 1
x

− 1
x

1√
1− (xt)

2
detAnxn (xt) detAmxm (xt)dt.

After some manipulations in (4.6), we find that

(4.7)

∫ 1

−1

f
(
x, ux−1

)
√

1− u2
detAmxm(u)du =

∞∑
n=1

Cn

∫ 1

−1

1√
1− u2

detAnxn(u) detAmxm(u)du.

Now in the Eqn. (4.8) use the orthogonality formula (4.2) we derive the coefficients

(4.8) Cn =
2

π

∫ 1

−1

f
(
x, ux−1

)
√

1− u2
detAnxn(u)du ∀n = 1, 2, 3, . . . .

Finally, with the aid of the formulae (4.5) and (4.9), we get an integral equation (4.4).
Specially, by Eqn. (4.4) for n = 1 we find an Abel type integral equation

(4.9) f(x, t) =
2xt

π

∫ 1

−1

f
(
x, ux−1

)
√

1− u2
udu, ∀x > 0.

5 Conclusions
In the Section 2, complete Bell polynomials are expressed in terms of determinant. The Section 3 consists of
Chebyshev matrices. In the Section 4, on using orthogonal property of the Chebyshev polynomials [26, 27], an
orthogonal property of product of two Chebyshev determinants (3.5) is derived. Again an integral equation
representation involving these Chebyshev determinants is also obtained. The results obtained in the Eqns.
(3.13) and (4.9) are very applicable in computational work of various scientific problems consisting of Abel’s
type integrals and Chebyshev polynomials.
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Abstract

In this paper we introduce a new α− Laplace transform which is a generalization of nabla version
of Laplace transform on time scales. In particular for 0 < α < 1 this transform will serve as fractional
Laplace transform on time scales. Existence theorem and some important properties such as linearity,
initial and final value theorem, transform of integral, shifting theorem, transform of derivative are proved.
Additionally convolution theorem and formulae for fractional integral, Riemann-Liouville fractional
derivative, Liouville-Caputo fractional derivative, Mittag Leffler function are given. At last for a suitable
value of α a fractional dynamic equation with given initial condition is solved.
2020 Mathematical Sciences Classification: 26E70, 44A35, 26A33
Keywords and Phrases: Time scales, Integral transform, Dynamic equations.

1 Introduction and Motivation
Integral transforms are mathematical techniques that play a crucial role in various fields of Science

and Engineering. The important significance of integral transform is their ability to simplify mathematical
equations often involving derivatives and integrals, into algebraic equations or simpler differential equations.
The theory of the Laplace transform has a great theoretical interest as it is one of the former integral
transforms invented by Pierre-Simon Laplace. Furthermore many researchers have introduced several integral
transforms such as Laplace-Carson, Sumudu, Elzaki, Natural and Shehu transforms [7, 10, 11, 12, 27], all
of which represent a family of Laplace transforms. Subsequently an ample development regarding classical
integral transforms in form of generalization in distribution spaces, formulation of multidimensional and
fractional transform has been done due to [5, 16, 18, 23, 26]. Recently H.M.Srivastava [24] has explored
recent developments in the Laplace and Hankel transforms and their extensions and variations. Using
Srivastava’s generalized Whittaker transform [17], Hardy’s generalized Hankel transform [9] and Srivastava’s
ε− generalized Hankel transform [16], the properties, characteristics and relationships among integral
transforms representing the family of Laplace transform are studied. Further eminent results regarding
integral transforms and fractional calculus have been studied in [19, 20, 21, 22].

Time scale calculus is an unification tool that encompasses both continuous (e.g. R) and discrete (e.g. Z)
domains. Integral transforms on time scales a mathematical framework that extends the concepts of classical
integral transforms into functions defined on time scale domains. Thus far Laplace, Fourier, Sumudu and
Shehu transforms have been introduced on time scales and have served as a powerful tool for modeling and
solving problems that bridge the gap between continuous and discrete dynamic systems [1, 2, 3, 4, 6, 8,
15, 25, 28]. In 2016 Medina Gustavo et al.[13] introduced a new α−integral Laplace transform which is a
generalization of Laplace transform when α→ 1. Subsequently, in 2007, a the fractional Laplace transform
was formulated and is applied to solve fractional differential equations [14]. In our work we develop a new
α− Laplace transform on time scales and discuss its fundamental properties. Using this transform, we solve
the fractional dynamic equation on time scales with given initial conditions.

The next section is concerned with precursory concepts needed for comprehension of our work.

2 Preliminaries
Note that the discussion in this section follows from [2, 3, 4, 6, 15, 25]. Here we will assume that a time

scale T is unbounded above and t0 ∈ T is fixed. For t ∈ T, the forward jump operator σ(t) : T→ T is given as
σ(t) := inf{s ∈ T : s > t}. And the backward jump operator ρ : T→ T is given as ρ(t) := sup{s ∈ T : s < t}.
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If σ(t) > t, t is said to be right-scattered, while if ρ(t) < t then t is left-scattered. Also, if t < supT and
σ(t) = t,then t is called right-dense, and if t > infT and ρ(t) = t, then t is left-dense.

For t ∈ T the forward graininess function µ : T→ [0,∞) is µ(t) = σ(t)− t. And the backward graininess
function ν : T→ [0,∞) is ν(t) = t− ρ(t).

Definition 2.1. A function h : T → C is said to be ld-continuous if it is continuous at every left-dense
point, and the right sided limit exists at every right-dense point. It is expressed as h(t) ∈ Cld(T,C).

Note that if time scale T has a right scattered miminum m, the Tk = T− {m}, otherwise Tk = T

Definition 2.2. An ld-continuous function h : T→ C is called complex ν − regressive if 1− νh 6= 0 for all
t ∈ Tk. It is denoted as Rνc (T,C).

For h > 0, we have Ch = {z ∈ C : z 6= 1
h} and Zh = {z ∈ C : −πh < Im(z) ≤ π

h} with C0 = Z0 = C.
Further the Hilger real part and imaginary part of a complex numbers are given by Reh(z) = 1

h (1−|1−hz|)
and Imh(z) = 1

hArg(1− hz) respectively, where Arg denotes principal argument of a complex number. In
particular we have, Re0(z) = Re(z) and Im0(z) = Im(z).

Definition 2.3. If f ∈ Rνc (T,C), then the nabla exponential function is given by, êf (t, t0) := exp
[ ∫ t
t0
ξ̂ν(s)(f(s)) ∇s

]
for t, t0 ∈ T where, the ν−cylinder transformation ξ̂h : Ch → Zh is ξ̂h(z) = −1

h Log(1− zh).

Theorem 2.1. Let the first-order linear dynamic equation x∇ = f(t)x is ν−regressive and t0 ∈ T is fixed.
Then êf (·, t0) is the solution of the initial value problem x∇ = f(t)x, x(t0) = 1 on T.

Lemma 2.1. If f ∈ Rνc (T,C) then, êρ	f (t, t0) =
ê	f (t,t0)
1−ν(t)f .

Definition 2.4. A function h belongs to the space of functions A(T) if

(1) h is piecewise ld-continuous in every interval [t0, τ ] ∩ T.
(2) h is of exponential order k ( k ∈ R+ν

c ([t0,∞)) on [t0,∞), that is there exists constant M > 0 such that
|f(t)| ≤Mek(t, t0) for all t ∈ [t0,∞).

The minimal-graininess function ν∗ : T→ R+
0 is given as ν∗(t0) = inf ν(t) for t ∈ [t0,∞)T.

Theorem 2.2 (Decay of the nabla-exponential function). For sup T = ∞, let t0 ∈ T and λ ∈
R+ν
c ([t0,∞)T,R). Then for any z ∈ Cν∗(t0)(λ), we have the following properties,

(1) |êλ	z(t, t0)| ≤ êλ	Reν∗(t0)(z)(t, t0) for all t ∈ [t0,∞)T.

(2) lim
t→∞

êλ	Reν∗(t0)(z)(t, t0) = 0.

(3) lim
t→∞

êλ	z(t, t0) = 0.

Definition 2.5. Let t0, t ∈ T and λ1, λ2 > −1. The time scale power functions ĥλ1
(t, t0) are defined as a

family of non-negative functions satisfying,

(1)
∫ t
t0
ĥλ1

(t, ρ(s))ĥλ2
(s, t0)∇s = ĥλ1+λ2+1(t, t0) for t ≥ t0.

(2) ĥ0(t, t0) = 1 for t ≥ t0.
(3) ĥλ1(t, t) = 0 for λ1 ∈ (0, 1).

Definition 2.6. Let t0, t
′ ∈ T and a ≥ 0, β, λ > 0, then for h ∈ Cld([t0, t′]T,C) one defines,

(1) The Riemann-Liouville fractional integral of order a > 0 with the lower limit t0 as

t0(∇−ah)(t) :=

∫ t

t0

ĥa−1(t, ρ(τ))h(τ)∇ τ

and for a = 0 one have (t0∇0h)(t) = h(t).
(2) The Riemann-Liouville fractional derivative of order β > 0 with lower limit t0 as

(t0∇βh)(t) := [t0∇−(n−β)h]∇
n

t ∈ [σ(t0), t′]T,

where n = [β] + 1.
(3) The Caputo fractional derivative Ct0∇

λh(t) on [σ(t), t′]T is defined via the Riemann-Liouville fractional
derivative by,

C
t0∇

λh(t) := (t0∇−(n−λ)h∇
n

)(t),

where n = [λ] + 1.
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3 Main Results
In this section we define α−Laplace transform and give some of its salient properties.

Definition 3.1. Let h : T → C is an ld-continuous function and α is a real number, then we define the
α−Laplace transform L α{h(t)} = HT(z) of h(t) of order α as

HT(z) = L α{h(t)} =

∫ ∞
t0

êρ	zα(t, t0)h(t) ∇t for all t ∈ Dν ,

where Dν ⊂ C consists of all complex numbers z ∈ Rc(T,C) for which the improper integral converges.

Next we define fractional Laplace transform on time scales using above definition as.

Definition 3.2. Let h : T→ C is an ld-continuous function then for a real number 0 < α < 1 ,L α{h(t)} =
HT(z) will be the fractional Laplace transform of h(t).

Theorem 3.1 (Existence Theorem). Let h : T → C is a function of class A(T) of exponential order k,
then the α-Laplace transform L α{h(t)} of h(t) exists for all z ∈ C(ν∗(t0))1/α with Re(ν∗(t0))1/α(z) > k and
converges absolutely.

Proof. We have

|L α{h(t)}| =
∣∣∣∣ ∫ ∞
t0

êρ	zα(t0, t)h(t) ∇t
∣∣∣∣

≤
∫ ∞
t0

|êρ	zα(t0, t)h(t) ∇t|

≤M
∫ ∞
t0

êρ	zα(t0, t)êk(t, t0) ∇t

= M

∫ ∞
t0

ê	zα(t0, t)êk(t, t0)

1− ν(t)zα
∇t

= M

∫ ∞
t0

êk	zα(t, t0)

1− ν(t)zα
∇t

=
M

k − zα

∫ ∞
t0

k − zα

(1− ν(t)zα)
êk	zα(t, t0) ∇t

=
M

k − zα

∫ ∞
t0

(k 	 zα)êk	zα(t, t0) ∇t

=
M

k − zα

∫ ∞
t0

ê∇k	zα(t, t0)∇t

=
M

zα − k
.

Last step follows from Theorem 2.2.

Theorem 3.2 (Linearity). Let ah1(t) and bh2(t) are functions of class A(T) for constants a, b ∈ R then,

L α{ah1(t) + bh2(t)} = aL α{h1(t)}+ bL α{h2(t)}.

Proof. Let ah1(t) and bh2(t) are functions of class A(T) with exponential order k1 and k2 respectively, then
L α{ah1(t)} exists for all z ∈ C(ν∗(t0))1/α(k1) with Re(ν∗(t0))1/α)(z) > k1 and L α{bh2(t)} exists for all
z ∈ C(ν∗(t0)1/α)(k2) with Re(ν∗(t0))1/α(z) > k2. Then L α{ah1(t) + bh2(t)} exists for all z ∈ C(ν∗(t0))1/α with
Re(ν∗(t0))1/α(z) > max{k1, k2}. Thus,

L α{ah1(t) + bh2(t)}

=

∫ ∞
t0

êρ	zα(t, t0)[ah1(t) + bh2(t)] ∇t

= a

∫ ∞
t0

êρ	zα(t, t0)h1(t) ∇t+ b

∫ ∞
t0

êρ	zα(t, t0)h2(t) ∇t

= aL α{h1(t)}+ bL α{h2(t)}.
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We apply definition 3.1 to find transform of some elementary functions which are given in the table below

h(t) 1 êa(t, t0) sina(t, t0) cosa(t, t0)

L α{h(t)} 1
zα

a
zα−a

a
z2α+a2

zα

z2α+a2

h(t) sinha(t, t0) cosha(t, t0) hk(t, t0) ĥλ(t, t0)

L α{h(t)} a
z2α−a2

zα

z2α−a2
1

z(k+1)α
1

z(λ+1)α

.

Here ĥλ(t, t0) is the time scale power function defined in definition 2.5 and it’s transform was found using
Convolution theorem which we are going to prove further.

Theorem 3.3. Assume that h(t) is regulated function such that H(t) =
∫ t
t0
h(s)∇s for t, t0 ∈ T is of class

A(T) then L α{H(t)} = 1
zαL α{h(t)}.

Proof.

L α{H(t)} =

∫ ∞
t0

H(t)êρ	zα(t, t0) ∇t

= −
∫ ∞
t0

H(t)
	zα

zα
ê	zα(t, t0) ∇t

=
−1

zα

∫ ∞
t0

H(t)	 zαê	zα(t, t0) ∇t

=
−1

zα

∫ ∞
t0

H(t)ê∇	zα(t, t0) ∇t

Using integration by parts

L α{H(t)} =
−1

zα

[[
H(t)ê	zα(t, t0)

]t→∞
t=t0

−
∫ ∞
t0

H∇(t)ê	zα(t, t0) ∇t
]

=
−1

zα

[
−H(t0)−

∫ ∞
t0

h(t)ê	zα(t, t0) ∇t
]

=
1

zα

∫ ∞
t0

h(t)ê	zα(t, t0) ∇t

=
1

zα
L α{h(t)},

provided lim
t→∞

H(t)ê	zα(t, t0) = 0.

Theorem 3.4 (Second Shifting Theorem). If h(t) ∈ A(T) and ua(t) =

{
1 if t ∈ T ∩ (−∞, a]

0 if t ∈ T ∪ (a,∞)
where

a ∈ T with a > 0, then L α{ua(t)h(t)} = ê	zα(a, t0)Lα{h(t)}.

Proof.

L α{ua(t)h(t)}

=

∫ ∞
t0

êρ	zα(t, t0)ua(t)h(t) ∇t

=

∫ ∞
a

êρ	zα(t, t0)h(t) ∇t

=

∫ ∞
a

êρ	zα(t, t0)

1− ν(t)zα
h(t) ∇t

=

∫ ∞
a

ê	zα(t, a)ê	zα(a, t0)

1− ν(t)zα
h(t) ∇t
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= ê	zα(a, t0)

∫ ∞
a

ê	zα(t, a)

1− ν(t)zα
h(t) ∇t

= ê	zα(a, t0)

∫ ∞
a

êρ	zα(t, a)h(t) ∇t

= ê	zα(a, t0)L α{h(t)}.

Theorem 3.5 ( Transform of derivative). Let h, h∇ ∈ A(T), then L α{h∇(t)} = zαL α{h(t)} − h(t0)
for those regressive z ∈ C satisfying lim

t→∞
{h(t)ê	zα(t, t0)} = 0

Proof.

L α{h∇(t)} =

∫ ∞
t0

êρ	zα(t, t0)h∇(t) ∇t

=

∫ ∞
t0

[
[h(t)ê	zα(t, t0)]∇ − h(t)ê∇	zα(t, t0)

]
∇t

= [h(t)ê	zα(t, t0)]t→∞t=t0 −
∫ ∞
t0

h(t)ê∇	zα(t, t0) ∇t

= −h(t0)−
∫ ∞
t0

h(t)	 z1/αê	zα(t, t0) ∇t

= −h(t0) + zα
∫ ∞
t0

h(t)
−	 zαê	zα(t, t0)

zα
∇t

= −h(t0) + zα
∫ ∞
t0

h(t)êρ	zα(t, t0) ∇t

= zαL α{h(t)} − h(t0),

provided, lim
t→∞

h(t)ê	zα(t, t0) = 0.

In a similar way for h, h∇, h∇∇ ∈ A(T) then

L α{h∇∇(t)} =

∫ ∞
t0

êρ	zα(t, t0)h∇∇(t) ∇t

=

∫ ∞
t0

[
[h∇(t)ê	zα(t, t0)]∇ − h∇(t)ê∇	zα(t, t0)

]
∇t

= [h∇(t)ê	zα(t, t0)]t→∞t=t0 −
∫ ∞
t0

h∇(t)ê∇	zα(t, t0) ∇t

= −h∇(t0) + zα
∫ ∞
t0

h∇(t)
	zαê	zα(t, t0)

−zα
∇t

= −h∇(t0) + zα
∫ ∞
t0

h∇êρ	zα(t, t0) ∇t

= −h∇(t0) + zαL α{h∇(t)}
= −h∇(t0) + zα[zαL α{h(t)} − h(t0)]

= z2αL α{h(t)} − zαh(t0)− h∇(t0).

More generally we get, L α{h∇n(t)} = znαL α{h(t)} −
∑n−1
k=0 z

(n−(k+1))αh∇
k

(t0).

Theorem 3.6 (Initial and Final Value Theorem). h, h′ ∈ A(T) with HT(z) = L α{h(t)} then h(t0) =
lim
z→∞

zαHT(z) and lim
t→∞

h(t) = lim
z→0

zαHT(z).

Proof. We have,

L α{h∇(t)}
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=

∫ ∞
t0

êρ	zα(t, t0)h∇(t) ∇t

=

∫ ∞
t0

[
(h(t)ê	zα(t, t0))∇ − h(t)ê∇	zα(t, t0)

]
∇t

=
[
h(t)e	zα(t, t0)

]∞
t=t0
−
∫ ∞
t0

h(t)ê∇	zα(t, t0) ∇t

= −h(t0)−
∫ ∞
t0

h(t)	 zαê	zα(t, t0) ∇t

= −h(t0) + zα
∫ ∞
t0

h(t)
	zα

−zα
ê	zα(t, t0) ∇t

= −h(t0) + zα
∫ ∞
t0

h(t)êρ	zα(t, t0) ∇t

= zαL α{h(t)} − h(t0).

Provided lim
t→∞

ê	zα(t, t0) = 0.

Taking lim
z→∞

on both sides,

lim
z→∞

∫ ∞
t0

êρ	zα(t, t0)h∇(t) = 0 = lim
z→∞

zαL αh(t)− lim
z→∞

h(t0)

lim
z→∞

zαHT(z) = h(t0).

Now taking lim
z→0

on both sides we get,

lim
z→0

∫ ∞
t0

êρ	zα(t, t0)h∇(t) = lim
z→0

zαL αh(t)− lim
z→0

h(t0)∫ ∞
t0

h∇(t)∇t = lim
z→0

zαL α{h(t)} − h(t0)

lim
t→∞

h(t)− h(t0) = lim
z→0

zαL α{h(t)} − h(t0)

lim
t→∞

h(t) = lim
z→0

zαHT(z).

Definition 3.3 ([28]). For given functions h1, h2 : T→ C their convolution h1 ∗ h2 is defined by,

(h1 ∗ h2)(t) =

∫ t

t0

h̃1(t, ρ(τ))h2(τ)∇τ t ∈ T

where h̃ is the shift of h : [t0,∞)T → C is the solution of the initial value problem

g∇t(t, ρ(s)) = −g∇s(t, s), t, s ∈ T, t ≤ s ≤ t0
g(t, t0) = h(t) t ∈ T, t ≥ t0.

Theorem 3.7 (Convolution theorem). If h1(t), h2(t) ∈ A(T) having α−Laplace transforms L α{h1(t)} and L α{h2(t)}
respectively, then

L α{h1(t) ∗ h2(t)} = L α{h1(t)} ·L α{h2(t)}.

Proof.

L α{h1(t) ∗ h2(t)}

=

∫ ∞
t0

êρ	zα(t, t0)[h1(t) ∗ h2(t)] ∇t

=

∫ ∞
t0

êρ	zα(t, t0)
[ ∫ t

t0

h1(t, ρ(τ))h2(τ)∇τ
]
∇t

=

∫ ∞
t0

h2(τ)
[ ∫ ∞

ρ(τ)

h1(t, ρ(τ))êρ	zα(t, t0) ∇t
]
∇τ
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=

∫ ∞
t0

[ ∫ ∞
t0

h1(t, ρ(τ))uρ(τ)(t)ê
ρ
	zα(t, t0)∇t

]
∇τ

=

∫ ∞
t0

h2(τ)L α{uρ(τ)(t)h1(t)}∇τ

=

∫ ∞
t0

h2(τ)ê	zα(ρ(t), t0) L α{h1(t)}∇τ

= L α{h1(t)}
∫ ∞
t0

h2(τ)êρ	zα(τ, t0)∇τ

= L α{h1(t)} ·L α{h2(t)}.

Theorem 3.8 ( α−Laplace transform of Riemann-Liouville Fractional Integral). For h ∈
Cld([t0, t′]T,C) and a > 0, the α− Laplace transform of Riemann-Liouville fractional integral (t0∇αf)(t)
is L α{t0∇−af}(t) and is given by L α{t0∇−af}(t) = z−aαL α{f(t)}.

Proof. From Definition 2.6, Riemann-Liouville fractional integral can be written in form of convolution as

(t0∇af)(t) = ĥa−1 ∗ h(t)

Thus, L α{(t0∇−ah)(t)} = L α{ĥa−1(t, t0) ∗ h(t)}

= L α{ĥa−1(t, t0)}L α{h(t)}

=
1

zaα
L α{h(t)}

= z−aαL α{h(t)}.

Theorem 3.9 (α−Laplace transform of Riemann-Liouville Fractional derivative). For h ∈
Cld([t0, t′]T,C) and β > 0, the α− Laplace transform of Riemann-Liouville fractional derivative (t0∇βh)(t)
is L α{(t0∇bh)(t)} and is given by

L α{(t0∇βf)(t)} = zβαL α{h(t)} −
m−1∑
k=0

z(m−k−1)α
[
t0
∇−(m−β)h

]∇k
(t0).

Proof. From Definition 2.6 the Riemann-Liouville fractional derivative can be written as,

(t0∇βh)(t) = (χ∇
m

)(t) where χ(t) = (t0∇−(m−β)h)(t),

L α{(t0∇βh)(t)} = L α{χ∇
m

(t)}

= zmαL α{χ(t)} −
m−1∑
k=0

z(m−(k+1))αχ∇
k

(t0)

= zmαz(β−m)αL α{h(t)} −
m−1∑
k=0

z(m−k−1)αχ∇
k

(t0)

= zβαL α{h(t)} −
m−1∑
k=0

z(m−k−1)α
[
t0
∇−(m−β)h

]∇k
(t0).

This is equivalent to

L α{(t0∇βh)(t)} = zβαL α{h(t)} −
l∑

j=1

z(j−1)α(t0∇β−jh)(t0) l − 1 < β < l.

Theorem 3.10 (α−Laplace transform of Liouville-Caputo fractional derivative). For h ∈
Cld([t0, t′]T,C) and λ > 0, the α− Laplace transform of Liouville-Caputo fractional derivative Ct0∇

λh(t)
is L α{Ct0∇

λh(t)} and is given by

L α{Ct0∇
λh(t)} = zλαL α{h(t)} −

m−1∑
k=0

z(λ−k−1)α h∇
k

(t0).
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Proof. From Definition 2.6 the Caputo fractional derivative can be written as,
C
t0∇

λh(t) = (t0∇−(m−λ)χ)(t) where χ(t) = h∇
m

(t),

L α{Ct0∇
λh(t)} = L α{t0∇−(m−λ)χ(t)}

= z−(m−λ)αL α{h∇
m

(t)}

= z−(m−λ)α
[
zmαL α{h(t)

m−1∑
k=0

z(m−k−1)αh∇
k

(t0)}
]

= zλαL α{h(t)} −
m−1∑
k=0

z(m−k−1)αh∇
k

(t0).

Definition 3.4 ([15]). For n > 0,m, λ ∈ R and t, t0 ∈ T. The time scale Mittag-Leffler function is defined
as

Eλn,m(t, t0) =

∞∑
k=0

λkĥnk+m−1(t, t0)

provided the right hand side series is convergent.

Theorem 3.11 (α− Laplace transform of Mittag-Leffler function). For n,m, λ ∈ T and t0, t ∈ T

L α{Eλn,m(t, t0)} =
z(m−n)α

zmα − λ
.

Proof.

L α
{
Eλn,m(t, t0)

}
= L α

{ ∞∑
k=0

λkĥnk+m−1(t, t0)
}

=

∞∑
k=0

λkL α{ĥnk+m−1(t, t0)}

=

∞∑
k=0

λk
1

z(mk+n)α

=
1

znα

∞∑
k=0

λk

zmkα

=
1

znα

[
1 +

λ

znα
+

λ2

z2mα
+ ...

]
=

1

znα

[ 1

1− λ
mα

]
provided

∣∣∣ λ

zmα

∣∣∣ < 1

=
1

znα

[ zmα

zmα − λ

]
=
z(m−n)α

zmα − λ
.

In this last section we will solve a fractional dynamic equation using our defined transform.

4 Application
Consider the following fractional dynamic equation with initial condition,

0∇1/2g(t) + ag(t) = 0, (0∇−1/2g)(0) = k.

Applying the α− Laplace transform with α = 1
2 , we obtain

L
1
2

{
0
∇ 1

2 g(t) + ag(t)
}

= 0,
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zL
1
2 {g(t)} − (0∇−

1
2 g)(0) + aL

1
2 {g(t)} = 0,

zL
1
2 {g(t)} − k + aL

1
2 {g(t)} = 0,

(z + a)L
1
2 {g(t)} = k,

L
1
2 {g(t)} =

k

(z + a)
.

Taking inverse required solution is,

g(t) = kE−a1
2 ,

1
2

(t, 0).

5 Conclusion
In this paper, we introduce a new α-Laplace transform on time scales. This transform for α = 1

coinsides with a nabla Laplace transform on time scales and for 0 < α < 1 will serve as a fractional Laplace
transform on time scales. Accompained by the existence theorem we have proved some of its important
properties, including the convolution theorem and found, transform of the Riemann-Liouville fractional
integral, Riemamm-Liouville fractional derivative, Liouville-Caputo derivative and Mittag Leffter function
on time scales. A fractional dynamic equation with a given initial condition is solved for a suitable value of
α showing efficiency of this integral transform.
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Abstract

The purpose of this paper is to study a new subclass of close-to-convex functions associated with
generalized Janowski’s function. Various properties such as coefficient estimates, inclusion relationship,
distortion property, argument property and radius of convexity, are established for this class. The results
mentioned here, generalize some earlier known results.
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1 Introduction
By A, we denote the class of functions f of the form f(z) = z +

∑∞
n=2 anz

n, which are analytic in the open
unit disc E = {z :| z |< 1}. Further, the class of functions f ∈ A and which are univalent in E, is denoted
by S. A function w is said to be a Schwarz function if it has expansion of the form w(z) =

∑∞
n=1 cnz

n and
satisfy the conditions w(0) = 0 and |w(z)| ≤ 1. The class of Schwarz functions is denoted by U .

For two analytic functions f and g in E, f is said to be subordinate to g, if there exists a Schwarz
function w ∈ U such that f(z) = g(w(z)). If f is subordinate to g, then it is denoted by f ≺ g. Further, if
g is univalent in E, then f ≺ g is equivalent to f(0) = g(0) and f(E) ⊂ g(E).

By S∗ and K, we denote the classes of starlike functions and of convex functions respectively, which are
defined as follows:

S∗ =

{
f : f ∈ A, Re

(
zf ′(z)

f(z)

)
> 0, z ∈ E

}
and

K =

{
f : f ∈ A, Re

(
(zf ′(z))′

f ′(z)

)
> 0, z ∈ E

}
.

A function f ∈ A is said to be close-to-convex function if there exists a function g ∈ S∗ such that

Re

(
zf ′(z)

g(z)

)
> 0(z ∈ E).

The class of close-to-convex functions is denoted by C and was given by Kaplan [6]. Several subclasses
of close-to-convex functions were studied by various authors and recently by Singh and Singh [14], but here
we mention those which are relevant to our study.

Gao and Zhou [3] studied the class KS defined as

Ks =

{
f : f ∈ A, Re

(
−z2f ′(z)

g(z)g(−z)

)
> 0, g ∈ S∗

(
1

2

)
, z ∈ E

}
.

Further, Kowalczyk and Les-Bomba [7] extended the class KS by introducing the class KS(γ), (0 ≤ γ < 1),
which is mentioned below:

Ks(γ) =

{
f : f ∈ A, Re

(
−z2f ′(z)

g(z)g(−z)

)
> γ, g ∈ S∗

(
1

2

)
, z ∈ E

}
.

For γ = 0, the class KS(γ) reduces to the class KS .
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Later on, Seker [12] established the class K(k)
s (γ) (0 ≤ γ < 1) of close-to-convex analytic functions f ∈ A

which satisfy the condition

Re

(
zkf ′(z)

gk(z)

)
> γ,

where

(1.1) gk(z) = Πk−1
ν=0ε

−νg(ενz)(εk = 1; k ≥ 1),

and g ∈ S∗
(
k−1
k

)
.

As a generalization, Seker and Cho [13] introduced the class K(k)
s (γ; δ; η) of the functions f ∈ A which

satisfy the condition
zkf ′(z)

gk(z)
≺ 1 + η[1− (1 + δ)γ]z

1− ηδz
where gk is defined in (1.1) and 0 ≤ γ < 1, 0 ≤ δ ≤ 1 and 0 < η ≤ 1.

Raina et al. [10] established the class of strongly close-to-convex functions of order β, as below:

C′β =

{
f : f ∈ A,

∣∣∣∣arg{zf ′(z)g(z)

}∣∣∣∣ < βπ

2
, g ∈ K, 0 < β ≤ 1, z ∈ E

}
,

which can also be expressed as

C′β =

{
f : f ∈ A, zf

′(z)

g(z)
≺
(

1 + z

1− z

)β
, g ∈ K, 0 < β ≤ 1, z ∈ E

}
.

For −1 ≤ B < A ≤ 1, Janowski [5] introduced the class of functions in A which are of the form
p(z) = 1 +

∑∞
n=1 pnz

n and satisfying the condition p(z) ≺ 1+Az
1+Bz . This class plays an important role in the

study of various subclasses of analytic-univalent functions. As a generalization of Janowski’s class, Polatoglu
et al. [9] established the class P(A,B;α) (0 ≤ α < 1), the subclass of A which consists of functions of the

form p(z) = 1 +
∑∞
n=1 pnz

n such that p(z) ≺ 1+[B+(A−B)(1−α)]z
1+Bz . Also for α = 0, the class P(A,B;α) agrees

with the class defined by Janowski [5].
Inspired by the above mentioned classes, now we define the following generalized class which is to study

in this paper.

Definition 1.1. Let K(k)
s (A,B;α;β) denote the class of functions f ∈ A which satisfy the conditions,

zkf ′(z)

gk(z)
≺
(

1 + [B + (A−B)(1− α)]z

1 +Bz

)β
,−1 ≤ B < A ≤ 1, z ∈ E,

where g(z) = z +
∑∞
n=2 bnz

n ∈ S∗
(
k−1
k

)
, 0 ≤ α < 1, 0 < β ≤ 1,−1 ≤ B < A ≤ 1 and gk(z) is defined in

(1.1).
The following observations are obvious:

(i) K(k)
s (η[1− (1 + δ)γ],−ηδ; 0; 1) ≡ Ks(γ, δ, η), the class established by Seker and Cho [13].

(ii) K(k)
s (1− 2γ,−1; 0; 1) ≡ K(k)

s (γ), the class studied by Seker [12].

(iii) K(2)
s (1,−1; 0; 1) ≡ Ks, the class introduced by Gao and Zhou [3].

(iv) K(2)
s (1− 2γ,−1; 0; 1) ≡ Ks(γ), the class established by Kowalczyk and Les Bomba [7].

As f ∈ Ks(k)(A,B;α;β), by definition of subordination, it follows that

(1.2)
zkf ′(z)

gk(z)
=

(
1 + [B + (A−B)(1− α)]w(z)

1 +Bw(z)

)β
, w ∈ U .

We study various properties such as coefficient estimates, inclusion relationship, distortion theorem,

argument theorem and radius of convexity for the functions in the class K(k)
s (A,B;α;β). The results proved

by various authors follow as special cases.
Throughout this paper, we assume that −1 ≤ B < A ≤ 1, 0 ≤ α < 1, 0 < β ≤ 1, 0 ≤ γ < 1, 0 < η ≤ 1, 0 ≤

δ ≤ 1, k ≥ 1, z ∈ E.
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2 Preliminary Results
For the derivation of our main results, we must require the following lemmas:

Lemma 2.1 ([2, 11]). Let,

(2.1)

(
1 + [B + (A−B)(1− α)]w(z)

1 +Bw(z)

)β
= (P (z))β = 1 +

∞∑
n=1

pnz
n,

then
|pn| ≤ β(1− α)(A−B), n ≥ 1.

Lemma 2.2 ([10]). Let −1 ≤ B2 ≤ B1 < A1 ≤ A2 ≤ 1, then(
1 +A1z

1 +B1z

)β
≺
(

1 +A2z

1 +B2z

)β
.

Lemma 2.3 ([8]). If g ∈ S∗, then for |z| = r, 0 < r < 1, we have
r

(1 + r)2
≤ |g(z)| ≤ r

(1− r)2
.

Lemma 2.4 ([15]). For g(z) = z +
∑∞
n=2 bnz

n ∈ S∗
(
k−1
k

)
, then

Gk(z) =
gk(z)

zk−1
= z +

∞∑
n=2

dnz
n ∈ S∗.

Lemma 2.5 ([1, 2]). If P (z) = 1+[B+(A−B)(1−α)]w(z)
1+Bw(z) ,−1 ≤ B < A ≤ 1, w ∈ U , then for |z| = r < 1, we

have

Re
zP ′(z)

P (z)
≥


− (A−B)(1−α)r

(1−[B+(A−B)(1−α)]r)(1−Br) , if R1 ≤ R2,

2

√
(1−B)(1−[B+(A−B)(1−α)])(1+[B+(A−B)(1−α)]r2)(1+Br2)

(A−B)(1−α)(1−r2)

− (1−[B+(A−B)(1−α)]Br2)
(A−B)(1−α)(1−r2) + (A+B)−α(A−B)

(A−B)(1−α) , if R1 ≥ R2,

where R1 =
√

(1−[B+(A−B)(1−α)])(1+[B+(A−B)(1−α)]r2)
(1−B)(1+Br2) and R2 = 1−[B+(A−B)(1−α)]r

1−Br .

3 Main Results

Theorem 3.1. If f(z) = z +
∑∞
n=2 anz

n ∈ K(k)
s (A,B;α;β), then

(3.1) |an| ≤ 1 +
β(1− α)(n− 1)(A−B)

2
.

Proof. As f ∈ K(k)
s (A,B;α;β), therefore (1.2) can be written as

zkf ′(z)

gk(z)
= (P (z))β ,

which can be further expressed as

(3.2)
zf ′(z)

Gk(z)
= (P (z))β ,

where

(3.3) Gk(z) =
gk(z)

zk−1
= z +

∞∑
n=2

dnz
n.

By Lemma 2.4, we have Gk ∈ S∗.
Using (2.1) and (3.3) in (3.2), it yields

(3.4) 1 +

∞∑
n=2

nanz
n−1 =

(
1 +

∞∑
n=2

ndnz
n−1

)(
1 +

∞∑
n=1

pnz
n

)
.

As Gk(z) = z +
∑∞
n=2 dnz

n ∈ S∗, it is well known that |dn| ≤ n.
Comparing the coefficients of zn−1 in (3.4), we have

(3.5) nan = dn + dn−1p1 + dn−2p2 + ...+ d2pn−2 + pn−1.

Applying triangle inequality, using Lemma 2.1 and the inequality |dn| ≤ n in (3.5), it gives

(3.6) n|an| ≤ n+ β(1− α)(A−B)[(n− 1) + (n− 2) + ...+ 2 + 1],

which proves Theorem 3.1.
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For A = η[1− (1 + δ)γ], B = −ηδ, α = 0, β = 1, Theorem 3.1 gives the following result:

Corollary 3.1. If f ∈ K(k)
s (γ; δ; η), then

|an| ≤ 1 +
η(n− 1)(1 + δ)(1− γ)

2
.

Putting A = 1− 2γ, B = −1, α = 0 and β = 1 in Theorem 3.1, the following result is obvious:

Corollary 3.2. If f ∈ K(k)
s (γ), then

|an| ≤ n− (n− 1)γ.

Substituting for k = 2, A = 1 − 2γ, B = −1, α = 0 and β = 1 in Theorem 3.1, we can easily obtain the
following result:

Corollary 3.3. If f ∈ Ks(γ), then
|an| ≤ n− (n− 1)γ.

Taking k = 2, A = 1, B = −1, α = 0 and β = 1, Theorem 3.1 yields the following result:

Corollary 3.4. If f ∈ Ks, then
|an| ≤ n.

Theorem 3.2. If −1 ≤ B2 = B1 < A1 ≤ A2 ≤ 1 and 0 ≤ α2 ≤ α1 < 1, then
K(k)
s (A1, B1;α1;β) ⊂ K(k)

s (A2, B2;α2;β).

Proof. As f ∈ K(k)
s (A1, B1;α1;β), so

zkf ′(z)

gk(z)
≺
(

1 + [B1 + (A1 −B1)(1− α1)]z

1 +B1z

)β
.

As −1 ≤ B2 = B1 < A1 ≤ A2 ≤ 1 and 0 ≤ α2 ≤ α1 < 1, we have
−1 ≤ B1 + (1− α1)(A1 −B1) ≤ B2 + (1− α2)(A2 −B2) ≤ 1.

Thus by Lemma 2.2, it yields

zkf ′(z)

gk(z)
≺
(

1 + [B2 + (A2 −B2)(1− α2)]z

1 +B2z

)β
,

which implies f ∈ K(k)
s (A2, B2;α2;β).

Theorem 3.3. If f ∈ K(k)
s (A,B;α;β), then for |z| = r, 0 < r < 1, we have

(3.7)

(
1− [B + (A−B)(1− α)]r

1−Br

)β
.

1

(1 + r)2
≤ |f ′(z)| ≤

(
1 + [B + (A−B)(1− α)]r

1 +Br

)β
.

1

(1− r)2

and

(3.8)

r∫
0

(
1− [B + (A−B)(1− α)]t

1−Bt

)β
.

1

(1 + t)2
dt ≤ |f(z)|

≤
r∫

0

(
1 + [B + (A−B)(1− α)]t

1 +Bt

)β
.

1

(1− t)2
dt.

Proof. From (3.2), we have

(3.9) |f ′(z)| = |Gk(z)|
|z|

(P (z))β .

Aouf [2] proved that
1− [B + (A−B)(1− α)]r

1−Br
≤ |P (z)| ≤ 1 + [B + (A−B)(1− α)]r

1 +Br
,

which implies

(3.10)

(
1− [B + (A−B)(1− α)]r

1−Br

)β
≤ |P (z)|β ≤

(
1 + [B + (A−B)(1− α)]r

1 +Br

)β
.

Since Gk ∈ S∗, so by Lemma 2.3, we have

(3.11)
r

(1 + r)2
≤ |Gk(z)| ≤ r

(1− r)2
.

Relation (3.9) together with (3.10) and (3.11) yields (3.7). On integrating (3.7) from 0 to r, (3.8) follows.
For A = η[1− (1 + δ)γ], B = −ηδ, α = 0, β = 1, Theorem 3.3 gives the following result:
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Corollary 3.5. If f ∈ K(k)
s (γ; δ; η), then(

1−η[1−(1+δ)γ]r
1+ηδr

)
. 1
(1+r)2 ≤ |f ′(z)|

≤
(

1 + η[1− (1 + δ)γ]r

1− ηδr

)β
.

1

(1− r)2

and
r∫
0

(
1−η[1−(1+δ)γ]t

1+ηδt

)
. 1
(1+t)2 dt ≤ |f(z)|

≤
r∫

0

(
1 + η[1− (1 + δ)γ]t

1− ηδt

)
.

1

(1− t)2
dt.

Putting A = 1− 2γ, B = −1, α = 0 and β = 1 in Theorem 3.3, the following result is obvious:

Corollary 3.6. If f ∈ K(k)
s (γ), then

2γr

(1 + r)3
≤ |f ′(z)| ≤ 2(1− γ)r

(1− r)3
.

and
r∫

0

(
2γt

(1 + t)3

)
dt ≤ |f(z)| ≤

r∫
0

(
2(1− γ)t

(1− t)3

)
dt.

Substituting for k = 2, A = 1 − 2γ, B = −1, α = 0 and β = 1 in Theorem 3.3, we can easily obtain the
following result:

Corollary 3.7. If f ∈ Ks(γ), then
1− (1− 2γ)r

(1 + r)3
≤ |f ′(z)| ≤ 1 + (1− 2γ)r

(1− r)3
.

and
r∫

0

(
1− (1− 2γ)t

(1 + t)3

)
dt ≤ |f(z)| ≤

r∫
0

(
1 + (1− 2γ)t

(1− t)3

)
dt.

Taking k = 2, A = 1, B = −1, α = 0 and β = 1, Theorem 3.3 yields the following result:

Corollary 3.8. If f ∈ Ks, then
1− r

(1 + r)3
≤ |f ′(z)| ≤ 1 + r

(1− r)3
.

and
r∫

0

(
1− t

(1 + t)3

)
dt ≤ |f(z)| ≤

r∫
0

(
1 + t

(1− t)3

)
dt.

Theorem 3.4. Let f ∈ K(k)
s (A,B;α;β), then

Re
(zf ′(z))′

f ′(z)
≥



1−r
1+r − β

(A−B)(1−α)r
(1−[B+(A−B)(1−α)]r)(1−Br) , if R1 ≤ R2,

1−r
1+r + (A+B)−α(A−B)

(A−B)(1−α)

+2

√
(1−B)(1−[B+(A−B)(1−α)])(1+[B+(A−B)(1−α)]r2)(1+Br2)

(A−B)(1−α)(1−r2)

−2 (1−[B+(A−B)(1−α)]Br2)
(A−B)(1−α)(1−r2) , if R1 ≥ R2,

where R1 and R2 are defined in Lemma 2.5.

Proof. Proof . As f ∈ K(k)
s (A,B;α;β), we have

zf ′(z) = Gk(z)(P (z))β .
Differentiating logarithmically, we get

(3.12)
(zf ′(z))′

f ′(z)
=
zG′k(z)

Gk(z)
+ β

zP ′(z)

P (z)
.

As Gk ∈ S∗, so by the result due to Mehrok [8], we have

(3.13) Re

(
zG′k(z)

Gk(z)

)
≥ 1− r

1 + r
.

Hence, using (3.13) and Lemma 2.5 in (3.12), the proof of Theorem 3.4 is obvious.
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Theorem 3.5. If f ∈ K(k)
s (A,B;α;β) and let F (z) = zf ′(z), then for |z| = r, 0 < r < 1, we have∣∣∣∣argF (z)

z

∣∣∣∣ ≤ βsin−1

(
(A−B)r

1−ABr2

)
+ 2sin−1r.

Proof. Proof . From (3.2), we have
zf ′(z)

Gk(z)
= (P (z))β ,

which can be expressed as
F (z) = Gk(z)(P (z))β .

Therefore, we have

(3.14)

∣∣∣∣argF (z)

z

∣∣∣∣ ≤ β|argP (z)|+
∣∣∣∣argGk(z)

z

∣∣∣∣ .
It is well known that

(3.15) |argP (z)| ≤ sin−1

(
(A−B)r

1−ABr2

)
.

It was proved by Goel and Mehrok [4] that, for Gk(z) ∈ S∗,

(3.16)

∣∣∣∣argGk(z)

z

∣∣∣∣ ≤ 2sin−1r.

Using (3.15) and (3.16) in (3.14), Theorem 3.5 is obvious.

4 Conclusion and Open Problems
Close-to-convex functions are of great importance in the study of univalent functions. In the present paper,
we introduce a new and generalized subclass of close-to-convex functions using subordination and established
various properties for this class. Many earlier known results follow as particular cases of our results. This
study will motivate the other researchers to investigate other such classes and to discuss their properties.
Acknowledgement. The authors are very greatful to the editor and referees for their valuable suggestions
to revise the paper.
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Abstract

In this paper, we have studied the concept of anti-norm and anti-inner product function on anti-fuzzy
linear space over anti-fuzzy field, we have also given fuzzy continuous linear operator from an anti-normed
anti-fuzzy linear space to another anti-normed anti-fuzzy linear space and also introduced three types
(strong, weak and sequential) of fuzzy bounded linear operators.
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1 Introduction
During the last few years there is a growing interest in the extension of fuzzy set theory which is a useful tool
to describe the situation in which data are imprecise or vague or uncertain. Fuzzy set theory handles the
situation, by attributing a degree of membership to which a certain object belongs to a set. The fundamental
concept of fuzzy set theory was introduced by Zadeh [23] in 1965 and thereafter, the concept of fuzzy set
theory applied on different branches of pure and applied mathematics in different ways. The fuzzy topology
was introduced by Chang [4] in 1968, while the concept of fuzzy norm was introduced by Katsaras [9] in
1984. Thereafter Wu and Fang [20] introduced a fuzzy normed space. In 1991, Biswas [1] defined fuzzy norm
and fuzzy inner product function on a linear space. In 1992, Felbin [8] introduced fuzzy norm on a linear
space by assigning a fuzzy real number to each element of the linear space. Another important approach
of fuzzy norm on a linear space was introduced in 1994 by Cheng and Morderson [5], on a parallel line as
the corresponding fuzzy metric due to Kramosil and Michelek [11] type. Krishna and Sarma [10], Xiao and
Zhu [22] discussed fuzzy norms on linear spaces at different points of view. In 2005, Bag and Samanta [2],
introduced an idea of fuzzy norm of a linear operator from a fuzzy normed linear space to another fuzzy
normed linear space and defined various notions of continuities and boundedness of linear operators over
fuzzy normed linear spaces such as fuzzy continuity, sequential fuzzy continuity, weakly fuzzy continuity,
strongly fuzzy continuity, weakly and strongly fuzzy boundedness. All these Researchers have done their
work in the area of crisp linear space. Wenxiang and Tu [21] were the first to introduce the concept of fuzzy
fields and fuzzy linear spaces over fuzzy fields. In 2011, Santosh and Ramakrishnan [18] introduced norm and
inner product on fuzzy linear spaces over fuzzy field. In 2012, Srinivas, Swamy and Nagaiah [19] introduced
anti-fuzzy near-algebras over anti-fuzzy fields. In 2022, Barge and Yadav [3] defined (λ, µ)-anti-fuzzy linear
spaces. In 2022, Chandra, Srivastava, and Sinha [6]; Srivastava, Sinha and Chandra [17] introduced 2-norm
and 2-inner product on fuzzy linear spaces over fuzzy field. For more recent work of the area under study, we
refer to [7,12,13,14,15,16]. In the present paper we introduce the idea of anti-norm and anti-inner product
function on anti-fuzzy linear space over anti-fuzzy field and also given fuzzy continuous and fuzzy bounded
linear operators on anti-fuzzy linear space over anti-fuzzy field.

2 Preliminaries
This section contains some definitions and preliminary results which are used in the paper.

Definition 2.1 ([21]). Let X be a field and F a fuzzy set in X with the following conditions:
(i) F (x+ y) ≥ min{F (x), F (y)}, x, y ∈ X,

(ii) F (−x) ≥ F (x), x ∈ X,
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(iii) F (xy) ≥ min{F (x), F (y)}, x, y ∈ X,
(iv) F

(
x−1

)
≥ F (x), x(6= 0) ∈ X.

Then we call F a fuzzy field in X and denoted by (F,X) and it is also called a fuzzy field of X.

Theorem 2.1 ([21]). If (F,X) is a fuzzy field of X, then
(i) F (0) ≥ F (x), x ∈ X.

(ii) F (1) ≥ F (x), x(6= 0) ∈ X.
(iii) F (0) ≥ F (1).

Theorem 2.2 ([21]). Let X and Y be field and f a homomorphism of X into Y suppose that (F,X) is a
fuzzy field of X and (G, Y ) is a fuzzy field of Y . Then

(i) (f(F ), Y ) is a fuzzy field of Y .
(ii)

(
f−1(G), X

)
is a fuzzy field of X.

Definition 2.2 ([21]). Let X be a field and (F,X) be a fuzzy field of X. Let Y be a linear space over X and
V a fuzzy set of Y . Suppose the following condition hold:

(i) V (x+ y) ≥ min{V (x), V (y)}, x, y ∈ Y ,
(ii) V (λx) ≥ min{F (λ), V (x)}, λ ∈ X,x ∈ Y ,

(iii) V (−x) ≥ V (x), x ∈ Y ,
(iv) F (1) ≥ V (0).

Then (V, Y ) is called a fuzzy linear space over (F,X).

Theorem 2.3 ([21]). If (V, Y ) is a fuzzy linear space over fuzzy field (F,X), then
(i) F (0) ≥ V (0).

(ii) V (0) ≥ V (x), x ∈ Y .
(iii) F (0) ≥ V (x), x ∈ Y .

Theorem 2.4 ([21]). Let (F,X) be a fuzzy field of X and Y a linear space over X. Let V be a fuzzy set of
Y . Then (V, Y ) is a fuzzy linear space over (F,X) if and only if

(i) V (λx+ µy) ≥ min{F (λ), F (µ), V (x), V (y)}, λ, µ ∈ X and x, y ∈ Y .
(ii) F (1) ≥ V (x), x ∈ Y .

Definition 2.3 ([18]). Let ( F,K) be a fuzzy field of K ( K denotes either R or C ), X be a linear space
over K and (V,X) be a fuzzy linear space over (F,K). A norm on (V,X) is a function || || : X → [0,∞)
such that

(i) F (‖x‖) ≥ V (x) for all x ∈ X,
(ii) ‖x‖ ≥ 0 ∀ x ∈ X and ‖x‖ = 0 if and only if x = 0,

(iii) ‖x+ y‖ ≤ ‖x‖+ ‖y‖ for all x, y ∈ X,
(iv) ‖kx‖ = |k|‖x‖ for all k ∈ K and for all x ∈ X.

Then (V,X, ‖‖) is called a normed anti-fuzzy linear space (NFLS) over fuzzy field.

Definition 2.4 ([18]). An inner product on a fuzzy linear space (V,X) over a fuzzy field (F,K) is a function
〈, 〉 :, X ×X → K such that for all x, y, z ∈ X and k ∈ K,

(i) F (〈x, y〉) ≥ V × V (x, y),
(ii) 〈x, x〉 ≥ 0 and 〈x, x〉 = 0 if and only if x = 0,

(iii) 〈x+ y, z〉 = 〈x, z〉+ 〈y, z〉 and 〈kx, y〉 = k〈x, y〉,
(iv) 〈y, x〉 = 〈x, y〉.

Thus, (V,X, 〈, 〉) is called an inner product on fuzzy linear space over fuzzy field.

Definition 2.5 ([19]). Let X be a field and F a fuzzy set in X with the following conditions:
(i) F (x+ y) ≤ max{F (x), F (y)}, x, y ∈ X,

(ii) F (−x) ≤ F (x), x ∈ X,
(iii) F (xy) ≤ max{F (x), F (y)}, x, y ∈ X,
(iv) F

(
x−1

)
≤ F (x), x(6= 0) ∈ X.

An anti-fuzzy field F of X is denoted by (F,X).

Theorem 2.5 ([19]). If (F,X) is an anti-fuzzy field of X, then
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(i) F (0) ≤ F (x), for any x ∈ X.
(ii) F (1) ≤ F (x), for any x(6= 0) ∈ X.

(iii) F (0) ≤ F (1).

Definition 2.6 ([19]). Let X be a field and (F,X) be an anti-fuzzy field of X. Let Y be a linear space over
X and V a fuzzy set of Y . Suppose the following condition hold:

(i) V (x+ y) ≤ max{V (x), V (y)}, x, y ∈ Y
(ii) V (λx) ≤ max{F (λ), V (x)}, λ ∈ X,x ∈ Y ,

(iii) V (−x) ≤ V (x), x ∈ Y ,
(iv) F (1) ≤ V (0).

Then (V, Y ) is called an anti-fuzzy linear space over (F,X).

3 Anti-norm and anti-inner product function on anti-fuzzy linear space over anti-fuzzy field
In this section, we define anti-norm and anti-inner product function on anti-fuzzy linear space over anti-fuzzy
field and also establish relationship between them.

Here, K denotes either R (set of real numbers) or C (set of complex numbers).

Definition 3.1. Let (F,K) be an anti-fuzzy field of K,X be a linear space over K and (V,X) be an anti-fuzzy
linear space over (F,K). An anti-norm on (V,X) is function ||.|| : X → [0,∞) such that:

(i) F (‖x‖) ≤ V(x) for all x ∈ X,
(ii) ‖x‖ ≥ 0 ∀ x ∈ X and ‖x‖ = 0 if and only if x = 0,

(iii) ‖x+ y‖ ≤ ‖x‖+ ‖y‖,
(iv) ‖kx‖ ≤ |k|‖x, for all k ∈ K and for all x ∈ X.

Then (V,X, ‖.‖) is called anti-normed anti-fuzzy linear space (ANAFLS).

Theorem 3.1. Let (V,X) be an anti-fuzzy linear space over an anti-fuzzy field (F,K), Y be a linear space
over K and T be an isomorphism of X onto Y . (V,X) is an anti-normed anti-fuzzy linear space over (F,K)
if and only if (T (V ), Y ) is an anti-normed anti-fuzzy linear space over (F,K).

Proof. Let ‖ · ‖X be an anti-norm on (V,X). Let x ∈ X so, T(x) ∈ Y. Take T(x) = y. Now consider the
anti-norm ‖ · ‖Y on Y defined ‖y‖Y = ‖x‖X . Then F (‖y‖Y ) = F (‖x‖X) ≤ V (x) = T (V )T (x) = T (V )(y).
Therefore ‖ · ‖Y is an anti-norm on (T (V ), Y ).

Conversely, assume that ‖ · ‖Y is an anti-norm on (T (V ), Y ). Consider the anti-norm ‖ · ‖X on X as
‖x‖X = ‖Tx‖Y

Then F (‖x‖X) = F (‖Tx‖Y ) ≤ T (V )(T (x)) = V (x).
Therefore, ‖ · ‖X is an anti-norm on (V,X).

Theorem 3.2. Let X be a linear space over K, (W,Y ) an anti-fuzzy linear space over an anti-fuzzy field
(F,K) and T : X → Y be an injective linear transformation. If (W,Y ) is an anti-normed anti-fuzzy linear
space over (F,K). Then

(
T−1(W ), X

)
is an anti-normed anti-fuzzy linear space over (F,K).

Proof. Let ‖.‖Y be an anti-norm on (W,Y ). Consider the anti-norm ‖.‖X on X as

‖x‖X = ‖Tx‖Y Then

F (‖x‖X) = F (‖Tx‖Y ) ≤W
(
T (x) = T−1W (x).

Hence ‖ · ‖X is an anti-norm on
(
T−1(W ), X

)
.

Theorem 3.3. Let (V,X) be an anti-normed anti-fuzzy linear space over an anti-fuzzy field (F,K) and
T : X → X be an injective linear transformation. Then

(
T−1(V ), X

)
is an anti-normed anti-fuzzy linear

space over (F,K). Proof. Obvious by Theorem 3.2.

Definition 3.2. An anti-inner product on an anti-fuzzy linear space (V,X) over an anti-fuzzy field (F,K)
is a function 〈, 〉 : X ×X → K such that for all x, y, z ∈ X and k ∈ K,

(i) F (〈x, y〉) ≤ V × V (x, y)
(ii) 〈x, x〉 ≥ 0 and 〈x, x〉 = 0 if and only if x = 0

(iii) 〈x+ y, z〉 = 〈x, z〉+ 〈y, z〉 and 〈kx, y〉 = k〈x, y〉
(iv) 〈y, x〉 = 〈x, y〉.
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Thus, (V,X, 〈, 〉) is called an anti-inner product on anti-fuzzy linear space over anti-fuzzy field.

Example 3.1. Let F be an anti-fuzzy field of R. The anti-inner product 〈, 〉 on Rn defined by 〈x, y〉 =∑n
i=1 xiyi is an anti-inner product on an anti-fuzzy linear space (F × F × . . .× F︸ ︷︷ ︸

n times

, Rn).

Proof. Let V = (F × F × . . .× F︸ ︷︷ ︸
n times

, Rn)

F (〈x, y〉) = F (x1y1 + x2y2 + · · ·+ xnyn)

≤ max {F (x1y1) , F (x2y2) , . . . , F (xnyn)}
≤ max {max {F (x1) , F (y1)} , . . . ,max {F (xn) , F (yn)}}
= max {max {F (x1) , . . . , F (xn)} ,max {F (y1) , . . . , F (yn)}
= max{V (x), V (y)}
= V × V (x, y).

So, 〈, 〉 is an anti-inner product on (F × F × . . .× F︸ ︷︷ ︸
n times

, Rn).

Theorem 3.4. If 〈, 〉 is an anti-inner product on the anti-fuzzy linear space (V,X) over the anti-fuzzy field
(F,K), then for all x, y, z ∈ X and k ∈ K.

(i) F 〈x+ y, z〉 ≤ V × V (x+ y, z)
(ii) F (〈x, y〉) ≤ V × V (y, x)

(iii) F (λ〈x, y〉) ≤ V × V (λx, y).

Proof.
(i) F 〈x+ y, z〉 = F{〈x, z〉+ 〈y, z〉}

= F 〈x, z〉+ F 〈y, z〉
≤ V × V (x, z) + V × V (y, z)

≤ V × V (x+ y, z).

(ii) F (〈x, y〉) = F (〈y, x〉)
≤ V × V (y, x).

(iii) F (λ〈x, y〉) = F (〈λx, y〉).
≤ V × V (λx, y).

Theorem 3.5. If 〈, 〉 is an anti-inner product on the anti-fuzzy linear space (V,X) over the anti-fuzzy field
(F,K), then

(i) F (〈x+ y, z〉) ≤ max{V (x), V (y), V (z)},
(ii) F (〈kx, y〉) ≤ max{F (k), V (x), V (y)}.

Proof. (i) F (〈x+ y, z〉) ≤ V × V (x+ y, z)
= max{V (x+ y), V (z)}
≤ max{max{V (x), V (y), V (z)}
= max{V (x), V (y), V (z)}.

(ii) F (〈kx, y〉) ≤ V × V (kx, y)
= max{V (kx), V (y)}
≥ max{max{F (k), V (x), V (y)}
= max{F (k), V (x), V (y)}.

Theorem 3.6. Let (V,X) be an anti-fuzzy linear space over an anti-fuzzy field (F,K), Y a linear space over
K and T is an isomorphism of X onto Y . Then there exists an anti-inner product on (V , X) if and only if
there exists an anti-inner product on (T (V ), Y ).
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Proof. (⇒) Let 〈, 〉X be an anti-inner product on (V,X). Consider the anti-inner product 〈, 〉Y on Y defined
by 〈y1, y2〉Y = 〈x1, x2〉X where y1 = Tx1 and y2 = Tx2.
F (〈y1, y2〉Y ) = F (〈x1, x2〉X) ≤ V × V (x1, x2) = T (V )× T (V )(Tx1, Tx2) = T (V )× T (V )(y1, y2).

So 〈, 〉Y is an anti-inner product on (T (V ), Y ).
(⇐) Assume that 〈, 〉Y is an anti-inner product on (T (V ), Y ). Consider, the anti-inner product 〈, 〉X on

X defined by 〈x1, x2〉X = 〈Tx1, Tx2〉Y .

F (〈x1, x2〉X) = F (〈Tx1, Tx2〉Y ≤ T (V )× T (V ) (Tx1, Tx2) = V × V (x1, x2) .

So, 〈, 〉X is an anti-inner product on (V,X).

Theorem 3.7. Let X be a linear space over K, (W,Y ) be an anti-fuzzy linear space over an anti-fuzzy field
(F,X) and T : X → Y be an injective linear transformation. If there exists an anti-inner product on (W,Y ),
then there exists an anti-inner product on

(
T−1(W ), X

)
.

Proof. Let 〈, 〉Y be an anti-inner product on (W,Y ). Consider the anti-inner product 〈, 〉X on X defined by
〈x1, x2〉X = 〈Tx1, Tx2〉Y .

F (〈x1, x2〉X) = F (〈Tx1, Tx2〉Y ) ≤W ×W (Tx1, Tx2) = max {W (Tx1) ,W (Tx2)}
= max

{
T−1(w) (x1) , T−1(w) (x2)

}
= T−1(w)× T−1(w) (x1, x2) .

Therefore 〈, 〉X is an anti-inner product on
(
T−1(W ), X

)
.

Theorem 3.8. Let (V,X) be an anti-fuzzy linear space over (F,K) and T : X → X be an injective linear
transformation. If there exists an anti-inner product on (V,X) then there exists an anti-inner product on(
T−1(V ), X

)
.

Proof. Let 〈, 〉X be an anti-inner product on (V,X). Consider the anti-inner product 〈, 〉X on X defined by
〈x1, x2〉X = 〈Tx1, Tx2〉X .

F (〈x1, x2〉X) = F (〈Tx1, Tx2〉X) ≤ V × V (Tx1, Tx2) = max {V (Tx1) , V (Tx2)}
= max

{
T−1(v) (x1) , T−1(v) (x2)

}
= T−1(v)× T−1(v) (x1, x2) .

Therefore 〈, 〉X is an anti-inner product on
(
T−1(V ), X

)
.

Theorem 3.9. Let (V,X) be an anti-fuzzy linear space over (F,K). An anti-norm on (V,X) satisfying the
parallelogram law induces an anti-inner product on (V,X) if F (4), F (i) ≤ V (x) for all x ∈ X.

Proof. If ‖.‖ is an anti-norm on (V,X) satisfying the parallelogram law, then F(‖x‖) ≤ V (x) for all x ∈ X
and ‖.‖ induces an anti-inner product 〈, 〉 on X given by

〈x, y〉 =
1

4

(
‖x+ y‖2 − ‖x− y‖2 + i‖x+ iy‖2 − i‖x− iy‖2

)
F (〈x, y〉) = F

(
1

4

(
‖x+ y‖2 − ‖x− y‖2 + i‖x+ iy‖2 − i‖x− iy‖2

))
≤ max

{
F

(
1

4

)
, F
(
‖x+ y‖2

)
,F
(
−‖x− y‖2

)
,F(i),F

(
‖x+ iy‖2

)
,F
(
−‖x− iy‖2

)}
= max

{
F (4),F(i), F

(
‖x+ y‖2

)
,F
(
‖x− y‖2

)
,F
(
‖x+ iy‖2

)
,F
(
‖x− iy‖2

)}
≤ max{F (4),F(i), F (‖x+ y‖),F(‖x− y‖),F(‖x+ iy‖),F(‖x− iy‖)}
≤ max{F (4), F (i), V (x+ y), V (x− y), V (x+ iy), V (x− iy)}
≤ max{F (4), F (i), V (x), V (y)}
= max{V (x), V (y)} if F(4),F(i) ≤ V(x) for all x ∈ X
= V × V (x, y).

Hence anti-norm induces an anti-inner product on (V,X) if F (4), F (i) ≤ V (x) for all x ∈ X.
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4 Fuzzy continuous mapping and fuzzy bounded linear operators
In this section we define different types of continuity such as weak fuzzy continuity, strong fuzzy continuity
and sequential fuzzy continuity of an operator over anti-normed anti-fuzzy linear spaces. The notion of
weakly fuzzy boundedness and strongly fuzzy boundedness are defined for linear operators over anti-normed
anti-fuzzy linear spaces.

Definition 4.1. A mapping T from (V1, X, ‖.‖1) to (V2, Y, ‖.‖2) is said to be weakly fuzzy continuous at
x0 ∈ X if for each ε > 0,∃ δ > 0 such that ∀ x ∈ X

‖T (x)− T (x0)‖2 < ε whenever ‖x− x0‖1 < δ,
and F ‖x0‖1 ≤ V1 (x0) and F ‖Tx0‖2 ≤ V2T (x0).

If T is weakly fuzzy continuous at each point of X then we say that T is weakly fuzzy continuous on X.

Example 4.1. Let T : (V1, X, ‖.‖1) → (V2, Y, ‖.‖2) be a mapping where (V1, X, ‖.‖1) and (V2, Y, ‖.‖2) are

anti-normed anti-fuzzy linear spaces where ‖x‖1 = |x| and ‖x‖2 = |x|
2 , and consider T (x) = x, here T is

weakly fuzzy continuous.

Definition 4.2. A mapping T from (V1, X, ‖.‖1) to (V2, Y, ‖.‖2) is said to be strongly fuzzy continuous at
x0 ∈ X if for each ε > 0,∃ δ > 0 such that ∀ x ∈ X

‖T (x)− T (x0)‖2 < ε whenever ‖x− x0‖1 < δ,
and max {F ‖x0‖1 , F ‖Tx0‖2} ≤ max {V1 (x0) , V2 (Tx0)}.

If T is strongly fuzzy continuous at each point of X then T is said to be strongly fuzzy continuous on X.

Example 4.2. Let (V,X, ‖.‖) be an anti-normed anti-fuzzy linear space where X = R and ‖x‖ = |x| ∀ x ∈ R.
Define two functions ‖.‖1&‖.‖2 : X ×R→ [0, 1] by ‖x‖1 = |x|, ‖x‖2 = 2|x|.

Then it can be easily verified that ‖x‖1 and ‖x‖2 are anti-norms on X and thus (V,X‖x‖1) and (V,X‖x‖2)
are anti-normed anti-fuzzy linear spaces.

Now we consider a function T (x) = 4x. Therefore

‖Tx− Tx0‖2 = ‖4x− 4x0‖2
= 2 |4x− 4x0|
= 8 |x− x0| < ε

= |x− x0| <
ε

8

‖x− x0‖1 = |x− x0| < δ, Take δ =
ε

8
.

F (‖x0‖1) = F (|x0|) ,
F (‖Tx0‖2 = F (‖4x0‖2) = F (8 |x0|) ,
V1 (x0) ≥ F (‖x0‖1) (by Def. 3.1(i) ).

V2 (Tx0) = V2 (4x0) ≥ F ‖Tx0‖2 = F (‖4x0‖2) = F (8x0) ,

V2 (4x0) ≥ F (8x0) .

max {F (‖x0‖1) , F (‖Tx0‖2)} ≤ max {V1 (x0) , V2T (x0)}
≤ max {V1 (x0) , V2 (Tx0)} .

Hence it is strongly fuzzy Continuous.

Definition 4.3. A mapping T from anti-normed anti-fuzzy linear space (V1, ‖.‖1, X) to anti-normed anti-
fuzzy linear space (V2, ‖.‖2, Y ) over (F,K) is said to be sequentially fuzzy continuous at x0 if for any sequence
{xn} with xn → x0 ⇒ T (xn)→ T (x0)

‖T (xn)− T (x0)‖2 → 0 Whenever ‖xn − x0‖1 → 0 and

F ‖xn − x0‖1 ≤ V1 (xn − x0) ,

F ‖T (xn)− T (x0)‖2 ≤ V2 (T (xn)− T (x0)) .

If T is sequentially fuzzy continuous at each point of X then T is said to be sequentially fuzzy Continuous
on X.
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Example 4.3. Let T : (V1, X, ‖.‖1) → (V2, Y, ‖.‖2) be a mapping where (V1, X, ‖.‖1) and (V2, Y ‖.‖2) are

anti-normed anti-fuzzy linear spaces and ‖x‖1 = |x| and ‖x‖2 = |x|
2 and consider the function T (x) = x

So whenever ‖xn − x‖1 → 0,⇒ |xn − x| → 0
Then ‖T (xn)− T (x)‖2 = ‖xn − x‖2 = 1

2 |xn − x0| → 0.
Also, F (‖xn − x0‖1) ≤ V1 (xn − x0) (by Def. 3.1. (i) ).

F (‖Txn − Tx0‖2) = F (‖xn − x0‖2) = F

(
|xn − x0|

2

)
≤ max

{
F
(
2−1
)
, F (xn − x0)

}
= max {F (2), F (xn − x0)} .

As n→∞ then F (xn − x0)→ F (0)
= max{F (2), F (0)} = F (2).
V2 (Txn − Tx0) = V2 (xn − x0).
But as n→∞ then V2 (xn − x0)→ V2(0),
While as V2(0) ≥ F (2)
V2 (Txn − Tx0) ≥ F (‖Txn − Tx0‖2) .
Hence sequentially fuzzy continuous.

Definition 4.4. Let us denote the set of all fuzzy bounded linear operators from anti- normed anti-fuzzy
linear space (V1, X, ‖x‖1) to (V2, Y, ‖x‖2) by B(X,Y).

‖Tx‖2 ≤ k‖x‖1, V1(x) ≥ F‖x‖1
and V2(T (x)) ≥ F‖x‖2.

Example 4.4. Let us take, ‖x‖1 = |x|, ‖x‖2 = 4|x|
Define, a linear map T (x) = x

2 ,
Now,

‖Tx‖2 =
∥∥∥x

2

∥∥∥
2

= 2|x|,

‖Tx‖2 ≤ k|x|, For k ≥ 2.

V1(x) ≥ F (‖x‖1) , (by Definition 4.4)

V2(x) ≥ F (‖x‖2) , (by Definition 4.4).

From above it is clear that, the set B(X,Y ) is bounded linear operator on anti-normed anti-fuzzy linear
space over anti-fuzzy field.

Theorem 4.1. Let (V1, X, ‖.‖1) and (V2, Y, ‖.‖2) be two anti-normed anti-fuzzy linear spaces and T is a
linear operator from X to Y then

T is weakly fuzzy continuous iff it is fuzzy bounded.

Proof. Let T be fuzzy bounded.

‖T (x− x0) ‖2 ≤ k‖x− x0‖1

‖Tx− Tx0‖2 ≤
ε

δ
‖x− x0‖1 · Take k =

ε

δ
.

‖Tx− Tx0‖2 ≤ ε, whenever ‖x− x0‖1 ≤ δ.
So, T is weakly fuzzy continuous.
Now, T take weakly fuzzy continuous
‖Tx− Tx0‖2 < ε, whenever ‖x− x0‖1 < δ.
Let y ∈ X, x1 = x0 + δ

2
y
‖y‖1 ,

x1 − x0 =
δ

2

y

‖y‖1

⇒ ‖x1 − x0‖1 =

∥∥∥∥δ2 y

‖y‖1

∥∥∥∥
1

=
δ

2
< δ

⇒ ‖Tx1 − Tx0‖2 < ε (given )
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⇒ ‖T (x1 − x0)‖2 =

∥∥∥∥T δ2 y

‖y‖1

∥∥∥∥
2

=
δ

2‖y‖1
‖Ty‖2 < ε

⇒ ‖Ty‖2 ≤
2ε

δ
‖y1‖

⇒ ‖Ty‖2 ≤ k‖y1‖ (Taking k =
2ε

δ
).

Therefore T is fuzzy bounded.

5 Conclusion
In this paper, we developed a theory of anti-norm, anti-inner product on anti-fuzzy linear space over anti-
fuzzy field and relation between them. We proved fuzzy continuity theory and their related examples. In
the future we will work on open mapping theorem and uniform boundedness principle over anti-fuzzy field.
Acknowledgement. The authors are grateful to the Editors for their Valuable suggestions. The authors
are also grateful to the Reviewers for their constructive suggestion in rewriting the paper in its present form.
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Abstract

The object of this paper is to establish certain unified integrals associated with I-function of two
variables. First, we have evaluated integrals whose integrand is the product of generalized Mittag-Leffler
function, generalized M -series and I-function of two variables. Moreover, the integrand of the last
integral is the product of generalized Mittag-Leffler function, generalized M -series, H-function of one
variables and I-function of two variables. We have evaluated this integral by means of Mellin transform
of H-function of one variables. In consequence of general nature of I-function of two variables, some
special cases also have been considered.
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Mellin transform of H-function, I-function of two variables, Mellin-Barnes type integrals.

1 Introduction
Using various special functions, numerous integrals have been established. For example, in 2003, Garg and
Mittal [13] obtained new unified integrals whose integrands contain product of general class of polynomial
and H-function having general arguments. Saha et al.[19] presented certain new type of integrals having the
product of I-function with exponential function, hypergeometric function and H-function in 2011. In 2011,
Agarwal et al.[1] established some new finite integrals containing Jacobi polynomials and I-function of one
variable. In 2019, Agarwal et al.[2] established some new integral formulas with the involvement of ℵ-function
associated with Laguerre-type polynomials. Abeye and Suthar[3] evaluated three definite integrals involving
the H-function together with the Srivastava’s general class of polynomial in 2019. Ayant et al.[4] established
two finite integrals containing the product of Legendre function, generalized hypergeometric function and
the modified generalized multivariable I-function in 2020. For similar work, we may also refer to Kumar et
al.[15], Suthar et al. [20], Bohara and Jain [6], Singh and Chandel [32], Goyal and Agrawal [12].

Motivated by these results, in this paper, we have established certain unified integrals associated with two
variable’s I-function defined by Goyal and Agrawal[11]. In first to sixth integrals, we have evaluated integrals
whose integrand is the product of generalized Mittag-Leffler function, generalized M -series and I-function
of two variables. The integrand of the seventh integral is the product of generalized Mittag-Leffler function,
generalized M -series, H-function of one variables and I-function of two variables. We have evaluated this
integral by means of Mellin transform of H-function of one variables. The results of all the integrals are
expressed in terms of I-function of two variables.

The results evaluated here are quite general and a large number of known and new integrals can be
evaluated as special cases by specializing the parameters in I-function of two variables. For the sake of
illustrations, we have recorded some special cases of our main findings at the end of the paper.

The I-function of two variables defined by Goyal and Agrawal[11] in 1995 due to double Mellin-Barnes
type contour integral and they discussed the asymptotic behavior and convergence conditions also. The
I-function of two variables is very general in nature and specializing the parameters we obtain I-function of
one variable, H-function of one variable,H-function of two variables and many more as its special case. For
current research of I-function of two variables, see [26, 28].
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The I-function of two variables is expressed in the following manner:
(1.1)

Im1,n1:m2,n2;m3,n3

p,q:p
(1)
i ,q

(1)
i ;p

(2)
i ,q

(2)
i :r

[
z1 [(ep : Ep, E

′

p)] : [(aτ , ατ )1,n2
], [(aτi, ατi)n2+1,p

(1)
i

]; [(cτ , γτ )1,n3
], [(cτi, γτi)n3+1,p

(2)
i

]

z2 [(fq : Fq, F
′

q)] : [(bτ , βτ )1,m2 ], [(bτi, βτi)m2+1,q
(1)
i

]; [(dτ , δτ )1,m3 ], [(dτi, δτi)m3+1,q
(2)
i

]

]

=
1

(2πω)2

∫
L1

∫
L2

φ1(ξ)φ2(η)ψ(ξ, η) zξ1 z
η
2 dξ dη,

where ω =
√
−1 and φ1(ξ), φ2(η), ψ(ξ, η) are given by

(1.2) φ1(ξ) =

m2∏
τ=1

Γ ( bτ − βτξ )

n2∏
τ=1

Γ ( 1− aτ + ατξ )

r∑
i=1

 q
(1)
i∏

τ=m2+1

Γ(1− bτi + βτiξ)

p
(1)
i∏

τ=n2+1

Γ(aτi − ατiξ)


,

(1.3) φ2(η) =

m3∏
τ=1

Γ(dτ − δτη)

n3∏
τ=1

Γ(1− cτ + γτη)

r∑
i=1

 q
(2)
i∏

τ=m3+1

Γ(1− dτi + δτiη)

p
(2)
i∏

τ=n3+1

Γ(cτi − γτiη)


,

(1.4) ψ(ξ, η) =

m1∏
τ=1

Γ(fτ − Fτξ − F
′

τη)

n1∏
τ=1

Γ(1− eτ + Eτξ + E
′

τη)

q∏
τ=m1+1

Γ(1− fτ + Fτξ + F
′

τη)

p∏
τ=n1+1

Γ(eτ − Eτξ − E
′

τη)

,

where an empty product is termed as unity, z1, z2 are two non zero complex variables, and L1, L2 are two
Mellin-Barnes type contour integrals.

(i) m1, n1;m2, n2;m3, n3 and p, q; p
(1)
i , q

(1)
i ; p

(2)
i , q

(2)
i are non-negative integers satisfying the conditions

0 ≤ n1 ≤ p, 0 ≤ n2 ≤ p
(1)
i , 0 ≤ n3 ≤ p

(2)
i , 0 ≤ m1 ≤ q, 0 ≤ m2 ≤ q

(1)
i , 0 ≤ m3 ≤ q

(2)
i for all

i = 1, 2, 3, . . . , r where r is also a positive integer.

(ii) ατ (τ = 1, . . . , n2), βτ (τ = 1, . . . ,m2), γτ (τ = 1, . . . , n3), δτ (τ = 1, . . . ,m3), ατi(τ = n2 + 1, . . . , p
(1)
i ),

βτi(τ = m2 + 1, . . . , q
(1)
i ), γτi(τ = n3 + 1, . . . , p

(2)
i ), δτi(τ = m3 + 1, . . . , q

(2)
i ) are termed to be positive

quantities for standardization purposes.Eτ , E
′

τ , Fτ , F
′

τ are also positive quantities.

(iii) aτ (τ = 1, . . . , n2), bτ (τ = 1, . . . ,m2), cτ (τ = 1, . . . , n3), dτ (τ = 1, . . . ,m3), aτi(τ = n2+1, . . . , p
(1)
i ), bτi(τ =

m2 +1, . . . , q
(1)
i ), cτi(τ = n3 +1, . . . , p

(2)
i ), dτi(τ = m3 +1, . . . , q

(2)
i ) are complex for all i = 1, 2, 3, . . . , r.

(iv) The contour L1 lies in the complex ξ-plane which runs from −ω∞ to +ω∞ with loops, if necessary,
to ensure that the poles of Γ ( bτ − βτξ )(τ = 1, . . . ,m2),Γ ( fτ − Fτξ − F

′

τη )(τ = 1, . . . ,m1) lies to the
right and the poles of Γ ( 1 − aτ + ατξ )(τ = 1, . . . , n2),Γ ( 1 − eτ + Eτξ + E

′

τη )(τ = 1, . . . , n1) to the
left of the contour L1.

(v) The contour L2 lies in the complex η-plane and runs from −ω∞ to +ω∞ with loops, if necessary, to
ensure that the poles of Γ ( dτ − δτη )(τ = 1, . . . ,m3),Γ ( fτ − Fτξ − F

′

τη )(τ = 1, . . . ,m1) lies to the
right and the poles of Γ ( 1 − cτ + γτξ )(τ = 1, . . . , n3),Γ ( 1 − eτ + Eτξ + E

′

τη )(τ = 1, . . . , n1) to the
left of the contour L2. All the poles are simple poles.

Convergence conditions are as follows:

(1.5) | arg z1| <
Aiπ

2
, | arg z2| <

Biπ

2
,
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where

Ai =

n1∑
τ=1

Eτ +

m1∑
τ=1

Fτ −
p∑

τ=n1+1

Eτ −
q∑

τ=m1+1

Fτ+(1.6)

m2∑
τ=1

βτ +

n2∑
τ=1

ατ −
q
(1)
i∑

τ=m2+1

βτi −
p

(1)
i∑

τ=n2+1

ατi > 0

and

Bi =

n1∑
τ=1

E
′

τ −
p∑

τ=n1+1

E
′

τ +

m1∑
τ=1

F
′

τ −
q∑

τ=m1+1

F
′

τ+(1.7)

m3∑
τ=1

δτ −
q
(2)
i∑

τ=m3+1

δτi +

n3∑
τ=1

γτ −
p

(2)
i∑

τ=n3+1

γτi > 0,

for i = 1, . . . , r.
For the sake of brevity throughout the paper, following notations will be used:
P = m2, n2;m3, n3,

Q = p
(1)
i , q

(1)
i ; p

(2)
i , q

(2)
i : r,

U = [(aτ , ατ )1,n2
], [(aτi, ατi)n2+1,p

(1)
i

]; [(cτ , γτ )1,n3
], [(cτi, γτi)n3+1,p

(2)
i

],

V = [(bτ , βτ )1,m2
], [(bτi, βτi)m2+1,q

(1)
i

]; [(dτ , δτ )1,m3
], [(dτi, δτi)m3+1,q

(2)
i

],

The generalized Mittag-Leffler function Eθ,ϕ(z) is a complex function involving two complex parameters
θ and ϕ. It is defined by means of following series when <(θ) is strictly positive

(1.8) Eθ,ϕ (z) =
∑
k≥0

zk

Γ (θk + ϕ)
.

If θ and ϕ are positive and real, the function converges for all z. By specializing the parameters, Mittag-
Leffler function reduces to the exponential function, error function, hyperbolic sine function, hyperbolic
cosine function.

This function was studied by Wiman [33] in 1905, Agrawal [5] in 1953, Humbert and Agrawal [14] in
1953 and Dzrbashjan [8, 9, 10]. Kilbas et al. [16] studied the several properties of the Mittag-Leffler function
related to the generalized fractional calculus operators.

During the last some decades, the special importance to Mittag-Leffler function is given by the
mathematicians due to its vast and vivid involvement to solve the problems of probability, engineering
and statistical distribution theory. The solution of fractional order differential and integral equations occurs
naturally in terms of Mittag-Leffler function.

A detailed description about the basic properties of Mittag-Leffler function has been described in the
third volume of Batemann Manuscript Project which was written by Erdélyi et al in 1955. For current
research of Mittag-Leffler function, see [29].

Sharma and Jain [24] introduced generalized M -series which is defined as

pM
θ,ϕ
q (z) = pM

θ,ϕ
q (c1, . . . , cp; d1, . . . , dq; z)(1.9)

=
∑
k≥0

(c1)k . . . (cp)k
(d1)k . . . (dq)k

zk

Γ(θk + ϕ)
,

where θ, ϕ ∈ C, z ∈ C, <(θ) > 0; (cτ )k (τ = 1, . . . , p) and (dς)k (ς = 1, . . . , q) are Pochhammer symbols. The
series (1.9) is defined when no parameters dς (ς = 1, . . . , q) is a negative integer or zero; if any numerator
parameter cτ is a negative integer or zero, then series terminates to a polynomial in z. The series (1.9) is
convergent for all z if p ≤ q; it is convergent for |z| < δ = θθ if p = q + 1 and divergent if p > q + 1. When
p = q + 1 and |z| = δ, the series is convergent on conditions depending on the parameters. The detailed
description of the M -Series can be seen in the paper [24]. The M -series has interesting relationship with
various classical functions, for instance, see [25, 27, 30].
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2 Required Results
We require following results for our study.

In view of Mellin inversion theorem and using the definition of H-function, The Mellin transform of
H-function is given by ∫ ∞

0

xs−1Hm,n
p,q

[
ax

∣∣∣∣ (aτ , ατ )1,p

(bτ , , βτ )1,q

]
dx = a−sχ(−s)(2.1)

= a−s

m∏
τ=1

Γ(bτ + βτs)

n∏
τ=1

Γ(1− aτ − ατs)

q∏
τ=m+1

Γ(1− bτ − βτs)
p∏

τ=n+1

Γ(aτ + ατs)

,

where

| arg a| < πA

2
, δ = −

p∑
τ=1

ατ +

q∑
τ=1

βτ > 0, A > 0,

A =

n∑
τ=1

ατ +
m∑
τ=1

βτ −
p∑

τ=n+1

ατ −
q∑

τ=m+1

βτ > 0,

and

− min
1≤τ≤m

<
(
bτ
βτ

)
< <(s) < min

1≤τ≤n
<
(

1− aτ
ατ

)
.

From Rainville [18], we have

(2.2)
∑
f≥0

∑
u≥0

A(u, f) =
∑
f≥0

f∑
u=0

A(u, f − u),

(2.3)

∫ 1

−1

(1 + x)ς−1 (1− x)e−1 dx = 2ς+e−1B(ς, e), ς > 0, e > 0.

3 Main Results
In this section, we evaluate certain type of new unified integrals with the involvement of the product of I-
function of two variables with generalized Mittag-Leffler function, generalized M -series and Fox’s H-function.
Result 3.1.

I1 ≡
∫ t

0

xρ1−1(t− x)σ1−1Eµ,λ{(t− x)z} uMG,T
v {axρ2(t− x)σ2}(3.1)

× Im1,n1:P
p,q:Q

[
z1x

µ1(t− x)ν1 [(ep : Ep, E
′

p)] : U

z2x
µ2(t− x)ν2 [(fq : Fq, F

′

q)] : V

]
dx

= tρ1+σ1−1
∑
k≥0

k∑
m=0

f(m)zk−mt(ρ2+σ2−1)m+k

× Im1,n1+2:P
p+2,q+1:Q

[
z1t

µ1+ν1 E1, [(ep : Ep, E
′

p)] : U

z2t
µ2+ν2 [(fq : Fq, F

′

q)], E2 : V

]
,

where

E1 = [(1− ρ1 − ρ2m : µ1, µ2)], [(1− σ1 − (σ2 − 1)m− k : ν1, ν2)],

E2 = [(1− σ1 − ρ1 − (ρ2 + σ2 − 1)m− k : µ1 + ν1, µ2 + ν1)],

and

f(m) =
am(a′1)m...(a

′
u)m

(b′1)m...(b′u)mΓ(µ(k −m) + λ)Γ(Gm+ T )
,

provided
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(i) <(µ) > 0, <(λ) > 0, <(G) > 0, <(T ) > 0,
(ii) µ1 ≥ 0, µ2 ≥ 0, ν1 ≥ 0, ν2 ≥ 0. (Not all zero simultaneously),

(iii) ρ2, σ2 are positive integers such that ρ2 + σ2 ≥ 1,
(iv) Ai > 0, Bi > 0, | arg z1| < πAi

2 , | arg z2| < πBi
2 ,

(v) <(ρ1) + µ1 min
1≤τ≤m2

<
(
bτ
βτ

)
+ µ2 min

1≤τ≤m3

<
(
dτ
δτ

)
> 0,

<(σ1) + ν1 min
1≤τ≤m2

<
(
bτ
βτ

)
+ ν2 min

1≤τ≤m3

<
(
dτ
δτ

)
> 0.

Proof.

I1 ≡
∫ t

0

xρ1−1(t− x)σ1−1Eµ,λ{(t− x)z} uMG,T
v {axρ2(t− x)σ2}

× Im1,n1:P
p,q:Q

[
z1x

µ1(t− x)ν1 [(ep : Ep, E
′

p)] : U

z2x
µ2(t− x)ν2 [(fq : Fq, F

′

q)] : V

]
dx.

Now expressing Mittag-Leffler function andM -series in summation form and I-function in its well known
Mellin-Barnes contour integral, we get

I1 =

∫ t

0

xρ1−1(t− x)σ1−1
∑
k≥0

(t− x)kzk

Γ(µk + λ)

∑
m≥0

(a′1)m · · · (a′u)m
(b′1)m · · · (b′v)m

amxρ2m(t− x)σ2m

Γ(Gm+ T )

× 1

(2πω)2

∫
L1

∫
L2

φ1(ξ)φ2(η)ψ(ξ, η) zξ1 z
η
2x

µ1ξxµ2η(t− x)ν1ξ(t− x)ν2η dξ dη dx

=

∫ t

0

xρ1−1(t− x)σ1−1
∑
k≥0

∑
m≥0

(a′1)m · · · (a′u)m
(b′1)m · · · (b′v)m

zkamxρ2m

Γ(µk + λ)

(t− x)σ2m+k

Γ(Gm+ T )

× 1

(2πω)2

∫
L1

∫
L2

φ1(ξ)φ2(η)ψ(ξ, η) zξ1 z
η
2x

µ1ξ+µ2η(t− x)ν1ξ+ν2η dξ dη dx.

Now by an application of (2.2), the above result turns to

I1 =

∫ t

0

xρ1−1(t− x)σ1−1
∑
k≥0

k∑
m=0

(a′1)m · · · (a′u)m
(b′1)m · · · (b′v)m

zk−mamxρ2m

Γ(µ(k −m) + λ)

(t− x)σ2m+k−m

Γ(Gm+ T )

× 1

(2πω)2

∫
L1

∫
L2

φ1(ξ)φ2(η)ψ(ξ, η) zξ1 z
η
2x

µ1ξ+µ2η(t− x)ν1ξ+ν2η dξ dη dx.

Changing the order of integral and summation which is valid due to the conditions mentioned with the
equation (3.1), we obtain

I1 =
∑
k≥0

k∑
m=0

f(m)zk−m
1

(2πω)2

∫
L1

∫
L2

φ1(ξ)φ2(η)ψ(ξ, η) zξ1 z
η
2

×
{∫ t

0

xµ1ξ+µ2η+ρ2m+ρ1−1(t− x)ν1ξ+ν2η+σ2m+k−m+σ1−1 dx

}
dξ dη,

where f(m) is given with the integral (3.1).
On putting x = st in the x-integral, the above expression becomes

I1 = tρ1+σ1−1
∑
k≥0

k∑
m=0

f(m)zk−mt(ρ2+σ2−1)m+k 1

(2πω)2

∫
L1

∫
L2

φ1(ξ)φ2(η)ψ(ξ, η) zξ1 z
η
2
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× t(µ1+ν1)ξ+(µ2+ν2)η

{∫ 1

0

sµ1ξ+µ2η+ρ2m+ρ1−1(1− s)ν1ξ+ν2η+σ2m+k−m+σ1−1 ds

}
dξ dη

= tρ1+σ1−1
∑
k≥0

k∑
m=0

f(m)zk−mt(ρ2+σ2−1)m+k 1

(2πω)2

∫
L1

∫
L2

φ1(ξ)φ2(η)ψ(ξ, η) zξ1 z
η
2

× Γ(µ1ξ + µ2η + ρ2m+ ρ1)Γ(ν1ξ + ν2η + σ2m+ k −m+ σ1)

Γ(µ1ξ + µ2η + ρ2m+ ρ1 + ν1ξ + ν2η + σ2m+ k −m+ σ1)
t(µ1+ν1)ξ+(µ2+ν2)η dξ dη,

Finally, by re-arranging the double Mellin-Barnes contour integrals by means of I-function of two variables
represented by (1.1) , we get

I1 = tρ1+σ1−1
∑
k≥0

k∑
m=0

f(m)zk−mt(ρ2+σ2−1)m+k

× Im1,n1+2:P
p+2,q+1:Q

[
z1t

µ1+ν1 E1, [(ep : Ep, E
′

p)] : U

z2t
µ2+ν2 [(fq : Fq, F

′

q)], E2 : V

]
,

where E1 and E2 are given with (3.1). Hence the desired result.
Result 3.2.

I2 ≡
∫ t

0

xρ1−1(t− x)σ1−1Eµ,λ{(t− x)z} uMG,T
v {axρ2(t− x)σ2}(3.2)

× Im1,n1:P
p,q:Q

[
z1x
−µ1(t− x)−ν1 [(ep : Ep, E

′

p)] : U

z2x
−µ2(t− x)−ν2 [(fq : Fq, F

′

q)] : V

]
dx

= tρ1+σ1−1
∑
k≥0

k∑
m=0

f(m)zk−mt(ρ2+σ2−1)m+k

× Im1+2,n1:P
p+1,q+2:Q

[
z1t
−µ1−ν1 [(ep : Ep, E

′

p)], E3 : U

z2t
−µ2−ν2 E4, [(fq : Fq, F

′

q)] : V

]
,

where

E3 = [((ρ2 + σ2 − 1)m+ ρ1 + σ1 + k : µ1 + ν1, µ2 + ν2)],

E4 = [(ρ1 + ρ2m : µ1, µ2)], [((σ2 − 1)m+ σ1 + k : ν1, ν2)],

provided

<(ρ1)−
[
µ1 max

1≤τ≤n2

<
(
aτ − 1

ατ

)
+ µ2 max

1≤τ≤n3

<
(
cτ − 1

γτ

)]
> 0,

<(σ1)−
[
ν1 max

1≤τ≤n2

<
(
aτ − 1

ατ

)
+ ν2 max

1≤τ≤n3

<
(
cτ − 1

γτ

)]
> 0,

and also satisfies the conditions (i) to (iv) (3.1) and f(m) is given with (3.1).
Result 3.3.

I3 ≡
∫ t

0

xρ1−1(t− x)σ1−1Eµ,λ{(t− x)z} uMG,T
v {axρ2(t− x)σ2}(3.3)

× Im1,n1:P
p,q:Q

[
z1x

µ1(t− x)−ν1 [(ep : Ep, E
′

p)] : U

z2x
µ2(t− x)−ν2 [(fq : Fq, F

′

q)] : V

]
dx

= tρ1+σ1−1
∑
k≥0

k∑
m=0

f(m)zk−mt(ρ2+σ2−1)m+k

× Im1+1,n1+1:P
p+1,q+2:Q

[
z1t

µ1−ν1 E5, [(ep : Ep, E
′

p)] : U

z2t
µ2−ν2 E6, [(fq : Fq, F

′

q)], E7 : V

]
,
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where

E5 = [(1− ρ1 − ρ2m : µ1, µ2)],

E6 = [(σ1 + (σ2 − 1)m+ k : ν1, ν2)],

E7 = [(1− ρ1 − σ1 − (ρ2 + σ2 − 1)m− k : µ1 − ν1, µ2 − ν2)],

provided µ1 > 0, µ2 > 0, ν1 ≥ 0, ν2 ≥ 0 such that µ1 − ν1 ≥ 0, µ2 − ν2 ≥ 0,

<(ρ1) + µ1 min
1≤τ≤m2

<
(
bτ
βτ

)
+ µ2 min

1≤τ≤m3

<
(
dτ
δτ

)
> 0,

<(σ1)−
[
ν1 max

1≤τ≤n2

<
(
aτ − 1

ατ

)
+ ν2 max

1≤τ≤n3

<
(
cτ − 1

γτ

)]
> 0,

and also satisfies the conditions (i) to (iv) of (3.1) and f(m) is given with (3.1).
Result 3.4.

I4 ≡
∫ t

0

xρ1−1(t− x)σ1−1Eµ,λ{(t− x)z} uMG,T
v {axρ2(t− x)σ2}(3.4)

× Im1,n1:P
p,q:Q

[
z1x

µ1(t− x)−ν1 [(ep : Ep, E
′

p)] : U

z2x
µ2(t− x)−ν2 [(fq : Fq, F

′

q)] : V

]
dx

= tρ1+σ1−1
∑
k≥0

k∑
m=0

f(m)zk−mt(ρ2+σ2−1)m+k

× Im1+1,n1+1:P
p+2,q+1:Q

[
z1t

µ1−ν1 E8, [(ep : Ep, E
′

p)], E9 : U

z2t
µ2−ν2 E10, [(fq : Fq, F

′

q)] : V

]
,

where

E8 = [(1− ρ1 − ρ2m : µ1, µ2)],

E9 = [(ρ1 + σ1 + k + (ρ2 + σ2 − 1)m : ν1 − µ1, ν2 − µ2)],

E10 = [(σ1 + (σ2 − 1)m+ k : ν1, ν2)],

provided µ1 ≥ 0, µ2 ≥ 0, ν1 > 0, ν2 > 0 such that ν1 − µ1 ≥ 0, ν2 − µ2 ≥ 0,

<(ρ1) + µ1 min
1≤τ≤m2

<
(
bτ
βτ

)
+ µ2 min

1≤τ≤m3

<
(
dτ
δτ

)
> 0,

<(σ1)− ν1 max
1≤τ≤n2

<
(
aτ − 1

ατ

)
− ν2 max

1≤τ≤n3

<
(
cτ − 1

γτ

)
> 0,

and also satisfies the conditions (i) to (iv) of (3.1) and f(m) is given with (3.1).
Result 3.5.

I5 ≡
∫ t

0

xρ1−1(t− x)σ1−1Eµ,λ{(t− x)z} uMG,T
v {axρ2(t− x)σ2}(3.5)

× Im1,n1:P
p,q:Q

[
z1x
−µ1(t− x)ν1 [(ep : Ep, E

′

p)] : U

z2x
−µ2(t− x)ν2 [(fq : Fq, F

′

q)] : V

]
dx

= tρ1+σ1−1
∑
k≥0

k∑
m=0

f(m)zk−mt(ρ2+σ2−1)m+k

× Im1+1,n1+1:P
p+2,q+1:Q

[
z1t
−µ1+ν1 E11, [(ep : Ep, E

′

p)], E12 : U

z2t
−µ2+ν2 E13, [(fq : Fq, F

′

q)] : V

]
,

where

E11 = [(1− σ1 − (σ2 − 1)m− k : ν1, ν2)],
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E12 = [(ρ1 + σ1 + (ρ2 + σ2 − 1)m+ k : µ1 − ν1, µ2 − ν2)],

E13 = [(ρ1 + ρ2m : µ1, µ2)],

provided µ1 > 0, µ2 > 0, ν1 ≥ 0, ν2 ≥ 0 such that µ1 − ν1 ≥ 0, µ2 − ν2 ≥ 0,

<(ρ1)− µ1 max
1≤τ≤n2

<
(
aτ − 1

ατ

)
− µ2 max

1≤τ≤n3

<
(
cτ − 1

γτ

)
> 0,

<(σ1) + ν1 min
1≤τ≤m2

<
(
bτ
βτ

)
+ ν2 min

1≤τ≤m3

<
(
dτ
δτ

)
> 0,

and also satisfies the conditions (i) to (iv) of (3.1) and f(m) is given with (3.1).
Result 3.6.

I6 ≡
∫ t

0

xρ1−1(t− x)σ1−1Eµ,λ{(t− x)z} uMG,T
v {axρ2(t− x)σ2}(3.6)

× Im1,n1:P
p,q:Q

[
z1x
−µ1(t− x)ν1 [(ep : Ep, E

′

p)] : U

z2x
−µ2(t− x)ν2 [(fq : Fq, F

′

q)] : V

]
dx

= tρ1+σ1−1
∑
k≥0

k∑
m=0

f(m)zk−mt(ρ2+σ2−1)m+k

× Im1+1,n1+1:P
p+1,q+2:Q

[
z1t
−µ1+ν1 E14, [(ep : Ep, E

′

p)] : U

z2t
−µ2+ν2 E15, [(fq : Fq, F

′

q)], E16 : V

]
,

where

E14 = [(1− σ1 − (σ2 − 1)m− k : ν1, ν2)],

E15 = [(ρ1 + ρ2m : µ1, µ2)],

E16 = [(1− ρ1 − σ1 − (ρ2 + σ2 − 1)m− k : ν1 − µ1, ν2 − µ2)],

provided µ1 ≥ 0, µ2 ≥ 0, ν1 > 0, ν2 > 0 such that ν1 − µ1 ≥ 0, ν2 − µ2 ≥ 0,

<(ρ1)−
[
µ1 max

1≤τ≤n2

<
(
aτ − 1

ατ

)
+ µ2 max

1≤τ≤n3

<
(
cτ − 1

γτ

)]
> 0,

<(σ1) + ν1 min
1≤τ≤m2

<
(
bτ
βτ

)
+ ν2 min

1≤τ≤m3

<
(
dτ
δτ

)]
> 0,

and also satisfies the conditions (i) to (iv) of (3.1) and f(m) is given with (3.1).
The integrals (3.2) to (3.6) can be established on similar lines as of integral (3.1).

Result 3.7.

I7 ≡
∫ ∞

0

xl−1Eµ,λ(ax) uM
G,T
v (axρ)Im1,n1:P

p,q:Q

[
z1x

σ1 [(ep : Ep, E
′

p)] : U

z2x
σ2 [(fq : Fq, F

′

q)] : V

]
(3.7)

×Hm,n
p′,q′

[
wx

∣∣∣∣ (c′τ , γ
′
τ )1,n, (c

′
τ , γ

′
τ )n+1,p′

(d′τ , δ
′
τ )1,m, (d

′
τ , δ
′
τ )m+1,q′

]
dx

= w−l
∑
k≥0

k∑
m=0

f(m)w−(ρ−1)m−kIm1+n,n1+m:P
p+q′,q+p′:Q

[
z1w

−σ1 E17, [(ep : Ep, E
′

p)], E18 : U

z2w
−σ2 E19[(fq : Fq, F

′

q)], E20 : V

]
,

where

E17 = [(1− d′τ − δ′τ (k + (ρ− 1)m+ l) : σ1δ
′
τ , σ2δ

′
τ )1,m],

E18 = [(1− d′τ − δ′τ (k + (ρ− 1)m+ l) : σ1δ
′
τ , σ2δ

′
τ )m+1,q′ ],

E19 = [(1− c′τ − γ′τ (k + (ρ− 1)m+ l) : σ1γ
′
τ , σ2γ

′
τ )1,n],

E20 = [(1− c′τ − γ′τ (k + (ρ− 1)m+ l) : σ1γ
′
τ , σ2γ

′
τ )n+1,p′ ],
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and

f(m) =
ak(a′1)m...(a

′
u)m

(b′1)m...(b′u)mΓ(µ(k −m) + λ)Γ(Gm+ T )
,

provided
(i) <(µ) > 0, <(λ) > 0, <(G) > 0, <(T ) > 0,
(ii) Ai > 0, | arg z1| < πAi

2 ,

(iii) Bi > 0, | arg z2| < πBi
2 ,

(iv) ∆ > 0, | arg w| < π∆
2 ,

(v) ∆ ≥ 0, | arg w| ≤ π∆
2 ,<(Ω + 1) < 0,

(vi) σ1 > 0, σ2 > 0,−σ1 min
1≤τ≤m2

<
(
bτ
βτ

)
− σ2 min

1≤τ≤m3

<
(
dτ
δτ

)
− min

1≤τ≤m
<
(
d′τ
δ′τ

)
,

< <(l) < σ1 min
1≤τ≤n2

<
(

1− aτ
ατ

)
+ σ2 min

1≤τ≤n3

<
(

1− cτ
γτ

)
+ min

1≤τ≤n
<
(

1− c′τ
γ′τ

)
,

where

∆ =

m∑
τ=1

δ′τ +

n∑
τ=1

γ′τ −
q′∑

τ=m+1

δ′τ −
p′∑

τ=n+1

γ′τ ,

Ω =
1

2
(p′ − q′) +

q′∑
τ=1

d′τ −
p′∑
τ=1

c′τ ,

Ai and Bi are same as given in (1.6) and (1.7).
Proof.

I7 ≡
∫ ∞

0

xl−1Eµ,λ(ax) uM
G,T
v (axρ)Im1,n1:P

p,q:Q

[
z1x

σ1 [(ep : Ep, E
′

p)] : U

z2x
σ2 [(fq : Fq, F

′

q)] : V

]
×Hm,n

p′,q′

[
wx

∣∣∣∣ (c′τ , γ
′
τ )1,n, (c

′
τ , γ

′
τ )n+1,p′

(d′τ , δ
′
τ )1,m, (d

′
τ , δ
′
τ )m+1,q′

]
dx,

now expressing Mittag-Leffler function and M -series in summation form and I-function in its well known
Mellin-Barnes contour integral, we get

I7 =

∫ ∞
0

xl−1
∑
k≥0

akxk

Γ(µk + λ)

∑
m≥0

(a′1)m · · · (a′u)m
(b′1)m · · · (b′v)m

amxρm

Γ(Gm+ T )

× 1

(2πω)2

∫
L1

∫
L2

φ1(ξ)φ2(η)ψ(ξ, η) zξ1 z
η
2x

σ1ξxσ2η

×Hm,n
p′,q′

[
wx

∣∣∣∣ (c′τ , γ
′
τ )1,n, (c

′
τ , γ

′
τ )n+1,p′

(d′τ , δ
′
τ )1,m, (d

′
τ , δ
′
τ )m+1,q′

]
dξ dη dx

=

∫ ∞
0

xl−1
∑
k≥0

∑
m≥0

(a′1)m · · · (a′u)m
(b′1)m · · · (b′v)m

ak+m

Γ(µk + λ)

xk+ρm

Γ(Gm+ T )

× 1

(2πω)2

∫
L1

∫
L2

φ1(ξ)φ2(η)ψ(ξ, η) zξ1 z
η
2x

σ1ξxσ2η

×Hm,n
p′,q′

[
wx

∣∣∣∣ (c′τ , γ
′
τ )1,n, (c

′
τ , γ

′
τ )n+1,p′

(d′τ , δ
′
τ )1,m, (d

′
τ , δ
′
τ )m+1,q′

]
dξ dη dx.
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Now with an appeal to (2.2), the above mentioned result reduces to

I7 =

∫ ∞
0

∑
k≥0

k∑
m=0

(a′1)m · · · (a′u)m
(b′1)m · · · (b′v)m

ak

Γ(µ(k −m) + λ)

xk−m+ρm+l−1

Γ(Gm+ T )

× 1

(2πω)2

∫
L1

∫
L2

φ1(ξ)φ2(η)ψ(ξ, η) zξ1 z
η
2x

σ1ξxσ2η

×Hm,n
p′,q′

[
wx

∣∣∣∣ (c′τ , γ
′
τ )1,n, (c

′
τ , γ

′
τ )n+1,p′

(d′τ , δ
′
τ )1,m, (d

′
τ , δ
′
τ )m+1,q′

]
dξ dη dx.

Changing the order of integral and summation which is valid due to the convergence conditions given with
(3.7),

I7 =
∑
k≥0

k∑
m=0

f(m)
1

(2πω)2

∫
L1

∫
L2

φ1(ξ)φ2(η)ψ(ξ, η) zξ1 z
η
2

{∫ ∞
0

xk+(ρ−1)m+l+σ1ξ+σ2η−1

×Hm,n
p′,q′

[
wx

∣∣∣∣ (c′τ , γ
′
τ )1,n, (c

′
τ , γ

′
τ )n+1,p′

(d′τ , δ
′
τ )1,m, (d

′
τ , δ
′
τ )m+1,q′

]
dx

}
dξ dη,

where f(m) is given with (3.7).
Now using Mellin transform of H-function by means of (2.1), we obtain

I7 = w−l
∑
k≥0

k∑
m=0

f(m)w−(ρ−1)m−k 1

(2πω)2

∫
L1

∫
L2

φ1(ξ)φ2(η)ψ(ξ, η) (z1w
−σ1)ξ (z2w

−σ2)η

×

m∏
τ=1

Γ(d′τ + δ′τ (l + (ρ− 1)m+ k + σ1ξ + σ2η))

q′∏
τ=m+1

Γ(1− d′τ − δ′τ (l + (ρ− 1)m+ k + σ1ξ + σ2η))

×

n∏
τ=1

Γ(1− c′τ − γ′τ (l + (ρ− 1)m+ k + σ1ξ + σ2η))

p′∏
τ=n+1

Γ(c′τ + γ′τ (l + (ρ− 1)m+ k + σ1ξ + σ2η))

= w−l
∑
k≥0

k∑
m=0

f(m)w−(ρ−1)m−k 1

(2πω)2

∫
L1

∫
L2

φ1(ξ)φ2(η)ψ(ξ, η) (z1w
−σ1)ξ (z2w

−σ2)η

×

m∏
τ=1

Γ(d′τ + δ′τ (l + (ρ− 1)m+ k) + σ1δ
′
τξ + σ2δ

′
τη)

q′∏
τ=m+1

Γ(1− d′τ − δ′τ (l + (ρ− 1)m+ k)− σ1δ
′
τξ − σ2δ

′
τη)

×

n∏
τ=1

Γ(1− c′τ − γ′τ (l + (ρ− 1)m+ k)− σ1γ
′
τξ − σ2γ

′
τη))

p′∏
τ=n+1

Γ(c′τ + γ′τ (l + (ρ− 1)m+ k) + σ1γ
′
τξ + σ2γ

′
τη)

.

Finally, by re-arranginging the double MB contour integrals by means of two variables I-function defined by
(1.1), we establish

I7 = w−l
∑
k≥0

k∑
m=0

f(m)w−(ρ−1)m−kIm1+n,n1+m:P
p+q′,q+p′:Q

[
z1w

−σ1 E17, [(ep : Ep, E
′

p)], E18 : U

z2w
−σ2 E19[(fq : Fq, F

′

q)], E20 : V

]
,
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where E17, E18,E19 and E20 are given with (3.7). Hence the desired result.

4 Special Cases
I-function of two variables is of very general nature, it can be reduced in a large number of special functions
by suitably specializing the parameters involved in the function. Here we record some special cases of main
results.
(i) If we set m1 = 0 and r = 1 in integral (3.1), the I-function of two variables occurring in integral (3.1)
reduces into two variable’s H-function [23] then we have following result∫ t

0

xρ1−1(t− x)σ1−1Eµ,λ{(t− x)z} uMG,T
v {axρ2(t− x)σ2}(4.1)

×H0,n1:m2,n2;m3,n3

p,q:p
(1)
1 ,q

(1)
1 ;p

(2)
1 ,q

(2)
1

[
z1x

µ1(t− x)ν1 [(ep : Ep, E
′

p)] : T1

z2x
µ2(t− x)ν2 [(fq : Fq, F

′

q)] : T2

]
dx

= tρ1+σ1−1
∑
k≥0

k∑
m=0

f(m)zk−mt(ρ2+σ2−1)m+k

×H0,n1+2:m2,n2;m3,n3

p+2,q+1:p
(1)
1 ,q

(1)
1 ;p

(2)
1 ,q

(2)
1

[
z1t

µ1+ν1 E1, [(ep : Ep, E
′

p)] : T1

z2t
µ2+ν2 [(fq : Fq, F

′

q)], E2 : T2

]
,

where
T1 = [( aτ , ατ )

1,p
(1)
1

]; [( cτ , γτ )
1,p

(2)
1

], T2 = [( bτ , βτ )
1,q

(1)
1

]; [( dτ , δτ )
1,q

(2)
1

].

Also E1, E2 and f(m) are similar as given with integral (3.1).
The validity conditions of above mentioned result easily followed from integral (3.1).
(ii) If we set m1 = n1 = p = q = 0 in the integral (3.1) then we have following result in terms of product of
I-function of one variable introduced by Saxena [31].∫ t

0

xρ1−1(t− x)σ1−1Eµ,λ{(t− x)z} uMG,T
v {axρ2(t− x)σ2}(4.2)

× Im2,n2

p
(1)
i ,q

(1)
i :r

[
z1x

µ1(t− x)ν1

∣∣∣∣ (aτ , ατ )1,n2
, (aτi, ατi)n2+1,p

(1)
i

(bτ , βτ )1,m2
, (bτi, βτi)m2+1,q

(1)
i

]

×Im3,n3

p
(2)
i ,q

(2)
i :r

[
z2x

µ2(t− x)ν2

∣∣∣∣ (cτ , γτ )1,n3
, (cτi, γτi)n3+1,p

(2)
i

(dτ , δτ )1,m3
, (dτi, δτi)m3+1,q

(2)
i

]
dx

= tρ1+σ1−1
∑
k≥0

k∑
m=0

f(m)zk−mt(ρ2+σ2−1)m+kI0,2:m2,n2;m3,n3

2,1:p
(1)
i ,q

(1)
i ;p

(2)
i ,q

(2)
i :r

[
z1t

µ1+ν1 E1, ..., : U
z2t

µ2+ν2 ..., E2 : V

]
,

where E1, E2 and f(m) are similar as given in integral (3.1).
The validity conditions of above mentioned result easily followed from integral (3.1).
(iii) If we set m1 = n1 = p = q = 0 and r = 1 in the integral (3.1) then we have following result in terms of
product of H-function of one variable [23].∫ t

0

xρ1−1(t− x)σ1−1Eµ,λ{(t− x)z} uMG,T
v {axρ2(t− x)σ2}(4.3)

×Hm2,n2

p
(1)
1 ,q

(1)
1

[
z1x

µ1(t− x)ν1

∣∣∣∣ (aτ , ατ )
1,p

(1)
1

(bτ , βτ )
1,q

(1)
1

]

×Hm3,n3

p
(2)
1 ,q

(2)
1

[
z2x

µ2(t− x)ν2

∣∣∣∣ (cτ , γτ )
1,p

(2)
1

(dτ , δτ )
1,q

(2)
1

]
dx

= tρ1+σ1−1
∑
k≥0

k∑
m=0

f(m)zk−mt(ρ2+σ2−1)m+kH0,2:m2,n2;m3,n3

2,1:p
(1)
1 ,q

(1)
1 ;p

(2)
1 ,q

(2)
1

[
z1t

µ1+ν1 E1, ..., : T1

z2t
µ2+ν2 ..., E2 : T2

]
,
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where E1, E2 and f(m) are same as given in integral (3.1). T1 and T2 are also same as given in (4.1).
The validity conditions of above mentioned result easily followed from integral (3.1).
Special cases of the integral (3.2) to integrals (3.6) can be obtained on following similar procedure but we
do not mention them here.
(iv) If we set r = 1 in integral (3.7), we obtain following result in terms of two variable H-function introduced
by Prasad and Gupta[17],∫ ∞

0

xl−1Eµ,λ(ax) uM
G,T
v (axρ)Hm1,n1:m2,n2;m3,n3

p,q:p
(1)
1 ,q

(1)
1 ;p

(2)
1 ,q

(2)
1

[
z1x

σ1 [(ep : Ep, E
′

p)] : T1

z2x
σ2 [(fq : Fq, F

′

q)] : T2

]
(4.4)

×Hm,n
p′,q′

[
wx

∣∣∣∣ (c′τ , γ
′
τ )1,n, (c

′
τ , γ
′
τ )n+1,p′

(d′τ , δ
′
τ )1,m, (d

′
τ , δ
′
τ )m+1,q′

]
dx

= w−l
∑
k≥0

k∑
m=0

f(m)w−(ρ−1)m−k

×Hm1+n,n1+m:m2,n2;m3,n3

p+q′,q+p′:p
(1)
1 ,q

(1)
1 ;p

(2)
1 ,q

(2)
1

[
z1w

−σ1 E17, [(ep : Ep, E
′

p)], E18 : T1

z2w
−σ2 E19[(fq : Fq, F

′

q)], E20 : T2

]
,

where E17, E18, E19, E20 and f(m) are same as given in integral (3.7). T1 and T2 are also similar as given in
(4.1).
The validity conditions of above mentioned result easily followed from integral (3.7).
(v) If we set m1 = n1 = p = q = 0 in the integral (3.7) then we have following result in terms of product of
I-function and H-function of one variable.∫ ∞

0

xl−1Eµ,λ{ax} uMG,T
v {axρ} × Im2,n2

p
(1)
i ,q

(1)
i :r

[
z1x

σ1

∣∣∣∣ (aτ , ατ )1,n2
, (aτi, ατi)n2+1,p

(1)
i

(bτ , βτ )1,m2
, (bτi, βτi)m2+1,q

(1)
i

]
(4.5)

×Im3,n3

p
(2)
i ,q

(2)
i :r

[
z2x

σ2

∣∣∣∣ (cτ , γτ )1,n3
, (cτi, γτi)n3+1,p

(2)
i

(dτ , δτ )1,m3 , (dτi, δτi)m3+1,q
(2)
i

]
×Hm,n

p′,q′

[
wx

∣∣∣∣ (c′τ , γ
′
τ )1,n, (c

′
τ , γ
′
τ )n+1,p′

(d′τ , δ
′
τ )1,m, (d

′
τ , δ
′
τ )m+1,q′

]
dx

= w−l
∑
k≥0

k∑
m=0

f(m)w−(ρ−1)m−kIn,m:m2,n2;m3,n3

q′,p′:p
(1)
i ,q

(1)
i ;p

(2)
i ,q

(2)
i :r

[
z1w

−σ1 E17, · · · , E18 : U
z2w

−σ2 E19, · · · , E20 : V

]
,

where E17, E18, E19, E20 and f(m) are similar as given in integral 3.7.
The validity conditions of above mentioned result easily followed from integral (3.7).
(vi) If we set m1 = n1 = p = q = 0 and r = 1 in the integral (3.7) then we have following result in terms of
product of three H-function of one variable.

(4.6)

∫ ∞
0

xl−1Eµ,λ{ax} uMG,T
v {axρ} ×Hm2,n2

p
(1)
1 ,q

(1)
1

[
z1x

σ1

∣∣∣∣ (aτ , ατ )
1,p

(1)
1

(bτ , βτ )
1,q

(1)
1

]

×Hm3,n3

p
(2)
1 ,q

(2)
1

[
z2x

σ2

∣∣∣∣ (cτ , γτ )
1,p

(2)
1

(dτ , δτ )
1,q

(2)
1

]
×Hm,n

p′,q′

[
wx

∣∣∣∣ (c′τ , γ
′
τ )1,n, (c

′
τ , γ
′
τ )n+1,p′

(d′τ , δ
′
τ )1,m, (d

′
τ , δ
′
τ )m+1,q′

]
dx

= w−l
∑
k≥0

k∑
m=0

f(m)w−(ρ−1)m−kHn,m:m2,n2;m3,n3

q′,p′:p
(1)
1 ,q

(1)
1 ;p

(2)
1 ,q

(2)
1

[
z1w

−σ1 E17, · · · , E18 : T1

z2w
−σ2 E19, · · · , E20 : T2

]
,

where E17, E18, E19, E20 and f(m) are similar as given in integral (3.7). T1 and T2 are also similar as given
in (4.1).
The validity conditions of above mentioned result easily followed from integral (3.7).
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5 Conclusion
This paper has successfully achieved its objective of establishing unified integrals associated with the I-
function of two variables. Through a systematic exploration, the authors have derived integrals encompassing
a wide range of mathematical functions, including the generalized Mittag-Leffler function, generalized M -
series, and H-function of one variable in addition to the I-function of two variables. The utilization of
the Mellin transform technique for the evaluation of the integral (3.7) demonstrates the versatility and
effectiveness of the methods employed in this study.

Moreover, the authors have highlighted the generality of the I-function of two variables, allowing for the
consideration of various special cases. This not only adds depth to the understanding of these integrals but
also opens the door to potential applications in diverse areas of mathematics and science.
Acknowledgement. We are very much thankful to the Editor and Referee for valuable suggestions to
prepare the paper in its present form.

References
[1] P. Agarwal, S. Jain and M. Chand, Finite integrals involving Jacobi polynomials and I-function,

Theoretical Mathematics & Applications, 1 (1) (2011), 115-123.
[2] P. Agarwal , M. Chand and J. Choi, Some integrals involving ℵ-function and Laguerre polynomials,

Ukrainian Mathematical Journal, 71 (9) (2019), 1321-1340.
[3] N. Abeye and D.L. Suthar, The H-function and Srivastava’s polynomials involving the generalized

Mellin-Barnes contour integrals, Jour. of Frac. Calc. and Appl. 10 (2) (2019), 290-297.
[4] F. Ayant, Y.P. Kumar, N. Srimannarayana and B. Satyanarayana, Certain integrals and series

expansions involving modified generalized I-function of Prasad, Adv. Math. Sci. Journal, 9 (8) (2020),
5835-5847.

[5] R.P. Agrawal, A propos d’une note M. Pierre Humbert, C.R. Math. Acad. Sci., Paris 236 (1953),
2031-2032.

[6] R.C. Bohara and U.C. Jain, Integrals involving the H-function of several variables II, Jñānābha, 12
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Jñānābha 25 (1995), 87-91.

[13] M. Garg and S. Mittal, On a new unified integral, Proc. Indian Acad. Sci. (Math. Sci.), 114 (2) (2003),
99-101.

[14] P. Humbert and R.P. Agrawal, Sur la fonction de Mittag-Leffler et quelques-unes de ses généralisations,
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Abstract

The Duffing oscillator provides a basis for studying nonlinear dynamics as its phase space trajectory
is fairly complex and depends on the parameter of the system viz., initial amplitude, phase, frequency,
linear damping coefficient and non-linearity parameter. In order to understand the complexity of the
system, three variable effective expansions have been introduced in the usual homotopy perturbation
framework to obtain the solution of damped Duffing system which finds application in several areas
in engineering sciences such as vibration of bars, plates and electronic circuits, etc. The necessity of
the extended homotopy frame work has been further discussed for non-conservative system. Simulation
results for different parameters of the systems, such as, linear damping coefficient (µ), amplitude (α) and
nonlinearity parameter (ε) are compared with the corresponding results based on perturbative homotopy
analysis up to third order by changing (i) the magnitude of linear damping coefficient (µ), (ii) the
magnitude of the nonlinearity of the system (ε). Even though the simulated result matches satisfactorily
with the perturbative solution over the entire evolutionary time scale, noticeable divergence and phase
shift are observed only lately for increased value µ and ε, respectively.
2020 Mathematical Sciences Classification: 34D10: 34A34: 37M05: 70K60.
Keywords and Phrases: Dynamical system, Duffing Oscillator, regular solution, Homotopy method,
three control parameter expansion.

1 Introduction
Many engineering applications, such as large amplitude magneto-elastic system, centrifugal governor,
vibration of bars and plates involve the Duffing oscillator as basic nonlinear oscillator [10,14]. The Duffing
oscillator has been used to explain many observed phenomena in science, engineering, biological systems in
particular nano-tubes, microtubules and hence, dynamical analysis of this oscillator attracted many workers
[1,3,10,13,15]. Numerous researchers contributed to both analytical and numerical solutions of the Duffing
oscillator with and without damping [4,16,17,18]. In a similar way the problem related to synchronization
of chaotic Duffing system has also been taken up in recent years in [1,15]. Duffing equation without a
damping term represents a conservative system. In view of the nonlinear characteristic of the basic Duffing
oscillator, several authors have developed different analytical methods to obtain approximate analytical
solution so as to understand the complexity of the involved dynamics [10,15,18]. Interestingly, the solution
of Duffing oscillator, in case of non-conservative system, involves intricacies that led to several methods for the
situation when damping coefficient is large [10,12]. Among the various perturbative methods, the homotopy
perturbation method (HPM) has been extensively used, in general, for finding analytical solution of nonlinear
oscillators [2,5,6,7,8,9,12,19]. In this work, we revisited the HPM to investigate in detail the complexity of

∗Presented in 6th International Conference of Vijñāna Parishad of India on Recent Advances in Computational Mathematics
and Applied Sciences (IC-RA-CMAS-2022) held at MRIIRS, Faridabad, Haryana, (December 9 - 11, 2022).
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dynamics of duffing system in the presence of large damping coefficient. For this, a revised framework of the
HPM involving three parameter expansion method has been used to elucidate the convergence of obtained
solution with the numerically simulated solution for different values of parameters defining the system.

This paper is organized as follows: in section 2, overview of the scheme involved in Homotopy perturbation
method (HPM) given by He [6] is revisited and three parameter expansion formalism due to He and El-Dib
[4,7] is explained. Analytical and numerical solutions for non-conservative Duffing oscillator are obtained.
In sections 3, we provide the results of numerical simulation for various control parameters of the system
and compare them with those obtained using HPM.

2 Homotopy Perturbation Method to Solve Non-conservative Duffing system
In the following, we describe briefly HPM for solving nonlinear differential equation and in particular the
one that governs the dynamics of a damped Duffing oscillator. Further, the methodology used provides a
basis for using three parameter expansion.
2.1 Homotopy perturbation scheme
For a general nonlinear ordinary differential equation, we may write it as [5,12],

(2.1) A(Q)− f(r) = 0, r ∈ Ω,

with boundary conditions

(2.2) B

(
Q,

∂Q

∂n

)
= 0, r ∈ Γ,

where A, B refer to general differential operator and boundary operator respectively and further f(r), a
known analytic function with Γ referring to boundary of the domain Ω. We may divide the operator A into
linear (L) and nonlinear part (N) resulting in the following form.

(2.3) L(Q) +N(Q)− f(r) = 0.

Homotopy method formulated earlier in [5] involves constructing a homotopy q(r, p) : Ω × [0, 1] → R
satisfying

H(q, p) = (1− p) [L(q)− L(Q0)] + p [A(q)− f(r)] = 0, p ∈ [0, 1], r ∈ Ω

or

H(q, p) = L(q)− L(Q0) + pL(Q0) + p [N(q)− f(r)] = 0,(2.4)

where p ∈ [0, 1] defines an embedding parameter and Q0 refers to an initial approximate solution of equation
(2.1) satisfying the boundary conditions. From equation (2.4), we observe that

H(q, 0) = L(q)− L(Q0) = 0,

H(q, 1) = A(q)− f(r) = 0.(2.5)

This implies that as p changes from 0→ 1, the homotopy q goes from Q0 → Q. If we write the solution
of equation (2.4) as a power series in p as

(2.6) Q = Q0 + pq1 + p2q2 + p3q3 + · · · .
then the solution of equation (2.1) would be

Q = lim
p→1

Q = Q0 + q1 + q2 + q3 + · · · .(2.7)

It may be noted that use of standard HPM results in inconsistency, as described briefly in Box: 2.1.
2.2 Three parameter expansion formalism
In view of the description in Box: 2.1, a need for modification of the HPM method arises. In the context
of Damped Duffing equation (DDE), we note that the solution comprising of three variables i.e., homotopy
function, oscillation amplitude (A), and frequency ω. Following He and El. Dib [6] and He [7] Homotopy
Perturbation Method (HPM), we write the homotopy equation corresponding to DDE as,

(2.8) Q̈(t) + ω2
0Q(t) + p

{
µQ̇(t) + εQ3(t)

}
= 0, p ∈ [0, 1].

where ω0, µ, ε refers to the natural frequency, linear damping coefficient and magnitude of nonlinearity of
the system.

The Homotopy Q is now expressed as a power series in p, given as

(2.9) Q = q0(t) + p1q1(t) + p2q2(t) + p3q3(t) + · · · .
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Substitution of equation (2.9) in (2.8) and equating coefficients of p0 to zero gives us

p0 : q̈0 + ω2
0q0 = 0,(2.10)

whose exact solution would be

(2.11) q0(t) = A cos (ω0t+ φ),

where A and φ are real constants. To solve the non-conservative nonlinear equation a further expansion of
linear frequency ω0 and the time dependent amplitude A in powers of p is suggested [4,6]. Expanding ω0

and A(t) as follows

ω2
0 = ω2 − pω1 − p2ω2 − p3om3 − · · · .(2.12)

A(t) = α(1 + pc1 + p2c2 + p3c3 + · · · ),(2.13)

which implies that

(2.14) q0(t) = α{1 + pc1 + p2c2 + p3c3 + · · · } cos(ωt+ φ).

Box: 2.1

Considering the following DDE where fundamental frequency is taken as 1, i.e., ω0 = 1

Q̈+ µQ̇+Q+ εQ3 = 0. (B.1)

Observe that
A(Q) = L(Q) +N(Q), (B.2)

where
L(Q) = Q̈(t) +Q(t); L(q0) = q̈0(t) + q0; N(Q) = µQ̇(t) + εQ3.

Following the standard HPM framework, we may write equation (B.1) as,

p0 : q̈0(t) + q0(t)− Q̈0(t)−Q0(t) = 0, (B.3)

p1 : q̈1(t) + q1 + Q̈0(t) +Q0(t) + µQ̇0(t) + εQ3
0 = 0, (B.4)

For p→ 0, Q0 → q0, we may write equation (B.4) as

q̈1(t) + q1 + q̈0(t) + q0(t) + µq̇0(t) + εq3
0 = 0. (B.5)

Considering the initial approximate solution as Q0 = q0 = A cosωt, where A is the
amplitude and ω is the frequency of the output, which when substituted back in last
equation, results in

q̈1 + q1+ = A

{
ω2 − 1− 3

4
A2ε

}
cosωt− µωA sinωt− 1

4
εA3 cos 3ωt, (B.6)

where we have two secular terms. One of them gives us frequency ω of the output, as

ω =

√
1 +

3

4
εA2. (B.7)

which is the frequency obtained up to first order for conservative Duffing system and
the other indicates that µ = 0, i.e., no damping. It is to be noted that even a second
expansion, i.e., expansion of amplitude A does not work [4,7]. Keeping these facts, to
deal with damped Duffing oscillator, the modified HPM, explained in section 2.2, is
considered.

Making an application of equations (2.11)-(2.14) in equation (2.8) and equating coefficients of pi, i =
1, 2, 3, · · · , we obtain following equations for q1, q2, q3, · · · as

q̈1(t) + ω2q1(t) =αω {2ċ1 + µ} sin(ωt+ φ) + α

{
ω1 − c̈1 −

3

4
εα2

}
cos(ωt+ φ)+(2.15)

−1

4
εα3 cos 3(ωt+ φ),

q̈2(t) + ω2q2(t) =ω1q1 − µq̇1 + αω(2ċ2 + µc1) sin(ωt+ φ)− 3

4
εα3c1 cos 3(ωt+ φ)+(2.16)

−3

2
εα2q1(1 + cos 2(ωt+ φ)) + α

{
ω2 − c̈2 + ω1c1 − µċ1 −

9

4
εα2c1

}
cos(ωt+ φ),
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q̈3(t) + ω2q3(t) =ω1q2 + ω2q1 − µq̇2 − 3εq0q1(q0 + q1) + αω(2ċ3 + µc2) sin(ωt+ φ)(2.17)

+α

{
ω2c1 + ω3 + ω1c2 − µċ2 − c̈3 −

9

4
εα3(c21 + c2)− 3

64

ε2α5

ω2
c1

}
cos(ωt+ φ)

−
{

3

4
εα3(c21 + c2) +

3

32

ε2α5

ω2
c1

}
cos 3(ωt+ φ)− 3

64

ε2α5

ω2
c1 cos 5(ωt+ φ).

The solutions for q1(t), q2(t) and q3(t) could easily be obtained by removing the secular terms in the
respective equations. Removal of secular terms from equation (2.15) results in following conditions on c1
and ω1,

(2.18) ċ1 = −1

2
µ =⇒ c1 = −1

2
µt, c̈1 = 0, and ω1 =

3

4
εα2,

which further leads to

(2.19) q1(t) =
1

32

εα3

ω2
cos 3(ωt+ φ).

Removing secular terms from equation (2.16), we get

(2.20) ċ2 =
1

4
µ2t =⇒ c̈2 =

1

4
µ2, c2 =

1

8
µ2t2 and ω2 = −1

4
µ2 − 3

4
εα2µt+

3

128

ε2α4

ω2
,

and the solution for q2 could be written as,

q2(t) =
3

64

εα3

ω2

[{
1

16

εα2

ω2
− µt

}
cos 3(ωt+ φ) +

1

2
µ sin 3(ωt+ φ)(2.21)

+
1

16

εα2

ω4
cos 5(ωt+ φ)

]
.

Similarly removal of secular terms in equation (2.17), results in following conditions on c3 and ω3 as,

ċ3 = −1

2
µc2 +

9

1024

ε2α4

ω5
, µ = − 1

16
µ3t2 +

9

1024

ε2α4

ω4
µ(2.22)

=⇒ c̈3 = −1

8
µ3t & c3 = − 1

48
µ3t3 +

9

1024

ε2α4

ω4
µ,

and ω3 =
3

8
εα2µt

{
1

16
εα2 + µt

}
− 3

4096

ε3α6

ω4
,

and solution for q3(t) may be written as,

q3(t) = − 1

8ω2

{
(X1 +X2t)−

7

16ω2
(X2 + 2X3) + (X4 +X5t)

}
cos 3(ωt+ φ)(2.23)

+
1

8ω2

{
3

4ω
(X2 +X5 + 2X3t)

}
sin 3(ωt+ φ)− 1

24ω2
{(X6 +X7t+X8)} cos 5(ωt+ φ)

+
5

288ω3
X7 sin 5(ωt+ φ)− 1

48ω2
X9 cos 7(ωt+ φ).

Therefore, from equation (2.9), the solution of non-conservative duffing oscillator up to third order would
be

q(t) = lim
p→1

Q = q0 + q1 + q2 + q3(2.24)

=α

{
1− 1

2
µt+

1

8
µ2t2 − 1

48
µ3t3 +X13 t

}
cos(ωt+ φ) +

[
X14

{
1− 3

2
µt+

9

8
µ2t2

}
− 1

8ω2

{
(X1 +X2t)−

7

16ω2
(X2 + 2X3) +X4 +X10 +X5 t

}]
cos 3(ωt+ φ)

+
3

32ω2
{X2 +X5 + 2X3 t+X11} sin 3(ωt+ φ)− 1

24ω2
{X6 +X7 t+X8 +X13} cos 5(ωt+ φ)

+
5

288ω3
X7 sin 5(ωt+ φ)− 1

48ω2
X9 cos 7(ωt+ φ),

where

X1 = −
{
εα3

32ω2
µ2 +

9ε3α7

4096ω4

}
, X2 =

15ε2α5

256ω2
µ, X3 = − 9

32
εα3 µ2, X4 = − 9ε2α5

1024ω3
,
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X5 = −9εα3

64ω
µ2, X6 = − 15ε3α7

4096ω4
, X7 =

15ε2α5

1024ω2
µ, X8 = − 13ε2α5

1024ω3
µ, X9 = − 3ε3α7

4096ω4
,

X10 = − 3ε2α5

128ω4
, X11 =

εα3

4
µ, X12 =

3ε2α5

128ω2
, X13 =

9ε2α4

1024ω4
µ, X14 =

εα3

32ω2
.

Following [4,6], we may rewrite equation (2.24) in a compact form as

q(t) =α
[
e−µt/2 +X13 t

]
cos(ωt+ φ)(2.25)

+

[
X14 e

−3µt/2 − 1

8ω2

{
(X1 +X2 t)−

7

16ω2
(X2 + 2X3) +X4 +X10 +X5 t

}]
cos 3(ωt+ φ)

+
3

32ω2
{X2 +X5 + 2X3 t+X11} sin 3(ωt+ φ)

− 1

24ω2
{X6 +X7 t+X8 +X13} cos 5(ωt+ φ)

+
5

288ω3
X7 sin 5(ωt+ φ)− 1

48ω2
X9 cos 7(ωt+ φ).

where X ′s are defined as mentioned above.
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Figure 2.1: (a) Comparison of simulated result (shown in red color) and the homotopy based solution (shown in
black color) of Duffing oscillator up to third order. (b) the evolution of absolute error.
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Figure 2.2: (a) Comparison of simulated result (shown in red color) and the homotopy based solution (shown in
black color) of Duffing oscillator up to third order. (b) the evolution of absolute error.
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Figure 2.3: (a) Comparison of simulated result (shown in red color) and the homotopy based solution (shown in
black color) of Duffing oscillator up to third order. (b) the evolution of absolute error.

2.3 Amplitude, Frequency and Stability condition with µ > 0
Applying conditions (2.18), (2.20) and (2.22), in equations (2.12) and (2.13), the frequency ω and the
amplitude A are obtained in terms of damping coefficient µ and nonlinearity parameter ε, respectively, as

ω2 =ω2
0 +

3

4
εα2 − 1

4
µ2 − 3

4
εα2µt+

3

128

ε2α4

ω2
+

3

8
εα2µt

{
1

16
εα2 + µt

}
− 3

4096

ε3α6

ω4
.(2.26)

=⇒ ω2 =ω2
0 −

1

4
µ2 +

3

4
εα2

{
1− µ t+

1

2
µ2t2

}
+

3

128

ε2α4

ω2
+

3

128
ε2α4µt− 3

4096

ε3α6

ω4
.

196



(2.27) A(t) = α

{
1− 1

2
µ t

1

8
µ2 t2 − 1

48
µ3 t3 +

9

1024

ε2α4

ω4
µ t

}
.

Following [5], equation (2.26) and (2.27) may be written as

ω2 = ω2
0 −

1

4
µ2 +

3

4
εα2 e−µ t +

3

128
ε2α4µt+

3

128

ε2α4

ω2
0

− 3

128

ε2α4

ω4
0

ω1 −
3

4096

ε3α6

ω4
0

,(2.28)

A(t) = α

{
e−

1
2µ t +

9

1024

ε2α4

ω4
µ t

}
.(2.29)
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Figure 2.4: (a) Comparison of simulated result (shown in red color) and the homotopy based solution (shown in
black color) of Duffing oscillator up to third order. (b) the evolution of absolute error.
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Figure 2.5: (a) Comparison of simulated result (shown in red color) and the homotopy based solution (shown in
black color) of Duffing oscillator up to third order. (b) the evolution of absolute error.
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Figure 2.6: (a) Comparison of simulated result (shown in red color) and the homotopy based solution (shown in
black color) of Duffing oscillator up to third order. (b) the evolution of absolute error.

For the values of parameters considered for numerical simulation, it is observed that the third term on
the right hand side decreases at a faster rate than the corresponding rise in the fourth term and thereby
resulting in a constant value of the frequency on larger time scale, say, ωf > 0, which may be considered
also as a stability condition for the system.

3 Conclusion
In the present work, numerical simulation of the linearly damped Duffing system has been carried out
by fixing the values of the initial amplitude, α = 1 and the frequency, ω0 = 2.0, keeping the damping
parameter (i) µ = 0.25 and (ii) µ = 0.5 while varying the nonlinearity parameter, ε. The modified version
of the homotopy based perturbative solution, as obtained in equation (2.25), for various parameters are
subsequently compared with the direct numerical simulation results. It is observed that the HPM based
solutions compares well with those obtained numerically (Figs.2.1a-2.6a). The magnitude of errors between
simulated and HPM based solution are observed to be nominal for ε < 1.0. However, it is also observed that
for lower values of damping parameter µ, noticeable changes in phase relationship between the numerical
and HPM based solution occurs for moderately higher values of the nonlinearity parameter i.e., ε ∼ 1.5.
(Figs. 2.1b-2.6b) further illustrate the time variation of small deviation between the HPM and simulated
solutions for various control parameters.
The foregoing HPM method allows one to obtain solution of the non-conservative Duffing system with
larger damping coefficient (µ) and nonlinearity parameter (ε). We plan to use it subsequently to analyze
the complex response of micro-nanosystems i.e., , resonator used for mass detection, vibration of carbon
nanotube, micro tubules, etc., which play important role in biological system [3].
Acknowledgement. Authors are thankful to the referees and editor(s) for very useful comment that led
to the present version of the manuscript.
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Abstract

The famous Fibonacci and Lucas polynomials possess various astonishing properties and identities.
The Fibonacci polynomial has been generalized in many ways by preserving the recurrence relation and
others by preserving the initial condition. In this paper, we define generalized Fibonacci and Lucas
polynomials and proved some famous identities in our settings.
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1 Introduction
Belgian mathematician Eugene Charles Catalan and the German Mathematician E. Jacobsthal [7] were first
studied Fibonacci polynomials in 1883. Fibonacci polynomials are of great importance in Mathematics. The
Fibonacci and Lucas polynomials are extensively explored by many mathematicians like, Basin [2] , Horadam
and Mahon [6], and Lucas [11] (for details see Koshy [7]) and connected to various branches of mathematics.
Recently, many new identities of Generalized Fibonacci and Lucas polynomials are studied by Agrawal et
al. [1].

A set of Fibonacci polynomials generated by the Q matrix, satisfying the following recurrence relation,
was proved by Basin [2].

(1.1) fn(x) = xfn−1(x) + fn−2(x), n ≥ 2 with f0(x) = 0, f1(x) = 1.

The initial terms of the Fibonacci polynomials are

(1.2) f2(x) = x, f3(x) = x2 + 1, f4(x) = x3 + 2x, f5(x) = x4 + 3x2 + 1 and so on .

Jacobsthal polynomials are given by (for more details see Koshy [7])

(1.3) Jn(x) = Jn−1(x) + xJn−2(x), n ≥ 3 with J1(x) = 1 = J2(x).

Pell polynomials due to Horadam and Mahon [6] are defined by

(1.4) Pn(x) = 2xPn−1(x) + Pn−2(x), n ≥ 2 with P0(x) = 0, P1(x) = 1.

The generating function of Fibonacci and Lucas polynomials due to Doman and Williams [4] is given by

(1.5)

∞∑
n=0

fn(x)tn = t(1 − xt − t2)−1,

∞∑
n=0

Ln(x)tn = (2 − xt)(1 − xt − t2)−1.

For Fibonacci and Lucas polynomials, the explicit sum formula due to Horadam and Mahon [6] and
Koshy [7] is given by

(1.6) fn(x) =

[
n−1

2

]∑
n=0

(
n− k − 1

k

)
xn−1−2k, Ln(x) =

[
n
2

]∑
n=0

n

n− k

(
n− k
k

)
xn−2k.

where

(
n− k
k

)
is a binomial coefficient and [x] is defined as the greatest integer less than or equal to

x.
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Many more interesting properties for Fibonacci and Lucas polynomials have been studied by Doman and
Williams [4], Koshy [7], and Lucas [11].

Many famous identities which we have proved for our polynomial have been studied for generalized
Fibonacci sequence in [9].

In this paper, we derive famous identities such as Catalan’s, d’Ocagne’s, and many other for our
generalized Lucas polynomials which is derived for the generalized Fibonacci polynomials by Rathore et al.
[8]. Also, we proved some identities for our generalized Fibonacci polynomials with the help of generating
function and Binet’s formula.

2 Preliminaries
In this section, we give some basic definitions which are useful throughout the paper.

Definition 2.1. Fibonacci Polynomials: A polynomial sequence that can be considered as a generalization
of Fibonacci numbers are Fibonacci polynomials (for more details see Lucas [11]). The Fibonacci polynomial
due to Koshy [7] is defined by the following recurrence relation,

fn(x) = xfn−1(x) + fn−2(x), n ≥ 3 with f1(x) = 1, f2(x) = x.

Definition 2.2. Lucas Polynomials: The Lucas Polynomials due to Bicknell [3] and Lucas [8] are defined
by the recurrence relation,

Ln(x) = xLn−1(x) + Ln−2(x), n ≥ 2 with L0(x) = 2, L1(x) = x.

Definition 2.3. Generalized Fibonacci Polynomials: The generalized Fibonacci polynomials are defined
by

(2.1) fn(x) =

 s, if n = 0;
sx, if n = 1;
xfn−1(x) + fn−2(x), if n ≥ 2.

Definition 2.4. Generalized Lucas Polynomials: The generalized Lucas polynomials are defined by

(2.2) ln(x) =

 2s, if n = 0;
sx, if n = 1;
xln−1(x) + ln−2(x), if n ≥ 2.

Definition 2.5. Generating Function: Let a0, a1, a2, be a sequence of real numbers. Then the function
(2.5) g(x) = a0 + a1x + a2x

2 + · · · + anx
n + · · · is called a generating function for the sequence {an}.

Generating functions provides a powerful tool for solving linear homogeneous recurrence relations with
constant coefficients (for more details see Lucas [11]).

3 Generalized Fibonacci Polynomials
The generalization of Fibonacci polynomials can be done in many ways by changing the initial condition and
others by changing the recurrence relation. Rathore et al. [9] defined the generalized Fibonacci polynomials
wn(x) by recurrence relation wn = xwn−1 + wn−2, n ≥ 2, with w0(x) = 2b, w1(x) = a+ b where a and b are
integer. Sikhwal et al. [9] defined the generalized Fibonacci polynomials un(x) by recurrence relation with
un = xun−1 + un−2, n ≥ 2, with u0(x) = a, u1(x) = 2a + 1 where a is an integer. In this paper, we define
generalized Fibonacci polynomials gn(x) by the recurrence relation

(3.1) g(x)
n = xg

(x)
n−1 + g

(x)
n−2, n ≥ 2 with g0(x) = a+ b, g1(x) = 2a+ 1

where a and b are integers.
The starting few terms of a generalized Fibonacci polynomials are given by

g0(x) = a+ b, g1(x) = 2a+ 1, g2(x) = x(2a+ 1) + a+ b, g3(x) = x2(2a+ 1) + x(a+ b) + 2a+ 1.

For x = 1, a = 0, b = 0, we obtain the classical Fibonacci sequence.
Binet’s Formula for generalized Fibonacci polynomial is given by gn(x) = (Aαn +Bβn), where

A =
(2a+ 1)− (a+ b)β

α− β
,B =

(a+ b)α− (2a+ 1)

α− β
.

Also, Note that αβ = −1, α + β = x, α + β =
√

4 + x2 where α and β = are the roots of the quadratic
multline given by λ2 − xλ− 1 = 0 (Koshy [7]).
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Lemma 3.1. The generating function for generalized Fibonacci polynomials defined in equation (3.1) is given
by

∞∑
n=0

gn(x)tn =
(a+ b)(1− xt) + (2a+ 1)t

1− xt− t2
.

Proof. Replace n by n+ 1 in (3.1), we have

(3.2) gn+1(x) = xgn(x) + gn−1(x);n ≥ 1.

Let

(3.3) F (t) =

∞∑
n=0

gn(x)tn.

From equation (3.2), we have

(3.4)
∑
n≥1

gn+1(x)tn = x
∑
n≥1

gn(x)tn +
∑
n≥1

gn−1(x)tn.

Now,

(3.5)
∑
n≥1

gn(x)tn =
∑
n≥1

gn(x)tn + g0(x)− g0(x) = F (t)− (a+ b).

and

(3.6)
∑
n≥1

gn−1(x)tn = tF (t).

Therefore, R.H.S of (3.4) becomes

(3.7)
∑
n≥1

gn+1(x)tn = x[F (t)− (a+ b)] + tF (t).

Now,

(3.8)
∑
n≥1

gn+1(x)tn =
∑
n≥1

gn(x)tn + g0(x)− g0(x) + g1(x)− g1(x) =
1

t
[F (t)− (a+ b)− t(2a+ 1)]

Therefore, (3.7) becomes

1

t
[F (t)− (a+ b)− t(2a+ 1)] = x[F (t)− (a+ b)] + tF (t)

i.e.
F (t)(1− xt− t2) = [(a+ b)(1− xt) + (2a+ 1)t].

Thus,

(3.9)

∞∑
n=0

gn(x)tn =
(a+ b)(1− xt) + (2a+ 1)t

1− xt− t2
.

4 Generalized Lucas Polynomials
We define generalized Lucas polynomials kn(x) by the recurrence relation

(4.1) kn(x) = xkn−1(x) + kn−2(x);n ≥ 2 with k0(x) = a, k1(x) = x,

where a is an integer. The first few terms of generalized Lucas polynomials are given by

k0(x) = a, k1(x) = x, k2(x) = ax+ a = a(x+ 1), k3(x) = x(a+ 1) + a.

For x = 1, a = 2, we obtain Lucas sequence.
Following the same idea as in proof of Lemma 3.1, we can derive a generating function for generalized

Lucas polynomials (defined as above), is given by
∞∑
n=0

kn(x)tn =
a(1− xt) + xt

1− xt− t2
.

Binet’s Formula for generalized Lucas polynomials is given by

kn(x) = A(αn + βn), where A =
a

2
(Koshy [7]) .

202



5 Some Identities of generalized Fibonacci polynomials
In this section, we investigate some of the identities of our generalized Fibonacci polynomials with the help
of a generating function and Binet’s formula.

Theorem 5.1. If the nth term of a generalized Fibonacci polynomial is gn(x) and g′n(x) denotes the derivative
of gn(x) with respect to x, then

(5.1) g′n(x) = xg′n−1(x) + g′n−2(x) + gn−1(x), n ≥ 2.

Proof. The generating function of generalized Fibonacci polynomials is given by
∞∑
n=0

gn(x)tn = [(a+ b)(1− xt) + (2a+ 1)t](1− xt− t2)−1.

Differentiating both sides with respect to x, we get
∞∑
n=0

g′n(x)tn =[(a+ b)(1− xt) + (2a+ 1)t](−t)(−1)(1− xt− t2)−2

+[−t(a+ b)](1− xt− t2)−1.

Therefore,

(1− xt− t2)

∞∑
n=0

g′n(x)tn = t[(a+ b)(1− xt) + (2a+ 1)t](1− xt− t2)−1 − t(a+ b)

= t

∞∑
n=0

gn(x)tn − t(a+ b).

Thus,
∞∑
n=0

g′n(x)tn − x
∞∑
n=0

g′n(x)tn+1 −
∞∑
n=0

g′n(x)tn+2 =

∞∑
n=0

gn(x)tn+1 − t(a+ b).

Equating the coefficients of tn on both sides, we have

g′n(x) = xg′n−1(x) + g′n−2(x) + gn−1(x),

which proves the Theorem 5.1.
Replacing n by n+ 1, we also derive,

g′n+1(x) = xg′n(x) + g′n−1(x) + gn(x).

Theorem 5.2. Let gn(x) be the nth term of a generalized Fibonacci polynomial, then

(5.2) ngn(x)−x(n−1)gn−1(x)−(n−2)gn−2(x). = xgn(x)+(2−x2)gn−1(x)−3xgn−2(x)−2gn−3(x);n ≥ 3.

Proof. The generating function of a generalized Fibonacci polynomials is given by

(i)

∞∑
n=0

gn(x)tn = [(a+ b)(1− xt) + (2a+ 1)t](1− xt− t2)−1.

Differentiate it both sides partially with respect to t, we get

(ii)

∞∑
n=0

ngn(x)tn−1 = [(a+b)(1−xt)+(2a+1)t](x+2t)(1−xt− t2)−2 +[−x(a+b)+(2a+1)](1−xt− t2)−1.

Differentiating (i) both sides partially with respect to x, we have

(iii)

∞∑
n=0

g′n(x)tn = [(a+ b)(1− xt) + (2a+ 1)t](t)(1− xt− t2)−2 + [−t(a+ b)](1− xt− t2)−1.

On dividing both sides by t, we derive
∞∑
n=0

g′n(x)tn−1 = [(a+ b)(1− xt) + (2a+ 1)t](1− xt− t2)−2 + [−(a+ b)](1− xt− t2)−1.
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Hence,

(iv)

∞∑
n=0

g′n(x)t(n− 1) + (a+ b)(1− xt− t2)−1 = [(a+ b)(1− xt) + (2a+ 1)t](1− xt− t2)−2.

On substituting the value of R.H.S of equation (iv) in equation (ii), we have
∞∑
n=0

ngn(x)tn−1 = (x+ 2t)

∞∑
n=0

g′n(x)tn−1 + (a+ b)(1− xt− t2)−1

+[−x(a+ b) + (2a+ 1)](1− xt− t2)−1

=x

∞∑
n=0

g′n(x)tn−1 + 2

∞∑
n=0

g′n(x)tn−1 + (x+ 2t)(a+ b)(1− xt− t2)−1

+[−x(a+ b) + (2a+ 1)](1− xt− t2)−1

=x

∞∑
n=0

g′n(x)tn−1 + 2

∞∑
n=0

g′n(x)tn + (2t)(a+ b) + (2a+ 1)(1− xt− t2)−1.

Therefore,

(1− xt− t2)

∞∑
n=0

ngn(x)tn−1

= x(1− xt− t2)

∞∑
n=0

g′n(x)tn−1 + 2(1− xt− t2)

∞∑
n=0

g′n(x)tn + (2t)(a+ b) + (2a+ 1).

Hence
∞∑
n=0

ngn(x)tn−1 − x
∞∑
n=0

ngn(x)tn −
∞∑
n=0

ngn(x)tn+1

= x

∞∑
n=0

g′n(x)tn−1 − x2
∞∑
n=0

g′n(x)tn − x
∞∑
n=0

g′n(x)tn+1

+2

∞∑
n=0

g′n(x)tn − 2x

∞∑
n=0

g′n(x)tn+1 − 2

∞∑
n=0

g′n(x)tn+2 + (2t)(a+ b) + (2a+ 1).

By equating the coefficients of tn−1 on both the sides, we finally derive (5.2).

Theorem 5.3. For the generalized Fibonacci polynomials gn(x), we derive the following identities
(i) g′n+1(x)− g′n−1(x) = xg′n(x) + gn(x),

(ii) g′n+1(x)− (1− x2)g′n−1(x)
= (x+ 1)gn(x)− x(n− 1)gn−1(x)− (n− 2)gn−2(x) + 3xg′n−2(x) + 2g′n−3(x);n ≥ 3,

(iii) (2− x2)g′n−1(x)
= xgn(x)− x(n− 1)gn−1(x)− (n− 2)gn−2(x)− xg′n(x) + 3xg′n−2(x) + 2g′n−3(x);n ≥ 3,

(iv) (2− x2)g′n−1(x) = x(1− x2)g′n(x) + 3xg′n−2(x) + 2g′n−3(x) + (n+ 2− x2)gn(x)
− x(n− 1)gn−1(x)− (n− 2)gn−2(x);n ≥ 3.

Proof. Differentiating (3.2) both sides with respect to x, we obtain

(i) g′n+1(x)− g′n−1(x) = xg′n(x) + gn(x).

Using Theorem 5.2 in (i), we derive

(ii) g′n+1(x) + (1− x2)g′n−1(x) = (n+ 1)gn(x)− x(n− 1)gn−1(x)− (n− 2)gn−2(x) + 3xg′n−2(x) + 2g′n−3(x).

On subtracting (i) from (ii), we prove

(iii) (2− x2)g(n− 1)′(x) = ngn(x)− x(n− 1)gn−1(x)− (n− 2)gn−2(x)− xg′n(x) + 3xg′n−2(x) + 2g′n−3(x).

On multiplying (i) by (1− x2) and adding it to (ii), we establish

(iv) (2− x2)g′n+1(x) = x(1− x2)g′n(x) + 3xg′n−2(x) + 2g′n−3(x) + (n+ 2− x2)gn(x).

204



Theorem 5.4. Let gn(x) be the nth term of a generalized Fibonacci polynomial, then

(5.3) ng′n+1(x)− (n+ 2− x2)g′n−1(x)− (n+ 1)xg′n(x) + 2g′n−3(x) + 3xg′n−2(x)

= x(n− 1)gn−1(x) + (n− 2)gn−2(x);n ≥ 3.

Proof. From Theorem 5.3(i), we have

(I) g′n+1(x)− g′n−1(x)− xg′n(x) = gn(x).

and from Theorem 5.3(ii), we have

(II) g′n+1(x) + (1−x2)g′n−1(x) = (n+ 1)gn(x)−x(n− 1)gn−1(x)− (n− 2)gn−2(x) + 3xg′n−2(x) + 2g′n−3(x).

Substituting the value of gn(x) from (I) in (II), we finally derive
g′n+1(x) + (1− x2)g(n− 1)′(x)
= (n+ 1)g′n+1(x)− g′n−1(x)− xg′n(x)− x(n− 1)gn−1(x)− (n− 2)gn−2(x) + 3xg′n−2(x) + 2g′n−3(x),

which is (5.3).

Theorem 5.5 (Explicit Summation formula). For generalized Fibonacci polynomials

gn(x) = (a+ b)


[n/2]∑
k=0

(
n− k
k

)
xn−2k −

[n/2]∑
k=0

(
n− k − 1

k

)
xn−2k−1


+(2a+ 1)

[n/2]∑
k=0

(
n− k − 1

k

)
xn−2k−1.

Proof. The generating function for generalized Fibonacci polynomials is given by
∞∑
n=0

gn(x)tn = [(a+ b)(1− xt) + (2a+ 1)t](1− xt− t2)−1

= [(a+ b)(1− xt) + (2a+ 1)t]

∞∑
n=0

(x+ t)ntn

= [(a+ b)(1− xt) + (2a+ 1)t]

∞∑
n=0

tn
n∑
k=0

(
n
k

)
(nk)xn−ktk

= [(a+ b)(1− xt) + (2a+ 1)t]

∞∑
n=0

n∑
k=0

n!

k!(n− k)!
xn−ktn+k

= [(a+ b)(1− xt) + (2a+ 1)t]

∞∑
n=0

∞∑
k=0

(n+ k)!

k!(n)!
xntn+2k.

On equating the coefficients of tn on both sides, we prove

gn(x) = (a+ b)


[n/2]∑
k=0

(
n− k
k

)
xn−2k −

[n/2]∑
k=0

(
n− k − 1

k

)
xn−2k−1


+(2a+ 1)

[n/2]∑
k=0

(
n− k − 1

k

)
xn−2k−1.

Theorem 5.6. A Variant Property: For generalized Fibonacci polynomials

gn−2(x)gn+1(x)− gn−1(x)gn(x) = (−1)n−2x[(2a+ 1)(a+ b)x+ (2a+ 1)2 + (a+ b)2].

Proof. We know that the Binet’s formula for generalized Fibonacci polynomials is given by

gn(x) = (Aαn +Bβn).

Therefore,

gn−2(x)gn+1(x)− gn−1(x)gn(x)
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= (Aαn−2 +Bβn−2)(Aαn+1 +Bβn+1)− (Aαn−1 +Bβn−1)(Aαn +Bβn)

= (A2α2n−1 +ABαn−2βn+1 +ABαn+1βn−2 +B2β2n−1)

−(A2α2n−1 +ABαn−1βn +ABαnβn−1 +B2β2n−1)

= AB(αn−2βn+1 + αn+1βn−2 + αn−1βn + αnβn−1)

= AB(αβ)[(α+ β)(β2 − αβ + α2)− αβ(α+ β)]

= AB(αβ)n−2(α+ β)(α− β)2

= (−1)n−2x[(2a+ 1)(a+ b)x− (2a+ 1)2 + (a+ b)2].

For a = 0, b = 0, x = 1, the above identity reduces to the identity for classical Fibonacci sequence.

6 Some Identities of generalized Lucas polynomial
Next, we explore the Lucas counterparts of Catalan’s identity which have been stated for Fibonacci due to
Sikhwal et al. [9].

Theorem 6.1. Let kn(x) be the nth term of generalized Lucas polynomial, then

k2
n(x)− kn+r(x)kn−r(x) = (−1)n−r

[
a2(−1)r

2
− ak2r(x)

2

]
.

Proof. Binet’s formula for Lucas polynomial is given by

kn(x) = A(αn + βn).

Therefore,

k2
n(x)− kn+r(x)kn−r(x) = [A(αn + βn)]2 −A(αn+r + βn+r)A(αn−r + βn−r)

= [A(α2n+ β2n+ 2αnβn)]2 −A2(α2n+ α(n+ r)βn−r + αn−rβn+) + β2n)

= 2A2(αβ)n −A2(αβ)n−r(α2r + β2r)

= 2A2(−1)n −A(−1)n−rk2r(x)

= (−1)n2A2 −A(−1)−rk2r(x)

= (−1)n−r
{
a2(−1)r

2
− ak2r(x)

2

}
.

The following theorem gives the identity for Lucas polynomial which is already derived for generalized
Fibonacci polynomials known as d’Ocagne’s identity in Sikhwal et al. [10].

Theorem 6.2. If the nth term of generalized Lucas polynomial is kn(x), then

km(x)kn+1(x)− km+1(x)kn(x) =
a

2
{(−1)n+1km−n−1(x)− (−1)m+1kn−m−1(x)}.

Proof. Binet’s formula for Lucas polynomials is given by

kn(x) = A(αn + βn).

Therefore,

km(x)kn+1(x)− km+1(x)kn(x)

= A(αm + βm)A(αn+1 + βn+1)−A(αm+1 + βm+1)A(αn + βn)

= A2(αmβn+1 + αn+1βm − αm+1βn − αnβm+1)

= A2{(αβ)n+1(αm−n−1 + βm−n−1)− (αβ)m+1(αn−m−1 + βn−m−1)}
= A{(−1)n+1km−n−1(x)− (−1)m+1kn−m−1(x)}

=
a

2
{(−1)n+1km−n−1(x)− (−1)m+1kn−m−1(x)}.

The next theorem gives the relevant results to Theorems 6.1 and 6.2 for our Lucas polynomials.

Theorem 6.3. Let kn(x) be the nth term of generalized Lucas polynomial, then
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(i) k2
n(x) + kn+r(x)kn−r(x) = ak2n(x) + a2

2 (−1)n + a
2 (−1)n−rk2r(x),

(ii) km(x)kn+1(x) + km+1(x)kn(x)
= a

2{2km+n+1(x) + (−1)n+1km−n−1(x) + (−1)m+1kn−m−1(x)}.

Proof. (i). With the help of Binet’s formula, we establish

k2
n(x) + kn+r(x)kn−r(x) = [A(αn + βn)]2 +A(αn+r + βn+r)A(αn−r + βn−r)

= [A(α2n + β2n + 2αnβn)]2 +A2(α2n + αn+rβn−r + αn−rβn+r + β2n)

= 2A2(α2n + β2n) + 2A2(αβ)n +A2(αβ)n−r(α2r + β2r)

= 2Ak2n(x) + 2A2(−1)n +A(−1)n−rk2r(x)

= ak2n(x) +
a2

2
(−1)n +

a

2
(−1)n−rk2r(x).

Proof (ii). With the help of Binet’s formula, we derive

km(x)kn+1(x) + km+1(x)kn(x)

= A(αm + βm)A(αn+1 + βn+1) +A(αm+1 + βm+1)A(αn + βn)

= A{2A(αm+n+1 + βm+n+1) + (αβ)n+1A(αm−n−1 + βm−n−1) + (αβ)m+1A(αn−m−1 + βn−m−1)}
= A{2km+n+1(x) + (−1)n+1km−n−1(x) + (−1)m+1kn−m−1(x)}

=
a

2
{2km+n+1(x) + (−1)n+1km−n−1(x) + (−1)m+1kn−m−1(x)}.

7 Conclusion
In this paper, we have defined generalized Fibonacci and generalized Lucas polynomials. We have stated and
derived many properties of our generalized Fibonacci polynomial and generalized Lucas polynomial through
generating function and Binet’s formula. Many other identities like Catalan’s identity and d’Ocagne’s identity
can be derived easily from our generalized Fibonacci polynomial. Similarly, identities proved in section 5 for
our generalized Fibonacci polynomial can also be proved for the generalized Lucas polynomial.
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Abstract

We study on degree of approximation of function belonging to weighted (Lp, ξ(t)) class by (C, 1)(e, c)
mean and weighted (Lp, ξ(t)) class by (C, 2)(E, q) has been discussed by Rathore and Shrivastava. Since
(e, c) includes (E, q) method, so for obtaining more generalized result we replace (E, q) by (e, c) mean.
Which is a regular method of summation for c > 0. In this paper we obtain the degree of approximation
of the function belonging to weighted (Lp, ξ(t)) class by (C, 2)(e, c) product means of its Fourier series
has been proved.
2020 Mathematical Sciences Classification: 42B05, 42B08.
Keywords and Phrases: Degree of approximation, W (Lp, ξ(t)) class of function, (C, 2) summability,
(e, c) summability, (C, 2)(e, c) product summability, Fourier series, Lebesgue integral.

1 Introduction
The (e, c) summability method was introduced by Hardy and Littlewood [6], which is a regular for c > 0
including the method of summability for Borel, (E, q) etc. We study on approximation of f belonging to many
classes. Also W (Lp, (ξ(t)) by Cesǎro mean, Nörlund mean, has been discussed by several researchers like
Alexits [1], Khan [6], Chandra [3], Sahney and Goel [17], Quereshi [12], Shrivastava and Verma [19], Mishra
et al.[10] etc. Rathore and Shrivastava [13] extended the result on degree of approximation of a function
belonging to W (Lr, ξ(t)) class by (C, 1)(e, c) means of Fourier series. Further Rathore and Shrivastava [14]
studied about product summability on approximation of a function belonging to W (Lr, ξ(t)) class by (C, 2)
(E, q) means. In this direction several researchers like Lal and Singh [9], Lal and Kushwaha [8], Nigam [11],
Albayrak, Koklu and Bayramov [2], Rathore, Shrivastava and Mishra ([15], [16]) etc. Recently Kushwaha
[7] has determined on approximation of function by (C, 2)(E, 1) product summability method of Fourier
series, but till now no work done to extend the result on approximation of function fεW (Lp, ξ(t)) class by
(C, 2)(e, c) mean has been seen.

2 Definition and Notations
Let f(x) be periodic with period −2π and integrable in the sense of Lebesgue. The Fourier series of f(x) is
given by

(2.1) f(x) =
a0

2
+

∞∑
n=1

(an cosnx+ bn sinnx)

with nth partial sumSn(f ;x).
A series

∑∞
n=0 un with the sequence of partial sum {Sn} is said to be summable (e, c), (c > 0) to sumS.

Let
{
t
(e,c)
n

}
denotes the sequence of (e, c) mean of the sequence {Sn}. If the (e, c) transform of Sn defined

as

(2.2) lim
n→∞

t(e,c)n = lim
n→∞

√
c

πn

∞∑
r=−∞

exp

(
−cr

2

k

)
Sk+r

exists, where Sk+r = 0, when k + r < 0.
We write

(2.3)
∥∥∥t(e,c)n − f

∥∥∥ = sup
−π≤x≤π

∣∣∣t(e,c)n (f : x)− f(x)
∣∣∣ ,
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where t
(e,c)
n (f : x) is nth (e, c) means of the Fourier series f at x. Thus if

(2.4) t(e,c)n (f ;x)− f(x) =
1

π

√
c

πn

∫ π

0

Φx(t)

sin t/2

[ ∞∑
r=−k

exp

(
−cr

2

k

)
sin

(
k + r +

1

2

)
t

]
dt.

The series
∑∞
n=0 un with the partial sum Sn is said to be summable (e, c) to the definite number S, (see

Hardy [4]).

Let
{
t
(C,2)
n

}
denote the sequence of (C, 2) mean of the sequence {Sn}. If the (C, 2) transform of Sn is

defined as

(2.5) t(C,2)
n (f : x) =

2

(n+ 1)(n+ 2)

n∑
k=0

(n− k + 1)Sk → S as n→∞

then the series
∑∞
n=0 un is said to be summable to the number S by (C, 2) method. Thus if

(2.6) t(C,2)(e,c)
n (f : x) =

2

(n+ 1)(n+ 2)

n∑
k=0

(n− k + 1)t
(e,c)
k → S as n→∞

where t
(C,2)(e,c)
n denotes the sequence of (C, 2)(e, c) product mean of the sequence Sn, the series

∑∞
n=0 un is

said to be summable to the number S by (C, 2)(e, c) method.
We observe that (C, 2)(e, c) method is regular if c > 0.
A function f ∈W (Lp, ξ(t)) class, if

(2.7)

(∫ 2π

0

(∣∣[f(x+ t)− f(x)] sinβ x
∣∣p dx))1/p

= O(ξ(t)), (β ≥ 0).

Given a positive increasing function ξ(t) and an integer p ≥ 1, we observe that

W (Lp, ξ(t))
β=0−→ L(ξ(t), p)

ξ(t)=tα−→ L(α, p)
p→∞−→ Lip α.

That is
Lipα ⊆ Lip(α, p) ⊆ Lip(ξ(t), p) ⊆W (Lp, ξ(t)) , for 0 < α ≤ 1, p ≥ 1.

Now we define norm by

(2.8) ‖f‖p =

(∫ 2π

0

|f(x)|pdx
)1/p

, p ≥ 1.

The degree of approximation En(f) be given by

(2.9) En(f) = min ‖Tn − f‖p ,
where Tn(x) is a trigonometric polynomial of degree n by (see Zygmund [21]).

We shall use following notation:

(2.10) φ(t) = f(x+ t) + f(x− t)− 2f(x).

3 Inequalities
We use the following inequalities in our further investigations

∞∑
r=k+1

r exp

(
−cr

2

k

)
≤ k

2c
exp(−ck)(3.1) ∣∣∣∣∣

∞∑
r=k+1

exp

(
−cr

2

k

)
sin

(
k + r +

1

2

)
t

∣∣∣∣∣ ≤ kt

2c
exp(−ck),(3.2)

∞∑
r=k+1

exp

(
−cr

2

k

)
cos(rt) = O

{
exp(−ck)

t

}
,(3.3)

1 + 2

∞∑
r=1

exp

(
−cr

2

k

)
cos(rt) =

√
πk

c

{
exp

(
−kt2

)
4c

)
+O

(
exp

(
−kπ
4c

))}
.(3.4)

The inequality (3.2) follows from (3.1). (3.3) may be obtained by using Able’s Lemma and (3.4) may be
obtained by classical formula for theta function by Siddiqui [18] and (3.1) is due to Shrivastava & Verma
[19].
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4 Main Theorem
We prove the following theorem

Theorem 4.1. If f : R → R is 2π-periodic function, Lebesgue integrable on [0, 2π] and belonging to the
W (Lp, ξ(t)) class then the degree of approximation of f by the (C, 2)(e, c) product summability means of
Fourier series satisfies

(4.1)
∥∥∥t(C,2)(e,c)
n − f(x)

∥∥∥
p

= O

[
(n+ 1)β+ 1

p ξ

(
1

n+ 1

)]
provided ξ(t) satisfies the following condition :{

ξ(t)

t

}
be a decreasing sequence,(4.2) {∫ 1/n+1

0

(
t|φ(t)|
ξ(t)

)p
sinβp tdt

}1/p

= O

(
1

n+ 1

)
,(4.3)

{∫ π

1
n+1

(
t−δφ(t)

ξ(t)

)p
sinβp tdt

}1/p

= O
(
(n+ 1)δ

)
,(4.4)

where δ is an arbitrary number such that q(1 − δ) − 1 > 0, 1
p + 1

q = 1. conditions (4.3) and (4.4) hold

uniformly in x and t
(C,2)(e,c)
n is (C, 2) (e, c) mean of the Fourier series (2.1).

5 Lemmas
We shall use the following Lemmas

Lemma 5.1. Let Mn(t) = 1
(n+1)(n+2)π

∑n
k=0(n− k + 1)

[
sin(k+ 1

2 )t
sin t/2

]
.

Then |Mn(t)| = O(n+ 1), for 0 < t < π
(n+1) .

Proof. Applying sinnt ≤ n sin t, for 0 < t < π
(n+1) , we have

|Mn(t)| ≤ 1

(n+ 1)(n+ 2)π

n∑
k=0

(n− k + 1)

[
(2k + 1) sin t/2

sin t/2

]
(5.1)

≤ 1

(n+ 1)(n+ 2)π

n∑
k=0

(n− k + 1)(2k + 1)

=
(n+ 1)

(n+ 1)(n+ 2)π

n∑
k=0

(2k + 1)− 1

(n+ 1)(n+ 2)π

n∑
k=0

k(2k + 1)

=
(n+ 1)2

(n+ 2)π
− 1

(n+ 1)(n+ 2)π

[
n∑
k=0

(
2k2 + k

)]

=
(n+ 1)2

(n+ 2)π
− 1

(n+ 1)(n+ 2)π
· n(n+ 1)(2n+ 1)

3
− 1

(n+ 1)(n+ 2)π

n(n+ 1)

2

= O(n+ 1).

Lemma 5.2. Let |Mn(t)| = O
(

1
t

)
, for π

(n+1) ≤ t ≤ π.

Proof. Applying Jordon’s Lemma sin
(
t
2

)
≥ t/π and sin kt ≤ 1 for π

(n+1) ≤ t ≤ π

|Mn(t)| ≤ 1

(n+ 1)(n+ 2)π

n∑
k=0

(n− k + 1)

[
1

t/π

]
(5.2)

=
(n+ 1)π

(n+ 1)(n+ 2)tπ
− π

(n+ 1)(n+ 2)tπ

n∑
k=0

k
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=
1

(n+ 2)t
− n(n+ 1)

2(n+ 1)(n+ 2)t

= O

(
1

t

)
.

6 Proof of the Main Theorem
Using (Titchmarsh [20]) and Riemann - Lebesgue theorem, the partial sum Sn(f ;x) of the series (2.1) is
given by

(6.1) Sn(f ;x)− f(x) =
1

2π

∫ π

0

φx(t)

sin t
2

sin

(
n+

1

2

)
tdt.

If t
(e,c)
n denotes (e, c) transform of Sn(f ;x) then

t(e,c)n (f ;x)− f(x) =
1

2π

√
c

πn

∫ π

0

∅x(t)

sin t/2

[ ∞∑
r=−k

exp

(
−cr

2

k

)
sin

(
k + r +

1

2

)
t

]
dt

=
1

2π

√
c

πn

∫ π

0

∅x(t)

sin t/2

[{
1 + 2

∞∑
r=1

exp

(
−cr

2

k

)
cos rt

}
sin

(
k +

1

2

)
t

+

∞∑
r=k+1

exp

(
−cr

2

k

)
sin

(
k + r +

1

2

)
t

]
dt

=
1

π

√
c

πn

∫ π

0

φx(t)

sin t/2

[{
1 + 2

∞∑
r=1

exp

(
−cr

2

k

)
cos rt

}
sin

(
k +

1

2

)
t

]
dt

−2

∞∑
r=k+1

exp

(
−cr

2

k

)
cos rt sin

(
k +

1

2

)
t+

∞∑
r=1

exp

(
−cr

2

k

)
sin

(
k + r +

1

2

)
dt.

For (C, 2)(e, c) transform, t
(C,2)(e,c)
n (f ;x) of Sn(f ;x), we write

t(C,2)(e,c)
n (f ;x)− f(x) =

2

2π(n+ 1)(n+ 2)

n∑
k=0

(n− k + 1)

√
c

πk

∫ π

0

∅x(t)

sin t/2

·


{

1 + 2
∑∞
r=1 exp

(
− cr

2

k

)
cos rt

}
sin
(
k + 1

2

)
t

−2
∑∞
r=k+1 exp

(
− cr

2

k

)
cos rt sin

(
k + 1

2

)
t

+
∑∞
r=k+1 exp

(
− cr

2

k

)
sin
(
k + r + 1

2

)
t

 dt,
I = I1 + I2 + I3 (say) .(6.2)

Now,

I1 ≤
1

(n+ 1)(n+ 2)π

n∑
k=0

(n− k + 1)

√
c

πk

∫ π

0

∅x(t)

sin t/2

·

[{
1 + 2

∞∑
r=1

exp

(
−cr

2

k

)
cos rt

}
sin

(
k +

1

2

)
t

]
dt

=
1

(n+ 1)(n+ 2)π

n∑
k=0

(n− k + 1)

√
c

πk

∫ π

0

∅x(t)

sin t/2

·
√
πk

c

[{
exp

(
−kt2

)
4c

)
+O

(
exp

(
−kπ
4c

))}
sin

(
k +

1

2

)
t

]
dt

=
1

(n+ 1)(n+ 2)π

n∑
k=0

(n− k + 1)

∫ π

0

∅x(t)

sin t/2
sin

(
k +

1

2

)
t exp

(
−kt2

)
4c

)
dt
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+
1

(n+ 1)(n+ 2)π

n∑
k=0

(n− k + 1)

[{∫ π

0

∅x(t)

sin t/2
sin

(
k +

1

2

)
t ·O

(
exp

(
−kπ
4c

))}
dt

]
,

(6.3) I1 = I1.1 + I1.2 (say).

Now,

I1.1 =
1

(n+ 1)(n+ 2)π

n∑
k=0

(n− k + 1)

∫ π

0

∅x(t)

sin t/2

[{
sin

(
k +

1

2

)
t exp

(
−kt2

)
4c

)}]
dt

= O

(
exp

(
−nt2

)
4c

))∫ π

0

∅x(t)Mn(t)dt, using Lemma 5.1

Then

|I1.1| ≤ O(1)

[∫ π/n+1

0

+

∫ π

π/n+1

.

]
∅x(t)Mn(t)dt

(6.4) I1.1 = I1.11 + I1.12

Now

|I1.11| ≤
∫ π/n+1

0

|∅x(t)| |Mn(t)| dt

We have

|∅x(x+ t)− ∅x(x)| ≤ |f(v + x+ t)− f(v + x)|+ |f(v − x− t)− f(v − x)|.

Hence by Minkowiski inequality[∫ 2π

0

| {| ∅x(x+ t) −∅x(x)} sinβ x
∣∣p dx]1/p

≤
[∫ 2π

0

∣∣{f(v + x+ t)− f(v + x)} sinβ x
∣∣p dx]1/p

+

[∫ 2π

0

∣∣{f(v − x− t)− f(v − x)} sinβ x
∣∣p dx]1/p

=O(ξ(t)).

Then f ∈W (Lp, ξ(t))⇒ ∅x(t) ∈W (Lp, ξ(t)),
Applying Hölder’s inequality and second mean value theorem for integral

|I1.11| ≤

[∫ π/n+1

0

{
t |∅x(t)| sinβ t

ξ(t)

}p
dt

]1/p [∫ π/n+1

0

{
ξ(t) |Mn(t)|
t sinβ t

}q
dt

]1/q

(6.5)

= O

(
π

(n+ 1)

)[∫ π/n+1

0

{
ξ(t)(n+ 1)

t1+β

}q
dt

]1/q

= O

{
ξ

(
π

(n+ 1)

)}[(
t−(1+β)q++1

)1/q
]π/n+1

0

= O

{
(n+ 1)β+ 1

p ξ

(
1

n+ 1

)}
.

Now

I1.12 ≤
∫ π

π/n+1

∅x(t)Mn(t)dt

Using Hölder’s inequality | sin t| < 1, | sin t| ≥
(

2t
π

)
, Lemma 5.2 and second mean value theorem

|I1.12| ≤

[∫ π

π/n+1

{
t−δ |∅x(t)| sinβ t

ξ(t)

}p
dt

]1/p [∫ π

π/n+1

{
ξ(t) |Mn(t)|
t−δ sinβ

}q
dt

]1/q

(6.6)

212



= O
{

(n+ 1)δ
}[∫ π

π/n+1

{
ξ(t)

t1+β−δ

}q
dt

]1/q

= O
{

(n+ 1)δ
}∫ n+1

1

 ξ(π/y)((
1/y
)(1+β−δ)q


q

dy

y2

1/q

Lput t = (π/y)


= O

{
(n+ 1)δ

}
ξ

(
π

n+ 1

)[∫ n+1

1

dy

y−(1+β−δ)q+2

]1/q

= O
{

(n+ 1)δ
}
ξ

(
π

n+ 1

)[
y(1+β−δ)−1/q

]n+1

1

= O

{
(n+ 1)β+ 1

p ξ

(
1

n+ 1

)}
.

Now,

I1.2 =
1

(n+ 1)(n+ 2)π

n∑
k=0

(n− k + 1)

[{∫ π

0

∅x(t)

sin t/2
sin

(
k +

1

2

)
tO

(
exp

(
−kπ
4c

))}
dt

]
= O

(
exp

(
−nπ
4c

))∫ π

0

∅x(t)Mn(t)dt (using Lemma 5.1).

Then,

I1.2 =

[∫ π/n+1

0

+

∫ π

π/n+1

·

]
∅x(t)Mn(t)dt,(6.7)

I1.2 = I1.21 + I1.22.

Now,

I1.21 =

∫ π/n+1

0

∅x(t)Mn(t)dt

Using Hölder’s inequality and second mean value theorem

|I1.21| ≤

[∫ π/n+1

0

{
t |∅x(t)| sinβ t

ξ(t)

}p
dt

]1/p [∫ π/n+1

0

{
ξ(t) |Mn(t)|
t sinβ t

}q
dt

]1/q

(6.8)

= O

(
π

n+ 1

)[∫ π/n+1

0

{
ξ(t)(n+ 1)

tβ+1

}q
dt

]1/q

= O

{
(n+ 1)β+1/pξ

(
1

n+ 1

)}
, since

1

p
+

1

q
= 1.

Now,

I1.22 =

∫ π

π/n+1

∅x(t)Mn(t)dt

Using Hölder inequality and | sin t| < 1, | sin t| ≥
(

2t
π

)
|I1.22| ≤

[∫ π

π/n+1

{
t−δ |∅x(t)| sinβ t

ξ(t)

}p
dt

]1/p [∫ π

π/n+1

{
ξ(t)Mn(t)

t−δ sinβ

}q
dt

]1/q

(6.9)

= O
{

(n+ 1)δ
}[∫ π

π/n+1

{
ξ(t)

t1+β−δ

}q
dt

]1/q

= O
{

(n+ 1)δ
} [∫ n+1

1

{
ξ(π/y)

(π/y)(1+β−δ)q

}q
dy

y2

]1/q

put t = (π/y)

= O

{
(n+ 1)β+ 1

p ξ

(
1

n+ 1

)}
.

213



Now,

I2 = − 1

(n+ 1)(n+ 2)π

n∑
k=0

(n− k + 1)

√
c

πk

∫ π

0

∅x(t)

sin t/2

·

[
2

∞∑
r=k+1

exp

(
−cr

2

k

)
cos rt sin

(
k +

1

2

)
t

]
dt

I2 ≤
−2

(n+ 1)(n+ 2)π

n∑
k=0

(n− k + 1)

√
c

πk

∫ π

0

∅x(t)

sin t/2

[
O

(
exp(−ck)

t

)
sin

(
k +

1

2

)
t

]
dt

= O
(
n−1/2 exp(−cn)

)∫ π

0

∅x(t)
Mn(t)

t
dt, (using inequality (3.3))

Then

I2 =

[∫ π/n+1

0

+

∫ π

π/n+1

·

]
∅x(t)

Mn(t)

t
dt,(6.10)

= I2.1 + I2.2.

Now, using Hölder’s inequality

I2.1 ≤

[∫ π/n+1

0

{
t |∅x(t)| sinβ t

ξ(t)

}p
dt

]1/p [∫ π/n+1

0

{
ξ(t) |Mn(t)|
t2 sinβ

}q
dt

]1/q

(6.11)

=O

(
1

n+ 1

)[∫ π/n+1

0

{
ξ(t)(n+ 1)

tβ+2

}q
dt

]1/q

=O

{
(n+ 1)β+ 1

p ξ

(
1

n+ 1

)} (
since

1

p
+

1

q
= 1

)
.

Now

I2.2 =

∫ π

π/n+1

∅x(t)
Mn(t)

t
dt.

Using Hölder’s inequality and similarly

(6.12) I2.2 = O

{
(n+ 1)β+ 1

p ξ

(
1

n+ 1

)}
( from I1.22) .

Similarly,

(6.13) I3 = O

{
(n+ 1)β+ 1

p ξ

(
1

n+ 1

)}
.

Now combining (6.2) to (6.13), we set∣∣∣t(C,2)(e,c)
n (f ;x)− f(x)

∣∣∣ = O

[
(n+ 1)β+ 1

p ξ

(
1

n+ 1

)]
,

∥∥∥t(C,2)(e,c)
n (f ;x)− f(x)

∥∥∥
p

=

{∫ 2π

0

{
(n+ 1)β+ 1

p ξ

(
1

n+ 1

)}p
dx

}1/p

= 0

{
(n+ 1)β+ 1

p ξ

(
1

n+ 1

)}[{∫ 2π

0

dx

}1/p
]

= 0

{
(n+ 1)β+ 1

p ξ

(
1

n+ 1

)}
.

This completes the proof of the theorem.
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7 Corollaries
Following corollaries can be derived from main theorem:

Corollary 7.1. If β = 0 and ξ(t) = tα then the degree of approximation of a function f ∈ Lip(α, p), 0 <
α ≤ 1 is given by ∥∥∥t(C,2)(e,c)

n (f ;x)− f(x)
∥∥∥
p

= O

{
1

(n+ 1)α−1/p

}
Corollary 7.2. If p→∞ in corollary (7.1), and for 0 < α < 1.∥∥∥t(C,2)(e,c)

n (f ;x)− f(x)
∥∥∥
∞

= 0

{
1

(n+ 1)α

}
.

8 Conclusion
The summability method (e, c) includes method of summability like Borel, (E, 1), (E, q), F (a, q) and [F, dn]
then by using the result of main theorem we can derive more generalizing result and also the result of
Kushwaha [7] can be derived directly.
Acknowledgement. We are very much grateful to the Editor and Reviewer for their valuable suggestions
for improving the paper in its present form.
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Abstract

In this article, we represent a recurrence relation of the arithmetic function connected with an
ascending factorial function, Lah and Stirling numbers. We then obtain a relation of harmonic numbers
and again extend the coefficients of these arithmetic functions involving Bell polynomials through
introducing the sequence of Hankel type integrals. On the other hand, making some of the extensions of
these arithmetic functions, we derive some more results and the summation formulae in terms of Riemann
Zeta function.
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1 Introduction
In this representation, we consider the following recurrence relation recently studied by Pathan et al. [17] as

(1.1) fk(n) =
k

n

n∑
j=1

gjfk(n− j), fk(0) = 1, n, k ≥ 1,

which is satisfied by interesting arithmetic functions [2, 11]. From (1.1), it is clear that fk(n) is a polynomial
of degree n in k

(1.2) fk(n) = a(n, 1)k + a(n, 2)k2 + · · ·+ a(n, n− 1)kn−1 + a(n, n)kn, n ≥ 1,

where the coefficients a(n,m) are in terms of the quantities gj , in fact due to [17], we have

(1.3) a(n, n) =
1

n!
(g1)

n
, n ≥ 1.

Here in (1.2) the coefficients are

(1.4) a(n,m) =
1

m!(n−m)!

n−m∑
j=1

(g1)
m−j

(
m
j

)
j!Bn−m,j

(
1!

2
g2,

2!

3
g3, . . . ,

(n−m− j + 1)!

n−m− j + 2
gn−m−j+2

)
∀n ≥ m+ 1,

that involving the incomplete exponential Bell polynomials [9, 16, 17, 18].
The relations (1.3) and (1.4) are in harmony with the expressions of Jakimczuk [12, Eqns. (8)-(11)].
Further, we also show that due to Stirling numbers the relations (1.2) and (1.4) imply an important

property as given by [17]

(1.5) a(n, 1) =
1

n
gn = −

n∑
k=1

(−1)k

k

(
n
k

)
fk(n), n ≥ 1,

and we realize that applications of the results (1.1)-(1.5) for the cases gj = 1 and gr = r. We discuss these
conditions in the next section on an application of Stirling numbers [6, 8], Lah numbers [1, 14] and then
describe the harmonic numbers [26] and again derive the Truesdell’s polynomials [3-5] and their discussions
on generalizations.
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2 Various properties of (1.5) and applications
In this section, we derive various results due to the formula (1.5) through following theorem:

Theorem 2.1. Due to Stirling numbers, the results (1.2) and (1.4) imply the property given by

(2.1) a(n, 1) =
1

n
gn = −

n∑
k=1

(−1)k

k

(
n
k

)
fk(n), n ≥ 1.

Proof. Considering the results (1.2) and (1.4) we find that
n∑
k=1

(−1)k

k

(
n
k

)
fk(n)=

n∑
k=1

(−1)k

k

(
n
k

) n∑
j=1

a(n, j)kj ,(2.2)

=

n∑
j=1

a(n, j)

n∑
k=1

(−1)k
(
n
k

)
kj−1,

= a(n, 1)

n∑
k=1

(−1)k
(
n
k

)
+

n−1∑
t=1

a(n, t+ 1)

n∑
k=1

(−1)k
(
n
k

)
kt,

= −a(n, 1) + (−1)nn!

n−1∑
t=1

a(n, t+ 1)S
[n]
t ,

but (1.4) gives a(n, 1) = 1
ngn, and for the Stirling numbers of the second kind [1,10,15,21,23], we have that

S
[n]
t = 0, because t < n, therefore (2.2) implies (2.1) q.e.d.

Corollary 2.1. Applying the results (1.1) and (1.5) in the Theorem 2.1 and choosing gj = j ≥ 1, following
relation holds true

(2.3) fk(n) =

n∑
l=1

1

l!

(
n− 1
l − 1

)
kl, n ≥ 1.

Proof. In (1.1), choosing gj = j ≥ 1, we have

fk(n) =
k

n

n∑
j=1

jfk(n− j), fk(0) = 1,(2.4)

a(n,m) =
1

m!

n−m∑
j=1

(
m
j

)(
n−m− 1
j − 1

)
[17]
=

1

m!

(
n− 1
m− 1

)
,(2.5)

where in (2.5), we applied the following relation in terms of the Lah numbers [1, 14, 15, 23] as

(2.6) Bn−m,j(1!, 2!, . . . , (n−m− j + 1)!) = L
[j]
n−m =

(n−m)!

j!

(
n−m− 1
j − 1

)
.

Hence making an appeal to the results (2.4)-(2.6), we find the relation

(2.7) fk(n) =

n∑
l=1

1

l!

(
n− 1
l − 1

)
kl, n ≥ 1,

which verifies the relation (2.3).

Corollary 2.2. Applying the results (1.1) and (1.5) in the Theorem 2.1, for all j, gj = 1, following relations
hold true

(2.8) fk(n) =
(−1)n

n!

n∑
j=0

(−1)jS(j)
n kj =

1

n!
(k)n, n ≥ 1,

where S
(j)
n are the Stirling numbers ∀j = 1, 2, 3, . . . , n.

218



Proof. In the results (1.1) and (1.4), setting gj = 1 ∀j, we have

(2.9) fk(n) =
k

n

n∑
j=1

fk(n− j), fk(0) = 1

and

(2.10) a(n,m) =
(−1)n

m!

n−m∑
l=1

(−1)ll!

(n−m+ l)!
S

(l)
n−m+lδlm =

(−1)n−m

n!
S(m)
n ,

where the following identity [20] in terms of the Stirling numbers of the first kind [1, 20, 21, 23] was employed
as

(2.11) Bn−m,j

(
1!

2
,

2!

3
, . . . ,

(n−m− j + 1)!

n−m− j + 2

)
= (−1)n−m−j(n−m)!

j∑
l=0

(−1)l

(j − l)!(n−m+ l)!
S

(l)
n−m+l.

Hence, by the results (2.9)-(2.11), we obtain following identities

(2.12) fk(n) =
(−1)n

n!

n∑
j=0

(−1)jS(j)
n kj

[21]
=

1

n!
(k)n, n ≥ 1,

such that (k)n = k(k + 1) · · · (k + n− 1).
Finally, the identities in (2.12) give us the relations (2.8).

Thus the Corollary 2.2 implies an interesting recurrence relation for the ascending factorial function

(2.13) (k)n = (n− 1)!k

n∑
j=1

1

(n− j)!
(k)n−j , n, k ≥ 1.

If we remember that (n)n = Γ(2n)
Γ(n) = 22n−1

√
π

Γ
(
n+ 1

2

)
, here given that Γ(n+ 1) = n!, n ≥ 1.

Then due to the formula (2.13), we find the results

(2.14)

n∑
j=1

1

(n− j)!
(n)n−j =

1

2

(2n)!

(n!)2
=

1

2

(
2n
n

)
, n ≥ 1.

Furthermore, if we accept that in (2.8) the symbol k is a continuous variable, then we apply d
dk to (2.13)

and then we make k = 1 to deduce the following identity [26] involving harmonic numbers [1, 10, 21, 23]

(2.15)

n∑
j=1

Hj = (n+ 1)Hn − n, n ≥ 1,

where in (2.15), we applied the expression

(2.16)

[
d

dx
(x)m

]
x=1

= m!Hm.

Remark 2.1. If F is the generating function of fk(n), then following convolution holds true

∞∑
n=0

fk3
(n)qn = F k3 = F k1+k2 = F k1F k2 =

 ∞∑
j=0

fk1
(j)qj

( ∞∑
l=0

fk2
(l)ql

)
,

that is there exists

(2.17) fk3(n) =

n∑
j=0

fk1(j)fk2(n− j), k3 = k1 + k2, k1, k2 ≥ 1,

which means that fk3
is the Cauchy convolution of fk1

with fk2
.
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3 Identities due to the formula (2.14)
The formula (2.14) has a great importance when we multiply it by a Beta function. Then we evaluate some
of its identities and relations by employing the Beta function given by

(3.1) B(m,n) =
Γ(m)Γ(n)

Γ(m+ n)
∀m,n > 0,

and the gamma function defined by [25, p.19]

(3.2) Γ(m) =

∫ ∞
0

e−ttm−1dt ∀m > 0,

Theorem 3.1. ∀n ≥ 1, by the formula (2.14) following identities hold

(3.3)

√
πΓ(n+ 1)

Γ
(
n+ 3

2

) n∑
j=1

1

(n− j)!
(n)n−j =

4n

(2n+ 1)
= B

(
1

2
, n+ 1

) n∑
j=1

1

(n− j)!
(n)n−j

and

(3.4)

√
πn!

22n+1
(
n+ 1

2

)
!

n∑
j=1

1

(n− j)!
(n)n−j =

1

2(2n+ 1)
=


n∑
j=1

1

(n− j)!
(n)n−j


∫ 1

0

xn(1− x)ndx.

Proof. Considering the formula (2.14) we find that

(3.5)


n∑
j=1

1

(n− j)!
(n)n−j


∫ 1

0

xn(1− x)ndx =
1

2

(2n)!

(n!)2

Γ(n+ 1)Γ(n+ 1)

(2n+ 1)Γ(2n+ 1)
=

1

2(2n+ 1)
.

Now, on making an appeal to well known Legendre duplication formula in the middle of the Eqn. (3.5),
we obtain the identity (3.4).

Finally, by the Eqns. (3.1) and (3.4), we derive the identities in the Eqn. (3.3).

4 Some of the extensions of the arithmetic function (1.1), their results and relations
In this section we introduce some extensions of the arithmetic function (1.1) and the identity (3.5). Then
make their applications to derive some more other results connected to Bell polynomials [16, 17, 18] and the
Riemann Zeta functions [13, 19, 24].

For the gj∀j ≥ 1, given in (1.5), one of the extensions of (1.1) is taken by

(4.1) fk(n, t) =
k

n

n∑
j=1

egjtfk(n− j), fk(0) = 1, n, k ≥ 1.

Clearly, from (4.1) we have a relation with (1.1) as found by

(4.2)
d

dt
fk(n, t)

∣∣∣∣
t=0

= fk(n), fk(0) = 1, n, k ≥ 1.

Theorem 4.1. Due to the extension (4.1), a formula exists as

(4.3)
dn

dtn
fk(n, t)

∣∣∣∣
t=0

=
k

n

n∑
j=1

a(j, 1)fk(n− j)jn, fk(0) = 1, n, k ≥ 1.

Proof. Operate (4.1) by the operator dn

dtn to find that

(4.4)
dn

dtn
fk(n, t) =

k

n

n∑
j=1

egjt
(
gj
j

)n
fk(n− j)jn, provided that fk(0) = 1, n, k ≥ 1.

Then in (4.4) apply the formula (1.5), to find that

(4.5)
dn

dtn
fk(n, t) =

k

n

n∑
j=1

egjta(j, 1)fk(n− j)jn, provided that fk(0) = 1, n, k ≥ 1.

Finally, making an appeal to the result (4.5), we derive the result of (4.3).
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Theorem 4.2. Due to the Theorem 4.1, there also exists another generating function

(4.6) fk(n, t) =
k

n

n∑
j=1

a(j, 1)fk(n− j) (jt)n

n!
, fk(0) = 1, n, k ≥ 1.

Proof. Consider the Maclaurin series

(4.7) f(t) =

∞∑
n=0

tn

n!
f (n)(0), f (n)(0) =

dn

dtn
f(t)

∣∣∣∣
t=0

,

where f(t) possesses continuous derivative of all orders in the interval [0, t]. Then make an appeal to the
formula (4.3) of the Theorem 4.1 to find the function (4.7).

Theorem 4.3. For the generalized Riemann Zeta function defined and studied by [13, 19, 24]

(4.8) ζ(a, s) =

∞∑
n=0

1

(n+ a)s
,∀a.s ∈ C and <(a) > 0,<(s) > 1,

and

(4.9) ζ(a, s) =
1

Γ(s)

∫ ∞
0

ts−1 e−at

(1− e−t)
dt∀a.s ∈ C and <(a) > 0,<(s) > 0,

there exists following summation formulae
∞∑
n=0

√
πn!

(
n− 1

2

)
!

22n−1
{(
n+ 1

2

)
!
} n∑
j=1

1

(n− j)!
(n)n−j =

∞∑
n=0

1(
n+ 1

2

)2 = ζ

(
1

2
, 2

)
,(4.10)

∞∑
n=0

√
πn!

(
n− 1

2

)
!

22n−1
{(
n+ 1

2

)
!
}2

n∑
j=1

1

(n− j)!
(n)n−j =

∫ ∞
0

(
t

1− e−t

)
e−

1
2 tdt.(4.11)

Proof. Considering the results (3.3) and (3.4) and Making an appeal to the formulae of generalized Riemann
Zeta function (4.8) and (4.9), we derive the formulae (4.10) and (4.11), respectively.

5 Extensions in the coefficients a(n,m) defined in (2.10) via sequence of Hankel type integral
operators, to find different polynomials

The Hankel’s contour integral is defined by [25, p. 219]

(5.1)
1

Γ(z)
=

1

2πi

∫ σ+i∞

σ−i∞
euu−zdu, σ > 0,<(z) > 0, i =

√
(−1).

Therefore to make extensions in the coefficients a(n,m) given in the Eqn. (2.10), we introduce a sequence
of Hankel type integral operators due to (5.1) and again apply the formula of the generating function for the
Stirling numbers due to Riordan [22] (see also in ( Chandel [6], Chandel and Yadava [8]) of first kind which
is given by

(5.2) S(k)
n =

(−1)k

k!

k∑
j=0

(−1)j
(
k
j

)
jn.

Now from (2.10) considering the coefficients a(n,m)∀n,m ∈ N ∪ {0} as a(n,m) = (−1)n−m

n! S
(m)
n and in it

applying (5.2), we find the formula of a(n,m) consisting of sequence of Hankel’s type contour integrals (5.1)
in the form
(5.3)

a(n,m) =
(−1)n

m!

m∑
j=0

(−1)j
(
m
j

)
jn

n!
=

(−1)n

m!

m∑
j=0

(−1)j
(
m
j

){
1

2πi

∫ σ+i∞

σ−i∞
ejuu−(n+1)du

}
, σ > 0.

Due to (5.3), for exploring new ideas in the field of arithmetic functions and further extensions in these
results, we define a sequence of Hankel type integral operators (5.1) in the form

(5.4) K(j, n;σ) {f} =
Γ(n+ 1)

jn
1

2πi

∫ σ+i∞

σ−i∞
ejuu−(n+1)f(u)du, σ > 0, f(0) = 1.
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It is clear that when f(u) ≡ 1, then for σ > 0 the formulae (5.3) and (5.4) give us the relations with
Bell coefficients

(5.5)
(−1)n

m!

m∑
j=0

(−1)j
(
m
j

)
jn

n!
{K(j, n;σ) {1}} = a(n, m) = a(n, m, 1), (let) .

Therefore in the formula (5.4) when we set fα,r(u) = e(α+(r−1)j)u and σ > 0, we find

(5.6) K(j, n, α;σ) {fα,r} =
Γ(n+ 1)

jn
1

2πi

∫ σ+i∞

σ−i∞
u−(n+1)e(α+rj)udu =

{(α+ rj)}n+1

jn+1
.

Further for σ > 0, making an application of the formulae (5.4) and (5.6), we get the coefficients of Bell
polynomials in following generalized form

a (n, m, fα,r) =
(−1)n

m!

m∑
j=0

(−1)j
(
m
j

)
jn

n!
{jK(j, n, α;σ) {fα,r}}(5.7)

=
(−1)n

n!

1

m!

m∑
j=0

(−1)j
(
m
j

)
{α+ rj}n+1

=
(−1)n−m

n!
Sα(n+ 1,m, r),

where fα,r(u) = e(α+(r−1)j)u.
Here in (5.7), the generalized Stirling formula is given by Chandel and Yadava [8]

(5.8) Sα(n,m, r) =
(−1)m

m!

m∑
j=0

(−1)j
(
m
j

)
{(α+ rj)}n .

Now making an appeal to (5.7), we obtain a generating function equivalent to the generating function
due to Chandel and Yadava [8 , Eqn. (2.6)] as given by

(−1)m
∞∑
n=0

(−t)na (n− 1, m, fα,r) =
(−1)m

m!

m∑
j=0

(−1)j
(
m
j

) ∞∑
n=0

tn

n!
(α+ rj)n(5.9)

= eαt
(−1)m

m!

m∑
j=0

(−m)j
(ert)

j

j!
= eαt

(−1)m

m! 1
F0

(
−m;−; ert

)
.

Again considering the formula (5.7) we get Truesdell polynomials due to Chandel [3, 4, 5]

(−1)m+nn!

n∑
m=0

(−1)ma (n− 1, m, fα,r) prxrm(5.10)

=

n∑
m=0

(−1)m

m!

m∑
j=0

(−1)j
(
m
j

)
(α+ rj)nprxrm = Tαn (x, r,−p).

6 Concluding remarks
In this article, a recurrence relation of the arithmetic function is considered to obtain the coefficients
of Bell polynomials. Then we derive various results and relations connected with an ascending factorial
function, Lah and Stirling numbers and to find a relation of harmonic numbers. To exploring of this work
in multidisciplinary aspect, we make some of the extensions of the coefficients of Bell polynomials in terms
of sequence of the Hankel type integral operators to derive generalized Stirling numbers and Truesdell’s
polynomials. We also derive the summation formulae in terms of Riemann Zeta function.

On the other hand, making an appeal to [7] in (5.7), we may introduce the coefficients of Bell polynomials
into multivariable Truesdell’s polynomials and then we may apply the techniques due to [7] to derive various
results and generating functions.
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Abstract

In this paper, the notion of complex-valued fuzzy b-metric space is introduced. In this newly developed
structure, we have established a sufficient condition for a sequence to be Cauchy. Moreover, under suitable
conditions of contractive type, the existence and uniqueness of fixed points of self-maps are established in
this structure. To demonstrate the validity of the hypothesis and the degree of generality of our results,
some examples are also furnished.
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1 Introduction
In 1965, Zadeh [17] introduced the concept of fuzzy sets. Due to the widespread use of this concept in
various fields, numerious authors have expansively developed the theory of fuzzy sets and its applications in
variety of domain. Using the concept of fuzziness, Kramosil and Mechalek [9] introduced the notion of fuzzy
metric space by generalizing the concept of probabilistic metric space. Grabiec [7] extended the well-known
fixed point theorem of Banach[4] in complete fuzzy metric space in the sense of Kramosil and Michalek. In
a paper, George and Vermani [6] modified the concept of fuzzy metric space and defined Hausdroff topology
on fuzzy metric space. By observing weaker conditions of the triangle inequality, Bakhtin [2] and Czerwik
[5] introduced the structure of b-metric space and generalized the Banach contraction principle. In this
sequence, a relation between b-metric and fuzzy metric spaces has been studied by Hassanzadeh et al.[8].
On the other hand Sedghi et al.[15] introduced the notion of b-fuzzy metric spaces by weakening the triangle
inequality. The concept of fuzzy b-metric space was first developed by Nadaban [11]. Recently, Mehmood et
al. introduced the concept of extended fuzzy b-metric space [10].

In a paper, Buckley [3] introduced the fuzzy complex numbers and fuzzy complex analysis. After that
many authors initiated work in fuzzy complex number by acknowledging the Buckleys work. In this series
Ramot el al.[12] established the innovative concept of complex fuzzy sets. In this context, the range of
membership function of complex fuzzy set is not limited to [0, 1] as the membership function of traditional
fuzzy set but, it extended to the unit circle in the complex plane. Then, here we see that the range of
membership function of crisp set {0, 1} is extended to the range of membership function of fuzzy set [0, 1]
and the range of membership function of fuzzy set [0, 1] is extended the range of membership function of
complex fuzzy set to the unit circle in complex plane.

In 2011, Azam et al.[1] defined a partial order - on set of complex numbers C for comparing the
two complex numbers and introduced the concept of complex valued metric spaces. Also they obtained
sufficient conditions for the existence of common fixed points of a pair of mappings satisfying contractive
type conditions.

Recognizing the notion of complex valued fuzzy set of Ramot et al.[12], Sigh et al.[14] developed the
structure of complex valued fuzzy metric spaces. They also established the complex valued fuzzy version of
Banach contraction principle.
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In a paper, Rao et al. [13] introduced the complex valued b-metric space and gave a common fixed point
theorem for four maps in this structure. In this paper, we establish the structure of complex-valued fuzzy
b-metric space along with its properties. Moreover, we establish a theorem of existence and uniqueness for
a fixed point of self-map defined on this newly developed structure.

2 Preliminaries
Definition 2.1 ([14]). A complex Fuzzy set S, defined on a universe of discourse U , is characterized by a
membership function µs(x) that assigns every element x ∈ U , a complex valued grade of membership in S.
The values µs(x) lie within the unit circle in the complex plane, and thus of the form

µs(x) = rs(x).eiωs(x) (i =
√
−1)

where rs(x) and ωs(x) both are real valued, with rs(x) ∈ [0, 1]. The complex fuzzy set S, may be represented
as the set of ordered pairs , given by

S = {(x, µs(x) | x ∈ U}.

Clearly, each complex grade of membership is defined by an amplitude term rs(x) and a phase term
ωs(x). Notice that it is possible to represent any ordinary fuzzy set in terms of a complex fuzzy set. If any
ordinary fuzzy set S is characterized by the real valued membership function λs(x) where x ∈ U , then S
can be transformed into complex fuzzy set by setting the amplitude terms rs(x) equal to λs(x) and the phase
term ωs(x) equal to zero for all x ∈ U . Thus one can say that without a phase term, the complex fuzzy set
effectively reduces to conventional fuzzy set.

Definition 2.2 ([1]). Let C be the set of complex numbers and α1, α2, α3 ∈ C. Define a partial order - on
C as: α1 - α2 ⇔ Re(α1) ≤ Re(α2), Im(α1) ≤ Im(α2). It follows that α1 - α2 if one of the following
conditions hold:

(i) Re(α1) = Re(α2) and Im(α1) = Im(α2),
(ii) Re(α1) < Re(α2) and Im(α1) = Im(α2),

(iii) Re(α1) = Re(α2) and Im(α1) < Im(α2),
(iv) Re(α1) < Re(α2) and Im(α1) < Im(α2).

We write α1 � α2 if α1 6= α2 and one of (ii), (iii) and (iv) is satisfied and we write α1 ≺ α2 if only (iv) is
satisfied.

Here we note the following condition trivially hold:
(i) If 0 - α1 - α2 then |α1| ≤ |α2|,
(ii) If 0 - α1 � α2 then |α1| < |α2|,

(iii) If α1 ≺ α2 and α2 ≺ α3 then α1 ≺ α3,
(iv) If a, b ∈ R and a ≤ b then aα - bα for all α ∈ C,
(v) If a, b ∈ R and 0 ≤ a ≤ b then α1 - α2 implies aα1 - bα2.

Utilizing the concept due to Azam et al.[1] and the definition of max function by Verma et al.[16], Singh at
al.[14] gave the similar definition of min function as follows

Definition 2.3 ([14]). Let α1, α2, α3 ∈ C and the partial order relation - is defined on C. Then, min
functions for complex numbers with partial order relations is defined as:

(1) min{α1, α2} = α1 ⇔ α1 - α2,
(2) min{α1, α2} - α3 ⇒ α1 - α3 or α2 - α3.

Note 2.1. Throughout this paper the symbol ≤ or ≥ used in sense of real numbers while symbol - or %
used in sense of complex numbers.

Definition 2.4 ([14]). A binary operation ∗ : rse
iθ × rseiθ → rse

iθ, where rs ∈ [0, 1] and a fix θ ∈ [0, π2 ], is
called complex valued continuous t-norm if it satisfies the following conditions:

(1) ∗ is associative and commutative,
(2) ∗ is continuous,
(3) a ∗ eiθ = a,∀a ∈ rseiθ where rs ∈ [0, 1],
(4) a ∗ b - c ∗ d whenever a - c and b - d, for all a, b, c, d ∈ rseiθ, rs ∈ [0, 1].
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Definition 2.5. Let ∗ be a complex valued continuous t-norm, let ∗n : rse
iθ → rse

iθ where n ∈ N, rs ∈ [0, 1]
be defined in the following way

∗1(x) = x ∗ x, ∗n+1(x) = (∗n(x) ∗ x) n ∈ N, x ∈ rseiθ.
Each complex valued t-norm ∗ can be extended by associativity in a unique way to an n-aray operation taking
for (x1, x2, . . . xn) ∈ [rs]

neiθ where rs ∈ [0, 1] the values

∗1i=1xi = x1, ∗ni=1xi = ((∗n−1
i=1 xi) ∗ xn) = (x1 ∗ x2 ∗ · · · ∗ xn).

A complex valued t-norm ∗ can be extended to a countable infinite operation taking for any sequence (xn)n∈N
from rs ∈ [0, 1] the value

∗∞i=1xi = lim
n→∞

∗ni=1xi.

The sequence (∗ni=1xi)n∈N is nonincreasing and bounded from below, and hence the limit ∗∞i=1xi exists.

Definition 2.6 ([14]). The triplet (X,M, ∗) is said to be complex valued fuzzy metric space if X is a non-
empty set, ∗ is a complex valued t-norm and M : X×X×(0,∞)→ rse

iθ is a complex valued fuzzy set, where
rs ∈ [0, 1] and θ ∈ [0, π2 ], satisfying the following conditions:

(CF1) M(x, y, t) � 0,
(CF2) M(x, y, t) = eiθ for all t > 0⇔ x = y,
(CF3) M(x, y, t) = M(y, x, t),
(CF4) M(x, z, t+ s) %M(x, y, t) ∗M(y, z, s),
(CF5) M(x, y, .) : (0,∞)→ rse

iθ is continuous,
for all x, y, z ∈ X, s, t > 0, rs ∈ [0, 1] and θ ∈ [0, π2 ]. Also (M, ∗) is called a complex valued fuzzy metric.

Remark 2.1. If we take θ = 0 then complex valued fuzzy metric simply goes to real valued fuzzy metric.

Now, in this paper we introduce the complex valued fuzzy b-metric space as.

Definition 2.7. Let X be a non-empty set, b ≥ 1 be a given real number, ∗ is a complex valued t-norm and
M : X × X × (0,∞) → rse

iθ is a complex valued fuzzy set, where rs ∈ [0, 1] and θ ∈ [0, π2 ], satisfying the
following conditions:

(CFbM1) M(x, y, t) � 0,
(CFbM2) M(x, y, t) = eiθ for all t > 0⇔ x = y,
(CFbM3) M(x, y, t) = M(y, x, t),
(CFbM4) M(x, z, t+ s) %M(x, y, tb ) ∗M(y, z, sb ),

(CFbM5) M(x, y, .) : (0,∞)→ rse
iθ is continuous and lim

t→∞
M(x, y, t) = rse

iθ,

for all x, y, z ∈ X, s, t > 0, rs ∈ [0, 1] and θ ∈ [0, π2 ]. A quadruple (X,M, ∗, b) is said to be complex valued
fuzzy b-metric space.

Remark 2.2. The class of complex valued fuzzy b-metric spaces is effectively larger than that of complex
valued fuzzy metric spaces[4], since a complex valued fuzzy b-metric is a complex valued fuzzy metric when
b = 1.

Example 2.1. Let M(x, y, t) = eiθe
−d(x,y)

t , where d is a b-metric on X and a ∗ c = a.c for all a, c ∈ rseiθ.
Then it is easy to show that (X,M, ∗) is a complex valued fuzzy b- metric space. Obviously conditions from
(CFbM1− CFbM3) of Definition 2.7 are satisfied. For each x, y, z ∈ X we obtain

M(x, y, t+ s) = eiθe
−d(x,y)
t+s

% eiθe
−b[d(x,z)+d(z,y)]

t+s

% eiθe
− d(x,z)

t
b .e

− d(z,y)
s
b

= M

(
x, z,

t

b

)
∗M

(
z, y,

s

b

)
.

So condition (CFbM4) of Definition 2.7 holds and (X,M, ∗) is a complex valued fuzzy b-metric space.

Example 2.2. Let X = R. We define a ∗ c = a.c,∀a, c ∈ rseiθ, where rs ∈ [0, 1] and θ ∈ [0, π2 ]. Furthermore
for all x, y ∈ X and t ∈ (0,∞), we define

M(x, y, t) = eiθe
−|x−y|p

t ,

where p > 1 is a real number. Then, (X,M, ∗) is a complex valued fuzzy b-metric space with b = 2p−1.
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Example 2.3. Let M(x, y, t) = eiθ t
t+d(x,y) where d is a b-metric on X and a ∗ c = a.c,∀a, c ∈ rseiθ. Then

M(x, y, ∗) is a complex valued fuzzy b-metric space.

Definition 2.8. Let b ≥ 1 be a given real number. A function f : R → C will be called b- non-decreasing if
t < s we will have f(t) - f(bs).

Lemma 2.1. The mapping M(x, y, .) : [0,∞)→ rse
iθ is b-non decreasing for all x, y ∈ X.

Proof. For some 0 < t < s, we have

M(x, y, bs) %M(x, y, t) ∗M(y, y, s− t) = M(x, y, t) ∗ eiθ = M(x, y, t).

Therefore for all x, y ∈ X,M(x, y, .) is b-non-decreasing.

Definition 2.9. Let (X,M, ∗) be a complex valued fuzzy b-metric space. We define an open ball B(x, r, t)
with centre x ∈ X and radius r ∈ C, 0 ≺ r ≺ eiθ, t > 0 as

B(x, r, t) = {y ∈ X : M(x, y, t) � eiθ − r}, where θ ∈
[
0,
π

2

]
.

Definition 2.10. Let (X,M, ∗) be a complex valued fuzzy b-metric space then
(a) A sequence {xn} in X is said to be convergent to x in X, if and only if lim

n→∞
M(xn, x, t) = eiθ for any

n > 0 and for all t > 0.
(b) A sequence {xn} is a Cauchy sequence if and only if lim

n→∞
M(xn, xn+m, t) = eiθ for any m > 0 and for

all t > 0.
(c) The complex valued fuzzy b-metric space (X,M, ∗) is called complete if every Cauchy sequence is

convergent.

3 Main Results

Lemma 3.1. Let (X,M, ∗) be a complex valued fuzzy b-metric space such that lim
t→∞

M(xn, xn+m, t) = eiθ for

all x, y ∈ X if

M(x, y, t) %M

(
x, y,

t

λ

)
for all x, y ∈ X, 0 < λ < 1, t ∈ (0,∞) then x = y.

Proof. Suppose λ ∈ (0, 1) such that

M(x, y, λt) %M(x, y, t)∀x, y ∈ X, t ∈ (0,∞)

so that

M(x, y, t) %M

(
x, y,

t

λ

)
.

On repeated application, we have

M(x, y, t) %M

(
x, y,

t

λn

)
for some positive integer n.

On making n → ∞, reduces to M(x, y, t) % eiθ. This implies M(x, y, t) = eiθ. Thus by (CFbM2), we have
x = y.

Lemma 3.2. Let {xn} be a sequence in a complex valued fuzzy b-metric space (X,M, ∗). suppose that there
exists λ ∈ (0, 1

b ) such that

(3.1) M(xn, xn+1, t) %M

(
xn−1, xn,

t

λ

)
, n ∈ N, t > 0

and there exist x0, x1 ∈ X and v ∈ (0, 1) such that

(3.2) lim
n→∞

∗∞i=nM
(
x0, x1,

t

vi

)
= eiθt > 0.

Then {xn} is a Cauchys sequence.
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Proof. Let σ ∈ (λb, 1). Then the sum
∑∞
i=1 σ

i is convergent, and there exists n0 ∈ N such that
∑∞
i=1 σ

i < 1
for every n > n0. Let n > m > n0. Since M is b non-decreasing, by (CFbM4) every t > 0

M(xn, xn+m, t) % M(xn, xn+m,
t
∑n+m−1
i=n σi

b
)

%

(
M
(
xn, xn+1,

tσn

b2

)
∗M

(
xn+1, xn+m,

t
∑n+m−1
i=n+1 σi

b2

))

% M
(
xn, xn+1,

tσn

b2

)
∗
(
M
(
xn+1, xn+2,

tσn+1

b3

)
∗ · · · ∗M

(
xn+m−1, xn+m,

tσn+m−1

bm

))
.

By (3.1) it follows that

M(xn, xn+1, t) %M
(
x0, x1,

t

λn

)
, n ∈ N, t > 0

and since n > m and b > 1, we have

M(xn, xn+m, t) % M
(
x0, x1,

tσn

b2λn

)
∗
(
M
(
x0, x1,

tσn+1

b3λn+1

)
∗ · · · ∗M

(
x0, x1,

tσn+m−1

bm+1λn+m−1

))
% ∗n+m−1

i=m M
(
x0, x1,

tσi

bi−n+2λi

)
% ∗n+m−1

i=m M
(
x0, x1,

tσi

biλi

)
% ∗n+m−1

i=m M
(
x0, x1,

t

vi

)
where v =

bλ

σ
Since, v ∈ (0, 1). By(3.2) it follows that {xn} is a Cauchys sequence.

Theorem 3.1. Let (X,M, ∗) be a complete complex valued fuzzy b-metric space and let f : X → X. Suppose
there exist λ ∈ (0, 1

b ) such that

(3.3) M(fx, fy, t) %M
(
x, y,

t

λ

)
, x, y ∈ X, t > 0

and there exists x0 ∈ X and v ∈ (0, 1) such that

(3.4) lim
n→∞

∗∞i=nM
(
x0, x1,

t

vi

)
= eiθ t > 0.

Then f has a unique fixed point in X.

Proof. Let x0 ∈ X and xn+1 = fxn, n ∈ N. If we take x = xn and y = xn−1 in (3.3) then we have

M(xn, xn+1, t) %M
(
xn−1, xn,

t

λ
) n ∈ N, t > 0

By Lemma 3.2 it follows that {xn} is a Cauchys sequence. Since (X,M, ∗) is complete there exist x ∈ X
such that

(3.5) lim
n→∞

xn = x and lim
n→∞

M(xn, x, t) = eiθ t > 0.

Using condition (3.3) and (CFbM4) we show that x is a fixed point of f .

M(fx, x, t) %

(
M
(
fx, xn,

t

2b
) ∗M

(
xn, x,

t

2b

))
%

(
M
(
fxn, xn,

t

2b

)
∗M

(
xn, x,

t

2b

))
%

(
M
(
xn+1, xn,

t

2b

)
∗M

(
xn, x,

t

2b

))
%

(
M
(
xn−1, xn,

t

2bλ

)
∗M

(
xn, x,

t

2b

))
,
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for all t > 0, by (3.5) as n→∞, we get

M(fx, x, t) % (eiθ ∗ eiθ) = eiθ.

Suppose that x and y are fixed point for f . By (3.3)

M(x, y, t) = M(fx, fy, t) %M
(
x, y,

t

λ

)
, t > 0.

Lemma 3.1 implies x = y.

Example 3.1. Let X = [0, 1] and M(x, y, t) = eiθe
−|x−y|2

t be a complex valued fuzzy b-metric space with
b = 2 and θ ∈ [0, π2 ]. Let f(x) = kx, where k = 1√

2
and x ∈ X . Then

(3.6) M(fx, fy, t) = eiθe
−k2|x−y|2

t % eiθe
−λ|x−y|2

t = M
(
x, y,

t

λ

)
, x, y ∈ X, t > 0.

For k2 < λ < 1
b . So, the condition of the Theorem 3.1 fulfilled and f has a unique fixed point in X.

Theorem 3.2. Let (X,M, ∗) be a complex valued complete fuzzy b-metric space and let f : X → X. Suppose
that there exist λ ∈ (0, 1

b ) such that

(3.7) M(fx, fy, t) % min

{
M
(
x, y,

t

λ

)
,M
(
fx, x,

t

λ

)
,M
(
fy, y,

t

λ

)}
for all x, y ∈ X, t > 0 and there exist x0 ∈ X and v ∈ (0, 1) such that

(3.8) lim
n→∞

∗∞i=nM
(
x0, fx0,

t

vi

)
= eiθ

for all t > 0. Then f has a fixed point in X.

Proof. Let x0 ∈ X and xn+1 = fxn, n ∈ N. By 3.6 with x = xn and y = xn−1 for every n ∈ N and every
t > 0, we have

M(fxn, fxn−1, t) % min
{
M
(
xn, xn−1,

t

λ

)
,M
(
fxn, xn,

t

λ

)
,M
(
fxn−1, xn−1,

t

λ

)}
M(xn+1, xn, t) % min

{
M
(
xn, xn−1,

t

λ

)
,M
(
xn+1, xn,

t

λ

)
,M
(
xn, xn−1,

t

λ

)}
M(xn+1, xn, t) % min

{
M
(
xn, xn−1,

t

λ

)
,M
(
xn+1, xn,

t

λ

)}
.

If M(xn+1, xn, t) %M
(
xn+1, xn,

t
λ

)
n ∈ N, t > 0. By Lemma3.1 it follows that xn = xn+1, n ∈ N. So,

M(xn+1, xn, t) %M
(
xn, xn−1,

t

λ

)
, n ∈ N, t > 0.

By Lemma 3.2 we have that {xn} is a Cauchys sequence. Hence there exists x ∈ X such that

(3.9) lim
n→∞

xn = x and lim
n→∞

M(x, xn, t) = eiθ, t > 0.

Now we prove that x is a fixed point of f . Let σ1 ∈ (λb, 1) and σ2 = 1− σ1. By (3.6)

M(fx, x, t) %

(
M
(
fx, fxn,

tσ1

b

)
∗M

(
fxn, x,

tσ2

b

))
%

(
min

{
M
(
x, xn,

tσ1

bλ

)
,M
(
x, fx,

tσ1

bλ

)
,M
(
xn, xn+1,

tσ1

bλ

)}
∗M

(
fxn, x,

tσ2

b

))
Taking n→∞ and using(3.8) we have

M(fx, x, t) % min
{
eiθ,M

(
x, fx,

tσ1

bλ

)
, eiθ

}
∗ eiθ

%
{
M
(
x, fx,

tσ1

bλ

)
∗ eiθ

}
= M

(
x, fx,

t

v

)
, t > 0,

where v = bλ
σ1
∈ (0, 1). Therefore,

M(fx, x, t) %M
(
x, fx,

t

v

)
, t > 0,

By Lemma 3.1 it follows that fx = x. Suppose x and y are the fixed point for f , that is fx = x and fy = y.
By condition (3.6), we get

M(fx, fy, t) % min

{
M
(
x, y,

t

λ

)
,M
(
x, fx,

t

λ

)
,M
(
y, fy,

t

λ

)}
= min

{
M
(
x, y,

t

λ

)
, eiθ, eiθ

}
= M

(
x, y,

t

λ

)
.

For t > 0, by Lemma 3.1 it follows that fx = fy, that is x = y.

229



Example 3.2. Let X = (0, 2) with a b-metric d defined by

d(x, y) = |x− y|2,∀x, y ∈ X.
For all x, y ∈ X and t ∈ (0,∞), we define

M(x, y, t) = eiθe
−(d(x,y))

t .

Clearly M(x, y, ∗) is complex valued complete fuzzy b-metric space with t-norm ∗ defined as a∗b = a.b where
a, b ∈ rseiθ for a fixed θ ∈ [0, π2 ] and rs ∈ [0, 1]. Here lim

t→∞
M(x, y, t) = eiθ for all x, y ∈ X. Then M(x, y, t)

is a complex valued fuzzy b-metric space with b=2. Define the map f : X → X

f(x) =

{
2− x, x ∈ (0, 1),
1, x ∈ [1, 2).

Case 3.1. If x, y ∈ [1, 2) then, M(fx, fy, t) = eiθ, t > 0 and condition 3.6 are trivially satisfied.

Case 3.2. If x ∈ [1, 2) and y ∈ (0, 1), then for λ( 1
4 ,

1
2 ), we have

M(fx, fy, t) = eiθe−
|x−y|2

t = eiθe−
|1−y|2
t % eiθe−

4λ|1−y|2
t = M

(
fy, y,

t

λ

)
.

Case 3.3. If x ∈ (0, 1) and y ∈ [1, 2), then for λ ∈ ( 1
4 ,

1
2 ), we have

M(fx, fy, t) = eiθe−
|x−y|2

t = eiθe−
|1−x|2
t % eiθe−

4λ|1−x|2
t = M

(
fx, x,

t

λ

)
.

Case 3.4. If x, y ∈ (0, 1), then for λ ∈ ( 1
4 ,

1
2 ), we have

M(fx, fy, t) = eiθe−
|x−y|2

t = eiθe−
|1−y|2
t % eiθe−

4λ|1−y|2
t = M

(
fy, y,

t

λ

)
, x > y, t > 0

and M(fx, fy, t) % M
(
fx, x, tλ

)
, x < y, t > 0. So conditions (3.6) are satisfied for all x, y ∈ X, t > 0, and

by Theorem 3.2 it follows that x = 1 is a unique fixed point for f .

4 Conclusion
In the present study, we defined a new concept of complex-valued fuzzy b-metric space. We also established
the condition of being Cauchy and convergence in this newly developed space. Several allied aspects
of complex-valued fuzzy b-metric space are also defined, which fortify the concept. In our main result,
we obtained the Banach contraction principle in the ”complex valued fuzzy b-metric space”. For the
sustainability of our result, we also furnished an example that satisfied our main result.

5 Open problem
It is the introduction of a phase term that makes the complex fuzzy set a distinctive and novel concept.
Quantum mechanics allows an object to exhibit a wave-like nature associated with a phase term. Therefore,
making use of this concept of complex valued fuzzy b metric space to show the existence of a fixed quantum
state associated with quantum operations is an open problem.
Acknowledgement. The authors are grateful to refrees and the Editor for their constructive suggestions.
All authors have read and agreed to publish this manuscript.
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Jñānābha, Vol. 53(2) (2023), 232-235
(Dedicated to Professor V. P. Saxena on His 80th Birth Anniversary Celebrations)

FIVE SERIES EQUATIONS INVOLVING GENERALIZED BATEMAN k-FUNCTIONS
Omkar Lal Shrivastava1∗, Kuldeep Narain2 and Sumita Shrivastava3

1Department of Mathematics, Government Kamladevi Rathi Girls Postgraduate College,
Rajnandgaon, Chhattisgarh, India-491441

2Department of Mathematics, Kymore Science College, Kymore, Madhya Pradesh, India-483880
3Department of Economics, Government Digvijay Postgraduate College, Rajnandgaon, Chhattisgarh,

India-491441
Email: omkarlal@gmail.com, kuldeepnarain2009@gmail.com, sumitashrivastava9@gmail.com

*Corresponding author email: omkarlal@gmail.com
(Received: November 06, 2023; In format: November 13, 2023; Revised: November 23, 2023;

Accepted: November 26, 2023)

DOI: https://doi.org/10.58250/jnanabha.2023.53227

Abstract

In this paper, the solution of five series equations involving generalized Bateman k-functions is
obtained by reducing them to Fredholm integral equation of the second kind. The solution presented in
this paper is obtained by employing the techniques of Narain and Lal [12] involving generalized Bateman
k-functions by reducing them to the solution of a Fredholm inregral equation of second kind with different
bounday conditions. Thus we have seen that Bateman k-functions are having interesting properties to
solve double, triple, quadruple and five series equations as special functions. These solutions are very
useful in Mathematical and Quantum Physics, Aero and Fluid Dynamics and Thermodynamics.
2020 Mathematical Sciences Classification: 45XX, 45B05, 45F10,33C45.
Keywords and Phrases: Five Series equations, generalized Bateman k-functions, Fredholm integral
equation.

1 Introduction
Chakraborty [3] discussed on generalization of Bateman functions. Erdélyi [7] has given tables of Integrals
Transforms. Noble [13] presented formal solution of dual series equations involving Jacobi polynomials.
Srivastava [15,16] and Srivastav [17] obtained solutions on dual series relations involving series of generalized
Bateman k-functions and triple series equations involving series of Jacobi polynomials. Later on Lowndes
[9, 10], Dwivedi and Trivedi [6] gave the solution of triple and quadruple series equations involving Jacobi
polynomials. Chandel [2] solved a problem on Heat Conduction over the surface of a sphere by making
an appeal to dual series equations involving Legendre polynomials by employing Mehler Dirichlet integrals
[19, (2.6.20), (2.6.21)] and Fredholm integral equation. Srivastava [14] obtained solutions of a pair of dual
series equations involving generalized Bateman k-functions. Narain, Singh and Lal [11] obtained solution of
triple series equations involving generalized Bateman k-functions. Narain and Lal [12] gave a method for the
solution of five Series equations by reducing them to Fredholm integral equations of the second kind. Dwivedi
and Singh [7] gave the solution of some five series equations involving generalized Bateman k-functions by
reducing them to simultaneous Fredholm integral equations. Recently Tripathi and Dixit [20] have obtained
formal solution of four series equations involving generalized Bateman k-functions. Apelblat, Consiglia
and Mainardi [1] in a recent survey expressed that Havlock(1925) and Bateman(1931) has introduced
new functions as solutions of fluid dynamics problems. Recently, Shrivastava, Narain and Shrivastava [17]
obtained solution of triple series equations involving generalized Laguerre polynomials. In this paper, we
discuss the problem to obtain the solution of five series equations involving generalized Bateman K-functions,
employing the technique due to Narain and Lal [12].

We shall obtain the solution of the following five series equations :

(1.1)

∞∑
n=0

DnΓ(l + 1 + n)k2l
2n

(x
2

)
= 0; 0 < x < a,

(1.2)

∞∑
n=0

DnΓ(l +m+ n)k2l
2n

(x
2

)
= g(x); a < x < b,
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(1.3)

∞∑
n=0

DnΓ(l + 1 + n)k2l
2n

(x
2

)
= 0; b < x < c,

(1.4)

∞∑
n=0

DnΓ(l +m+ n)k2l
2n

(x
2

)
= h(x); c < x < d,

(1.5)

∞∑
n=0

DnΓ(l + 1 + n)k2l
2n

(x
2

)
= 0; d < x <∞,

where l > −m, 0 < m < 1, k2l
2n(x) is the generalized Bateman k-function as given by Chakrabarty ([2], 6),

g(x) and h(x) are known functions. Solution is obtained by reducing them to Fredholm integral equation of
the second kind.

2 Some Useful Results
From the orthogonality relation of Srivastava ([15],p.589, eq. (2.6)]), we have

(2.1)

∫ ∞
0

x−2l−1k2l
2n(x)k2l

2m(x)dx = 22l Γ(n− l)
Γ(n+ l + 1)

δm,n

where δm,n is Kronecker delta.
For l > − 1

2 , 0 < m < 1, it is easily shown by Erdélyi ([8], p.401 eq. (1); p.405 eq. (20)) that

(2.2)

∫ y

0

(y − x)m−1e+xk2l
2n(x)dx =

Γ(m)

2m
eyk2l+m

2n+m(y),

(2.3)

∫ ∞
y

(x− y)−mx−l−1e−xk2l
2n(x)dx =

Γ(1−m)Γ(l +m+ n)

2
(1−m)

2 Γ(l + 1 + n)
y(−l+m

2 + 1
2 )e−y · k2l+m−1

2n+m−1(y).

The following summation result can be easily established by using (2.1), (2.2) and (2.3):

S(x, u) =

∞∑
n=0

Γ(l +m+ n)

22lΓ(n− l)
k2l

2n(x)k2l
2n(u),(2.4)

S(x, u) =
e−xx′ · 2

3(1−m)
2

{Γ(1−m)}2

∫ r

0

E(y)(x− y)−m(u− y)−mdy,(2.5)

=
e−x · x′ · 2

3(1−m)
2

{Γ(1−m)}2
Sr(x, u),

where, E(y) = e2y · yl+m
2 + 1

2 , r = min(x, u).

3 Solution of Five Series Equations
To solve eqns. (1.1) to (1.5), we assume x

2 = X and
∞∑
n=0

DnΓ(l + 1 + n)k2l
2n(x) = p(x), a < x < b(3.1)

= q(x), c < x < d.

Using the orthogonality relation (2.1), with an appeal to (1.1), (1.3) and (3.1), we obtain

(3.2) Dn =
2−21

Γ(n− l)

{∫ b

a

p(u) +

∫ d

c

q(u)

}
u−2l−1 · k2l

2n(u)du.

After substituting the value of Dn in eqns. (1.2) and (1.4), and then interchanging the order of summation
and integration, we find the equation

(3.3)

∫ b

a

u−2l−1p(u)Su(X,u)du+

∫ b

x

u−2l−1p(u)Sx(X,u)du+

∫ d

c

u−2l−1q(u)Sx(X,u)du

=
{Γ(1−m)}2

2
3(1−m)

2

ex ·X−lg(X) (a < x < b),
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(3.4)

∫ b

a

u−2l−1p(u)Su(X,u)du+

∫ x

c

u−2l−1q(u)Sx(X,u)du+

∫ d

x

u−2l−1q(u)Sx(x, u)du

=
{Γ(1−m)}2

2
3(1−m)

2

ex, X−lh(x), (c < x < d).

Inverting the order of integration in the above equations, we derive

(3.5)

∫ x

a

E(y)

(x− y)m

{
p1(y) +

∫ d

c

u−2l−1q(u)

(u− y)m
dudy =

{Γ(1−m)}2

2
3(1−m)

2

ex · xl−1g(x), a < x < b ,

(3.6)∫ x

c

E(y)

(x− y)m
q1(y)dy =

{Γ(1−m)}2

2
3(1−m)

2

· ex · x−1h(x)−
∫ b

a

E(y)

(x− y)m
p1(y)dy −

∫ c

a

E(y)dy

(x− y)m

∫ d

c

u2l−1q(u)du

(u− y)m
,

(c < x < d), where,

(3.7)

{
(i) p1(y) =

∫ b
y
u−2l−1p(u)

(u−y)m du

(ii) q1(y) =
∫ d
y
u−2l−1q(u)

(u−y)m du
.

For 0 < m < 1, we can solve Abel-type integral eqns. (3.5), (3.6) and (3.7) to obtain the equations

(3.8) E(y)p1(y) = G(y)− E(y)

∫ d

c

u−2l−1q(u)

(u− y)m
du,

(3.9) E(y)q1(y) = H(y)− sinmπ

π(y − c)1−m

∫ b

a

(c− t)1−m

(y − t)
E(t)p1(t)dt− sinmπ

π(y − c)1−m ·

×
∫ c

a

(c− t)1−m

(y − t)
E(t)dt

∫ d

c

u−2l−1q(u)

(u− t)m
du,

(3.10) u−2l−1p(u) = − sinmπ

π

d

du

∫ b

u

p1(y)du

(y − u)1−m , a < u < b,

(3.11) u−2l−1q(u) = − sinmπ

π

d

du

∫ d

u

p1(y)du

(y − u)1−m , a < u < d,

where G(y) and H(y) are known functions given by

(3.12)


G(y) = Γ(1−m)

2
3(1−m)

2 Γ(m)

d
dy

∫ y
a
ex·x−1h(x)dx

(y−x)1−m , a < y < b

H(y) = Γ(1−m)

2
3(1−m)

2 Γ(m)

d
dy

∫ y
c
ex·x−1h(x)dx

(y−x)1−m , c < y < d
.

From eqns. (3.8) and (3.10), we see that the functions p(u) and q(u) are related by the equation

(3.13) u−2l−1p(u) = − sinmπ

π

d

du

∫ b

u

G(y)dy

E(y)(y − u)1−m +
sinmπ

π(b− u)1−m

∫ d

c

t−2l−1(t− b)1−mq(t)

(u− t)
dt

where a < u < b.
Now

(3.14)

∫ d

c

u−2l−1q(u)

(u− y)m
du =

sinmπ

π(c− y)m−1

∫ d

c

(t− c)m−1q1(t)dt

(t− y)
.

Using this result together with eqn. (3.8), we see that eqn. (3.9) can be written in the form

(3.15) E(y)q1(y) +

∫ d

c

q1(x)T (x, y)dX = H(y)− sinmπ

π(y − c)1−m ·
∫ b

a

(c− t)1−mG(t)dt

where

(3.16) T (x, y) =
sin2mπ

π2[(x− c)(y − c)]1−m
·
∫ c

b

E(t)(c− t)2(1−m)

(x− t)(y − t)
dt, c < y < d

is a symmetric kernel.
Eqn. (3.15) is a Fredholm integral equation of the second kind which determines q1(y).q(u) can be found

from eqn. (3.11) and p(u) from eqn. (3.13). Finally the coefficients Dn for l > − 1
2 , 0 < m < 1 are given by

the eqn. (3.2).
If we replace X by x/2, we get the solution of equations (1.1) to (1.5) by eqn. (3.2).
In Particular if a = 0, b = a, c = b and d → ∞ in equations (1.1) to (1.5), we get the solution of triple

series equations considered by Dwivedi [4].
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4 Conclusion
The generalized Bateman k-functions have been applied to solve the problems of different integral and
series equations by many scholars like Srivastava [14], Srivastava[15], Dwivedi [5], Dwivedi and Trivedi [6],
Narain, Singh and Lal [11], Narain and Lal [12] Dwivedi and Singh [7], Tripathi and Dixit [19] to solve
pair of dual series, triple series, quadruple series, and some five series equations. The solution presented
in this paper is obtained by employing the techniques of Narain and Lal involving generalized Bateman
k-functions by reducing them to the solution of a Fredholm inregral equation of second kind with different
bounday conditions. Thus we have seen that Bateman k-functions are having interesting properties to solve
double, triple, quadruple and five series equations as special functions. These solutions are very useful in
Mathematical and Quantum Physics, aero and Fluid Dynamics and Thermodynamics.
Acknowledgement. The authors express their sincere gratitude to the editors and referees for carefully
reading the manuscript and for their valuable comments and suggestions which greatly improved this paper.
Conflict of interest: We declare that authors have no conflict of interest.
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Abstract

This paper is a presentation and discussion of two proofs of a theorem. The theorem is a statement
about a specific type of sequence of inputs where all multiples of fixed denominations are accepted
as inputs of an automaton. The theorem has interesting implications for accepted strings in a finite
automaton in general setting. Here, we have examined different methods for proving the theorem. We
present one analytic proof by using automata theory with graph theoretic concepts and another proof by
utilizing the ordered partition of number theory. We also illustrate the results with the help of examples.
2020 Mathematical Sciences Classification: 03D05, 11B85, 68R15.
Keywords and Phrases: Finite Automata, Acceptable Strings, Ordered Partition.

1 Introduction
An automaton (in plural Automata) is an abstract self-operating machine which follows a predetermined
sequence of operation automatically gives an output from input. Here input may be energy, information,
materials, etc. The system works without the intervention of man. Automata theory plays a major role in
huge applied areas. The most significant areas include communication, transportation, health care, electronic
banking, etc. Mainly finite automata are significant in many different areas, including Electrical Engineering,
Linguistics, Computer Science, Philosophy, Biology, Mathematics, etc. In Computer science, automata
widely used in text processing, Compilers, Software and hardware design, network protocol, etc. [6]. Many
authors have done their work on the string of automaton for a long time. Yu et al. [5] presented symbolic
string verification: An automata-based approach. Aydin et al. [1] had done their work on Automata-based
model counting for string constraints. Most recently, Yue et al. [8] developed the language acceptability
of finite automata based on theory of semi-tensor product of matrices. Dobronravov et al. [3] introduced
the length of the shortest strings accepted by two-way finite automata. As a result of the techniques used
in the aforementioned works, we are continuing our research on acceptable strings in an automaton. The
originality of the paper is that we primarily provide many proofs utilizing entirely distinct methodologies.

2 Preliminaries
A finite state automaton consists of a finite set of states and a set of transitions from state to state that
occurs on input symbols from a set of alphabets. An alphabet is a finite, non-empty set of symbols denoted
by A, e.g. A = {0, 1}, the set of binary alphabet. A string (or word) is a finite sequence of symbols chosen
from the set A, e.g. 01101, 01, 1, 0 are some strings over the set alphabet A = {0, 1}. A Deterministic
Finite Automata can be formally defined as a 5-tuple

∑
= (Q,A, δ, q∗0 , F ) where Q (6= φ) is a finite set of

states, A is a finite non-empty set of inputs, δ : Q×A→ Q is defined by δ (q∗0 , a) = q1; q∗0 , q1 ∈ Q, a ∈ A, q∗0 ,
is the initial state, F is the set of final states and F ⊆ Q. A string x is accepted by finite state automata∑

= (Q,A, δ, q∗0 , F ) if δ (q∗0 , x) = p for some p ∈ F. A final state is also called an accepting state. The initial
state is denoted by an arrow mark and the final state is denoted by a double circle. The input is accepted
when all input is read and match by transitions and the automaton is in a final state [6].

A finite-state automaton is a machine that constructs computing by reading a one-way read-only tape.
The input is produced up of words written on the tape. The written words use a describe alphabet which
is called the input alphabet and the words create a string. The Finite automata will be produced up of the
input-output relations at every state and also the modifications of the states that will appear in receiving
the input at a particular state. At the end of the process, it becomes visible whether the input is accepted
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or rejected by the automaton machine. Also, Deterministic refers to the distinctiveness of the computation.
The finite automata are called deterministic finite automata if the machine reads an input string one symbol
at a time [6, 8]. Tree automata are state machines. They deal with tree structures rather than the strings
of the more traditional state machine [4].

In Combinatorics and Number theory, a partition of a positive integer n, also called an integer partition,
is a way of writing n as a sum of natural numbers. If order matters, the sum becomes a composition or
ordered partition. Thus, a composition or an ordered partition of an integer n is a way of writing n as the
sum of a sequence of positive integers [2].

3 Main Results
In this section, we present our result with different proofs. Also we discuss some examples.

Theorem 3.1. In a finite automata, if q0 is the initial state, qm is the final state with m = nk, where
m,n, k ∈ N, and automata accept inputs of denomination ln, where 1 ≤ l ≤ k then the number of acceptable
strings in the automata is 2(k−1).

Proof. Let lsn, s ∈ {1, 2, ..., r}, 1 ≤ r ≤ k is a sequence of automaton acceptable inputs. Then, we have
nk = (l1 + l2 + ... + lr)n. i.e. k = l1 + l2 + ... + lr. So, without loss of generality, let n = 1 be the lowest
possible denomination accepted by the automaton. Hence m = k. Now, Consider the finite tree automata
with states {q0, q1, ...qk} with a direct transition function from state qi to state qj if and only if i < j. ql has
stored value l, 0 ≤ l ≤ k. We get the final state when we reach the value m = k, i.e., when we reach state qk.
Now, going from state qi to state qj , i < j, takes us from value i to value j; i.e. input (j − i) is added to the
present value i.

Figure 3.1. A state diagram of a finite Tree automata

A path (transition sequence) from state q0 to state qk will be define an automaton acceptable strings. Eg.
When k = 3 in the tree automaton below, we have (q0, q1, q2, q3), (q0, q1, q3), (q0, q3), (q0, q2, q3) are acceptable
strings.

Since q0 is always the starting states and qk the final states, we have each subset of S = {q1, q2, ..., qk−1}
correspond to a unique (path) transition function from q0 to qk and vice-versa. Therefore, there are a total
of 2|S| = 2k−1 transition functions or paths from q0 to qk and therefore, there is 2k−1 acceptable strings of
the finite automaton.

Alternate proof. If lsn, s ∈ {1, 2, ..., r}, 1 ≤ r ≤ k is an accepted sequence of inputs, then, we have
nk = (l1 + l2 + ...+ lr)n. i.e. k = l1 + l2 + ...+ lr.
So, without loss of generality, let n = 1 be the lowest possible denomination accepted by the automaton.
Hence we get m = k. Now k = l1 + l2 + ...+ lr. means {l1, l2, ..., lr} forms a partition of k.
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Figure 3.2. A state diagram of a Tree automata with 3 states

Let N = No. of acceptable strings of the automaton.
We Claim that N = 2k−1.

Clearly, any acceptable strings, or sequence of inputs form an ordered partition of m and vice-
versa.Therefore, there are as many acceptable strings as there are ordered partition of m. Now m =
1 + 1 + ...+ 1(k-times of 1) = k, there are (k− 1)‘+′ signs between the ‘k′1s. We define an operationdeleting
a + sign as replacing the ‘1′s joined by the + signs to be deleted with their sum, keeping the remaining
+ signs undisturbed. With this interpretation, each set of choice for ‘+′ signs to be deleted corresponds
to a unique ordered partition of ‘m and vice-versa. Eg. m = 3, 3 = 1 + 1 + 1, Choosing the 2nd ‘+′ sign
correspond to the ordered partition 1 + (1 + 1) i.e. 1 + 2,and the ordered partition 2 + 1 i.e. (1 + 1) + 1
corresponds to choosing and deleting the 1st ‘+′ sign. Similarly choosing both the ‘+′ sign correspond to
(1 + 1 + 1) = 3 and not choosing any of the + sign corresponds to the partition 1 + 1 + 1 of 3 etc. Since
there are 2 choices for each + sign, viz. to delete or not to delete, and there are a total of (k− 1)+ signs, so
there are 2k−1 such choices in total and as such there are 2k−1 ordered partition of m. Hence, N = 2k−1.

Example 3.1. In a finite automata, if q0 is the initial states, qm is the final state with n = 1,m = k = 4,
Allowed denomination i.e inputs are S = 1, 2, 3, 4. There are 24−1 = 8 accepted sequences of inputs by the

Figure 3.3. A state diagram of a Tree automata with 4 states

finite automata. They are (1,2,3,4), (1,2,4), (1,3,4), (2,3,4), (2,4), (3,4), (1,4), and (4). These are obtained
by traversing all the transition functions from the state q0 to state q4.

Alternatively, For 4 = 1 + 1 + 1 + 1, there are four ‘1s and 3‘ + signs. We define a function f3 on all
binary strings of length 3 to the ordered partition of 4. Now,
f3(000) = 1 + 1 + 1 + 1,
f3(001) = 1 + 1 + (1 + 1) = 1 + 1 + 2,
f3(010) = 1 + (1 + 1) + 1 = 1 + 2 + 1,
f3(011) = 1 + (1 + 1 + 1) = 1 + 3,
f3(100) = (1 + 1) + 1 + 1 = 2 + 1 + 1,
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f3(101) = (1 + 1) + (1 + 1) = 2 + 2,
f3(110) = (1 + 1 + 1) + 1 = 3 + 1,
f3(111) = (1 + 1 + 1 + 1) = 4.
Corresponding to each binary string of length 3 we get an ordered partition of 4 which in turn corresponds
to an acceptable sequence of inputs viz. (1, 2, 3, 4), (1, 2, 4), (1, 3, 4), (1, 4), (2, 3, 4), (2, 4), (3, 4), (4)
respectively and these are precisely 8 in numbers.

Example 3.2. In a finite automata, if q0 is the initial states, qm is the final state with n = 5,m = 5k = 20,
Allowed denomination are multiple of 5 i.e inputs are S = 5, 10, 15, 20. There are 24−1 = 8 accepted

Figure 3.4. A state diagram of a Tree automata with 4 states

sequences of inputs by the finite automata. They are (5,10,15,20), (5,10,20), (5,15,20), (5,20), (10,15,20),
(10,20), (15,20), and (20). These are obtained by traversing all the transition functions from the state q0 to
state q20.

Alternately, For 20 = 5 + 5 + 5 + 5, there are four 5s and 3 + signs. We define a function g3 on all binary
strings of length 3 to the ordered partition of 20.
Now,
g3(000) = 5 + 5 + 5 + 5,
g3(001) = 5 + 5 + (5 + 5) = 5 + 5 + 10,
g3(010) = 5 + (5 + 5) + 5 = 5 + 10 + 5,
g3(011) = 5 + (5 + 5 + 5) = 5 + 15,
g3(100) = (5 + 5) + 5 + 5 = 10 + 5 + 5,
g3(101) = (5 + 5) + (5 + 5) = 10 + 10,
g3(110) = (5 + 5 + 5) + 5 = 15 + 5,
g3(111) = (5 + 5 + 5 + 5) = 20.
Corresponding to each binary string of length 3 we get an ordered partition of 20 which in turn corresponds
to an acceptable sequence of inputs (5,10,15,20), (5,10,20), (5,15,20), (5,20), (10,15,20), (10,20), (15,20), and
(20) respectively and these are precisely 8 in numbers.
We note that in both the examples there are exactly 8 accepted sequence of inputs. This was bound to
happen since we have 5k = 5l1 + 5l2+ ... +5lr ⇔ k = l1 + l2+ ... +lr.

We conclude with a final example.

Example 3.3. In a finite automata, if q0 is the initial states, qm is the final state with n = 1,m = k = 5,
Allowed denomination i.e inputs are S = 1, 2, 3, 4, 5 There are 25−1 = 16 accepted sequences of inputs by the
finite automata. They are (1,2,3,4,5), (1,2,3,5), (1,2,4,5), (1,3,4,5), (2,3,4,5), (1,2,5), (1,4,5), (3,4,5), (1,5),
(4,5), (2,5), (3,5), (2,4,5), (1,3,5), (2,3,5),and (5). These are obtained by using transition functions from the
state q0 to state q5.

Alternatively, For 5 = 1 + 1 + 1 + 1 + 1, there are five 1s and 4 + signs. We define a function h4 on all
binary strings of length 4 to the ordered partition of 5. Now,
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Figure 3.5. A state diagram of a Tree automata with 5 states

h4(0000) = 1 + 1 + 1 + 1 + 1,
h4(0001) = 1 + 1 + 1 + (1 + 1) = 1 + 1 + 1 + 2,
h4(0010) = 1 + 1 + (1 + 1) + 1 = 1 + 1 + 2 + 1,
h4(0011) = 1 + (1 + 1) + 1 + 1 = 1 + 2 + 1 + 1,
h4(0100) = (1 + 1) + 1 + 1 + 1 = 2 + 1 + 1 + 1,
h4(0101) = 1 + 1 + (1 + 1 + 1) = 1 + 1 + 3,
h4(0110) = 1 + (1 + 1 + 1) + 1 = 1 + 3 + 1,
h4(0111) = (1 + 1 + 1) + 1 + 1 = 3 + 1 + 1,
h4(1000) = 1 + (1 + 1 + 1 + 1) = 1 + 4,
h4(1001) = (1 + 1 + 1 + 1) + 1 = 4 + 1,
h4(1010) = (1 + 1) + (1 + 1 + 1) = 2 + 3,
h4(1011) = (1 + 1 + 1) + (1 + 1) = 3 + 2,
h4(1100) = (1 + 1) + (1 + 1) + 1 = 2 + 2 + 1,
h4(1101) = 1 + (1 + 1) + (1 + 1) = 1 + 2 + 2,
h4(1110) = (1 + 1) + 1 + (1 + 1) = 2 + 1 + 2,
h4(1111) = (1 + 1 + 1 + 1 + 1) = 5.
Corresponding to each binary string of length 4 we get an ordered partition of 5 which in turn corresponds
to an acceptable sequence of inputs viz. (1,2,3,4,5), (1,2,3,5), (1,2,4,5), (1,3,4,5), (2,3,4,5), (1,2,5), (1,4,5),
(3,4,5), (1,5), (4,5), (2,5), (3,5), (2,4,5), (1,3,5), (2,3,5), and (5) respectively and these are precisely 16 in
numbers.

4 Conclusion
We have presented two different proofs of a theorem in automata, each being different in its approach. We
looked at an Graph theoretic proof using the concept of a tree, and our second proof used another very
interesting concept of ordered partition or composition of numbers from Combinatorics and Number theory.
Finally, we examplified the theorem with both the approaches.
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Abstract

We introduce a class of analytic functions and obtain sharp upper bounds of the functional |a3−µa22|
for the analytic function f(z) = z +

∑∞
n=2 anz

n, |z| < 1 belonging to this class with special character

that it tends to the class of convex functions as α→ π

2
.
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1 Introduction
Let A denote the class of functions of the form

(1.1) f (z) = z +

∞∑
n=2

anz
n,

which are analytic in the unit disc E = {z : |z| < 1}. Let S be the class of functions of the form (1.1), which
are analytic univalent in E.

In 1916, Bieber Bach [1, 2] proved that |a2| ≤ 2 for the functions f(z)S. In 1923, Löwner [10] proved that
|a3| ≤ 3 for the functions f(z) ∈ S.

With the known estimates |a2| ≤ 2 and |a3| ≤ 3, it was expected to try to find some relation between
a3 and a2

2 for the class S, Fekete and Szegö [4] [8]used Löwner’s method to prove the following well known
result for the class S.

Let f(z) ∈ S, then

(1.2)
∣∣a3 − µa2

2

∣∣ =


3− 4µ ifµ ≤ 0

1 + 2exp

(
−2µ

1− µ

)
if 0 ≤ µ ≤ 1

4µ− 3 ifµ ≥ 1

.

The inequality (1.2) plays a very important role in determining estimates of higher coefficients for some sub
classes S [3, 9].

Let us define some subclasses of S.

We denote by S∗, the class of univalent starlike functions

g(z) = z +

∞∑
n=2

bnz
n ∈ A

and satisfying the condition

(1.3) Re

(
zg (z)

g (z)

)
> 0, z ∈ E.
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We denote by K, the class of univalent convex functions

h(z) = z +

∞∑
n=2

cnz
n ∈ A

and satisfying the condition

(1.4) Re

(
(zh′(z)

h′(z)

)
> 0, z ∈ E.

A function f(z) ∈ A is said to be close to convex if there exists g(z) ∈ S∗ such that

(1.5) Re

(
zf ′ (z)

g (z)

)
> 0, z ∈ E.

The class of close to convex functions is denoted by C and was introduced by Kaplan [7] and it was shown
by him that all close to convex functions are univalent.

(1.6) S∗ (A,B) =

{
f (z) ∈ A;

zf ′ (z)

f (z)
≺ 1 +Az

1 +Bz
, −1 ≤ B < A ≤ 1, z ∈ E

}
,

(1.7) K (A,B) =

{
f (z) ∈ A;

(zf ′ (z))
′

f ′(z)
≺ 1 +Az

1 +Bz
, −1 ≤ B < A ≤ 1, z ∈ E

}
.

It is obvious that S∗(A,B) is a subclass of S∗ and K (A,B) is a subclass of K.
We introduce a new subclass asf(z) ∈ A;

(
zf ′(z)

f(z)

)β
+ tanα

(
(zf ′(z))

′

f ′(z)

)1−β

≺
{

1 + w(z)

1− w(z)

}γ
; z ∈ E


and we shall denote this class as KS∗ (α, β} .

We shall deal with two subclasses of S∗ (f, f ′, α, β) defined as follows in our next paper:

(1.8) KS∗ (α, β,A,B) =

f(z) ∈ A;

(
zf ′(z)

f(z)

)β
+ tanα

(
(zf ′(z))

′

f ′(z)

)1−β

≺ 1 +Az

1 +Bz
; z ∈ E

 ,

(1.9) KS∗ (A,B, α, β, γ) =

f(z) ∈ A;

(
zf ′(z)

f(z)

)β
+ tanα

(
(zf ′(z))

′

f ′(z)

)1−β

≺
{

1 +Az

1 +Bz

}γ
; z ∈ E

 .

Several researchers established new subclasses using these classes and gave amazing results about coefficient
inequality. [12], [15].

Symbol ≺ stands for subordination, which we define as follows:

Principle of Subordination. Let f(z) and F (z) be two functions analytic in E. Then f(z) is called
subordinate to F(z) in E if there exists a function w(z) analytic in E satisfying the conditions w(0) = 0 and
|w(z)| < 1 such that f(z) = F (w(z)); z E and we write f(z) ≺ F (z).[11]

By U , we denote the class of analytic bounded functions of the form

(1.10) w(z) =

∞∑
n=1

dnz
n, w(0) = 0, |w(z)| < 1.

It is known that

(1.11) |d1| ≤ 1, |d2| ≤ 1− |d1|2.
2 Preliminary Lemmas.

For 0 < c < 1, we write w(z) =

(
c+ z

1 + cz

)
so that

(2.1)
1 + w(z)

1− w(z)
= 1 + 2cz + 2z2 + · · · .
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3 Main Results
Theorem 3.1. Let f(z) ∈ KS∗(α, β, γ)
|a3 − µa2

2| ≤

1

{β + 2(1− β) tanα}2

[
{4(1− β)(β + 2)α− β(β − 3)}{β + 2(1− β) tanα}

{β + 3(1− β) tanα}
− 4γ2µ

]

if µ ≤ {4(1− β)(β + 2) tanα− β(β − 3)}{β + 2(1− β) tanα} − γ{(1− α)β + 2α(1− β)}
4{β + 3(1− β) tanα}

(3.1)

1

3α+ β − 4αβ

if
{4 (1− β) (β + 2) tanα − β(β − 3)} {β + 2 (1− β) tanα } − γ{(1− α)β + 2α(1− β)}2

4 {β + 3 (1− β) tanα }
≤

µ ≤ {4 (1− β) (β + 2) tanα − β(β − 3)} {β + 2 (1− β) tanα }+ γ{(1− α)β + 2α(1− β)}2

4γ2 {β + 3 (1− β) tanα }

(3.2)

1

{β + 2 (1− β) tanα }2

[
4γ2µ− {4 (1− β) (β + 2) tanα − β (β − 3)} {β + 2 (1− β) tanα }

{β + 3 (1− β) tanα }

]
if µ ≥ {4 (1− β) (β + 2) tanα − β (β − 3)} {β + 2 (1− β) tanα }+ γ{(1− α)β + 2α (1− β)}2

4γ2 {β + 3 (1− β) tanα }

(3.3)

The results are sharp.

Proof . By definition of KS∗(α, β, γ), we have

(3.4) f(z) ∈ A;

(
zf ′(z)

f(z)

)β
+ tanα

(
(zf ′(z))

′

f ′(z)

)1−β

=

{
1 + w(z)

1− w(z)

}γ
;w(z) ∈ U

Expanding the series (2.1), we get

{
1 + βa2z + (2βa3+

β(β − 3)

2
a2

2)z
2

+ . . .

}
+ tanα {1 + 2(1− β) a2z + 2(1− β)(3a3−(β + 2)a2

2)z
2

+ . . . }

=
(
1 + 2γc1z + 2γ

(
c2 + γc1

2
)
z2 + . . .

)
.

(3.5)

Identifying terms in (3.5), we get

(3.6) a2 =
2γ

β + 2 (1− β) tanα
c1.

(3.7) a3 =
γ

β + 3 (1− β) tanα
c2 +

4 (1− β) (β + 2) tanα − β(β − 3)

{β + 3 (1− β) tanα } {β + 2 (1− β) tanα }}
γ2 c1

2.

From (3.6) and (3.7), we obtain

a3 − µa2
2 =

γc2
β + 3 (1− β) tanα

+

[
4 (1− β) (β + 2) tanα − β(β − 3)

{β + 3 (1− β) tanα } {β + 2 (1− β) tanα }}
− 4γ2µ

{β + 2 (1− β) tanα }2

]
c21.

(3.8)

Taking absolute value and using Triangular inequality, (3.8) can be rewritten as
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|a3 − µa2
2| ≤

γ|c2|
β + 3 (1− β) tanα

+
1

{β + 2 (1− β) tanα }2

∣∣∣∣{4 (1− β) (β + 2) tanα − β(β − 3)} {β + 2 (1− β) tanα }}
{β + 3 (1− β) tanα }

− 4γ2µ

∣∣∣∣ |c21|(3.9)

Using (1.9) in (3.6), simple calculations yield

(3.10) |a3 − µa2
2| ≤

γ

β + 3 (1− β) tanα
+

1

{β + 2 (1− β) tanα }2[ ∣∣∣∣{4 (1− β) (β + 2) tanα − β(β − 3)} {β + 2 (1− β) tanα }}
{β + 3 (1− β) tanα }

− 4γ2µ

∣∣∣∣− γ{(1− α)β + 2α(1− β)}2

β + 3 (1− β) tanα

]
|c1|2

Case I. µ ≤ {4 (1− β) (β + 2) tanα − β(β − 3)} {β + 2 (1− β) tanα }}
4γ2 {β + 3 (1− β) tanα }

. In this case, (3.10) can be

rewritten as

(3.11) |a3 − µa2
2| ≤

γ

β + 3 (1− β) tanα
+

1

{β + 2 (1− β) tanα }2[
{4 (1− β) (β + 2) tanα − β(β − 3)} {β + 2 (1− β) tanα }} − γ{(1− α)β + 2α(1− β)}2

{β + 3 (1− β) tanα }
− 4µ

]
|c1|2.

Subcase I (a). µ ≤ {4 (1− β) (β + 2) tanα − β(β − 3)} {β + 2 (1− β) tanα }} − γ{(1− α)β + 2α(1− β)}2

4 {β + 3 (1− β) tanα }
.

Using (1.9), (3.8) becomes
(3.12)∣∣a3 − µa2

2

∣∣ ≤ 1

{β + 2 (1− β) tanα }2

[
{4 (1− β) (β + 2) tanα − β(β − 3)} {β + 2 (1− β) tanα }}

{β + 3 (1− β) tanα }
− 4γ2µ

]
.

Subcase I (b). µ ≥ {4 (1− β) (β + 2) tanα − β(β − 3)} {β + 2 (1− β) tanα }} − γ{(1− α)β + 2α(1− β)}2

4 {β + 3 (1− β) tanα }
.

We obtain from (3.8)

(3.13)
∣∣a3 − µa2

2

∣∣ ≤ γ

β + 3 (1− β) tanα
.

Case II. µ ≥ {4 (1− β) (β + 2) tanα − β(β − 3)} {β + 2 (1− β) tanα }}
4γ2 {β + 3 (1− β) tanα }

Preceding as in case I, we get

(3.14)
∣∣a3 − µa2

2

∣∣ ≤ 1

3α+ β − 4αβ
+

1

{(1− α)β + 2α (1− β)}2[
4γ2µ− {4 (1− β) (β + 2) tanα − β (β − 3)} {β + 2 (1− β) tanα }}+ γ{(1− α)β + 2α (1− β)}2

{β + 3 (1− β) tanα }

]
|c1|2.

Subcase II (a).µ ≤ {4 (1− β) (β + 2) tanα − β(β − 3)} {β + 2 (1− β) tanα }}+ γ{(1− α)β + 2α(1− β)}2

4γ2 {β + 3 (1− β) tanα }

(3) takes the form

(3.15)
∣∣a3 − µa2

2

∣∣ ≤ γ

β + 3 (1− β) tanα
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Combining subcase I (b) and subcase II (a), we obtain∣∣a3 − µa2
2

∣∣ ≤ γ

β + 3 (1− β) tanα
if(3.16)

{4 (1− β) (β + 2) tanα − β(β − 3)} {β + 2 (1− β) tanα }} − γ{(1− α)β + 2α(1− β)}2

4 {β + 3 (1− β) tanα }
≤

µ ≤ {4 (1− β) (β + 2) tanα − β(β − 3)} {β + 2 (1− β) tanα }}+ γ{(1− α)β + 2α(1− β)}2

4γ2 {β + 3 (1− β) tanα }

Subcase II (b). µ ≥ {4 (1− β) (β + 2) tanα − β(β − 3)} {β + 2 (1− β) tanα }}+ γ{(1− α)β + 2α(1− β)}2

4γ2 {β + 3 (1− β) tanα }
Preceding as in subcase I (a), we get
(3.17)∣∣a3 − µa2

2

∣∣ ≤ 1

{β + 2 (1− β) tanα }2

[
4γ2µ− {4 (1− β) (β + 2) tanα − β(β − 3)} {β + 2 (1− β) tanα }}

{β + 3 (1− β) tanα }

]
.

Combining (3.9), (3.13) and (3.14), the theorem is proved.

Extremal function for (3.1) and (3.3) is defined by

f1 (z) = (1 + az)
b
,

where

a =
2γ {β + 3(1− β) tan a}

{4(1− β)(β + 2) tanα− β(β − 3)}{β + 2(1− β) tan a}3 − 2γ

and

b =
{4 (1− β) (β + 2) tanα − β(β − 3)} {β + 2 (1− β) tanα }}3 − 2γ

{β + 3 (1− β) tanα } {β + 2 (1− β) tanα }}
.

Extremal function for (3.2) is defined by f2 (z) = z(1 + cz2)
d
,

where c =
tanα

β + 3 (1− β) tanα
and d =

γ

tanα
.

Corollary 3.1. Putting γ = 1, β = 0 and applying limit as α→ π
2 in the theorem, we get

∣∣a3 − µa2
2

∣∣ ≤


1− µ, if µ ≤ 1;

1

3
if 1 ≤ µ ≤ 4

3
;

µ− 1, if µ ≥ 4

3
.

These estimates were derived by Keogh and Merkes [8] and are results for the class of univalent convex
functions.
Corollary 3.2. Putting α = 0, β = 1, γ = 0 in the theorem, we get

∣∣a3 − µa2
2

∣∣ ≤


3− 4µ if µ ≤ 1

2
;

1 if
1

2
≤ µ ≤ 1;

4µ− 3, if µ ≥ 1.

These estimates were derived by Keogh and Merkes [8] and are results for the class of univalent starlike
functions.
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Conclusion : A subclass of analytic functions which take a broad view of some well-known subclasses
of analytic and univalent functions was demarcated. The better estimates for the Fekete-Szeg functional
for the defined class were obtained along with extremal functions. The study combines existing results and
attains new outcomes in geometric function theory. Forthcoming researches can be done to acquire the
geometric properties.
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[4] M. Fekete and G. Szegö, Eine Bemerkung über ungerade schlichte Funktionen, J. London Math.

Soc., 8 (1933), 85-89.
[5] R. M. Goel and B.S. Mehrok, A subclass of univalent functions, Houston Journal of Mathematics, 8

(1982), 343-357.
[6] R. M. Goel and B.S. Mehrok, A coefficient inequality for a subclass of closeto-convex functions, Serdica

Bul. Math. Pubs., 15 (1989), 327-335.
[7] W. Kaplan, Close-to-convex schlicht functions, Michigan Mathematical Journal, 1 (1952), 169-185.
[8] S. R. Keogh and E. R. Merkes, A Coefficient inequality for certain classes of analytic functions, Proc.

Amer. Math. Society, 20 (1989), 8-12.
[9] B. O. Kunle, The fifth and sixth coefficients of α-close-to-convex functions, Kragujevac J. Math., 32

(2009), 5-12.
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Abstract

In this paper, we discuss the harmonious coloring and investigate the harmonious chromatic number
of central and middle graph of tadpole graph and harmonious chromatic number of central and middle
graph of line graph of tadpole graph, denoted by χH(C(Tm,n)), χH(M(Tm,n)) and χH(C(L(Tm,n))),
χH(M(L(Tm,n))) respectively.

2020 Mathematical Sciences Classification. 05C15, 05C76
Keywords and Phrases: Harmonious coloring, Harmonious chromatic number, Central graph, Middle
graph, Line graph and Tadpole graph.

1 Introduction
A proper vertex coloring of a graph G is a function c : V (G) −→ {1, 2, , k} in which c(u) and c(v) are different
for the adjacent vertices u and v and smallest number of colors are needed to color a graph G is called its
chromatic number, and is often denoted χ(G). The Harmonious coloring [5, 6, 7, 9] of a simple graph G is
proper vertex coloring in which no any two edges share the same color and minimum number of colors are to
be used for harmonious coloring is known as the harmonious chromatic number, denoted by χH(G). For a
graph G = (V,E), subdividing each edge of the given graph G exactly once and joining all the non-adjacent
vertices of it is the Central graph [3, 7] C(G) of G and the middle graph M(G) [8] is defined in such a way
that the vertex set of M(G) is V (G) ∪ E(G) and two vertices x, y of M(G) are adjacent in M(G)) when
one of the following holds: (i) x, y are in E(G) and x, y are adjacent in G. (ii) x is in V (G), y is in E(G),
and x, y are incident in G and the line Graph [4] of a simple graph G, denoted by L(G) and defined in such
a way that there exactly one vertex v(e) in L(G) for each edge e in G and for any two edges e and e′ in G,
L(G) has an edge between v(e) and v(e′), if and only if e and e′ are incident with the same vertex in G. The
(m,n)-tadpole graph [1, 2, 4] denoted by Tm,n (m ≥ 3, n ≥ 2) is obtained by joining cycle Cm and path Pn,
with a bridge that consists m+ n vertices and m+ n edges.

2 Harmonious Chromatic Number of Tadpole Graph
Theorem 2.1. For central graph of tadpole graph Tm,n, the harmonious chromatic number, χH(C(Tm,n) =
2m+ n.

Proof. Let Tm,n be a tadpole graph consisting m + n vertices and m + n edges. V (Tm,n) = {ui : 1 ≤
i ≤ m} ∪ {vj : 1 ≤ j ≤ n} and E(Tm,n) = {u1u2, u2u3, ..., umu1} ∪ {u1v1, v1v2, v2v3, ..., vn−1vn}. To
get the central graph subdivide each edge of Tm,n by the vertices u′i and v′j (1 ≤ i ≤ m)(1 ≤ j ≤ n).
V (C(Tm,n)) = {ui : 1 ≤ i ≤ m} ∪ {u′i : 1 ≤ i ≤ m} ∪ {vj : 1 ≤ j ≤ n} ∪ {v′j : 1 ≤ j ≤ n}. Coloring
the vertices as follows; define coloring c : V (C(Tm,n)) −→ {1, 2, 3, ..., (2m + n)} by c(ui) = i (1 ≤ i ≤ m),
c(u′i) = m+ i (1 ≤ i ≤ m), c(vj) = 2m+ j (1 ≤ j ≤ n), c(v′j) = m+ 1 + j (1 ≤ j ≤ n).
Claim 2.1: c is proper; from above each c(ui) and c(vi) and its neighbors are assigned by different colors i.e.
c(ui) 6= c(vi), although c(u′i) = c(vj), but these vertices are at least at a distance 2, which leads to proper
coloring.
Claim 2.2; c is harmonious; it is clear that no two edges share the same color pair and we assign different
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colors on the vertices in such a way that they are at least at a distance 3. Therefore it is harmonious.
Claim 2.3; c is minimum; all the vertices are colored by 2m+n colors, if we repeat (assign) any color on any
vertex from these assigned colors, color pairs will be repeated which contradicts the harmonious coloring,
therefore it is minimum. Hence the theorem. Figure 2.1 shows the central graph of T4,3 for with coloring.

Figure 2.1: C(T4,3) with coloring, χHC(T4,3) = 11.

Theorem 2.2. For middle graph of tadpole graph, Tm,n, the harmonious chromatic number, χH(M(Tm,n)) =
2m+ n.

Proof. Let Tm,n be a tadpole graph consisting m + n vertices and m + n edges. V (Tm,n) = {ui : 1 ≤
i ≤ m} ∪ {vj : 1 ≤ j ≤ n} and E(Tm,n) = {u1u2, u2u3, ..., umu1} ∪ {u1v1, v1v2, v2v3, ..., vn−1vn}. For
getting middle graph, let subdivide each edge of Tm,n by the vertices u′i and v′j (1 ≤ i ≤ m)(1 ≤ j ≤ n).
V (M(Tm,n)) = {ui : 1 ≤ i ≤ m} ∪ {vj : 1 ≤ j ≤ n} ∪ {u′i : 1 ≤ i ≤ m} ∪ {v′j : 1 ≤ j ≤ n}. Coloring
the vertices as follows; define coloring c : V (M(Tm,n)) −→ {1, 2, 3, ..., (2m + n)} by c(ui) = i (1 ≤ i ≤ m),
c(u′i) = m+ i (1 ≤ i ≤ m), c(vj) = j + 1 (1 ≤ j ≤ n), c(v′j) = 2m+ j (1 ≤ j ≤ n). For further proof follow
Theorem 2.1. Figure 2.2 shows the middle graph of T3,4 with coloring.

Figure 2.2: T3,4 with coloring, χH(M(T3,4)) = 10.

3 Harmonious Chromatic Number of Line Graph of Tadpole Graph
Theorem 3.1. For central graph of line graph of tadpole graph L(Tm,n), the harmonious chromatic number,
χH(C(L(Tm,n))) = 2m+ n+ 2.

Proof. Let L(Tm,n) be a line graph of tadpole graph consisting m + n vertices and m + n + 1 edges.
V (L(Tm,n)) = {xi : 1 ≤ i ≤ m} ∪ {yj : 1 ≤ j ≤ n} and E(L(Tm,n)) = {x1x2, x2x3, ..., xmx1} ∪
{x1y1, xmy1, y1y2, y2y3, ..., yn−1yn}. Now to get the central graph subdivide each edge of L(Tm,n) by the
vertices z1, z2, x′i and y′j (1 ≤ i ≤ m)(1 ≤ j ≤ n− 1). V (C(L(Tm,n))) = {z1, z2} ∪ {xi : 1 ≤ i ≤ m} ∪ {x′i :
1 ≤ i ≤ m} ∪ {vj : 1 ≤ j ≤ n} ∪ {y′j : 1 ≤ j ≤ n − 1}. Coloring the vertices as follows; define coloring
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c : V (C(L(Tm,n))) −→ {1, 2, 3, ..., (2m + n + 2)} by c(xi) = i (1 ≤ i ≤ m), c(x′i) = m + i (1 ≤ i ≤ m),
c(z1) = 2m+ 1, c(z2) = 2m+ 2, c(yj) = 2m+ 2 + j (1 ≤ j ≤ n), c(y′j) = m+ j (1 ≤ j ≤ n− 1). Figure 3.1
shows the central graph of L(T3,4) with coloring. Now we proceed as done in Theorem 2.1.

Figure 3.1: C(L(T3,4)) with coloring, χHC(L(T3,4)) = 12.

Theorem 3.2. For middle graph of line graph of tadpole graph L(Tm,n), the harmonious chromatic number,
χH(M(L(Tm,n))) = 2m+ n+ 2.

Proof. Let L(Tm,n) be a line graph of tadpole graph consisting m + n vertices and m + n + 1 edges.
V (L(Tm,n)) = {xi : 1 ≤ i ≤ m} ∪ {yj : 1 ≤ j ≤ n} and E(L(Tm,n)) = {x1x2, x2x3, ..., xmx1} ∪
{x1y1, xmy1, y1y2, y2y3, ..., yn−1yn}. Now to get the middle graph subdivide each edge of L(Tm,n) by the
vertices z1, z2, x′i and y′j (1 ≤ i ≤ m)(1 ≤ j ≤ n− 1). V (C(L(Tm,n))) = {z1, z2} ∪ {xi : 1 ≤ i ≤ m} ∪ {x′i :
1 ≤ i ≤ m} ∪ {vj : 1 ≤ j ≤ n} ∪ {y′j : 1 ≤ j ≤ n − 1}. For further proof follow Theorem 2.1. Figure 3.2
shows the middle graph of L(T3,4) with coloring.

Figure 3.2: M(L(T3,4)) with coloring, χHM(L(T3,4)) = 12.

4 Conclusion
In this paper, we investigate the harmonious chromatic number of central graph, middle graph and line
graph of tadpole graph and we find that the harmonious chromatic number of central graph of line graph of
tadpole graph is same as the harmonious chromatic number of middle graph of line graph of tadpole graph
i.e. χH(C(L(Tm,n))) = χH(M(L(Tm,n))).
Acknowledgement. We are very much grateful to the Editor and Reviewer for their valuable suggestions
for improving the paper in its present form.
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Abstract

In this paper we prove the common fixed point theorems in complex valued metric spaces satisfying
E.A. property and intimate mapping. Our result generalizes some recent results in the literature due to
Azam et al.(2011) . Also we improve the results of Rajput & Singh(2014) satisfying E.A. property and
Meena(2015) regarding intimate mapping. Some concepts have been taken from the results obtained
by Choi et al.(2017) and Jebril et al.(2019) to improve our results. Also some examples are given to
illustrate our obtained results.
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1 Introduction, Definitions and Notations
The concept of fixed point theorem first introduced by Poincare & Miranda[15] in 1883. After that Brouwer[3]
published his famous fixed point theorem in 1912. The theorem states that “If B is a closed unit ball in
Rn and if T : B → B is continuous then T has a fixed point in B”. In 1992 Banach[4] proved his famous
fixed point theorem in which contraction principle is the main tools. Banach’s fixed point theorem plays
a major role in fixed point theory. It has applications in many branches of mathematics. Because of its
usefulness, a lot of articles have been dedicated to the improvement and generalization of that result. Most
of these generalizations have been made by considering different contractive type conditions in different
spaces{cf.[5]− [21]}. In 2011, Azam et al.[2] made a generalization by introducing a complex valued metric
space using some contractive type conditions.Very recently, Rajput & Singh [18] generalized this result by
replacing the constants of contraction by some control functions. The purpose of this work is to obtain a
common fixed point result for three self mappings in complex valued metric spaces which generalizes the
results of [1] and improve the results of Rajput & Singh[18] satisfying E.A. property and Meena[14] regarding
intimate mapping.

We write regular complex number as z = x+ iy where x and y are real numbers and i2 = −1. Let C1 be
the set of complex numbers and z1 and z2 ∈ C1. Define a partial order relation - on C1 as follows:

z1 - z2 if and only if Re(z1) ≤ Re (z2) and Im (z1) ≤ Im (z2) .

Thus z1 - z2 if one of the following conditions is satisfied:
(i)Re(z1) = Re(z2) and Im(z1) = Im(z2), (ii)Re(z1) < Re(z2) and Im(z1) = Im(z2), (iii)Re(z1) =

Re(z2) and Im(z1) < Im(z2), (iv)Re(z1) < Re(z2) and Im(z1) < Im(z2).
We write z1 � z2 if z1 - z2 and z1 6= z2 i.e., one of (ii), (iii) and (iv) is satiesfied and we write z1 ≺ z2 if

only (iv) is satisfied.
Taking this into account some fundamental properties of the partial order - on C1 as follows:
(1) If 0 - z1 - z2 then |z1| < |z2| ;
(2) If z1 - z2, z2 - z3 then z1 - z3 and
(3) If z1 - z2 and 0 < λ < 1 is a real number then λz1 - z2.
Azam et al. defined the complex valued valued metric space in the following way:
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Definition 1.1. Let X be a nonempty set where as C1 be the set of complex numbers. Suppose that the
mapping d : X ×X → C1 satisfies the following conditions:

(d1) : 0 - d(x, y),for all x, y ∈ X and d(x, y) = 0 if and only if x = y;
(d2) : d(x, y) = d(y, x) for all x, y ∈ X;
(d3) : d(x, y) - d(x, z) + d(z, y),for all x, y, z ∈ X.
Then d is called a complex valued metric on X and (X, d) is called a complex valued metric space.

Definition 1.2 ([2]). Let {xn} be sequence in X and x ∈ X. If for every c ∈ C1 with 0 ≺ c, there is an
n0 ∈ N such that d (xn, x) ≺ c for all n > n0 then x is called the limit of {xn} and we write lim

n→∞
xn = x or

xn → x as n→∞.

Definition 1.3 ([2]). If every Cauchy sequence is convergent in C1 then the space is called a complete
complex valued metric space.

Definition 1.4 ([6]). Let f and g be two self-maps defined on a set X. Then f and g are said to be weakly
compatible if they commute at their coincidence points.

Definition 1.5 ([22]). Let T, S : X → X be two self mappings of a bicomplex valued metric space (X, d) .
The pair (T, S) are said to satisfy E. A. property if there exists a sequence {xn} in X such that lim

n→∞
Sxn =

lim
n→∞

Txn = t for some t ∈ X.

Definition 1.6 ([21]). The self mappings T , S : X → X are said to satisfy the common limit in the range
of S property (CLRs property) if lim

n→∞
Sxn = lim

n→∞
Txn = Sx for some x ∈ X.

Definition 1.7 ([14]). Let S and T be self maps on a bicomplex valued metric space (X, d) . Then the pair
{S, T} is said to be T−intimate if and only if αd (TSzn, T zn) - αd (SSzn, Szn) , where α = lim sup {zn} or
lim inf{zn} is a sequence in X such that lim

n→∞
Szn = lim

n→∞
Tzn = t for some t in X.

Some common fixed point results are established by Rajput & Singh [18] for rational type contraction
mapping in C1 on which they have proved the following theorem.

Theorem 1.1 ([18]). Let (X, d) be a complex valued metric space and A,B, S, T : X → X be four self
mappings satisfying the following conditions

(i) A (X) ⊆ T (X) , B (X) ⊆ S (X) ;
(ii) For all x, y ∈ X and 0 < α < 1,

d (Ax,By) - α
[d (Ax, Sx) (dAx, Ty) + d (By, Ty) d (By, Sx)]

d (Ax, Ty) + d (By, Sx)

+β

[
{d (Ax, Ty)}2 + {d (By, Sx)}2

]
d (Ax, Ty) + d (By, Sx)

;

(iii) The pairs (A,S) and (B, T ) are weakly compatible and
(iv) The pair (A,S) or (B, T ) satisfies E. A. property if the range of mappings S (X) or T (X) is closed

subspace of X then A,B, S and T have a unique common fixed point in X.

Meena[14] investigated a common fixed point for intimate mappings in C1 as follows:

Theorem 1.2. Let A,B, S and T be the four mappings from a complex valued metric space (X, d) into itself,
such that

(i) A (X) ⊆ T (X) , B (X) ⊆ S (X) ;
(ii) For all x, y ∈ X,

d (Ax,By) - αd (Sx, Ty) + β
d (Ax, Sx) .d (By, Ty)

d (Ax, Ty) + d (Sx,By) + d (Sx, Ty)

and d (Ax, Ty) + d (Sx,By) + d (Sx, Ty) 6= 0, where α, β are non-negative real numbers with α+ β < 1;
(iii) (A,S) is S−intimate and (B, T ) is T−intimate and
(iv) S (X) is complete.
Then A,B, S and T have a unique common fixed piont in X.
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2 Main Results
In this section we prove some theorems and give some examples.

Theorem 2.1. Let (X, d) be a complex valued metric space and A,B, S, T : X → X four self-mappings
satisfying the conditions:

(i) A (X) ⊆ T (X) , B (X) ⊆ S (X) ;
(ii) for all x, y ∈ X,

(2.1) d (Ax,By) - αd (Sx, Ty) + β
d (Ax, Sx) .d (By, Ty)

[1 + d (Sx, Ty)]
+ γ

d (Ty,By) [1 + d (Sx,Ax)]

[1 + d (Sx, Ty)]
;

(iii) the pair (A,S) and (B, T ) are weakly compatible;
(iv) one of the pair (A,S) or (B, T ) satiesfies E.A. property.
If the range of one of the mapping S (X) or T (X) is a closed subspace of X then the mapping A,B, S

and T have a unique common fixed point in X.

Proof. First we suppose that the pair (B, T ) satisfies E.A. property. Then by difinition there exists a
sequence {xn} in X such that lim

n→∞
Bxn = lim

n→∞
Txn = t for some t ∈ X.

Further since B (X) ⊆ S (X) , there exists a sequence {yn} in X such that Bxn = Syn. Hence, lim
n→∞

Syn =

t. We claim that lim
n→∞

Ayn = t. Let lim
n→∞

Ayn = t1 6= t, then putting x = yn, y = xn in condition (ii) , we

have

d (Ayn, Bxn)

- αd (Syn, Txn) + β
d (Ayn, Syn) .d (Bxn, Txn)

[1 + d (Syn, Txn)]

+γ
d (Txn, Bxn) [1 + d (Syn, Ayn)]

[1 + d (Syn, Txn)]
.

or,

d (t1, t) - αd (t, t) + β
d (t1, t) .d (t, t)

[1 + d (t, t)]
+ γ

d (t, t) [1 + d (t, t1)]

1 + d (t, t)
.

Then |d (t1, t)| ≤ 0.
Hence t1 = t and this implies that lim

n→∞
Ayn = lim

n→∞
Bxn = t.

Now suppose that S (X) is a closed subspace of X, then t = Su for some u ∈ X. Subsequntly, we have
lim
n→∞

Ayn = lim
n→∞

Bxn = lim
n→∞

Txn = lim
n→∞

Syn = t = Su.

We claim that Au = Su. For this we put x = u and y = xn in contractive condition (ii) . Then we have

d (Au,Bxn) - αd (Su, Txn) + β
d (Au, Su) .d (Bxn, Txn)

[1 + d (Su, Txn)]

+γ
d (Txn, Bxn) [1 + d (Su,Au)]

[1 + d (Su, Txn)]
.

Taking n→∞, we get

d (Au, t) - αd (Su, t) + β
d (Au, Su) .d (t, t)

[1 + d (Su, t)]
+ γ

d (t, t) [1 + d (Su,Au)]

[1 + d (Su, t)]
.

Then |d (Au, t)| ≤ 0, which is a contradiction. Hence u is a coincident point of (A,S) .
Now the weak compatibility of the pair (A,S) implies that ASu = SAu or At = St.
On the other hand since A (X) ⊂ T (X) , there exists a v in X such that Au = Tv. Thus Au = Su =

Tv = t. Now we show that v is a coincidence point of (B, T ) , i.e., Bv = Tv = t.
Putting x = u, y = v in contractive condition (ii) , we have

d (Au,Bv) - αd (Su, Tv) + β
d (Au, Su) .d (Bv, Tv)

[1 + d (Su, Tv)]

+γ
d (Tv,Bv) [1 + d (Su,Au)]

[1 + d (Su, Tv)]
.
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or,

d (t, Bv) - αd (t, t) + β
d (t, t) .d (Bv, t)

[1 + d (t, t)]
+ γ

d (t, Bv) [1 + d (t, t)]

[1 + d (t, t)]
.

or,
d (t, Bv) - γd (t, Bv) .

This implies that |d (t, Bv)| ≤ 0, which is a contradiction. Thus Bv = t.
Hence Bv = Tv = t and v is a coincident point of B and T.
Further, the weak compatibility of the pair (B, T ) implies that BTv = TBv,
i.e., Bt = Tt. Therefore t is a common coincidence point of A,B, S and T.
Now we show that t is a common coincident point of A,B, S and T.
Putting x = u and y = t in contractive condition (ii) , we get

d (t, Bt) = d (Au,Bt) - αd (Su, T t) + β
d (Au, Su) .d (Bt, T t)

[1 + d (Su, T t)]

+γ
d (Tt,Bt) [1 + d (Su,Au)]

[1 + d (Su, T t)]
.

or,
|d (t, Bt)| ≤ α |d (t, Bt)| [as Bt = Tt and Au = Su = Tv = t]

or, |d (t, Bt)| ≤ 0,

which is a contradiction. Thus Bt = t.
Therefore, At = Bt = St = Tt = t.
Uniqueness:
For uniquness suppose t∗ be another common fixed point of A,B, S and T .
Then we have At∗ = Bt∗ = St∗ = Tt∗ = t∗.
Therefore using (2.1) we get

d (At,Bt∗) - αd (St, T t∗) + β
d (At, St) .d (Bt∗, T t∗)

[1 + d (St, T t∗)]
+ γ

d (Tt∗, Bt∗) [1 + d (St,At)]

[1 + d (St, T t∗)]

or, d (t, t∗) - αd (t, t∗) + β
d (t, t) .d (t∗, t∗)

[1 + d (t, t∗)]
+ γ

d (t∗, t∗) [1 + d (t, t)]

[1 + d (t, t∗)]

or, d (t, t∗) - αd (t, t∗) .

Hence,
|d (t, t∗)| - α |d (t, t∗)| ,

which implies that |d (t, t∗)| ≤ 0 i.e., t = t∗.
Therefore t is the unique common fixed point of A,B, S and T.

Example 2.1. Let X = [0, 1] . We define the mapping d : X ×X → C1 as follows

d (x, y) = (1 + i) |x− y| , x, y ∈ X
Then (X, d) is a complex valued metric space.
Let A,B, S, T : X → X be defined by

Ax = x
4 , 0 ≤ x ≤ 1; Bx =

{
0, x 6= 1

2
1
8 , x = 1

2 ;

Tx = x, 0 ≤ x < 1; Sx =

{
x
4 , 0 ≤ x < 1
1
8 ,

1
2 ≤ x ≤ 1.

Clearly, S (X) is closed and A (X) ⊆ T (X) and B (X) ⊆ S (X). We consider the sequence{
xn : xn = 1

2 + 1
n+2

}
in X. Then lim

n→∞
Axn = lim

n→∞
Sxn = 1

8 . So that the pair (A,S) satisfies the E.A.

property. Thus all the conditions of Theorem 2.1 are satiefied and 0 is the unique common fixed point of
A,B, S and T.
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Theorem 2.2. Let A,B, S and T be the four mapping from a complex valued metric space (X, d) into itself
such that

(i) A (X) ⊂ T (X) and B (X) ⊂ S (X) ;

(ii) d (Ax,By) - αd (Sx, Ty) + β d(Ax,Sx).d(By,Ty)
1+d(Sx,Ty) + γ d(Ty,By).[1+d(Sx,Ax)]

1+d(Sx,Ty) ,

where α, β, γ are non negative real numbers with α+ β + 2γ < 1;
(iii) (A,S) is S−intimate and (B, T ) is T−intimate;
(iv) S (X) is complete.
Then A,B, S and T have a unique common fixed point in X.

Proof. Since A (X) ⊂ T (X) and B (X) ⊂ S (X) , therefore there exists a sequence {y2n} in X such that
y2n = Ax2n = Tx2n+1.
y2n+1 = Bx2n+1 = Sx2n+2.
Then using these conditions in contractive condition (ii) , we get

d (y2n, y2n+1) = d (Ax2n, Bx2n+1)

- αd (Sx2n, Tx2n+1) + β
d (Ax2n, Sx2n) .d (Bx2n+1, Tx2n+1)

1 + d (Sx2n, Tx2n+1)

+γ
d (Tx2n+1, Bx2n+1) . [1 + d (Sx2nAx2n)]

1 + d (Sx2n, Tx2n+1)

= αd (y2n−1, y2n) + β
d (y2n, y2n−1) .d (y2n+1, y2n)

1 + d (y2n−1, y2n)

+γ
d (y2n, y2n+1) . [1 + d (y2n−1, y2n)]

1 + d (y2n−1, y2n)

- αd (y2n−1, y2n) + βd (y2n, y2n+1) + γd (y2n, y2n+1)

(1− β − γ) d (y2n, y2n+1) - αd (y2n, y2n−1)

d (y2n, y2n+1) -
α

(1− β − γ)
d (y2n, y2n−1)

-
α+ γ

1− β − γ
d (y2n, y2n−1)

or, d (y2n, y2n+1) - hd (y2n, y2n−1) ,

where h = α+γ
1−β−γ < 1, as α+ β + 2γ < 1.

This implies that

(2.2) |d (y2n, y2n+1)| - h |d (y2n, y2n−1)| .
Similarly,

d (y2n+2, y2n+1) = d (Ax2n, Bx2n+1)

- αd (Sx2n+2, Tx2n+1) + β
d (Ax2n+2, Sx2n+2) .d (Bx2n+1, Tx2n+1)

1 + d (Sx2n+2, Tx2n+1)

+γ
d (Tx2n+1, Bx2n+1) . [1 + d (Sx2n+2Ax2n+2)]

1 + d (Sx2n+2, Tx2n+1)

= αd (y2n+1, y2n) + β
d (y2n+2, y2n+1) .d (y2n+1, y2n)

1 + d (y2n+1, y2n)

+γ
d (y2n+2, y2n+1) . [1 + d (y2n+1y2n)]

1 + d (y2n+1, y2n)

= αd (y2n+1, y2n) + β
d (y2n+2, y2n+1) .d (y2n+1, y2n)

1 + d (y2n+1, y2n)

+γ
d (y2n+2, y2n+1) .

1 + d (y2n+1, y2n)
+ γ

[1 + d (y2n+1y2n)] .

1 + d (y2n+1, y2n)

- αd (y2n+1, y2n) + (β + γ) d (y2n+2, y2n+1) + γd (y2n+1, y2n)
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or, d (y2n+2, y2n+1) -
α+ γ

1− β − γ
d (y2n+1, y2n)

or, d (y2n+2, y2n+1) - hd (y2n+1, y2n) ,

where h = α+γ
1−β−γ .

This implies that

(2.3) |d (y2n+2, y2n+1)| ≤ h |d (y2n+1, y2n)| .
Thus from (2.2) and (2.3) we can write

|d (y2n+2, y2n+1)| ≤ h |d (y2n+1, y2n)| ≤ ... ≤ hn+1 |d (y0,y1)| .
So that for any m > n

|d (yn, ym)| ≤ |d (yn, yn+1)|+ |d (yn+1, yn+2)|+ ...+ |d (ym−1, ym)|
≤ hn |d (y0,y1)|+ hn−1 |d (y0,y1)|+ ...+ hm−1 |d (y0,y1)|

i.e., |d (yn, ym)| ≤ hn

1− h
|d (y0,y1)| ,

which accounts to say that {yn} is a Cauchy sequence. i.e., {Sx2n} is Cauchy in S (X) , also S (X) is
complete, then {yn} converges to a point p = Su for some u ∈ X.

Thus Ax2n, Sx2n, Bx2n+1, Tx2n+1 → p.
Now,

d (Au,Bx2n+1) - αd (Su, Tx2n+1) + β
d (Au, Su) .d (Bx2n+1Tx2n+1)

1 + d (Su, Tx2n+1)

+γ
d (Tx2n+1, Bx2n+1) . [1 + d (Su,Au)]

1 + d (Su, Tx2n+1)
.

Taking limit as n→∞, we get
|d (Au, p)| ≤ α |d (Su, p)| .

Thus |d (Au, p)| ≤ 0, [as p = Su] i.e., Au = p = Su.
Again A (X) ⊂ T (X) , therefore there exists v ∈ X such that Au = Tv = p.
Now we cosider

d (p,Bv) = d (Au,Bv)

- αd (Su, Tv) + β
d (Au, Su) .d (Bv, Tv)

1 + d (Su, Tv)
+ γ

d (Tv,Bv) . [1 + d (Su,Au)]

1 + d (Su, Tv)

or, d (p,Bv) ≤ γd (p,Bv)

or, d (p,Bv) = 0,

which implies that p = Bv = Tv = Au = Su.
Now since Au = Su = p and (A,S) is S−intimate,
Therefore we have

(2.4) |d (Sp, p)| ≤ |d (Ap, p)| .
Also

d (Ap, p) = d (Ap,Bv)

- αd (Sp, Tv) + β
d (Ap, Sp) .d (Bv, Tv)

1 + d (Sp, Tv)
+ γ

d (Tv,Bv) . [1 + d (Sp,Ap)]

1 + d (Sp, Tv)

or, |d (Ap, p)| ≤ α |d (Sp, p)| ≤ α |d (Ap, p)| .[using (2.4)]

Thus |d (Ap, p)| = 0, implies that Ap = p and Sp = p. Similarly Bp = Tp = p.
Uniqueness:
Let us suppose that q be another common fixed point of A,B, S and T such that p 6= q.
Then

d (p, q) = d (Ap,Bq)

257



- αd (Sp, Tq) + β
d (Ap, Sp) .d (Bq, Tq)

1 + d (Sp, Tq)
+ γ

d (Tq,Bq) . [1 + d (Sp,Ap)]

1 + d (Sp, Tq)

- αd (p, q) ,

which implies that |d (p, q)| ≤ α |d (p, q)| ⇒ |d (p, q)| = 0, i.e., p = q.
This proves that the mappings A,B, S and T have a unique common fixed point.

Example 2.2. :Let X = C1 be the set of complex numbers. Define d : X × X → C1 by d(z1, z2) =
(1 + i) |z1 − z2| where z1 = x1 + iy1 and z2 = x2 + iy2 .Then (X, d) is a complete complex valued metric
space. Define A,B, S, T : X → X as Az = 0, Bz = 0, Sz = z and Tz = z

2 . Clearly A(X) ⊂ T (X)
and B(X) ⊂ S(X). Now consider the sequence {zn = 1

n , n ∈ N} in C1, then lim
n−→∞

Azn= lim
n−→∞

Szn =

0. Also we have lim
n−→∞

d(SAzn, Szn) - lim
n−→∞

d(AAzn, Azn). Thus the pair (A,S) is S−intimate. Again

lim
n−→∞

d(TBzn, T zn) - lim
n−→∞

d(BBzn, Bzn) implies that the pair (B, T ) is T−intimate. Therefore the mappings satisfies all the conditions
of Theorem 2.2. Hence A,B, S and T have a unique common fixed point in X.

3 Future Prospect
In the line of the works as carried out in the paper one may think of the deduction of fixed point theorems
using fuzzy metric, quasi metric, partial metric and other different types of metrics under the flavour of
bicomplex analysis. This may be an active area of research to the future workers in this branch.
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Abstract

In this paper, the author considered a new class for Pál type interpolation problems. They termed
Pál type interpolation problems as PTIP . This new class for PTIP is defined by omitting a non-zero
complex node from the set of value nodes and simultaneously adding another complex node to the set of
derivative nodes.
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1 Introduction
Lacunary Polynomial Interpolation is an extension of Hermite Interpolation. It comprises the matching of
values and derivatives at certain points but does not insist that these points be consecutive. The author
termed Lacunary Polynomial Interpolation as LPI. LPI problems are not always regular due to matching
at non-consecutive derivatives.

The study on LPI started with the evolution of Birkhoff interpolation. It is a finely honed theory on real
nodes [9, 20]. LPI problems on non-uniformly distributed nodes received attention after the investigations
of Brueck [1]. He studied non-uniformly distributed nodes on the unit disk, obtained by applying Mbius
transform to the set of zeros of roots of unity. He defined the following polynomials;

(1.1) vαn(z) = (z + α)n − (1 + αz)n,

(1.2) wαn(z) = (z + α)n + (1 + αz)n.

where 0 < α < 1.
A revolution in the theory of LPI at special nodes was due to Pál [12]. He introduced a new type of

interpolation on zeros of two different polynomials, referred as Pál type interpolation.
Let A(z) ∈ πm and B(z) ∈ πn, where πn be the set of polynomials of degree less than or equal to n with
complex coefficients. For a given positive integer r the problem of (0, r) Pál type interpolation i.e. (0, r)-
PTIP consists finding a polynomial P (z) ∈ πm+n−1, that has prescribed values at m pairwise distinct nodes
and prescribed value for rth derivative at n pairwise distinct nodes. These m nodes are called value nodes,
and n nodes are called derivative nodes.

The (0, r)-PTIP on the pair {A(z), B(z)} is regular if and only if any P (z) ∈ πm+n−1 with the following
sets of interpolation conditions:

P (yi) = 0; where A(yi) = 0; i = 1, 2, . . . ,m,
P (r)(zj) = 0; where B(zj) = 0; j = 1, 2, . . . , n.

implies that P (z) ≡ 0. Here the zeros of A(z), B(z) are assumed to be simple.
De Bruin [2, 4, 5], De Bruin et al. [3], De Bruin and Dikshit [6], Bokari et al. [7], Dikshit [8], Pathak

[13], Mandloi and Pathak [10], Modi et al. [11], studied regularity of Pál type interpolation problems with
some additional nodes.

De Bruin [2] evaluated regularity of incomplete Pál type interpolation on the zeros of polynomials given
by (1.1) and (1.2). He omitted one or two real nodes from zeros of wαn(z) and/or vαn(z).

∗Presented in 6th International Conference of Vijñāna Parishad of Iindia on Recent Advancement in Computational
Mathematics and Applied Sciences (ICRACMAS-2022), held at MRIIRS, Faridabad, Haryana, India
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The author [14, 15] investigated the regularity of Birkhoff interpolation in certain dimensions. They revisited
PTIP for the sets consisting of the zeros of polynomials with complex coefficients with some additional nodes.
Also, they assessed the maximum number of nodes that can be added at value nodes to get regular PTIP
[16]. They studied the regularity of ‘incomplete’ PTIP for several pairs, where they omitted real as well as
complex nodes from zeros of certain polynomials [17, 18]. The author [19] defined a new class of Pál type
interpolation obtained by adding a real node to one set of interpolation points and omitting a real node from
another set of interpolation points.
In section 2, we consider (0, 1)-PTIP , where we omit a non-zero complex node ζ from vα2n(z) and add −ζ
to wαn(z) or vαn(z).
In section 3, We consider the polynomials am(z) ∈ πm and bn(z) ∈ πn (m ≥ n) with simple zeros and take
Am(z) and Bn(z) as the sets of the zeros of these polynomials respectively with Bn(z) ⊆ Am(z). We assess
the regularity of (0, 1)-PTIP and (0, 2)- PTIP by omitting a non-zero complex node ζ from am(z) and
adding −ζ to bn(z).

2 A new class of PTIP on non-uniformly distributed nodes

Theorem 2.1. Let 0 < α < 1, n ≥ 2 then (0, 1)-PTIP on
{
vα2n(z)
(z−ζ) , (z + ζ)wαn(z)

}
is regular, for ±ζ ∈ vα2n(z),

±ζ /∈ wαn(z).

Proof. Here, we have total 3n interpolation points.
The problem is to find a polynomial P (z) ∈ π3n−1 with

P (yi) = 0 ; yi is zero of
vα2n(z)
(z−ζ) ; i = 1, 2, . . . , (2n− 1),

P ′(−ζ) = 0,
P ′(zj) = 0; zj is zero of wαn(z); j = 1, 2, . . . , n.

Let P (z) =
vα2n(z)
(z−ζ)Q(z); where Q(z) ∈ πn,

then P (z) ∈ π3n−1.
The problem will be regular if P (z) ≡ 0.
As P ′(zj) = 0, we get

vα2n(zj)

(zj − ζ)
Q′(zj) +

{
{vα2n(zj)}′

(zj − ζ)
− vα2n(zj)

(zj − ζ)2

}
Q(zj) = 0.

Also, zj ∈ wαn(z) ⊆ vα2n(z), thus we have

{vα2n(zj)}′

(zj − ζ)
Q(zj) = 0.

Since,

{vα2n(zj)}′ =
2n(1− α2)(zj + α)n−1

(1 + αzj)
6= 0,

Therefore,

Q(zj) = 0.

Since zj has n zeros, therefore

(2.1) Q(z) = Cqn(z).

Since,
P ′(−ζ) = 0,

Therefore,
{vα2n(−ζ)}′

(2ζ)
Q(−ζ) = 0.

As,
{vα2n(−ζ)}′

2ζ
6= 0,
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we have

(2.2) Q(−ζ) = 0.

Equations (2.1), (2.2) and interpolatory conditions, give

C = 0.

Hence,
Q(z) ≡ 0.

Remark 2.1. One of the essential conditions for the above result is wαn(z) ⊆ V α2n(z) . Since one more similar
condition satisfies for the polynomials given by equations (1.1) and (1.2) viz. vαn(z) ⊆ V α2n(z). Therefore, the
following result must hold.

Theorem 2.2. Let 0 < α < 1, n ≥ 2 then (0, 1)-PTIP on
{
vα2n(z)
(z+ζ) , (z − ζ)vαn(z)

}
is regular, for ±ζ ∈ vα2n(z),

±ζ /∈ vαn(z).

3 A new class of PTIP on the zeros of the polynomials with complex coefficients

Theorem 3.1. (0, 1)-PTIP on
{
am(z)
(z−ζ) , (z + ζ)bn(z)

}
,m > n ≥ 1 for ± ζ ∈ Am(z),±ζ /∈ Bn(z) is regular.

Proof. Here we have total m+ n interpolation points.
The problem is to find a polynomial P (z) ∈ πm+n−1 with

P (yi) = 0 ; where yi is a zero of am(z)
(z−ζ) ; i = 1, 2, . . . , (m− 1),

P ′(−ζ) = 0,
P ′(zj) = 0 ; where zj is a zero of bn(z) ; j = 1, 2, . . . , n.

Let P (z) = am(z)
(z−ζ)Q(z) ; where Q(z) ∈ πn,

then P (z) ∈ πm+n−1.
The problem will be regular if P (z) ≡ 0.
Now,
P ′(zj) = 0, we have

am(zj)

(zj − ζ)
Q′(zj) +

{
a′m(zj)

(zj − ζ)
− am(zj)

(zj − ζ)2

}
Q(zj) = 0.

As P ′(−ζ) = 0,−ζ ∈ Am(z) and am(z) has simple zeros, the polynomial and its derivative cant vanish
simultaneously

(3.1) Q(−ζ) = 0.

Also, zj ∈ Bn(z) ⊆ Am(z), we have
a′m(zj)

(zj − ζ)
Q(zj) = 0.

Since ζ /∈ Bn(z) and a′m(zj) 6= 0, therefore we get

Q(zj) = 0.

As zj has n zeros, thus we have

(3.2) Q(z) = Cqn(z).

Equations (3.1), (3.2) and interpolatory conditions, give

C = 0.

Hence,
Q(z) ≡ 0.

Theorem 3.2. The (0, 2)-PTIP on
{
am(z)
(z−ζ) , (z + ζ)bn(z)

}
, m > n ≥ 1 for ±ζ ∈ Am(z),±ζ /∈ Bn(z) is

regular.
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Proof. Here we have total m+ n interpolation points.
The problem is to find a polynomial P (z) ∈ πm+n−1 with

P (yi) = 0 ; where yi is a zero of am(z)
(z−ζ) ; i = 1, 2, . . . , (m− 1),

P ′′(−ζ) = 0,
P ′′(zj) = 0 ; where zj is a zero of bn(z) ; j = 1, 2, . . . , n.

Let P (z) = am(z)
(z−ζ)Q(z) ; where Q(z) ∈ πn,

then P (z) ∈ πm+n−1.
The problem will be regular if P (z) ≡ 0.
Now,
P ′′(zj) = 0,
Therefore,

am(zj)

(zj − ζ)
Q′′(zj) + 2

{
a′m(zj)

(zj − ζ)
− am(zj)

(zj − ζ)2

}
Q′(zj) +

{
a′′m(zj)

(zj − ζ)
− 2

a′m(zj)

(zj − ζ)2
+ 2

am(zj)

(zj − ζ)3

}
Q(zj) = 0.

Also zj ∈ Bn(z) ⊆ Am(z) and am(z) has simple zeros, the polynomial and its derivative cant vanish
simultaneously, therefore we get

2(zj − ζ)a′m(zj)Q
′(zj) + {(zj − ζ)a′′m(zj)− 2a′m(zj)}Q(zj) = 0.

Since zj has n zeros and Q(z) ∈ πn, therefore the differential equation is given by

(3.3) 2(z − ζ)a′m(z)Q′(z) + {(z − ζ)a′′m(z)− 2a′m(z)}Q(z) = C(z + ζ)bn(z).

The integrating factor of the differential equation (3.3) is given by

Φ(z) =
{a′m(z)}1/2

(z − ζ)
.

The solution of the differential equation (3.3) is given by

{a′m(z)}1/2

(z − ζ)
Q(z) = C

∫
bn(t)(t+ ζ)

{a′m(z)}1/2 (t− ζ)2
dt.

C
bn(t)(t+ ζ)

{a′m(z)}1/2 (t− ζ)2

∣∣∣∣∣
t=ζ

= 0⇒ C = 0.

Hence,
Q(z) ≡ 0

.

4 Conclusion
The posed problems of (0, 1)-PTIP and (0, 2)-PTIP obtained by adding and omitting a non-zero complex
node simultaneously are found to be regular on considered sets of value nodes and derivative nodes.
Acknowledgement. We are very much grateful to the Editor and Reviewer for their valuable suggestions
for improving the paper in its present form.
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Abstract

Biswas [2] introduced the idea of (p, q)th-relative Gol’dberg order and (p, q)th-relative Gol’dberg type
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1 Introduction
Let Cn and Rn respectively denotes the complex and real n-spaces. Also, let us indicate the point
(z1, z2, . . . , zn), (m1,m2, . . . ,mn) of Cn or In by their corresponding unsuffixed symbols z, m respectively
where I denotes the set of non negative integers. The modulus of z, denoted by |z|, is defined as |z| =

(|z1|2 + |z2|2 + · · ·+ |zn|2)
1
2 . If the coordinates of the vector m are non-negative integers, then zn will denote

zm1
1 , zm2

2 , . . . , zmnn and ‖m‖ = m1 +m2 + · · ·+mn. If D ⊆ Cn be an arbitrary bounded complex n-circular
domain with center at the origin of coordinates, then for any entire function f(z) on n-complex variables
and R > 0, Mf,D(R) may be defined as Mf,D(R) = supz∈DR |f(z)|, where a point z ∈ DR iff z

R ∈ D. If f(z)

is non-constant, then Mf,D(R) is strictly increasing and its inverse M−1
f,D : (|f(0)|,∞) → (0,∞) exists such

that limR→∞M−1
f,D(R) =∞. For k ∈ N, we define exp[k]R = exp(exp[k−1]R) and log[k]R = log(log[k−1]R),

where N is the set of all positive integers. We also denote log[0]R = R, log[−1]R = expR, exp[0]R = R
and exp[−1]R = logR, where p and q always denote positive integers. Maji and Datta [9] introduced
the definitions of (p, q)th-Gol’dberg order and (p, q)th-Gol’dberg lower order of an entire function f(z) of
n-complex variables, where p ≥ q in the following ways;

(1.1) ρ
(p,q)
D (f) = lim sup

R→∞

log[p]Mf,D(R)

log[q]R
,

and

(1.2) λ
(p,q)
D (f) = lim inf

R→∞

log[p]Mf,D(R)

log[q]R
.

For p = 2 and q = 1 the symbols ρ
(p,q)
D (f) and λ

(p,q)
D (f) are respectively denoted by ρD(f) and λD(f) which

are actually classical growth indicators [7, 8]. However in the line of Gol’dberg [7, 8], it may be easily

established that ρ(p,q)(f) and λ(p,q)(f) instead of ρ
(p,q)
D (f) and λ

(p,q)
D (f) respectively.

2 Definitions
Biswas [5] introduced the defintions of (p, q)-ψ order and (p, q)-ψ lower order of an entire function of n-
complex variables.
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Definition 2.1 ([5]). Let ψ(R) : [0,+∞) → (0,+∞) be a non-decreasing unbounded function. Then the

(p, q)-ψ Gol’dberg order ρ
(p,q)
D (f, ψ) and (p, q)-ψ Gol’dberg lower order λ

(p,q)
D (f, ψ) of an entire function f(z)

of n-complex variables are defined as,

ρ
(p,q)
D (f, ψ) = lim sup

R→∞

log[p]Mf,D(R)

log[q] ψ(R)
,(2.1)

and

λ
(p,q)
D (f, ψ) = lim inf

R→∞

log[p]Mf,D(R)

log[q] ψ(R)
.(2.2)

Definition 2.1 avoids the restriction for p ≥ q. However, an entire function f(z) for which ρ
(p,q)
D (f, ψ)

and λ
(p, q)
D (f, ψ) are called regular (p, q)-ψ Gol’dberg growth. Otherwise, f(z) is said to be irregular (p, q)-ψ

Gol’dberg growth. For any non-decreasing unbounded function ψ(R) : [0,+∞) → (0,+∞), if it is assumed

that limR→+∞
log[q] ψ(αR)

log[q] ψ(R)
= 1, for all α > 0, then one can easily verify that ρ

(p,q)
D (f, ψ) and λ

(p,q)
D (f, ψ)

are independent of the choice of the domain D and use the symbols ρ(p,q)(f, ψ) and λ(p,q)(f, ψ) instead

of ρ
(p,q)
D (f, ψ) and λ

(p,q)
D (f, ψ) respectively. Now for any two entire functions f(z) and g(z) of n-complex

variables, Mondal and Roy [11] introduced the concept of relative Gol’dberg order of f(z) with respect to
g(z) and relative Gol’berg lower order of f(z) with respect to g(z). For the (p, q)-ψ relative Goldberg order
introduced by Biswas and Biswas [5] in the following definitions:

Definition 2.2 ([5]). Let ψ(R) : [0,+∞)→ (0,+∞) be a non-decreasing unbounded function. Also, let f(z)
and g(z) be any two entire functions of n-complex variables. The (p, q)-ψ relative Gol’dberg order and the
(p, q)-ψ relative Gol’dberg lower order of f(z) with respect to g(z) are defined as

ρ
(p,q)
g,D (f, ψ) = lim sup

R→∞

log[p]M−1
g,D(Mf,D(R))

log[q] ψ(R)
,(2.3)

and

λ
(p,q)
g,D (f, ψ) = lim inf

R→∞

log[p]M−1
g,D(Mf,D(R))

log[q] ψ(R)
.(2.4)

Further an entire function f(z) of n-complex variables for which ρ
(p,q)
g,D (f, ψ) and λ

(p,q)
g,D (f, ψ) are same, is

called a function of (p, q)-ψ relative Gol’dberg growth with respect to an entire function g(z) of n-complex
variables. Otherwise, f(z) is said to be irregular (p, q)-ψ relative Gol’dberg growth with respect to g(z).

Definition 2.3 ([6]). Let f(z) and g(z) be two entire functions of n-complex variables with the index-pair
(m, q) and (m, p) respectively, where p, q, m are the integers such that m ≥ q + 1 ≥ 1 and m ≥ p+ 1 ≥ 1, if

b < ρ
(p,q)
g,D (f, ψ) < +∞ and ρ

(p−1,q−1)
g,D (f, ψ) is not a non-zero finite number, where b = 1, if p = q, and b = 0

for otherwise. Moreover, if 0 < ρ
(p,q)
g,D (f, ψ) <∞,

ρ
(p−n,q)
g,D (f, ψ) =∞ , for n < p;

ρ
(p,q−n)
g,D (f, ψ) = 0 , for n < q;

ρ
(p+n,q+n)
g,D (f, ψ) = 1 , for n = 1, 2, . . . .

.(2.5)

Similarly for 0 < λ
(p,q)
g,D (f, ψ) <∞, then

λ
(p−n,q)
g,D (f, ψ) =∞ , for n < p;

λ
(p,q−n)
g,D (f, ψ) = 0 , for n < q;

λ
(p+n,q+n)
g,D (f, ψ) = 1 , for n = 1, 2, . . . .

.(2.6)

If ψ(R) = R and p ≥ q, then Definition 2.2 coincides with the definition of (p, q)-ψ relative Gol’dberg
order and (p, q)-ψ relative Gol’dberg lower order introduced by T. Biswas and R. Biswas [6]. Consequently
for ψ(R) = R and p ≥ q, Definition 2.3 reduces to the definition of index-pair (p, q) of an entire function
with respect to another entire function of n-complex variables [3].

T. Biswas and C. Biswas [4] introduced the definition of (p, q)-ψ relative Gol’dberg type 4(p,q)
g,D (f, ψ) and

(p, q)-ψ relative Gol’dberg lower type ∇(p,q)
g,D (f, ψ), (p, q)-ψ relative Gol’dberg weak type 4(p,q)

g,D (f, ψ) and the

growth indicator ∇(p,q)

g,D (f, ψ) in the following ways;
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Definition 2.4 ([4]). Let ψ(R) : [0,+∞)→ (0,+∞) be a non-decreasing unbounded function. Also, let f(z)
and g(z) be any two entire functions of n-complex variables. The (p, q)-ψ relative Gol’dberg type and (p, q)-ψ
relative Gol’dberg lower type of f(z) with respect to g(z) are defined as,

4(p,q)
g,D (f, ψ) = lim sup

R→∞

log[p−1]M−1
g,D(Mf,D(R))(

log[q−1] ψ(R)
)ρ(p,q)

g,D (f,ψ)
, 0 < ρ

(p,q)
g,D (f, ψ) < +∞,(2.7)

and

∇(p,q)
g,D (f, ψ) = lim inf

R→∞

log[p−1]M−1
g,D(Mf,D(R))(

log[q−1] ψ(R)
)ρ(p,q)

g,D (f,ψ)
, 0 < ρ

(p,q)
g,D (f, ψ) < +∞.(2.8)

Definition 2.5 ([4]). Let ψ(R) : [0,+∞)→ (0,+∞) be a non-decreasing unbounded function. Let f(z) and
g(z) be any two entire functions of n-complex variables. The relative (p, q)-ψ Gol’dberg weak type and the
growth indicator of f(z) with respect to g(z) are defined as,

4(p,q)

g,D (f, ψ) = lim inf
R→∞

log[p−1]M−1
g,D(Mf,D(R))(

log[q−1] ψ(R)
)λ(p,q)

g,D (f,ψ)
, 0 < λ

(p,q)
g,D (f, ψ) < +∞,(2.9)

and

∇(p,q)

g,D (f, ψ) = lim sup
R→∞

log[p−1]M−1
g,D(Mf,D(R))(

log[q−1] ψ(R)
)λ(p,q)

g,D (f,ψ)
, 0 < λ

(p,q)
g,D (f, ψ) < +∞.(2.10)

During the past decades, the several authors [1, 2, 3, 5, 6, 10] made closed investigation on the growth
properties of entire functions of n-complex variables using different growth indicator such as (p, q)-ψ relative
order, (p, q)-ψ relative lower order etc.

3 Mains Results
Theorem 3.1. Let f , g, h and k be any four entire functions of n-complex variables such that 0 <

λ
(p,m)
h,D (f, ψ) < ρ

(p,m)
h,D (f, ψ) < +∞, and 0 < λ

(q,m)
k,D (g, ψ) < ρ

(q,m)
k,D (g, ψ) < +∞, where p, q, m, are all

positive integers.
Then

λ
(p,m)
h,D (f, ψ)

ρ
(q,m)
k,D (g, ψ)

≤ lim inf
R→∞

log[p]M−1
h,D(Mf,D(R))

log[q]M−1
k,D(Mg,D(R))

≤
λ

(p,m)
h,D (f, ψ)

λ
(q,m)
k,D (g, ψ)

≤ lim sup
R→∞

log[p]M−1
h,D(Mf,D(R))

log[q]M−1
k,D(Mg,D(R))

≤
ρ

(p,m)
h,D (f, ψ)

λ
(q,m)
k,D (g, ψ)

.

Proof. From the definition of λ
(p,m)
h,D (f, ψ) and ρ

(q,m)
k,D (g, ψ), we get for arbitrary positive ε > 0 for all large

values of R,

log[p]M−1
h,D(Mf,D(R)) ≥ (λ

(p,m)
h,D (f, ψ)− ε) log[m] ψ(R),(3.1)

and

log[q]M−1
k,D(Mg,D(R)) ≤ (ρ

(q,m)
k,D (g, ψ) + ε) log[m] ψ(R).(3.2)

Now from (3.1) and (3.2), it follows that for all sufficiently large values of R

log[p]M−1
h,D(Mf,D(R))

log[q]M−1
k,D(Mg,D(R))

≥
λ

(p,m)
h,D (f, ψ)− ε

ρ
(q,m)
k,D (g, ψ) + ε

.

As ε > 0 is arbitrary,

lim inf
R→∞

log[p]M−1
h,D(Mf,D(R))

log[q]M−1
k,D(Mg,D(R))

≥
λ

(p,m)
h,D (f, ψ)

ρ
(q,m)
k,D (g, ψ)

.(3.3)
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Again for a sequence of value of R tending to infinity,

log[p]M−1
h,D(Mf,D(R)) ≤ (λ

(p,m)
h,D (f, ψ) + ε) log[m] ψ(R),(3.4)

and for all sufficiently large values of R,

log[q]M−1
k,D(Mg,D(R)) ≥ (λ

(q,m)
k,D (g, ψ)− ε) log[m] ψ(R).(3.5)

Now from (3.4) and (3.5), we obtain for a sequence of values of R tending to infinity

log[p]M−1
h,D(Mf,D(R))

log[q]M−1
k,D(Mg,D(R))

≤
λ

(p,m)
h,D (f, ψ) + ε

λ
(q,m)
k,D (g, ψ)− ε

.

As ε > 0 is arbitrary,

lim inf
R→∞

log[p]M−1
h,D(Mf,D(R))

log[q]M−1
k,D(Mg,D(R))

≤
λ

(p,m)
h,D (f, ψ)

λ
(q,m)
k,D (g, ψ)

.(3.6)

Also for all sufficient values of R,

log[q]M−1
k,D(Mg,D(R)) ≤ (λ

(q,m)
k,D (g, ψ) + ε) log[m] ψ(R).(3.7)

Combining (3.1) and (3.7), we obtain for a sequence of values of R tending to infinity,

log[p]M−1
h,D(Mf,D(R))

log[q]M−1
k,D(Mg,D(R))

≥
λ

(p,m)
h,D (f, ψ)− ε

λ
(q,m)
k,D (g, ψ) + ε

.

As ε > 0 is arbitrary,

lim sup
R→∞

log[p]M−1
h,D(Mf,D(R))

log[q]M−1
k,D(Mg,D(R))

≥
λ

(p,m)
h,D (f, ψ)

λ
(q,m)
k,D (g, ψ)

.(3.8)

Also for all sufficiently large values of R,

log[p]M−1
h,D(Mf,D(R)) ≤ (ρ

(p,m)
h,D (f, ψ) + ε) log[m] ψ(R).(3.9)

Now combining (3.5) and (3.9), for all sufficiently large values of R,

log[p]M−1
h,D(Mf,D(R))

log[q]M−1
k,D(Mg,D(R))

≤
ρ

(p,m)
h,D (f, ψ) + ε

λ
(q,m)
k,D (g, ψ)− ε

.

Since ε is arbitrary

lim sup
R→∞

log[p]M−1
h,D(Mf,D(R))

log[q]M−1
k,D(Mg,D(R))

≤
ρ

(p,m)
h,D (f, ψ)

λ
(q,m)
k,D (g, ψ)

.(3.10)

Thus the theorem follows from (3.3), (3.6), (3.8) and (3.10).

Theorem 3.2. Let f , g, h and k be any four entire functions of n-complex variables such that 0 <

ρ
(p,m)
h,D (f, ψ) < +∞, and 0 < ρ

(q,m)
k,D (g, ψ) < +∞, where p, q, m, are all positive integers.

Then

lim inf
R→∞

log[p]M−1
h,D(Mf,D(R))

log[q]M−1
k,D(Mg,D(R))

≤
ρ

(p,m)
h,D (f, ψ)

ρ
(q,m)
k,D (g, ψ)

≤ lim sup
R→∞

log[p]M−1
h,D(Mf,D(R))

log[q]M−1
k,D(Mg,D(R))

.

Proof. From the definition of ρ
(q,m)
k,D (g, ψ), we get for a sequence of values of R tending to infinity,

log[q]M−1
k,D(Mg,D(R)) ≥ (ρ

(q,m)
k,D (g, ψ)− ε) log[m] ψ(R).(3.11)

Now from (3.9) and (3.11), we get for a sequence of values of R tending to infinity,

log[p]M−1
h,D(Mf,D(R))

log[q]M−1
k,D(Mg,D(R))

≤
ρ

(p,m)
h,D (f, ψ) + ε

ρ
(q,m)
k,D (g, ψ)− ε

.

As ε > 0 is arbitrary,

lim inf
R→∞

log[p]M−1
h,D(Mf,D(R))

log[q]M−1
k,D(Mg,D(R))

≤
ρ

(p,m)
h,D (f, ψ)

ρ
(q,m)
k,D (g, ψ)

.(3.12)
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Also for all sufficiently large values of R ,

log[p]M−1
h,D(Mf,D(R)) ≥ (ρ

(q,m)
h,D (f, ψ)− ε) log[m] ψ(R).(3.13)

Now from (3.2) and (3.13), we get for a sequence of values of R tending to infinity,

log[p]M−1
h,D(Mf,D(R))

log[q]M−1
k,D(Mg,D(R))

≥
ρ

(p,m)
h,D (f, ψ)− ε

ρ
(q,m)
k,D (g, ψ) + ε

.

As ε > 0 is arbitrary,

lim sup
R→∞

log[p]M−1
h,D(Mf,D(R))

log[q]M−1
k,D(Mg,D(R))

≥
ρ

(p,m)
h,D (f, ψ)

ρ
(q,m)
k,D (g, ψ)

.(3.14)

Thus the theorem follows from (3.12) and (3.14).

Theorem 3.3. Let f , g, h and k be any four entire functions of n-complex variables such that 0 <

λ
(p,m)
h,D (f, ψ) < ρ

(p,m)
h,D (f, ψ) < +∞ and 0 < λ

(q,m)
k,D (g, ψ) < ρ

(q,m)
k,D (g, ψ) < +∞, where p, q, m, are all

positive integers.
Then

λ
(p,m)
h,D (f, ψ)

ρ
(q,m)
k,D (g, ψ)

≤ lim inf
R→∞

log[p]M−1
h,D(Mf,D(R))

log[q]M−1
k,D(Mg,D(R))

≤ min

{
λ

(p,m)
h,D (f, ψ)

λ
(q,m)
k,D (g, ψ)

,
ρ

(p,m)
h,D (f, ψ)

ρ
(q,m)
k,D (g, ψ)

}

≤ max

{
λ

(p,m)
h,D (f, ψ)

λ
(q,m)
k,D (g, ψ)

,
ρ

(p,m)
h,D (f, ψ)

ρ
(q,m)
k,D (g, ψ)

}
≤ lim sup

R→∞

log[p]M−1
h,D(Mf,D(R))

log[q]M−1
k,D(Mg,D(R))

≤
ρ

(p,m)
h,D (f, ψ)

λ
(q,m)
k,D (g, ψ)

.

Theorem 3.4. Let f , g, h and k be any four entire functions of n-complex variables such that 0 <

∇(p,m)
h,D (f, ψ) < 4(p,m)

h,D (f, ψ) < +∞ and 0 < ∇(q,m)
k,D (g, ψ) < 4(q,m)

k,D (g, ψ) < +∞ and ρ
(p,m)
h,D (f, ψ) =

ρ
(q,m)
k,D (g, ψ), where p, q, m are all positive integers then

∇(p,m)
h,D (f, ψ)

4(q,m)
k,D (g, ψ)

≤ lim inf
R→∞

log[p−1]M−1
h,D(Mf,D(R))

log[q−1]M−1
k,D(Mg,D(R))

≤
∇(p,m)
h,D (f, ψ)

∇(q,m)
k,D (g, ψ)

≤ lim sup
R→∞

log[p−1]M−1
h,D(Mf,D(R))

log[q−1]M−1
k,D(Mg,D(R))

≤
4(p,m)
h,D (f, ψ)

∇(q,m)
k,D (g, ψ)

.

Proof. From the definition of 4(q,m)
k,D (g, ψ) and ∇(p,m)

h,D (f, ψ), we have for arbitrary ε > 0 and for all sufficient
large values of R,

log[p−1]M−1
h,D(Mf,D(R)) ≥ (∇(p,m)

h,D (f, ψ)− ε){logm−1 ψ(R)}ρ
(p,m)
h,D (f,ψ),(3.15)

and

log[q−1]M−1
k,D(Mg,D(R)) ≤ (4(q,m)

k,D (g, ψ) + ε){logm−1 ψ(R)}ρ
(q,m)
k,D (g,ψ).(3.16)

Now using the condition ρ
(p,m)
h,D (f, ψ) = ρ

(q,m)
k,D (g, ψ), combining (3.15) and (3.16), we get for a sequence of

values of R tending to infinity,

log[p−1]M−1
h,D(Mf,D(R))

log[q−1]M−1
k,D(Mg,D(R))

≥
(∇(p,m)

h,D (f, ψ)− ε)

(4(q,m)
k,D (g, ψ) + ε)

.

As ε > 0 is arbitrary,

lim inf
R→∞

log[p−1]M−1
h,D(Mf,D(R))

log[q−1]M−1
k,D(Mf,D(R))

≥
∇(p,m)
h,D (g, ψ)

4(q,m)
k,D (g, ψ)

.(3.17)

Also, for all sufficient large values of R,

log[p−1]M−1
h,D(Mf,D(R)) ≤ (∇(p,m)

h,D (f, ψ) + ε){logm−1 ψ(R)}ρ
(p,m)
h,D (f,ψ),(3.18)
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and for all sufficiently large values of R,

log[q−1]M−1
k,D(Mg,D(R)) ≥ (∇(q,m)

k,D (f, ψ)− ε){logm−1 ψ(R)}ρ
(q,m)
k,D (g,ψ).(3.19)

Using the condition ρ
(p,m)
h,D (f, ψ) = ρ

(q,m)
k,D (g, ψ), combining (3.18) and (3.19), we get for a sequence of values

of R tending to infinity,

log[p−1]M−1
h,D(Mf,D(R))

log[q−1]M−1
k,D(Mg,D(R))

≤
(∇(p,m)

h,D (f, ψ) + ε)

(∇(q,m)
k,D (g, ψ)− ε)

.

As ε > 0 is arbitrary,

lim inf
R→∞

log[p−1]M−1
h,D(Mf,D(R))

log[q−1]M−1
k,D(Mg,D(R))

≤
∇(p,m)
h,D (f, ψ)

4(q,m)
k,D (g, ψ)

.(3.20)

Also for all sufficiently large values of R,

(3.21) log[q−1]M−1
k,D(Mg,D(R)) ≤ (∇(q,m)

k,D (g, ψ) + ε){logm−1 ψ(R)}ρ
(q,m)
k,D (g,ψ).

Using the condition ρ
(p,m)
h,D (f, ψ) = ρ

(q,m)
k,D (g, ψ), combining (3.15) and (3.21), we get for a sequence of values

of R tending to infinity,

log[p−1]M−1
h,D(Mf,D(R))

log[q−1]M−1
k,D(Mg,D(R))

≥
(∇(p,m)

h,D (f, ψ)− ε)

(∇(q,m)
k,D (g, ψ) + ε)

.

As ε > 0 is arbitrary,

(3.22) lim sup
R→∞

log[p−1]M−1
h,D(Mf,D(R))

log[q−1]M−1
k,D(Mf,D(R))

≥
∇(p,m)
h,D (f, ψ)

∇(q,m)
k,D (f, ψ)

.

Also for all sufficiently large values of R,

(3.23) log[p−1]M−1
h,D(Mf,D(R)) ≤ (4(p,m)

h,D (f, ψ) + ε){logm−1 ψ(R)}ρ
(p,m)
h,D (f,ψ).

Using the condition ρ
(p,m)
h,D (f, ψ) = ρ

(q,m)
k,D (g, ψ) and combining (3.19) and (3.23), we get for a sequence of

values of R tending to infinity,

log[p−1]M−1
h,D(Mf,D(R))

log[q−1]M−1
k,D(Mf,D(R))

≤
(4(p,m)

h,D (g, ψ) + ε)

(∇(q,m)
k,D (g, ψ)− ε)

.

As ε > 0 is arbitrary,

(3.24) lim sup
R→∞

log[p−1]M−1
h,D(Mf,D(R))

log[q−1]M−1
k,D(Mg,D(R))

≤
4(p,m)
h,D (f, ψ)

∇(q,m)
k,D (g, ψ)

.

Thus the theorem follows from (3.17), (3.20), (3.22) and (3.24).

Theorem 3.5. Let f , g, h and k be any four entire functions of n-complex variables such that 0 <

4(p,m)
h,D (f, ψ) < +∞, and 0 < 4(q,m)

k,D (g, ψ) < +∞ and ρ
(p,m)
h,D (f, ψ) = ρ

(q,m)
k,D (g, ψ) where p, q, m are all

positive integers.
Then

lim inf
R→∞

log[p−1]M−1
h,D(Mf,D(R))

log[q−1]M−1
k,D(Mg,D(R))

≤
4(p,m)
h,D (f, ψ)

4(q,m)
k,D (g, ψ)

≤ lim sup
R→∞

log[p−1]M−1
h,D(Mf,D(R))

log[q−1]M−1
k,D(Mg,D(R))

.

Proof. From the definition of 4(q,m)
k,D (g, ψ), we have for arbitrary ε and for all sufficient large values of R,

log[q−1]M−1
k,D(Mg,D(R)) ≥ (4(q,m)

k,D (g, ψ)− ε){logm−1 ψ(R)}ρ
(q,m)
h,D (g,ψ),(3.25)

Using condition ρ
(p,m)
h,D (f, ψ) = ρ

(q,m)
k,D (g, ψ) and combining (3.23) and (3.25), we get for a sequence of values

of R tending to infinity,

log[p−1]M−1
h,D(Mf,D(R))

log[q−1]M−1
k,D(Mg,D(R))

≤
4(p,m)
h,D (f, ψ) + ε

4(q,m)
k,D (g, ψ)− ε

.
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As ε > 0 is arbitrary,

lim inf
R→∞

log[p−1]M−1
h,D(Mf,D(R))

log[q−1]M−1
k,D(Mg,D(R))

≤
4(p,m)
h,D (f, ψ)

4(q,m)
k,D (g, ψ)

.(3.26)

Also for all sufficiently large values of R,

log[p−1]M−1
h,D(Mf,D(R)) ≥ (4(p,m)

h,D (f, ψ)− ε){logm−1 ψ(R)}ρ
(p,m)
h,D (f,ψ).(3.27)

Using condition ρ
(p,m)
h,D (f, ψ) = ρ

(q,m)
k,D (g, ψ) and combining (3.16) and (3.27), we get for a sequence of values

of R tending to infinity,

log[p−1]M−1
h,D(Mf,D(R))

log[q−1]M−1
k,D(Mg,D(R))

≥
4(p,m)
h,D (f, ψ)− ε

4(q,m)
k,D (g, ψ) + ε

.

As ε > 0 is arbitrary,

lim sup
R→∞

log[p−1]M−1
h,D(Mf,D(R))

log[q−1]M−1
k,D(Mg,D(R))

≥
4(p,m)
h,D (f, ψ)

4(q,m)
k,D (g, ψ)

.(3.28)

Thus, the theorem follows from (3.26) and (3.28).

Theorem 3.6. Let f , g, h and k be any four entire functions of n-complex variables such that 0 <

∇(p,m)
h,D (f, ψ) < 4(p,m)

h,D (f, ψ) < +∞, and 0 < ∇(q,m)
k,D (g, ψ) < 4(q,m)

k,D (g, ψ) < +∞ and ρ
(p,m)
h,D (f, ψ) =

ρ
(q,m)
k,D (g, ψ) where p, q, m are all positive integers.

Then

lim inf
R→∞

log[p−1]M−1
h,D(Mf,D(R))

log[q−1]M−1
k,D(Mg,D(R))

≤ min

{
∇(p,m)
h,D (f, ψ)

∇(q,m)
k,D (g, ψ)

,
4(p,m)
h,D (f, ψ)

4(q,m)
k,D (g, ψ)

}

≤ max

{
∇(p,m)
h,D (f, ψ)

∇(q,m)
k,D (g, ψ)

,
4(p,m)
h,D (f, ψ)

4(q,m)
k,D (g, ψ)

}
≤ lim sup

R→∞

log[p−1]M−1
h,D(Mf,D(R))

log[q−1]M−1
k,D(Mg,D(R))

.

Theorem 3.7. Let f , g, h and k be any four entire functions of n-complex variables such that 0 <

4(p,m)

h,D (f, ψ) < ∇(p,m)

h,D (f, ψ) < +∞ and 0 < 4(q,m)

k,D (g, ψ) < ∇(q,m)

k,D (g, ψ) < +∞ and λ
(p,m)
h,D (f, ψ) =

λ
(q,m)
k,D (g, ψ) where p, q, m are all positive integers.

Then
4(p,m)

h,D (f, ψ)

∇(q,m)

k,D (g, ψ)
≤ lim inf

R→∞

log[p−1]M−1
h,D(Mf,D(R))

log[q−1]M−1
k,D(Mg,D(R))

≤
4(p,m)

h,D (f, ψ)

4(q,m)

k,D (g, ψ)

≤ lim sup
R→∞

log[p−1]M−1
h,D(Mf,D(R))

log[q−1]M−1
k,D(Mg,D(R))

≤
∇(p,m)

h,D (f, ψ)

4(q,m)

k,D (g, ψ)
.

Similarly, in line with Theorem 3.8 and Theorem 3.9 and with help of Theorems 3.5 and 3.6, one may
easily prove the following two theorems, and therefore their proofs are omitted.

Theorem 3.8. Let f , g, h and k be any four entire functions of n-complex variables such that 0 <

∇(p,m)

h,D (f, ψ) < +∞, 0 < ∇(q,m)

k,D (g, ψ) < +∞ and λ
(p,m)
h,D (f, ψ) = λ

(q,m)
k,D (g, ψ) where p, q, m are all positive

integers,

lim inf
R→∞

log[p−1]M−1
h,D(Mf,D(R))

log[q−1]M−1
k,D(Mg,D(R))

≤
∇(p,m)

h,D (f, ψ)

∇(q,m)

k,D (g, ψ)
≤ lim sup

R→∞

log[p−1]M−1
h,D(Mf,D(R))

log[q−1]M−1
k,D(Mg,D(R))

.

Theorem 3.9. Let f , g, h and k be any four entire functions of n-complex variables such that 0 <

4(p,m)

h,D (f, ψ) < ∇(p,m)

h,D (f, ψ) < +∞, 0 < 4(q,m)

k,D (g, ψ) < ∇(q,m)

k,D (g, ψ) < +∞ and λ
(p,m)
h,D (f, ψ) = λ

(q,m)
k,D (g, ψ)

where p, q, m are all positive integers

lim inf
R→∞

log[p−1]M−1
h,D(Mf,D(R))

log[q−1]M−1
k,D(Mg,D(R))

≤ min

4
(p,m)

h,D (f, ψ)

4(q,m)

k,D (g, ψ)
,
∇(p,m)

h,D (f, ψ)

∇(q,m)

k,D (g, ψ)


≤ max

4
(p,m)

h,D (f, ψ)

4(q,m)

k,D (g, ψ)
,
∇(p,m)

h,D (f, ψ)

∇(q,m)

k,D (g, ψ)

 ≤ lim sup
R→∞

log[p−1]M−1
h,D(Mf,D(R))

log[q−1]M−1
k,D(Mg,D(R))

.
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4 Conclusion
In this paper, we want to establish some growth properties of entire function of n-complex variables on the
basis of their of (p, q)-ψ relative Gol’dberg order, (p, q)-ψ relative Gol’dberg type, (p, q)-ψ relative Gol’dberg
weak type and growth indicator where p, q are any positive integer.
Acknowledgement. We are very grateful to the Editor and Referees for their useful suggestions in bringing
the paper to its present form.
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Abstract

A Taylor wavelet technique is used to obtain the approximate solution of the Fredholm integro-
differential equations (IDEs) of the second kind. Taylor wavelet method is based on an estimate of
the unknown function involved in a given IDEs using the Taylor wavelet basis. The simplicity of the
technique is a highly striking feature for the estimate of the unknown function. The applicability of the
technique on various numerical problems shows the preciseness and usefulness of the technique. The
suggested wavelets approach stands out for its simple operations, easy implementation, and accurate
answers. A comparison is made with previous findings.
2020 Mathematical Sciences Classification: 45D05, 45D99.
Keywords and Phrases: Taylor wavelet, Operational integration matrix, Collocation points, Integro-
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1 Introduction
Integral equations play a crucial role in various branches of mathematics, engineering, and the sciences.
These equations involve the unknown function as part of the integrand, and they arise in diverse fields due
to their ability to model a wide range of phenomena. Integral equations can be solved using a variety of
analytical and numerical methods. The choice of method often depends on the specific characteristics of
the integral equation and the problem at hand. Problems involving heat transfer and fluid dynamics often
lead to integro-differential equations. These equations can describe the distribution of temperature or fluid
velocity in a given domain, accounting for both differential effects (diffusion or convection) and integral effects
(boundary interactions). Here are some common techniques used to handle integral equations including the
series solution method, Adomian decomposition method (ADM ) and its modification, variational iteration
method (VIM ), Homotopy perturbation method, Nystrm method, and so on. On the other hand, recently
Kumar, Chandel, and Srivastava [11], discussed a fractional non-linear biological model problem and its
approximation. Further Kumar [12] discussed a class of two variable sequence of functions satisfying Able’s
integral equation and phase shifts. Take into account the Fredholm integro-differential equation (IDEs) of
the following form:

(1.1)

{
Λ′(ρ) = h(ρ,Λ(ρ)) +

∫ 1

0
κ(ρ, ξ,Λ(ξ))dξ, 0 ≤ ρ ≤ 1

Λ(0) = Λ0,

where Λ(ρ) is the function(unknown) to be evaluated and h(ρ,Λ(ρ)) ∈ L2[0, 1] and the kernel κ(ρ, ξ) ∈ L2(R)
are known functions. In this paper, we present a new estimate solution for the Fredholm integro-differential
equation (IDEs) (1.1). In this study, we investigate a fresh unified method for the solution of the integral
equations, where the integral equations are expanded in terms of the Taylor wavelet with unique coefficients,
leading to the reduction of the integral equations to algebraic equations.

A wavelet is a waveform that is localized in both time and frequency domains, and it is often used in signal
processing and the analysis of time-varying signals. Wavelets have the property that they start from zero,
oscillate, and then return to zero, and they come in different shapes and sizes. In the context of wavelets, the
term ”oscillation” refers to the repetitive pattern or behavior of the wavelet. The amplitude of a wavelet may
indeed start at zero, rise or fall, and return to zero, and this property is often desirable in applications where
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a localized representation of a signal or function is needed. The ability of wavelets to capture both high and
low-frequency components of a signal in a localized manner makes them well-suited for analyzing signals
with complex and changing patterns. Multiresolution analysis (MRA), density, orthogonality, and compact
support characteristics collectively make wavelets powerful tools in various fields, including signal processing,
image compression, data analysis, and solving differential equations. The adaptability of wavelets to analyze
signals at different scales, their ability to capture localized features, and their efficiency in representation
and computation make them valuable tools in diverse scientific, engineering, and mathematical applications.
Different types of wavelets are often chosen based on the specific requirements of the application at hand.
Wavelet analysis is based on the concept of multiresolution analysis, meaning that it can represent a signal
at different levels of detail or resolution. This is particularly useful for signals with non-stationary or time-
varying characteristics.

Indeed, The use of orthogonal basis functions, especially in the form of orthogonal wavelet bases, has
played a crucial role in the success and widespread adoption of wavelet analysis in numerical applications.
The orthogonality property enhances the efficiency, stability, and accuracy of numerical procedures involving
wavelet transformations. Wavelet basis functions lead to a sparse representation of signals. This sparsity
often allows for a significant reduction in the number of coefficients needed to represent a signal accurately.
As a result, the underlying problems, whether they are differential equations or integral equations, can
be translated into a system of algebraic equations. This reduction simplifies the computational burden
and facilitates efficient numerical solutions. The sparsity of wavelet representations makes computations
more efficient. Since only a small subset of coefficients is required to represent a signal, algorithms based on
wavelets can be computationally faster than methods that use non-sparse representations. This is particularly
advantageous in applications such as signal processing and image compression. The reduction to algebraic
equations, computational efficiency, ease of implementation, and the rapid combination of algorithms make
wavelet basis functions a powerful tool in various applications, contributing to their widespread use in
scientific, engineering, and computational domains. One of the important aspects of wavelet analysisis the
ability to explicitly illustrate and represent other operators and functions through wavelet basis functions.
When wavelets are used as basis functions, they provide a way to analyze and represent functions in a multi-
resolution fashion, allowing for efficient and flexible representation of signals and operators. Other operators
and functions can be explicitly illustrated using wavelets, after which they become apparent in continuous
time as νij(ρ) basis functions. A function’s set contains a linearly independent set(basis) that spans the
entire space. The basis of the set of functions generates all permissible functions, say h(ρ) downsides

h(ρ) =
∑
i,j

βijνij(ρ),where βi,j = 〈h, νij〉.

The functions νij(ρ) are built from a single mother wavelet ν(ρ) ∈ L2[0, 1], which is a small pulse,
which is a unique property of the wavelet basis. The development of the integration’s operational matrix is a
critical job in Fredholm (IDEs) numerical findings. Many matrix approaches are mentioned in the literature,
as mentioned here: CAS wavelet operational matrix [4], integral and integro-differential equations [18]
and Abel’s integral equations [16], Bernoulli wavelet [17], Legendre wavelets operational matrix [19], Haar
wavelets operational matrix [7], Laguerre wavelets [10] and Hermite wavelet method for solving integro-
differential equations [13]. This work investigates a unique operational integration matrix for the Taylor
wavelet-assisted numerical solution of IDEs. Additionally, some wavelet-based numerical methods can be
found in [22, 21].

2 Definitions and Preliminaries
2.1 Wavelets
A family of functions known as wavelets is generated by dilatating and translating a single function known
as the mother wavelet. We have the following family of continuous wavelets when the dilation variable x and
the translation variable y vary continuously.

νx,y(ρ) = |x|− 1
2 ν

(
ρ− y
x

)
, x, y ∈ R, x 6= 0.

Discrete wavelets family is defined by restricting the variables x and y to discrete quantities like x =
x−Θ

0 , y = ωy0x
−Θ
0 , x0 > 1, and y0 > 1, where ω and Θ are natural numbers.

νΘ,ω(ρ) =
∣∣x−Θ

0

∣∣−1
2 ν

(
ρ− ωy0x

−Θ
0

x−Θ
0

)
= |x0|

Θ
2 ν
(
xΘ

0 ρ− ωy0

)
,
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where νΘ,ω(ρ) is a basis(wavelet basis) of L2(R).
2.2 Taylor Wavelets

Four arguments exist for Taylor wavelets νω,r(ρ) = ν(Θ, ω̂, r, ρ): ω̂ = ω−1, ω = 1, 2, . . . , 2Θ−1. When Taylor
polynomials have order r, we define them as follows on the range [0, 1].

(2.1) νω,r(ρ) =

{
2

Θ−1
2 L̃r

(
2Θ−1ρ− ω̂

)
, ω̂

2Θ−1 ≤ ρ < ω̂+1
2Θ−1

0, otherwise

with
L̃r(ρ) =

√
2r + 1Lr(ρ),

where r = 0, 1, 2, . . . , µ − 1 and ω = 1, 2, . . . , 2Θ−1. The coefficient
√

2r + 1 is for normality, the dilation
parameter is a = 2−(Θ−1) and the translation parameter is b = ω̂2−(Θ−1). Here, Lr(ρ) are the well-known
Taylor polynomials of order r which form a complete basis over the interval [0, 1], which are defined by
Lr(ρ) = ρr[20].
2.3 Approximation Technique
Any function Λ(ρ) ∈ L2[0, 1] can be expressed in terms of the Taylor wavelet basis in the following way:

Λ(ρ) =

∞∑
ω=1

∞∑
r=0

gω,rνω,r(ρ)

and consider the truncated series of approximation for Λ(ρ),

(2.2) Λ(ρ) '
2Θ−1∑
ω=1

µ−1∑
r=0

gω,rνω,r(ρ) = Eᵀν(ρ) = Λn(ρ)

where ᵀ indicates transposition, and E, ν(ρ) are n× 1
(
n = 2Θ−1µ

)
matrices given as

(2.3) E =
[
g1,0, g1,1, . . . , g1,µ−1, g2,0, . . . , g2,µ−1, . . . , g2Θ−1,µ−1, . . . , g2Θ−1,µ−1

]ᵀ
,

(2.4) ν(ρ) =
[
ν1,0(ρ), ν1,1(ρ), . . . , ν1,µ−1(ρ), ν2,0(ρ), . . . , ν2,µ−1(ρ), . . . , ν2Θ−1,0(ρ), . . . , ν2Θ−1,µ−1(ρ)

]ᵀ
.

3 Convergence analysis
In this section, two new theorems have been established for the proposed method’s convergence analysis as
well as error estimation in the following form:

Theorem 3.1 Let Λ(ρ) ∈ L2(R) be a continuous function on the interval [0, 1) such that it is bounded
by m i.e. |Λ(ρ)| < m, for every ρ ∈ [0, 1). Then, the Taylor wavelet coefficients of Λ(ρ) in Eq. (2.2) are
bounded as:

|gω,r| <
λ

2
Θ−1

2

m
2

2r + 1
,

where m is a constant and λ is given by
λ =
√

2r + 1.

Proof. Using Taylor wavelets, any arbitrary function Λ(ρ) can be approximated as:

(3.1) Λ(ρ) '
2Θ−1∑
ω=1

µ−1∑
r=0

gω,rνω,r(ρ) = ET ν(ρ) = Λn(ρ),

where E and ν(ρ) are given in Eq. (2.3), (2.4) and the coefficients gω,r are determined as:

(3.2) gω,r = 〈Λ, νω,r〉 =

∫ 1

0

Λ(ρ)νω,r(ρ)dρ = 2
Θ−1

2

√
2r + 1

∫ ω

2Θ−1

ω−1

2Θ−1

Λ(ρ)Lr
(
2Θ−1ρ− ω + 1

)
dρ.

Using the definition of Taylor wavelets νω,r(ρ), we have

(3.3) νω,r(ρ) = 2
Θ−1

2

√
2r + 1Lr

(
2Θ−1ρ− ω + 1

)
,

ω − 1

2Θ−1
≤ ρ < ω

2Θ−1
.

Let λ =
√

2r + 1. Let 2Θ−1ρ− ω + 1 = x, then Eq. (3.2) becomes

gω,r =
λ

2
Θ−1

2

∫ 1

0

Λ

(
x+ ω − 1

2Θ−1

)
Lr(x)dx.
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Therefore,

(3.4) |gω,r| ≤
λ

2
Θ−1

2

∫ 1

0

∣∣∣∣Λ(x+ ω − 1

2Θ−1

)∣∣∣∣ |Lr(x)| dx.

Seeing the properties of Taylor polynomials, we can say that

(3.5)

∫ 1

0

|Lr(v)| dv < 2

2r + 1
, r > 0.

Using the assumption |Λ(ρ)| < m in Eqs. (3.5) and (3.4), we have

(3.6) |gω,r| <
1

2
Θ−1

2

m
2√

2r + 1
.

Thus the proof of Theorem 3.1 has been completed. Also, boundedness of the function implies absolutely

convergent of the series Λ(ρ) =

∞∑
ω=1

∞∑
r=0

gω,r. Hence the Taylor wavelet approximation of the function Λ(ρ)

is absolutely convergent.

Theorem 3.2 Let Λ(ρ) ∈ L2(R) be a continuous function on the interval [0, 1) and |Λ(ρ)| < m for every

ρ ∈ [0, 1). Let Λ∗(ρ) =

2Θ−1∑
ω=1

µ−1∑
r=0

gω,rνω,r(ρ) be the Taylor wavelet series expansions where gω,r, νω,r(ρ) be the

Taylor wavelet coefficients and Taylor wavelet basis respectively. Then, the bound of the truncated error e(ρ)
is given as:

‖e(ρ)‖2 = ‖Λ(ρ)− Λ∗(ρ)‖ <

 ∞∑
ω=2Θ−1+1

µ−1∑
r=0

g2
ω,r

 1
2

+

( ∞∑
ω=1

∞∑
r=µ

g2
ω,r

) 1
2

,

where,

gω,r =
λ

2
Θ−1

2

m
2

2r + 1
, λ =

√
2r + 1.

Proof. Any function Λ ∈ L2[0, 1) can be expanded in terms of Taylor wavelets as:

Λ(ρ) =

∞∑
ω=1

∞∑
r=0

gω,rνω,r(ρ).

If Λ∗(ρ) is the expansion truncated by using Taylor wavelets, then the error obtained by truncating the
above function can be computed as:

(3.7) e(ρ) = Λ(ρ)− Λ∗(ρ) =

∞∑
ω=2Θ−1+1

µ−1∑
r=0

gω,rνω,r(ρ) +

∞∑
ω=1

∞∑
r=µ

gω,rνω,r(ρ).

From Eq. (3.7), we can write

‖e(ρ)‖ ≤

∥∥∥∥∥∥
∞∑

ω=2Θ−1+1

µ−1∑
r=0

gω,rνω,r(ρ)

∥∥∥∥∥∥+

∥∥∥∥∥
∞∑
ω=1

∞∑
r=µ

gω,rνω,r(ρ)

∥∥∥∥∥(3.8)

=

∫ 1

0

∣∣∣∣∣∣
∞∑

ω=2Θ−1+1

µ−1∑
r=0

gω,rνω,r(ρ)

∣∣∣∣∣∣
2

dρ


1
2

+

∫ 1

0

∣∣∣∣∣
∞∑
ω=1

∞∑
r=µ

gω,rνω,r(ρ)

∣∣∣∣∣
2

dρ

 1
2

≤

 ∞∑
ω=2Θ−1+1

µ−1∑
r=0

|gω,r|2
∫ 1

0

|νω,r(ρ)|2 dρ

 1
2

+

( ∞∑
ω=1

∞∑
r=µ

|gω,r|2
∫ 1

0

|νω,r(ρ)|2 dρ

) 1
2

.

From Theorem 3.1, using the property

|gω,r| <
λ

2
Θ−1

2

m
2

2r + 1
,
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Eq. (3.8) reduces to

(3.9) ‖e(ρ)‖2 <

 ∞∑
ω=2Θ−1+1

µ−1∑
r=0

|gω,r|2
∫ 1

0

|νω,r(ρ)|2 dρ

 1
2

+

( ∞∑
ω=1

∞∑
r=µ

|gω,r|2
∫ 1

0

|νω,r(ρ)|2 dρ

) 1
2

.

Let us define

(3.10) dω,r =
λ

2
Θ−1

2

m
2

2r + 1
.

Then from Eqs. (3.9) and (3.10), we get

(3.11) ‖e(ρ)‖2 <

 ∞∑
ω=2Θ−1+1

µ−1∑
r=0

|dω,r|2
∫ 1

0

|νω,r(ρ)|2 dρ

 1
2

+

( ∞∑
ω=1

∞∑
r=µ

|dω,r|2
∫ 1

0

|νω,r(ρ)|2 dρ

) 1
2

.

Therefore,

(3.12) ‖e(ρ)‖2 <

 ∞∑
ω=2Θ−1+1

µ−1∑
r=0

d2
ω,r

∫ 1

0

|νω,r(ρ)|2 dρ

 1
2

+

( ∞∑
ω=1

∞∑
r=µ

d2
ω,r

∫ 1

0

|νω,r(ρ)|2 dρ

) 1
2

.

By the definition of Taylor wavelets, we have

(3.13) ν2
ω,r(ρ) = 2Θ−1(2r + 1)L2

r

(
2Θ−1ρ− ω + 1

)
,

ω − 1

2Θ−1
≤ ρ < ω

2Θ−1
.

Integrating Eq. (3.13) with respect to ρ, we get

(3.14)

∫ 1

0

ν2
ω,r(ρ) = 2Θ−1(2r + 1)

∫ ω

2Θ−1

ω−1

2Θ−1

L2
r

(
2Θ−1ρ− ω + 1

)
dρ.

Let 2Θ−1ρ− ω + 1 = u, Eq. (3.14) becomes

(3.15)

∫ 1

0

ν2
ω,r(ρ)dρ = (2r + 1)

∫ 1

0

L2
r(u)du.

But the standard definition of Taylor polynomial implies that,

(3.16)

∫ 1

0

L2
r(u)du =

∫ 1

0

u2rdu =
1

2r + 1
.

Substituting Eq. (3.16) in Eq. (3.15), we get∫ 1

0

ν2
ω,r(ρ)dρ = 1.

Thus Theorem 3.2 has been proved. This theorem also implies consistency and stability of the
approximation.
3.1 Integration Matrix of Taylor Wavelets
Let ν(ρ) be the vector consisting of Taylor wavelets defined in the previous section, then

Iν(ρ) = Sν(ρ),

where I and S are the integral operator and the n × n operational integration matrix , respectively for
n = 2Θ−1µ . Using the Eq. (2.1) , formulation of the Taylor basis, for ω = 1, · · · , 2Θ−1 and r = 0, 1, · · · , µ−1,
we have

I (νω,r(ρ)) = I
(

2
Θ−1

2 L̃r
(
2Θ−1ρ− ω̂

)
χ[ ω̂

2Θ−1 ,
ω̂+1

2Θ−1 ](ρ)
)

(3.17)

= 2
Θ−1

2 I
(√

2r + 1
(
2Θ−1ρ− ω̂

)r
χ[ ω̂

2Θ−1 ,
ω̂+1

2Θ−1 ](ρ)
)
,

where χ[ ω̂

2Θ−1 ,
ω̂+1

2Θ−1 ](ρ) is the characteristic function defined as

χ[ ω̂

2Θ−1 ,
ω̂+1

2Θ−1 ](ρ) =

{
1, ω̂

2Θ−1 ≤ ρ ≤ ω̂+1
2Θ−1

0, otherwise
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and ω̂ = ω − 1. For ω = 1, Eq. (??) gives

I (ν1,r(ρ)) = 2
Θ−1

2

√
2r + 12(Θ−1)rI

(
ρrχ[ ω̂

2Θ−1 ,
ω̂+1

2Θ−1 ](ρ)
)
.

Therefore, we can obtain seven Taylor Wavelet basis as follows:

ν1,0(ρ) = 1,

ν1,1(ρ) =
√

3ρ,

ν1,2(ρ) =
√

5ρ2,

ν1,3(ρ) =
√

7ρ3,

ν1,4(ρ) =
√

9ρ4,

ν1,5(ρ) =
√

11ρ5,

ν1,6(ρ) =
√

13ρ6,

for Θ = 1 and µ = n = 7.
Let ν(ρ) = [ν1,0(ρ), ν1,1(ρ), ν1,2(v), ν1,3(ρ), ν1,4(ρ), ν1,5(ρ), ν1,6(ρ)].

Now integrate each element of the above vector with respect to the variable ρ limit taking from 0 to ρ,
then represent them as a linear combination of Taylor wavelet basis,

∫ ρ

0

ν1,0(ρ)dρ =
[

0 1√
3

0 0 0 0 0
]
ν7(ρ),∫ ρ

0

ν1,1(ρ)dρ =
[

0 0
√

3
2
√

5
0 0 0 0

]
ν7(ρ),∫ ρ

0

ν1,2(ρ)dρ =
[

0 0 0
√

5
3
√

7
0 0 0

]
ν7(ρ),∫ ρ

0

ν1,3(ρ)dρ =
[

0 0 0 0
√

7
4
√

9
0 0

]
ν7(ρ),∫ ρ

0

ν1,4(ρ)dρ =
[

0 0 0 0 0
√

9
5
√

11
0
]
ν7(ρ),∫ ρ

0

ν1,5(ρ)dρ =
[

0 0 0 0 0 0
√

11
6
√

13

]
ν7(ρ),∫ ρ

0

ν1,6(ρ)dρ =
[

0 0 0 0 0 0 0
]
ν7(ρ) +

√
13

7
√

15
ν1,7(ρ).

.

Thus, we have
∫ ρ

0
ν(ρ)dρ = S7×7ν7(ρ) + ν7(ρ). where,

S7×7 =



0 1√
3

0 0 0 0 0

0 0
√

3
2
√

5
0 0 0 0

0 0 0
√

5
3
√

7
0 0 0

0 0 0 0
√

7
4
√

9
0 0

0 0 0 0 0
√

9
5
√

11
0

0 0 0 0 0 0
√

11
6
√

13

0 0 0 0 0 0 0


.
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Here, S is defined to be the operational integration matrix of order 7× 7, and

ν7(ρ) =



0
0
0
0
0
0√

13
7
√

15
ν1,7(ρ)


.

This Operational Integration Matrix of Taylor Wavelet basis (OIMTW) can also be produced using the
same technique for all other values of n.

4 Proposed method for solving the Integro-Diferential Equations (IDEs)
Let,

(4.1) Λ′(ρ) = h(ρ,Λ) +

∫ 1

0

κ(ρ, ξ,Λ(ξ))dξ

be the integro-differential equation having the initial condition Λ(0) = δ. Here, h(ρ,Λ) is a continuous
function and δ is a constant.
Now we use the Taylor wavelet bases to approximate the highest derivative appearing in the given IDEs as
follows,

(4.2) Λ′(ρ) = Eᵀν(ρ),

here Θ = 1 and r = 0, 1, . . . µ− 1, where,

Eᵀ = [g1,0, g1,1, . . . , g1,µ−1] ,

ν(ρ) = [ν1,0, ν1,1, . . . , ν1,µ−1]
ᵀ
.

Apply integration on both sides of Eq. (4.2) concerning ρ limit from 0 to ρ.

Λ(ρ) = Λ(0) + Eᵀ[Sν(ρ) + ν(ρ)](4.3)

= δ + Eᵀ[Sν(ρ) + ν(ρ)].

Substituting Eq. (4.2) and (4.3) in (4.1), we have

(4.4) Eᵀν(ρ) = h
(
ρ,
(
δ + Eᵀ[Sν(ρ) + ν(ρ)]

))
+

∫ 1

0

κ
(
ρ, ξ,

(
δ + Eᵀ[Sν(ξ) + ν(ξ)]

))
dξ.

Collocate Eq. (4.4), n number of algebraic equations followed by using grid points ρi = 2i−1
2n , where

i = 0, 1, 2, . . . , n . Solving these n equations with a suitable method provides Taylor wavelet coefficients.
The required numerical solution will next be presented by substituting these coefficients in Eq.(4.3)

5 Quantitive Testings
We present several problems from the field and confirm the productivity as well as the accuracy of the
findings to assess the method’s efficacy:

Y = ‖Λe (ρi)− Λa (ρi)‖2 =

√√√√ n∑
i=1

[Λe (ρi)− Λa (ρi)]
2
,

where Λe is the approximate solution, Λa is the accurate solution and Y is denoting the absolute error. The
following illustrative problems show the presented method’s efficiency, accuracy, and validity with respect to
other existing methods.
Problem 5.1 Let

(5.1)

{
Λ′(ρ) = ρeρ + eρ − ρ+

∫ 1

0
ρΛ(ξ)dξ

Λ(0) = 0,

be the IDEs [2, 4, 5, 6, 8, 15, 20]. Λ(ρ) = ρeρ is the precise solution (PS) of this problem. When utilizing the
present approach to solve Eq. (5.1), the accuracy of the current approach depends on the size n of the matrix
of integration. Comparison between the solution of Taylor’s method (current method) or TS and the precise
solution is shown in Table 5.1, whereas absolute error (AE) is shown in Table 5.2. Finally, Table 5.3 shows
the numerical findings obtained by the current approach and compared to one of the existing approaches
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[4]. Table 5.4 compares the absolute inaccuracy of the current procedure to that of other methods. Fig. 5.1
describes a geometrical interpretation of numerical values of the current method with precise solutions. In
Fig. 5.2, error variation for different values of n for the current approach can be observed.

Table 5.1: Value comparison between the current approach (TS) and the accurate solution for the Problem 5.1

ρ TS at n=6 TS at n=7 TS at n=8 TS at n=9 Precise solution
0 0 0 0 0 0
0.1 0.110517248729256 0.110517084061229 0.110517092019904 0.110517091798469 0.110517091807565
0.2 0.244280532997289 0.244280546432053 0.244280551607897 0.244280551621848 0.244280551632034
0.3 0.404957540507024 0.404957630933154 0.404957642172328 0.404957642254503 0.404957642272801
0.4 0.596729754231302 0.596729861627843 0.596729878676599 0.596729879030421 0.596729879056508
0.5 0.824360295875318 0.824360613332353 0.824360634706961 0.824360635310779 0.824360635350064
0.6 1.093270675744187 1.093271244789225 1.093271279256232 1.093271280183089 1.093271280234305
0.7 1.409626449015646 1.409626852859123 1.409626893661343 1.409626895155630 1.409626895229334
0.8 1.780431778417886 1.780432706086411 1.780432741677801 1.780432742722952 1.780432742793974
0.9 2.213632903312502 2.213642415993803 2.213642788219453 2.213642799701517 2.213642800041255
1 2.718230515182594 2.718278904461437 2.718281684837148 2.71828182217887 2.718281828459046

Table 5.2: Error variation in the current approach for the Problem 5.2

ρ n=6 n=7 n=8 n=9
0.0 0 0 0 0
0.1 1.56 e-07 0.77 e-8 2.12 e-10 0.90 e-11
0.2 0.18 e-07 0.51 e-8 0.24 e-10 1.01 e-11
0.3 1.01 e-07 1.13 e-8 1.00 e-10 1.82 e-11
0.4 1.24 e-07 1.74 e-8 3.79 e-10 2.60 e-11
0.5 3.39 e-07 2.20 e-8 6.43 e-10 3.92 e-11
0.6 6.04 e-07 3.54 e-8 9.78 e-10 5.12 e-11
0.7 4.46 e-07 4.23 e-8 1.56 e-9 7.37 e-11
0.8 9.64 e-07 3.67 e-8 1.11 e-9 7.10 e-11
0.9 9.89 e-06 3.84 e-7 1.18 e-8 3.39 e-10
1 5.13 e-05 2.92 e-6 1.43 e-7 6.28 e-09

Table 5.3: The current method is compared to an existing method for the Problem 5.1.

ρ Precise solution CAS in [4] TS at n=9 CAS’s AE [4]
AE of
current
approach

0.1 0.110517091807565 0.00134917637 0.110517091798469 1.09 e-01 0.90 e-11
0.2 0.244280551632034 0.00115960044 0.244280551621848 2.43 e-01 1.01 e-11
0.3 0.404957642272801 0.00567152531 0.404957642254503 3.99 e-01 1.82 e-11
0.4 0.596729879056508 0.05931056450 0.596729879030421 5.37 e-01 2.60 e-11
0.5 0.824360635350064 0.01323307510 0.824360635310779 8.11 e-01 3.92 e-11
0.6 1.093271280234300 0.04392877200 1.093271280183089 1.05 e+00 5.12 e-11
0.7 1.409626895229330 0.01412016240 1.409626895155630 1.40 e+00 7.37 e-11
0.8 1.780432742793970 0.01345141170 1.780432742722952 1.77 e+00 7.10 e-11
0.9 2.213642800041250 0.01320452090 2.213642799701517 2.20 e+00 3.39 e-10
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Table 5.4: Comparison between the AE of the current approach with some other methods for the Problem 5.1.

ρ CAS’s [4] DPE’s [5] IHPM’s [20] SBM’s [2] HWM’s [6] HEK’s [8]
AE of
TS

0.1 1.34 e-03 1.00 e-02 0.23 e-05 1.01 e-07 1.85 e-06 3.69 e-03 0.90 e-11
0.2 1.15 e-03 0.23 e-05 1.01 e-07 1.30 e-06 1.30 e-06 1.45 e-02 1.01 e-11
0.3 5.67 e-03 2.78 e-02 0.92 e-05 4.82 e-07 1.40 e-06 3.20 e-02 1.82 e-11
0.4 5.93 e-02 5.08 e-02 0.20 e-04 1.01 e-07 2.15 e-06 5.56 e-02 2.60 e-11
0.5 1.32 e-02 7.55 e-02 0.37 e-04 1.61 e-06 5.03 e-07 8.47 e-02 3.92 e-11
0.6 4.39 e-02 9.71 e-02 0.57 e-04 2.30 e-06 2.55 e-06 1.18 e-01 5.12 e-11
0.7 1.41 e-02 1.09 e-01 0.83 e-04 3.09 e-06 2.20 e-06 1.55 e-01 7.37 e-11
0.8 1.34 e-02 1.04 e-01 0.11 e-03 3.97 e-06 2.50 e-06 1.95 e-01 7.10 e-11
0.9 1.32 e-02 6.94 e-02 0.14 e-03 4.99 e-06 3.46 e-06 2.35 e-01 3.39 e-10

 

Figure 5.1: Graph representation of the Approximate solution (TS) for n=6 and the Precise solution (PS) for the
Problem 5.1.
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Figure 5.2: Graphical comparison of AE of current method at n = 6, 7, 8 and 9 for the Problem 5.1.

Problem 5.2 Let

(5.2)

{
Λ′(ρ) = 1− 1

3ρ+
∫ 1

0
ρξΛ(ξ)dξ

Λ(0) = 0.

be the IDEs [2, 4, 5, 6, 8, 15, 20]. Λ(ρ) = ρ is the accurate solution of the problem 5.2. Applying the current
method at n=10 for solving this problem, we have Ten Taylor wavelet coefficients as follows:

g1,0 = 1
g1,1 = 0
g1,2 = 0
g1,3 = 0
g1,4 = 0
g1,5 = 0
g1,6 = 0
g1,7 = 0
g1,8 = 0
g1,9 = 0


The Taylor wavelet solution, which is identical to the analytic solution, is obtained by replacing these
coefficients in Eq. (4.3). This problem demonstrates the method’s efficiency, applicability, and validity.
Numerical values of the solution of problem 5.2 as shown in Table 5.5 obtained in different existing methods
and the current method (TS) along with the absolute error.
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Table 5.5: Numerical comparison of current solution with certain other existing methods for the Problem 5.2.

ρ PS CAS [4] TS CAS’s AE [4] CAS in [4] DPEM [5] SAM [2] HWM [6] HEK [8]
AE of
TS

0.1 0.1 0.00021794238 0.1 9.98 e-02 2.17 e-04 1.60 e-03 3.79 e-06 1.60 e-06 1.50 e-03 0
0.2 0.2 0.00063854821 0.2 1.99 e-01 6.38 e-04 6.09 e-03 1.51 e-05 2.36 e-06 5.36 e-03 0
0.3 0.3 0.00077137049 0.3 2.99 e-01 7.91 e-04 1.32 e-02 3.41 e-05 2.26 e-06 1.06 e-02 0
0.4 0.4 0.02155860050 0.4 3.78 e-01 2.15 e-02 2.29 e-02 6.06 e-05 1.31 e-06 1.65 e-02 0
0.5 0.5 0.00499358429 0.5 4.95 e-01 4.99 e-03 3.51 e-02 9.47 e-05 4.85 e-07 2.21 e-02 0
0.6 0.6 0.02217288150 0.6 5.78 e-01 2.21 e-02 6.69 e-02 1.36 e-05 9.28 e-07 2.67 e-02 0
0.7 0.7 0.00010564545 0.7 7.00 e-01 1.05 e-04 7.12 e-02 1.85 e-04 1.48 e-06 2.95 e-02 0
0.8 0.8 0.00143233681 0.8 7.99 e-01 1.43 e-03 8.63 e-02 2.42 e-04 1.19 e-06 2.98 e-02 0
0.9 0.9 0.02077474610 0.9 8.79 e-01 2.07 e-02 1.08 e-01 3.06 e-04 5.40 e-08 2.71 e-02 0

Problem 5.3 Let

(5.3)

{
Λ′(ρ) =

∫ 1

0
sin[4πρ+ 2πξ]Λ(ξ)dξ + Λ(ρ)− 2π sin(2πρ)− cos(2πρ)− 1

2 sin(4πρ)
Λ(0) = 1

be the IDEs [4], Λ(ρ) = cos(2πρ) is the precise answer to this problem. Numerical values obtained in the
current method (TS) and precise solution are shown in Table 5.6 and compared with an existing method
after simplifying Eq. (5.3). The numerical answer is graphically compared to the precise solution in Fig.
5.3. The absolute error that occurred in this problem is compared with an existing method in Fig. 5.4.

 

Figure 5.3: Graphical representation of the TS for n=10 and the precise solution for the Problem 5.3.
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Figure 5.4: Point diagram of absolute errors (AE) for the current method at n=10 and CAS’s AE [4] for the Problem
5.3.

Table 5.6: Current method is compared with an existing method for the Problem 5.3.

ρ PS CAS method in [4] TS at n=10 CAS’s AE [4]
Absolute error of
TS

0.1 0.809016994374947 0.00240432854 0.809022044656112 8.07 e-01 5.05 e-06
0.2 0.309016994374947 0.00507123331 0.309016289100111 3.04 e-01 0.70 e-06
0.3 -0.309016994374948 0.00625477225 -0.309018658682028 3.15 e-01 1.66 e-06
0.4 -0.809016994374947 0.00387315246 -0.809014212286664 8.13 e-01 2.78 e-06
0.5 -1.000000000000000 0.01746016710 -0.999993298619171 1.02 e+00 6.70 e-06
0.6 -0.809016994374947 0.01584825600 -0.809012181620363 8.25 e-01 4.81 e-06
0.7 -0.309016994374948 0.00841721725 -0.309016273658540 3.17 e-01 0.72 e-06
0.8 0.309016994374947 0.00965467633 0.309025332212964 2.99 e-01 8.33 e-06
0.9 0.809016994374947 0.00948709579 0.809005478573982 8.00 e-01 1.15 e-05

Problem 5.4 Let,

(5.4) Λ′(ρ) =
5

4
− 1

3
ρ2 +

∫ 1

0

(
ρ2 − ξ

)
(Λ(ξ))2dξ, Λ(0) = 0,

be IDEs [14, 15].The nonlinear Eq. (5.4) has a precise solution as Λ(ρ) = ρ. Using the current approach at
n = 3 to simplify Eq. (5.4), we have Taylor wavelet approximation coefficients as g1,0 = 1, g1,1 = 0, g1,2 = 0,
obtained by using Newton’s iterative technique (taking an initial guess (1,0,0)) in MATLAB. Now using
these coefficients in Eq.(4.3), We find a solution that is identical to the precise solution. This problem
demonstrates the effectiveness of our method. Numerical values and Absolute errors of the current approach
are placed in Table 5.6 and can be compared with the precise solution and different known methods [14, 15].
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Table 5.7: The current method is compared with some other existing methods for the Problem 5.4.

ρ PS TS
RHFs [15] at

k = 32
RHF’s AE [15]

B-spline’s AE
[14] at N = 27

Absolute error of
TS

0.1 0.1 0.1 0.10002 2.0 e-05 1.94 e-14 0
0.2 0.2 0.2 0.20008 8.0 e-05 3.83 e-14 0
0.3 0.3 0.3 0.30007 7.0 e-05 5.05 e-14 0
0.4 0.4 0.4 0.40008 8.0 e-05 6.77 e-14 0
0.5 0.5 0.5 0.50001 1.0 e-05 8.37 e-14 0
0.6 0.6 0.6 0.60001 1.0 e-05 9.30 e-14 0
0.7 0.7 0.7 0.70002 2.0 e-05 10.5 e-14 0
0.8 0.8 0.8 0.80008 8.0 e-05 11.4 e-14 0
0.9 0.9 0.9 0.89991 9.0 e-05 12.1 e-14 0

6 Conclusion
From the above analysis, it is concluded that the Taylor wavelet-based collocation method is much better
efficient compared to many different existing methods for numerically solving IDEs in numerous disciplines
of science and engineering. To get more accurate results, the number of collocation points can be increased.
Acknowledgement. All authors are thankful to the editor and referees for their suggestions to bring the
paper in its present form.
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Abstract

It’s remarkable to note that Complex valued Integro-differential and integral type equations are
currently intensifying the attention of appreciable researchers due to their comprehensive applications.
Thus, this study is fully devoted to the application part of the complex valued controlled, double
controlled metric ðC. We introduce an extended version of the Fisher and Banach type contraction
theorem and present some examples to sustain our results. As part of the main theorem’s application,
we address a common solution with uncertainty in two different folds as follows: [I] Applying the fractional
Adams-Bashforth method to the (1.1) FVIdE. [II] Applying it to the integral type equation (1.2) in the
setting of the Extended complex valued metric space.
2020 Mathematical Science Classification.47H09,24H25,34A08,47H10.
Keywords and Phrases: Atangana Baleanu Fractional integral operator,fredholm Volterra integro
differential equation(FVIdE), Complex valued metric space(CVMS), Common fixed point, Cauchy
sequence, Contractive condition and completeness.

1 Introduction
The terms calculus of integral equation and fractional calculus are introduced more than 10 decade back.
These ten decade seems like a really big time but predominantly these topics are extensively gain new
structures and effectively applied in different part of mathematics like fixed point theory, fuzzy theory and
so on. Recently Atangana-Baleanu [1] studied new type of fractional derivative targeting non singular/local
kernel. Subsequently in 2023 Shinde [33] gave complex valued version of existence and common solution
for second order nonlinear boundary value problem using greens function along with another application
of fixed point results for multivalued mapping in setting of CVMS. In 2017, Kumar et al. [19] studied
a fractional non-linear biological model problem and its approximate solutions through Volterra Integral
Equation. In 2019, Kumar [20] studied a class of two variable sequence of functions satisfying Abel’s Integral
equation and the phase shifts. in 2019 [20] H. Kumar given A class of two variables sequence of functions
satisfying Abel’s integral equation and the phase shifts. In literature we can see many generalizations of
Atangana-Baleanu fractional derivative like AB -derivative [13], AB derivative via MHD channel flow [34],
ABRL type [12], we can see more [8,9,11,16,17,18,21,22,26,29,31,32,34,35]. Here we recollecting the definition
of Atangana-Baleanu fractional integral, Let ω ∈ (0, 1] and integral define as,

AB
s Dω

t f(t) =
(1− ω)

ζ(ω)
f(t) +

ω

Ξ(ω)ζ(ω)

∫ t

s

f(h)
(t− h)ω

(t− h)
dh.

where, 0 < t < s ; normalization function ζ(0) = ζ(1) = 1.
Subsequently, by applying fractional Adams Bashforth method to the (1.1) FVIdE in the setting of complex
valued controlled metric we deal with following conditions,

(1.1) ĩ0 = ĩ(0; `);ABC0 Dω
~ ĩ(~; `)

= ℵ(~) + <(~).ĩ(~, `) +

∫ ~

0

f1(~, ξ).χ1(ĩ(ξ, `))dξ +

∫ 1

0

f2(~, ξ)χ2(ĩ(ξ, `))dξ,

∗Presented in 5th International Conference of Vijñāna Parishand of India on Recent Advances in Computational
Mathematics and Applied Sciences (IC-RA-CMAS) December 09-11, 2023 held at MRIIRS, Faridabad, Haryana, India.
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where, ABC
0 Dω

~ ABC type of order ω such that ĩ(~; `) = [i(~; `),i(~; `)]; continuous function f1,f2 :
∇×∇ → R, ℵ : ∇ → R; Lipschitz continuous function χ1, χ2 : ∇ → R; Lz(∇,R) and Cz(∇,R) are space of all
continuous functions and the space of all Lebesgue integrable functions on ∇, ĩ(~; `) ∈ Lz(∇,R)∩Cz(∇,R).
At the end we deal with following Integral type equation,

(1.2) <1(~)−f(~) =

∫ ~

0

χ(~, `)ℵ(`,<1`)d`,

which has two bounded continuous function namely f(~) : [0, 1]→ R and ℵ(~,<1(~)) : [0, 1]× R→ R. The
function χ : [0, 1) × [0, 1) → [0,∞) with χ(~, .) ∈ L1[0, 1] and 0 ≤ ~ ≤ 1. We successfully applied fixed
point solution to above integral type equation. The novel approach has a promising uniqueness of solution
in different fields, for more we can see[10, 11, 19, 22, 23, 24, 25, 26].

2 Preliminaries
Azam, Khan and Fisher [2] studied notion of complex valued metric and given important definition as follows,

Definition 2.1. Consider a partial order - defined on a complex number(C), ~ - ` iff Real part of (~) ≤
Real part of (`) ; Imaginary part of (~) ≤ Imaginary part of (`). It follows, ~ ≤ `

1. Real part (~)<Real part (`) ; Imaginary part (~) < Imaginary part (`).
2. Real part (~) = Real part (`) ; Imaginary part (~) = Imaginary part (`).
3. Real part (~) < Real part (`) ; Imaginary part (~) = Imaginary part (`).
4. Real part (~) = Real part (`) ; Imaginary part (~) < Imaginary part (`).

Definition 2.2. Lets define the function ðC : ∇ × ∇ → C, where non empty set ∇; the function ψ, ζ :
∇×∇ → [1,∞) and C be the set of complex numbers. We define following condition for ∀ ~, `, µ ∈ ∇ ,
S1 : ~ = ` if and only if ðC(~, `) = 0.
S2 : ðC(~, `) = ðC(`, ~).
S3 : Controlled triangle inequality- ðC(~, `) - ψ(~, µ)ðC(~, µ) + ψ(µ, `)ðC(µ, `).
S4 : Extended triangle inequality- ðC(~, `) - ψ(~, `)[ðC(~, µ) + ðC(µ, `)].
S5 : Double controlled triangle inequality- ðC(~, `) - ψ(~, µ)ðC(~, µ) + ζ(µ, `)ðC(µ, `).

Definition 2.3. If ðC satisfied S1, S2 and S4, then ðC is called complex valued extended metric and the
pair (∇,ðC) called complex valued extended metric space.

Definition 2.4. If ðC satisfied S1, S2 and S3, then ðC is called complex valued controlled metric and the
pair (∇,ðC) called complex valued controlled metric space.

Definition 2.5. If ðC satisfied S1, S2 and S5, then ðC is called complex valued double Controlled metric
and the pair (∇,ðC) called complex valued double Controlled metric space.

Example 2.1. Lets define the function ðC : ∇×∇ → C and the set ∇ = {2, 3, 1} which has, ðC(2, 3) = i;
ðC(1, 2) = 2 + 4i; ðC(3, 2) = i; ðC(2, 1) = 2 + 4i ðC(1, 1) = 0; ðC(1, 3) = 1− i; ðC(2, 2) = 0; ðC(3, 1) = 1− i;
ðC(3, 3) = 0. Again define ζ, ψ : ∇×∇ → [1,∞) as
ψ(2, 3) = ψ(3, 2) = 8

7 , ψ(1, 2) = ψ(2, 1) = 1, ψ(1, 3) = ψ(3, 1) = 3
2 ,

ζ(2, 3) = ζ(3, 2) = 9
2 , ζ(1, 2) = ζ(2, 1) = 7

6 , ζ(3, 1) = ζ(1, 3) = 1.

Proposition 2.1. In above example we easily verify ðC is double controlled metric type but ðC is neither a
complex valued extended metric nor a complex valued controlled metric.

Lemma 2.1. Suppose (∇,ðC) be a ðC metric space. Then the sequence {~n} in ∇ is a cauchy sequence if
and only if | ðC(~n, ~n+s) |→ 0 as n→∞ where s ∈ N.

Lemma 2.2. Suppose (∇,ðC) be a ðC metric space. Then the sequence {~n} in ∇ Converges to ~ if and
only if | ðC(~n, ~) |→ 0 as n→∞.

Definition 2.6. Assume {~n} be a sequence in a ðC metric space (∇,ðC) and ~ ∈ ∇, then (∇,ðC) is said
to be a complete ðC metric space if every Cauchy sequence is convergent in (∇,ðC).

Definition 2.7. Suppose {~n} be a sequence in a ðC metric space (∇,ðC) and ~ ∈ ∇, then ~ is a limit point

of {~n} if for every ε ∈ C there exist n0 ∈ N such that ðC({~n}, n) ≺ ε,∀n � n0 that is limn→∞, ~n = n.
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Definition 2.8. Suppose {~n} be a sequence in a ðC metric space (∇,ðC) and ~ ∈ ∇, then {~n} is a cauchy
sequence if for any ε ∈ C there exist n0 ∈ N such that ðC(~n, ~n+s) ≺ ε, ∀n � n0 and s ∈ N .

Remark 2.1 ([1]). The left sided AB fractional integral of order ω ∈ (0, 1] for a function ĩ is defined as

ABßω0 ĩ(~) =
1

ζ(ω)
[(1− ω)ĩ(~) +

ω

Ξ(ω)

∫ ~

0

(~− ξ)ω

(~− ξ)
ĩ(ξ)dξ].

where, we have continuous function ĩ(~) on the interval (0, b).

Remark 2.2 ([7]). Consider the map ψ : R→ ∇ satisfying following properties,
• The closure of Supp(ψ) is compact.
• ψ- normal, Upper semi-continuous and convex.

Remark 2.3 ([7]). The parametric interval of ψ̃ is given by,

ψ̃ = [ψ(β), ψ(β)] and 0 ≤ β ≤ 1

• With respect to β, ψ(β) is a left continuous and non-decreasing,

• ∀ β ∈ ∇, we have ψ(β) ≤ ψ(β),

• With respect to β, ψ(β) is a right continuous and non-decreasing.

Lemma 2.3. Let (∇,ðC) be a complex valued controlled metric space. If the functional ðC : ∇×∇ → C is
continuous then limit of every convergent sequence is unique.

Lemma 2.4. Let (∇,ðC) be a complex valued controlled metric space. If a sequence {~n} in ∇ is Cauchy
sequence, such that ~n 6= ~m when m 6= n. Then we say {~n} converges at most one point.

In this article, we present a new fixed point result under extended complex valued metric space with
suitable examples, results and finally two folds of the application part.

3 Main Results
Moving towards the following Theorem and its hypothesis, we generalize some ideas via controlled, double
controlled complex valued metric space.

Theorem 3.1. Consider (∇,ðC) be a complete ðC metric space. Suppose ℵ = η
(<[−µ)

< 1 and

(3.1)
1

ℵ
> sup

1≤m
lim
i→∞

ψ(~i+1, ~i+2)

ψ(~i, ~i+1)
ζ(~i+1, ~m).

For every ~, ` ∈ ∇ & 0 ≺ ðC(~, `), we use µ, λ, η are non negative real numbers with µ+ λ+ η < 1, 1 ≤ <, [
we choose ~n = ĩ2

n~0 ∈ ∇ for all ~0 ∈ ∇ then the map ĩ1, ĩ2 : ∇ → ∇ satisfying,

(3.2) ðC(ĩ1~, ĩ2`).<[ - µ{ðC(~, ĩ1~)ðC(`, ĩ2`)

1 + ðC(~, `)
}+ λ{ðC(ĩ1~, `).ðC(ĩ2~, ~)

1 + ðC(~, `)
}+ η{ðC(~, `)},

afterward Assume that, limn→∞ ζ(~n, ~) , limn→∞ ψ(~, ~n) both are exist and finite, then ĩ1 and ĩ2 admits
unique common fixed point.

Proof. Suppose, ~0 ∈ ∇ be any arbitrary point. Let the sequence ~n = ĩ2
n~0 ∈ ∇ which satisfies hypothesis

of theorem and we define it as,

(3.3) ĩ1~2n = ~2n+1 ; ĩ2~2n+1 = ~2n+2, n = 0, 1, 2, ...

ðC(~2n+1, ~2n+2).<[ = ðC(ĩ1~2n, ĩ2~2n+1).<[ -

µ{ðC(~2n, ĩ1~2n)ðC(~2n+1, ĩ2~2n+1)

1 + {ðC(~2n, ~2n+1)}
}+ λ{ðC(ĩ1~2n, ~2n+1).ðC(ĩ2~2n, ~2n)

1 + {ðC(~2n, ~2n+1)}
}+ η{ðC(~2n, ~2n+1)}

ðC(~2n+1, ~2n+2)<[ - µ{ðC(~2n, ~2n+1)ðC(~2n+1, ~2n+2)

1 + {ðC(~2n, ~2n+1)}
}+λ{ðC(~2n+1, ~2n+1).ðC(~2n+1, ~2n)

1 + {ðC(~2n, ~2n+1)}
}+η{ðC(~2n, ~2n+1)},

ðC(~2n+1, ~2n+2).<[ - µ{ðC(~2n+1, ~2n+2)}+ η{ðC(~2n, ~2n+1)},

ðC(~2n+1, ~2n+2).(<[ − µ) - η{ðC(~2n, ~2n+1)},
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ðC(~2n+1, ~2n+2) -
η

(<[ − µ)
{ðC(~2n, ~2n+1)},

ðC(~2n+1, ~2n+2) - ℵ.{ðC(~2n, ~2n+1)}.

Similarly, we get

(3.4) ðC(~2n+2, ~2n+3) -
η

(<[ − µ)
{ðC(~2n+1, ~2n+2)}

ðC(~2n+1, ~2n+2) - ℵ{ðC(~2n, ~2n+1)} where, ℵ =
η

(<[ − µ)
< 1

| ðC(~n, ~n+1) |- ℵ | {ðC(~n−1, ~n)} |,

| ðC(~n, ~n+1) |- ℵ2 | {ðC(~n−2, ~n−1)} |,

| ðC(~n, ~n+1) |- ℵn | {ðC(~0, ~1)} | .

For every n < m, where m,n ∈ N
(3.5) | ðC(~n, ~m) |- ψ(~n, ~n+1) | ðC(~n, ~n+1) | +ζ(~n+1, ~m) | ðC(~n+1, ~m) |
- ψ(~n, ~n+1) | ðC(~n, ~n+1) | +ζ(~n+1, ~m)[ψ(~n+1, ~n+2) | ðC(~n+1, ~n+2) | +ζ(~n+2, ~m) | ðC(~n+2, ~m) |]

- ψ(~n, ~n+1) | ðC(~n, ~n+1) | +ζ(~n+1, ~m)ψ(~n+1, ~n+2) | ðC(~n+1, ~n+2) | +ζ(~n+1, ~m)ζ(~n+2, ~m) | ðC(~n+2, ~m) |

- ψ(~n, ~n+1) | ðC(~n, ~n+1) | +
m−2∑
i=n+1

(

i∏
j=n+1

ζ(~j , ~m))ψ(~i, ~i+1) | ðC(~i, ~i+1) | +
m−1∏
k=n+1

ζ(~k, ~m) | ðC(~m−1, ~m) |

- ψ(~n, ~n+1).ℵn | {ðC(~0, ~1)} | +
m−2∑
i=n+1

(

i∏
j=n+1

ζ(~j , ~m))ψ(~i, ~i+1).ℵi | {ðC(~0, ~1)} |

+

m−1∏
i=n+1

ζ(~i, ~m).ℵm−1 | {ðC(~0, ~1)} |

- ψ(~n, ~n+1)ℵn | {ðC(~0, ~1)} | +
m−2∑
i=n+1

(

i∏
j=n+1

ζ(~j , ~m))ψ(~i, ~i+1)ℵi | {ðC(~0, ~1)} | +

m−1∏
i=n+1

ζ(~i, ~m)ℵm−1ψ(~m−1, ~m) | {ðC(~0, ~1)} |

- ψ(~n, ~n+1).ℵn | {ðC(~0, ~1)} | +
m−1∑
i=n+1

(

i∏
j=n+1

ζ(~j , ~m))ψ(~i, ~i+1).ℵi | {ðC(~0, ~1)} |

- ψ(~n, ~n+1).ℵn | {ðC(~0, ~1)} | +
m−1∑
i=n+1

(

i∏
j=0

ζ(~j , ~m))ψ(~i, ~i+1).ℵi | {ðC(~0, ~1)} | .

Hence we write,
| ðC(~n, ~m) |-| ðC(~0, ~1) | [ℵn.ψ(~n, ~n+1) + (fm−1 − fm)],

where, fι =
∑ι
i=0(

∏i
j=0 ζ(~j , ~m))ψ(~i, ~i+1)ℵi.

As we have (3.1) and using ratio test we get limit of {fn} exists, so it is Cauchy. When we apply ratio test
to following term and letting m,n→∞ in (3.6),

(3.6) ωi = (

i∏
j=0

ζ(~j , ~m))ψ(~i, ~i+1), and lim
m,n→∞

| ðC(~n, ~m) |= 0,

which gives sequence {~n} is Cauchy. Since (∇,ðC) is Complete then ∃z ∈ ∇ such that,

(3.7) lim
m,n→∞

| ðC(~n,z) |= 0.
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Now, by triangle inequality,

(3.8) | ðC(z, ~n+1) |- ψ(z, ~n) | ðC(z, ~n) | +ζ(~n, ~n+1) | ðC(~n, ~n+1) | .
By Using (3.6) and (3.8) we finally get,

(3.9) lim
n→∞

| ðC(z, ~n+1) |= 0.

Now we claim z = ĩ1z,

(3.10) | ðC(z, ĩ1z) |- ψ(z, ~n+2) | ðC(z, ~n+2) | +ζ(~n+2, ĩ1z) | ðC(~n+2, ĩ1z) |
| ðC(z, ĩ1z) |- ψ(z, ~n+2) | ðC(z, ~n+2) | +ζ(~n+2, ĩ1z) | ðC(ĩ2~n+1, ĩ1z) |

| ðC(z, ĩ1z) |- ψ(z, ~n+2) | ðC(z, ~n+2) | +ζ(~n+2, ĩ1z).<[ | ðC(ĩ1z, ĩ2~n+1) |

- ψ(z, ~n+2) | ðC(z, ~n+2) | +ζ(~n+2, ĩ1z)µ{ðC(z, ĩ1z)ðC(~n+1, ĩ2~n+1)

1 + ðC(z, ~n+1)
}+

λ{ðC(ĩ1z, ~n+1).ðC(ĩ2z,z)

1 + ðC(z, ~n+1)
}+ η{ðC(z, ~n+1)}.

We write this as,

- ψ(z, ~n+2) | ðC(z, ~n+2) | +ζ(~n+2, ĩ1z)µ{ðC(z, ĩ1z)ðC(~n+1, ~n+2)

1 + ðC(z, ~n+1)
}+

λ{ðC(ĩ1z, ~n+1)ðC(ĩ2z,z)

1 + ðC(z, ~n+1)
}+ η{ðC(z, ~n+1)}.

Using (3.6),(3.7) and (3.8), we get
| ðC(z, ĩ1z) |= 0.

Hence, ĩ1 admits fixed point z. Subsequently we prove ĩ2 admits fixed point as z. Now finally we have to
work on Uniqueness property, that is ĩ1 and ĩ2 admits unique common fixed point.
On Contrary assume that z and z∗ are two common fixed points of ĩ1 and ĩ2 & z 6= z∗.
(3.11) ðC(z,z∗).<[ = ðC(ĩ1z, ĩ2z∗).<[

- µ{ðC(z, ĩ1z)ðC(z∗, ĩ2z∗)
1 + ðC(z,z∗)

}+ λ{ðC(ĩ1z,z∗).ðC(ĩ2z,z)

1 + ðC(z,z∗)
}+ η{ðC(z,z∗)}

ðC(z,z∗).<[ - η{ðC(z,z∗)} which impies ðC(z,z∗).(<[ − η) - 0.

Hence we get, ðC(z,z∗) = 0 which is the contradiction to our assumption. Thus z = z∗, ĩ1 and ĩ2 admits
unique common fixed point.

If we assume ĩ1 & ĩ2 are equal and which is equal to ĩ along with we include map ĩ : ∇ → ∇ be a
continuous mapping; <, [ = 1 & λ, µ = 0 then Theorem 3.1 reduces to following result,

Theorem 3.2. Consider (∇,ðC) be a Complete ðC metric space. Suppose

(3.12)
1

η
> sup

1≤m
lim
i→∞

ψ(~i+1, ~i+2)

ψ(~i, ~i+1)
ζ(~i+1, ~m).

For every ~, ` ∈ ∇ & 0 ≺ ðC(~, `), we use η non negative real numbers with 0 < η < 1, we choose
~n = ĩn~0 ∈ ∇ for all ~0 ∈ ∇ then the map ĩ : ∇ → ∇ be a continuous mapping such that,

(3.13) ðC(ĩ~, ĩ`) - η{ðC(~, `)},
afterward assume that, limn→∞ ζ(~n, ~) , limn→∞ ψ(~, ~n) both exist and finite, then ĩ admits unique
common fixed point.
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Proof. Consider ~n = {ĩn~0} and by Using inequalities (3.13),

ðC(~n, ~n+1) - ηðC(~n−1, ~n) - ... - ηðC(~0, ~1),∀n ≥ 0

for every m > n, where m,n ∈ N
ðC(~n, ~m) - ψ(~n, ~n+1)ðC(~n, ~n+1) + ψ(~n+1, ~m)ðC(~n+1, ~m)

- ψ(~n, ~n+1)ðC(~n, ~n+1)+ψ(~n+1, ~m)ψ(~n+1, ~n+2)ðC(~n+1, ~n+2)+ψ(~n+1, ~m)ψ(~n+2, ~m)ðC(~n+2, ~m)

- ψ(~n, ~n+1)ðC(~n, ~n+1) + ψ(~n+1, ~m)ψ(~n+1, ~n+2)ðC(~n+1, ~n+2) + ψ(~n+1, ~m)

ψ(~n+2, ~m)ψ(~n+3, ~m)ψ(~n+3, ~m) - ...

- ψ(~n, ~n+1)ηnðC(~0, ~1) +

m−2∑
i=n+1

i∏
j=n+1

ψ(~j , ~m)ψ(~i, ~n+1)ηiðC(~0, ~1) +

m−1∏
k=n+1

ψ(~k, ~m)ηm−1ðC(~0, ~1)

If we follow same steps given in main Theorem 3.1, we get

- ψ(~n, ~n+1)ηnðC(~0, ~1) +

m−1∑
i=n+1

i∏
j=0

ζ(~j , ~m)ψ(~i, ~i+1)ηiðC(~0, ~1)

Let,

fι =

ι∑
i=0

ι∏
j=0

ψ(~j , ~m)ψ(~i, ~i+1)ηi.

(3.14) ðC(~n, ~m) - ðC(~0, ~1)[ηnψ(~n, ~n+1) + (fm−1,fn)].

By using ratio test and (3.12), limm,n→∞fn exists which implies sequence {fn} is Cauchy. Applying
limm,n→∞ to (3.14), we get

(3.15) lim
m,n→∞

ðC(~n, ~m) = 0.

As we know {~n} is Cauchy in complete ðC -metric space, then we say that {~n} is converges to a point
~∗ ∈ ∇. Now next part ~∗ is fixed point of ĩ. We use definition of continuity of ĩ,

~∗ = lim
n→∞

~n+1 = lim
n→∞

ĩ~n = ĩ( lim
n→∞

~n) = ĩ~∗

and finally remaining part is uniqueness of fixed point. On contrary we assume ĩ has two fixed point say z
and z∗,

ðC(z,z∗) = ðC(ĩz, ĩz∗) - ψðC(z,z∗),
which holds only when ðC(z,z∗) = 0 and Hence it finally gives uniqueness of fixed point.

If we assume ĩ1 & ĩ2 are equal and which is equal to ĩ along with we avoid map ĩ : ∇ → ∇ is continuous;
<, [ = 1 & λ, µ = 0 then Theorem 3.1 reduces to following result:

Theorem 3.3. Consider (∇,ðC) be a complete ðC metric space. Suppose

(3.16)
1

η
> sup

1≤m
lim
i→∞

ψ(~i+1, ~i+2)

ψ(~i, ~i+1)
ζ(~i+1, ~m).

For every ~, ` ∈ ∇ & 0 ≺ ðC(~, `), we use η non negative real numbers with 0 < η < 1, we choose
~n = ĩn~0 ∈ ∇ for all ~0 ∈ ∇ then the map ĩ : ∇ → ∇ be a mapping such that,

(3.17) ðC(ĩ~, ĩ`) - η{ðC(~, `)},
afterward assume that, limn→∞ ζ(~n, ~) , limn→∞ ψ(~, ~n) both exist and finite, then ĩ admits unique
common fixed point.

Proof. If we follow similar steps like Theorem 3.2 we can easily get the Cauchy sequence {~n} under ðC-
metric space (∇,ðC). Subsequently we say {~n} converges to ~∗ ∈ ∇. We shall prove ĩ admits ~∗ as a fixed
point, we consider the triangle inequality of complex valued controlled metric space,

ðC(~∗, ~n+1) - ψ(~∗, ~n)ðC(~∗, ~n) + ψ(~n, ~n+1)ðC(~n, ~n+1).

with the help of Statement (b) of Theorem 3.3, we write

(3.18) lim
n→∞

ðC(~∗, ~n+1) = 0.

Again by (3.17) and triangle inequality, we get

ðC(~∗, ĩ~∗) - ψ(~∗, ~n+1)ðC(~∗, ~n+1) + ψ(~n+1, ĩ~∗)ðC(~n+1, ĩ~∗)
- ψ(~∗, ~n+1)ðC(~∗, ~n+1) + ηψ(~n+1, ĩ~∗)ðC(~n, ĩ~∗).

Letting limn→∞ and Statement of Theorem 3.3, we get ðC(~∗, ĩ~∗) = 0, Hence proved.
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We use following example to verify above results:

Example 3.1. Let ðC : ∇×∇ → C be a symmetric metric. Suppose ∇ = {1, 2, 0} and ðC(1, 2) = ðC(0, 1) =
1 + i & ðC(0, 2) = 4 + 4i again function ψ : ∇×∇ → [1,∞) is symmetric and

ψ(1, 1) = 4
3 ,ψ(2, 2) = 6

5 ,ψ(1, 2) = 5
4 .

ψ(0, 2) = 4
3 ,ψ(0, 1) = 3

2 ,ψ(0, 0) = 2.

It’s easy to verify ðC is a metric space, Suppose self map ĩ follows ĩ(2) = ĩ(1) = ĩ(0) = 0 & use η = 2
5 and

we clearly see that (3.17) holds for ~0 ∈ ∇ then condition (3.16) is satisfied. We follow the following cases
to verify hypothesis of Theorem 3.3,
Case I. If ~ = 1, ` = 2 then,
ðC(ĩ~, ĩ`) = ðC(ĩ1, ĩ2) = ðC(2, 2) = 0 - 2

5 (1 + i) = ηðC(1, 2) = ηðC(~, `).
Case II. If ~ = 0, ` = 1 then,
ðC(ĩ~, ĩ`) = ðC(ĩ0, ĩ1) = ðC(2, 2) = 0 - 2

5 (1 + i) = ηðC(0, 1) = ηðC(~, `).
Case III.If ~ = 0, ` = 2 then,
ðC(ĩ~, ĩ`) = ðC(ĩ0, ĩ2) = ðC(2, 2) = 0 - 2

5 (4 + 4i) = ηðC(0, 2) = ηðC(~, `)
Case IV. If ~ = 0, ` = 0 ; ~ = 1, ` = 1 ; ~ = 2, ` = 2 then, the results hold good. Then we say that ĩ
admits a unique fixed point as ~∗ = 0.

If we assume ĩ1 and ĩ2 are equal and which is equal to ĩ; <, [ = 1 & λ = 0 then Theorem 3.1 reduces
to following result,

Theorem 3.4. Consider (∇,ðC) be a Complete ðC metric space. Suppose ℵ = η
(1−µ) < 1 and

(3.19)
1

ℵ
> sup

1≤m
lim
i→∞

ψ(~i+1, ~i+2)

ψ(~i, ~i+1)
ζ(~i+1, ~m).

For every ~, ` ∈ ∇ & 0 ≺ ðC(~, `), we use µ, η are non negative real numbers with 0 ≤ η < 1, 0 ≤ µ < 1 we
choose ~n = ĩn~0 ∈ ∇ for all ~0 ∈ ∇ then the map ĩ : ∇ → ∇ be a Continuous map satisfying,

(3.20) ðC(ĩ~, ĩ`) - µ{ðC(~, ĩ~)ðC(`, ĩ`)
1 + ðC(~, `)

}+ η{ðC(~, `)}

afterward Assume that, limn→∞ ζ(~n, ~) , limn→∞ ψ(~, ~n) both are exist and finite, then ĩ admits unique
common fixed point.

Proof. The proof of the above result is similar to Theorem 3.1 therefore we omit it.

Proposition 3.1. Above results gives generalization of [10] D.Lateef rational functions result, Fisher type,
under Complex valued double controlled metric space [11].

Suppose that ĩ1 & ĩ2 are equal and which is equal to ĩ along with we map ĩ : ∇ → ∇ is not continuous;
<, [ = 1 & λ = 0 then Theorem 3.1 reduces to following result,

Theorem 3.5. Consider (∇,ðC) be a Complete ðC metric space. Suppose ℵ = η
(1−µ) < 1 and

(3.21)
1

ℵ
> sup

1≤m
lim
i→∞

ψ(~i+1, ~i+2)

ψ(~i, ~i+1)
ζ(~i+1, ~m).

For every ~, ` ∈ ∇ and 0 ≺ ðC(~, `), we use µ, η are non negative real numbers with 0 ≤ η < 1, 0 ≤ µ < 1
we choose ~n = ĩn~0 ∈ ∇ for all ~0 ∈ ∇ then the map ĩ : ∇ → ∇ be a mapping such that,

(3.22) ðC(ĩ~, ĩ`) - µ{ðC(~, ĩ~)ðC(`, ĩ`)
1 + ðC(~, `)

}+ η{ðC(~, `)}.

afterward assume that, limn→∞ ζ(~n, ~) , limn→∞ ψ(~, ~n) both are exist and finite, then ĩ admits unique
common fixed point.

Proof. If we follow similar steps like Theorem 3.1 we can easily get the Cauchy sequence {~n} under ðC-
metric space (∇,ðC). Subsequently we say {~n} converges to ~∗ ∈ ∇. We shall prove ĩ admits ~∗ as a fixed
point. Lets consider the triangle inequality of complex valued controlled metric space,

ðC(~∗, ~n+1) - ψ(~∗, ~n)ðC(~∗, ~n) + ψ(~n, ~n+1)ðC(~n, ~n+1).
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with the help of Statement of Theorem 3.5, we write

(3.23) lim
n→∞

ðC(~∗, ~n+1) = 0.

Again by inequalities (3.22) and triangle inequality, we get

ðC(~∗, ĩ~∗) - ψ(~∗, ~n+1)ðC(~∗, ~n+1) + ψ(~n+1, ĩ~∗)ðC(~n+1, ĩ~∗)

- ψ(~∗, ~n+1)ðC(~∗, ~n+1) + ηψ(~n+1, ĩ~∗)µ{
ðC(~n, ĩ~n)ðC(~∗, ĩ~∗)

1 + ðC(~n, ~∗)
}+ ηðC(~n, ~∗)

- ψ(~∗, ~n+1)ðC(~∗, ~n+1) + ηψ(~n+1, ĩ~∗)µ{
ðC(~n, ~n+1)ðC(~∗, ĩ~∗)

1 + ðC(~n, ~∗)
}+ ηðC(~n, ~∗).

Letting limn→∞ and Statement of Theorem 3.5, we get ðC(~∗, ĩ~∗) = 0, Hence proved.

Lets verify above result through the following example.

Example 3.2. Let ðC : ∇×∇ → C be a symmetric metric. Suppose ∇ = {1, 2, 0} and ðC(1, 2) = ðC(0, 1) =
1 + i & ðC(0, 2) = 4 + 4i again function ψ : ∇×∇ → [1,∞) is symmetric and

ψ(1, 1) = 7
3 ,ψ(2, 2) = 9

5 ,ψ(1, 2) = 2; ψ(0, 2) = 7
3 ,ψ(0, 1) = 3,ψ(0, 0) = 5

It’s easy to verify ðC is a metric space, Suppose self map ĩ follows ĩ(2) = ĩ(1) = ĩ(0) = 1 & use µ, η = 2
5

and we clearly see that (3.20) holds for ~0 ∈ ∇ then condition (3.19) is satisfied. We follow the following
cases to verify hypothesis of Theorem 3.5,
Case I.) If ~ = 1, ` = 2 then,

ðC(ĩ~, ĩ`) = 0 - µ{ðC(~,ĩ~)ðC(`,ĩ`)
1+ðC(~,`) }+ η{ðC(~, `)}.

Case II. If ~ = 0, ` = 1 then,

ðC(ĩ~, ĩ`) = 0 - µ{ðC(~,ĩ~)ðC(`,ĩ`)
1+ðC(~,`) }+ η{ðC(~, `)}.

Case III.If ~ = 0, ` = 2 then,

ðC(ĩ~, ĩ`) = 0 - µ{ðC(~,ĩ~)ðC(`,ĩ`)
1+ðC(~,`) }+ η{ðC(~, `)}.

Case IV. If ~ = 0, ` = 0 ; ~ = 1, ` = 1 ; ~ = 2, ` = 2 then ðC(ĩ~, ĩ`) = 0, results hold good. Then we say
that ĩ admits a unique fixed point as ~∗ = 1.

4 Application of the Main theorem
We divide application part of main Theorem in to two following folds,
4.1 Application Part I
In this part we would like to introduce the notion of Existence and unique fixed point solution in the context
of fractional FV IdE. By applying fractional Adams Bashforth method to the (1.1) FV IdE,

ĩ0 = ĩ(0; `) and ABC
0 Dω

~ ĩ(~; `) = ℵ(~)+<(~).ĩ(~, `)+

∫ ~

0

f1(~, ξ).χ1(ĩ(ξ, `))dξ+

∫ 1

0

f2(~, ξ)χ2(ĩ(ξ, `))dξ

in the setting of complex valued controlled metric space we prove following application part.
4.1.1 Application to fractional Fredholm Volterra integro differential equation.
We consider the following hypothesis,

1. < and ℵ both function are continuous,
2.

| ð(ĩ1(~; `), ĩ2(~; `)) | .α1 ≥| (ð(χ1(ĩ1(~; `))), (χ1(ĩ2(~; `)))) |,∀ĩ1, ĩ2 ∈ Cz(∇), α1, α2 > 0,

(4.1) | ð(ĩ1(~; `), ĩ2(~; `)) | .α2 ≥| (ð(χ2(ĩ1(~; `))), (χ2(ĩ2(~; `)))) |,∀ĩ1, ĩ2 ∈ Cz(∇), α1, α2 > 0.

3. For the function f∗1 and f∗2,

(4.2) f∗1 <∞⇒ f∗1 = sup
~∈∇

∫ ~

0

| f1(~, ξ) | dξ and f∗2 <∞⇒ f∗2 = sup
~∈∇

∫ ~

0

| f2(~, ξ) | dξ,

Cz(∇,R) be the space of all continuous functions i : ∇ → R which has ‖i‖∞ = max{| i(ρ) |: ∀ρ ∈ ∇} then
(Cz(∇,R), ‖.‖∞) is banach space.
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Theorem 4.1. Suppose (4.1),(4.2) and (1) are satisfied. If

(4.3) Ψ1 = [
ζω.[Ξ(ω + 1).(1− ω) + ω]

ζ2(ω).Ξ(ω + 1)
]‖<‖∞<1.

Then above problem (1.1) FVIdE admits at least one solution ĩ(~, `).

Before starting our proof we go through following result;

(4.4) 0 < ω ≤ 1 and ĩ(~, `)− ĩ0 =
1

ζ(ω)
[(1− ω)ℵ̃(~, `) +

ω

Ξ(ω)

∫ ~

0

(~− ξ)ω

(~− ξ)
ℵ̃(ξ, `)dξ],

which is the solution of, ĩ0 = ĩ(0; `) and ℵ̃(~, `) = ABC
0 Dω

~ ĩ(~; `). Applying the operator (AB0 Bω~ ) to above

equation, (AB0 Bω~ ) ℵ̃(~, `) = (AB0 Bω~ ) ABC0 Dω
~ ĩ(~; `). Hence we write (4.4) as,

ĩ(~, `)− ĩ(0; `) =
1

ζ(ω)
[(1− ω)ℵ̃(~, `) +

ω

Ξ(ω)

∫ ~

0

(~− ξ)ω

(~− ξ)
ℵ̃(ξ, `)dξ].

Proof. As we know that,

(4.5) ĩ(~, `)− ĩ(0; `) =
1

ζ(ω)
[(1− ω)ℵ̃(~, `) +

ω

Ξ(ω)

∫ ~

0

(~− ξ)ω

(~− ξ)
ℵ̃(ξ, `)dξ].

We write main equation (1.1) as,

ℵ̃(~, `)− ℵ(~) = <(~).ĩ(~, `) +

∫ ~

0

f1(~, ξ).χ1(ĩ(ξ, `))dξ +

∫ 1

0

f2(~, ξ).χ2(ĩ(ξ, `))dξ.

Similarly, we write

ℵ̃(ξ, `)− ℵ(ξ) = <(ξ).ĩ(ξ, `) +

∫ ξ

0

f1(ξ,z).χ1(ĩ(z, `))dz+

∫ 1

0

f2(ξ,z).χ2(ĩ(z, `))dz.

Applying above two equations in (4.5), we get

ĩ(~, `)− ĩ(0; `) =
(1− ω)

ζ(ω)
[ℵ(~) + <(~).ĩ(~, `) +

∫ ~

0

f1(~, ξ).χ1(ĩ(ξ, `))dξ +

∫ 1

0

f2(~, ξ)χ2(ĩ(ξ, `))dξ]

+
ω

Ξ(ω)ζ(ω)

∫ ~

0

(~− ξ)ω

(~− ξ)
[ℵ(ξ) + <(ξ)ĩ(ξ, `) +

∫ ξ

0

f1(ξ,z)χ1(ĩ(z, `))dz+

∫ 1

0

f2(ξ,z)χ2(ĩ(z, `))dz]dξ.

Now lets use operator Υ in above equation,

Υĩ(~, `)− ĩ(0; `) =
(1− ω)

ζ(ω)
[ℵ(~) + <(~).ĩ(~, `) +

∫ ~

0

f1(~, ξ).χ1(ĩ(ξ, `))dξ +

∫ 1

0

f2(~, ξ)χ2(ĩ(ξ, `))dξ]

+
ω

Ξ(ω)ζ(ω)

∫ ~

0

(~− ξ)ω

(~− ξ)
[ℵ(ξ) + <(ξ).ĩ(ξ, `) +

∫ ξ

0

f1(ξ,z)χ1(ĩ(z, `))dz+

∫ 1

0

f2(ξ,z)χ2(ĩ(z, `))dz]dξ.

Here we claim, operator Υ admits fixed point and we defined it as,

Υ : Lz(∇,R) ∩ Cz(∇,R)→ Lz(∇,R) ∩ Cz(∇,R)

So, we divide our proof into following folds, Firstly, we show χ1, χ2 continuous which finally gives Υ is
continuous. Suppose {ĩn} be a sequence such that ĩn → ĩ in C(∇,Rz). Then ~ ∈ ∇ we get,

| ð(Υĩn(~, `),Υĩ(~, `)) |≤ ĩn(0; `) +
(1− ω)

ζ(ω)
[ℵ(~) +<(~)ĩn(~, `) +

∫ ~

0

f1(~, ξ)χ1(ĩn(ξ, `))dξ+

∫ 1

0

f2(~, ξ)

χ2(ĩn(ξ, `))dξ] +
ω

Ξ(ω)ζ(ω)

∫ ~

0

(~− ξ)ω

(~− ξ)
[ℵ(ξ) + <(ξ)ĩn(ξ, `) +

∫ ξ

0

f1(ξ,z)χ1(ĩn(z, `))dz+

∫ 1

0

f2(ξ,z)

χ2(ĩn(z, `))dz]dξ−[ĩ(0; `)+
(1− ω)

ζ(ω)
[ℵ(~)+<(~)ĩ(~, `)+

∫ ~

0

f1(~, ξ)χ1(ĩ(ξ, `))dξ+

∫ 1

0

f2(~, ξ)χ2(ĩ(ξ, `))dξ]

+
ω

Ξ(ω)ζ(ω)

∫ ~

0

(~− ξ)ω

(~− ξ)
[ℵ(ξ) + <(ξ)ĩ(ξ, `) +

∫ ξ

0

f1(ξ,z)χ1(ĩ(z, `))dz+

∫ 1

0

f2(ξ,z)χ2(ĩ(z, `))dz]dξ].
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≤ (1− ω)

ζ(ω)
[| <(~) || ĩn(~, `)−ĩ(~, `) | +

∫ ~

0

| f1(~, ξ) || χ1(ĩn(ξ, `))−χ1(ĩ(ξ, `)) | dξ+
∫ 1

0

| f2(ξ,z) || χ2(ĩn(z, `))−χ2

(ĩ(z, `)) | dz]+
ω

Ξ(ω)ζ(ω)

∫ ~

0

(~− ξ)ω

(~− ξ)
[| <(ξ) || ĩn(ξ, `)−ĩ(ξ, `) | +

∫ ξ

0

| f1(ξ,z) || χ1(ĩn(z, `))−χ1(ĩ(z, `)) | dz]dξ

Apply supremum then,

‖ð(Υĩn(~, `)−Υĩ(~, `))‖∞ ≤
(1− ω)

ζ(ω)
[‖ℵ‖∞+‖ĩn− ĩ‖∞+f∗1‖χ1(ĩn)−χ1(ĩ)‖∞+f∗2‖χ2(ĩn)−χ2(ĩ)‖∞]

+
ω~ω

Ξ(ω + 1)ζ(ω)
[‖ℵ‖∞ + ‖ĩn − ĩ‖∞ + f∗1‖χ1(ĩn)− χ1(ĩ)‖∞ + f∗2‖χ2(ĩn)− χ2(ĩ)‖∞].

≤ (1− ω)

ζ(ω)
+

ω~ω

Ξ(ω + 1)ζ(ω)
[‖ℵ‖∞ + ‖ĩn − ĩ‖∞ + f∗1‖χ1(ĩn)− χ1(ĩ)‖∞ + f∗2‖χ2(ĩn)− χ2(ĩ)‖∞]

‖ð(Υĩn(~, `)−Υĩ(~, `))‖∞ → 0, whenĩn → ĩ,

which finally gives that Υ is continuous. Secondly we work on compactness property for Υ and then
completely continuous. Let CR = {ĩ ∈ C(∇,Rz) : ‖ĩ‖∞ ≤ R} be a convex, closed and bounded set with,

Ψ2

1−Ψ1
≤ R and we define λj = supĩ∈∇×[0,R] χj(ĩ(ξ, `) + 1), j = 1, 2, ..

(4.6) Ψ2 =| ĩ0 | +[
ζω.[Ξ(ω + 1).(1− ω) + ω]

ζ2(ω).Ξ(ω + 1)
][‖ℵ‖∞+f∗1λ1+f∗2λ2],

ĩ ∈ CR, | Υĩ(~, `) | − | ĩ(0; `) |≤ (1− ω)

ζ(ω)
[| ℵ(~) | + | <(~) || ĩ(~, `) | +

∫ ~

0

| f1(~, ξ) || χ1(ĩ(ξ, `)) | dξ+∫ 1

0

| f2(~, ξ) || χ2(ĩ(ξ, `)) | dξ] +
ω

Ξ(ω)ζ(ω)

∫ ~

0

(~− ξ)ω

(~− ξ)
[| ℵ(ξ) | + | <(ξ) || ĩ(ξ, `) | +

∫ ξ

0

| f1(ξ,z) |

| χ1(ĩ(z, `)) | dz+

∫ 1

0

| f2(ξ,z) || χ2(ĩ(z, `)) | dz]dξ,

| Υĩ(~, `) | − | ĩ(0; `) |≤ (1− ω)

ζ(ω)
[| ℵ(~) | + | <(~) || ĩ(~, `) | +f∗1λ1 + f∗2λ2] +

ω~ω

Ξ(ω + 1)ζ(ω)

[| ℵ(ξ) | + | <(ξ) || ĩ(ξ, `) | +f∗1λ1 + f∗2λ2].

Take Supremum on both side,

(4.7) ‖Υĩ‖∞− | ĩ(0; `) |≤ (1− ω)

ζ(ω)
+

ω

Ξ(ω + 1)ζ(ω)
[‖ℵ‖∞ + ‖<‖∞R+ f∗1λ1 + f∗2λ2],

≤ [
ζω[Ξ(ω + 1)(1− ω) + ω]

ζ2(ω)Ξ(ω + 1)
][‖ℵ‖∞ + f∗1λ1 + f∗2λ2] + [

ζω[Ξ(ω + 1)(1− ω) + ω]

ζ2(ω)Ξ(ω + 1)
]‖<‖∞R

≤ Ψ1R+ Ψ2 ≤ R.

It gives that Υ is uniformly bounded. Now our next claim is that Υ is equicontinuous. Let ~1 < ~2,

| ð(Υĩ(~2, `),Υĩ(~1, `)) |=|
(1− ω)

ζ(ω)
[ℵ(~2) + <(~2).ĩ(~2, `) +

∫ ~2

0

f1(~2, ξ)χ1(ĩ(ξ, `))dξ +

∫ 1

0

f2(~2, ξ)

χ2(ĩ(ξ, `))dξ] +
ω

Ξ(ω)ζ(ω)

∫ ~2

0

(~2 − ξ)ω

(~2 − ξ)
[ℵ(ξ) + <(ξ)ĩ(ξ, `) +

∫ ξ

0

f1(ξ,z)χ1(ĩ(z, `))dz+

∫ 1

0

f2(ξ,z)

χ2(ĩ(z, `))dz]dξ− [
(1− ω)

ζ(ω)
[ℵ(~1)+<(~1)ĩ(~1, `)+

∫ ~1

0

f1(~1, ξ).χ1(ĩ(ξ, `))dξ+

∫ 1

0

f2(~1, ξ)χ2(ĩ(ξ, `))dξ]

+
ω

Ξ(ω)ζ(ω)

∫ ~1

0

(~1 − ξ)ω

(~1 − ξ)
[ℵ(ξ)+<(ξ).ĩ(ξ, `)+

∫ ξ

0

f1(ξ,z)χ1(ĩ(z, `))dz+

∫ 1

0

f2(ξ,z).χ2(ĩ(z, `))dz]dξ] |

≤ (1− ω)

ζ(ω)
(| ℵ(~2)− ℵ(~1) | + | <(~2).ĩ(~2, `)−<(~1).ĩ(~1, `) | +

∫ ~1

0

(f1(~2, ξ)− f1(~1, ξ))χ1(ĩ(ξ, `))dξ
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+

∫ ~2

~1

f1(~2, ξ)χ1(ĩ(ξ, `))dξ+

∫ 1

0

(f2(~2, ξ)−f2(~2, ξ))χ2(ĩ(ξ, `))dξ+
ω

Ξ(ω)ζ(ω)

∫ ~1

0

(
(~2 − ξ)ω

(~2 − ξ)
− (~1 − ξ)ω

(~1 − ξ)
)

[<(ξ).ĩ(ξ, `) +

∫ ξ

0

f1(ξ,z)χ1(ĩ(z, `))dz+

∫ 1

0

f2(ξ,z).χ2(ĩ(z, `))dz]dξ

∫ ~2

~1

(~2 − ξ)ω

(~2 − ξ)

[<(ξ).ĩ(ξ, `) +

∫ ξ

0

f1(ξ,z)χ1(ĩ(z, `))dz+
ω

Ξ(ω)ζ(ω)

∫ 1

0

f2(ξ,z).χ2(ĩ(z, `))dz]dξ

= S + T + U, where

(4.8) S =
(1− ω)

ζ(ω)
(| ℵ(~2)− ℵ(~1) | + | <(~2).ĩ(~2, `)−<(~1).ĩ(~1, `) | +

∫ ~1

0

(f1(~2, ξ)− f1(~1, ξ))

χ1(ĩ(ξ, `))dξ +

∫ ~2

~1

f1(~2, ξ)χ1(ĩ(ξ, `))dξ +

∫ 1

0

(f2(~2, ξ)− f2(~2, ξ))χ2(ĩ(ξ, `))dξ.

If we use ~2 → ~1 then S→ 0. Again for T we write ,

ω

Ξ(ω)ζ(ω)

∫ ~1

0

(
(~2 − ξ)ω

(~2 − ξ)
− (~1 − ξ)ω

(~1 − ξ)
)[<(ξ)ĩ(ξ, `)+

∫ ξ

0

f1(ξ,z)χ1(ĩ(z, `))dz+

∫ 1

0

f2(ξ,z)χ2(ĩ(z, `))dz]dξ

≤ (‖<‖∞R+ f∗1λ1 + f∗2λ2)
ω

Ξ(ω)ζ(ω)

∫ ~1

0

(
(~2 − ξ)ω

(~2 − ξ)
− (~1 − ξ)ω

(~1 − ξ)
)dξ

(4.9) T ≤ ((~2 − ~1)ω − (~2)ω + (~1)ω)
(‖<‖∞R+ f∗1λ1 + f∗2λ2)ω

Ξ(ω + 1)ζ(ω)
.

If we use ~2 → ~1 then T→ 0. Again similar for U,

U =
ω

Ξ(ω)ζ(ω)

∫ ~2

~1

(~2 − ξ)ω

(~2 − ξ)
[<(ξ).ĩ(ξ, `) +

∫ ξ

0

f1(ξ,z)χ1(ĩ(z, `))dz+

∫ 1

0

f2(ξ,z)χ2(ĩ(z, `))dz]dξ

≤ (‖<‖∞R+ f∗1λ1 + f∗2λ2)
ω

Ξ(ω)ζ(ω)

∫ ~2

~1

(
(~2 − ξ)ω

(~2 − ξ)
)dξ

(4.10) U ≤ ((~2 − ~1)ω)
(‖<‖∞R+ f∗1λ1 + f∗2λ2)ω

Ξ(ω + 1)ζ(ω)
.

and hence, If we use ~2 → ~1 then U→ 0. By using above condition of U of (4.10) , S of (4.9) and T of (4.9),

‖ð(Υĩ(~2, `),Υĩ(~1, `))‖∞ → 0,

as ~2 → ~1, which implies Υ is equicontinuous. With the help of Arzelà-Ascoli theorem, we say Υ is
completely continuous, as we have Υ is compact in C(∇,Rz).
Thirdly we deduce Υ admits at least one fixed point in ∇. Suppose, ĩ(~, `) ∈ ß. Then ĩ(~, `) = [Υĩ(~, `)
Set ß = {ĩ(~, `) ∈ C(∇,Rz) : ĩ(~, `) = [Υĩ(~, `), 0 < [ < 1} bounded. Now for 0 ≤ ~ ≤ 1,

| ĩ(~, `) |=| [Υĩ(~, `) |≤| Υĩ(~, `) |≤| ĩ(0; `) | +(
(1− ω)

ζ(ω)
+

ω

Ξ(ω + 1)ζ(ω)
)[‖ℵ‖∞ + ‖<‖∞R+ f∗1λ1 + f∗2λ2]

≤| ĩ(0; `) | +[
ζω[Ξ(ω + 1)(1− ω) + ω]

ζ2(ω)Ξ(ω + 1)
][‖ℵ‖∞ + f∗1λ1 + f∗2λ2] + [

ζω[Ξ(ω + 1)(1− ω) + ω]

ζ2(ω)Ξ(ω + 1)
].

‖<‖∞R ≤ Ψ2R+ Ψ2. By equation (4.3), we get Ψ2R+ Ψ2 ≤ R. Hence we say ß is bounded, as we given in
our main Theorem 3.2 we conclude Υ admits at least one fixed point. Hence, we deduce that Problem (1.1)
admits at least one fixed point solution in ∇. Lastly We work on the uniqueness of solution for our FVIdE
(1.1). We have to show here Υ admits unique solution. For that we consider ĩ1(~, `),ĩ2(~, `) ∈ C(∇,Rz),

(4.11) f = (
ζω.[Ξ(ω + 1).(1− ω) + ω~ω]

ζ2(ω).Ξ(ω + 1)
)[‖<‖∞ + f∗1c1 + f∗2c2] < 1,

| ð(Υĩ1(~, `),Υĩ2(~, `)) |≤ (1− ω)

ζ(ω)
[| <(~) || ĩ1(~, `)−ĩ2(~, `) | +

∫ ~

0

| f1(~, ξ) || χ1(ĩ1(ξ, `))−χ1(ĩ2(ξ, `)) | dξ
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+

∫ 1

0

| f2(~, ξ) || χ2(ĩ1(ξ, `))− χ2(ĩ2(ξ, `)) | dξ] +
ω

Ξ(ω)ζ(ω)

∫ ~

0

(~− ξ)ω

(~− ξ)
[| <(ξ) || ĩ1(ξ, `)− ĩ2(ξ, `) | +∫ ξ

0

| f1(ξ,z) || χ1(ĩ1(z, `))− χ1(ĩ2(z, `)) | dz+

∫ 1

0

| f2(ξ,z) || χ2(ĩ1(z, `))− χ2(ĩ2(z, `)) | dz]dξ.

Apply supremum both sides, we get

‖ð(Υĩ1(~, `),Υĩ2(~, `))‖∞ ≤
(1− ω)

ζ(ω)
[‖<‖∞ + f∗1c1 + f∗2c2] + ‖ĩ1 − ĩ2‖∞ +

ω~ω

Ξ(ω + 1)ζ(ω)
[‖<‖∞+

f∗1c1 + f∗2c2] + ‖ĩ1 − ĩ2‖∞ = (
(1− ω)

ζ(ω)
+

ω~ω

Ξ(ω + 1)ζ(ω)
)[‖<‖∞ + f∗1c1 + f∗2c2] + ‖ĩ1 − ĩ2‖∞

= (
ζω.[Ξ(ω + 1).(1− ω) + ω~ω]

ζ2(ω).Ξ(ω + 1)
)[‖<‖∞ + f∗1c1 + f∗2c2] + ‖ĩ1 − ĩ2‖∞.

So, By equation (4.11), we write ‖ð(Υĩ1(~, `),Υĩ2(~, `))‖∞ ≤ f‖ĩ1 − ĩ2‖∞, which shows that Υ is a
Contraction map. Thus using Theorem 3.2, Υ admits a unique fixed point solution and hence we say system
(1.1) admits a unique solution ĩ(~, `).

4.2 Application Part II
We consider the integral type of equation (1.2), which has two bounded continuous function namely f(~) :
[0, 1] → R and ℵ(~,<1(~)) : [0, 1] × R → R. The function χ : [0, 1) × [0, 1) → [0,∞) with χ(~, .) ∈ L1[0, 1]
and 0 ≤ ~ ≤ 1. Here we present Theorem 4.2 for existence and common solution to the equation (1.2).
4.2.1 Application to the integral type equation
Theorem 4.2. Suppose,
I) The continuous function, f(~) : [0, 1]→ R and ℵ(~,<1(~)) : [0, 1]×R→ R. Let ĩ : ∇×∇ be an operator
of,

(4.12) ∇<1(~)−f(~) =

∫ ~

0

χ(~, `)ℵ(`,<1`)d`

II) | ℵ(~,<1(~))− ℵ(~,<2(~)) |≤ 1
zeiz~ | <1(~)−<2(~) | for ∀ <1,<2 ∈ ∇ & 1 < z ≤ 1

η ; 0 < η < 1.

III) The function χ : [0, 1)× [0, 1)→ [0,∞) with χ(~, .) ∈ L1[0, 1] and 0 ≤ ~ ≤ 1;

(4.13) 1 ≥ ‖
∫ ~

0

χ(~, `)d`‖,

where,∇ = C([0, 1],R) be real valued continuous function on [0, 1] and <1(~) ∈ ∇ then (1.2) admits unique
solution.

Proof. Let the mapping, ψ(~) : ∇×∇ → [1,∞) defined as,

ψ(~) =


z+ max{<1(~),<2(~)}, Otherwise

1, if <1,<2 ∈ [0, 1].

Assume ðC : ∇×∇ → C be a complex valued ðC metric space,

ðC(<1,<2) = ‖<1‖∞ = sup
0≤~≤1

| <1(~) | e−iz~,

where, ∇ = C([0, 1],R), 1 < z ≤ 1
η ; 0 < η < 1 and (i)2 = −1. Here its easy to say (∇,ðC) is complete

complex valued ðC metric space. Main integral type equation (1.2) can be again resumed to find the element
~∗ ∈ ∇ which gives fixed point for ĩ, Now

| ĩ<1(~)− ĩ<2(~) |≤|
∫ ~

0

[χ(~, `)ℵ(`,<1`)− χ(~, `)ℵ(`,<2`)] | d` ≤|
∫ ~

0

| χ(~, `)[ℵ(`,<1`)− ℵ(`,<2`)] | d`

≤ (

∫ ~

0

χ(~, `)d`)
∫ ~

0

| [ℵ(`,<1`)− ℵ(`,<2`)] | d` ≤
1

ßeiz~ (

∫ ~

0

χ(~, `)d`)
∫ ~

0

| [<1`−<2`] | d`

=
eiz~

ßeiz~e−iz~ (

∫ ~

0

χ(~, `)e−iz~d`)

∫ ~

0

| [<1`−<2`] | e−iz~d`.
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Apply Supremum to both side, we get

[ sup
0≤~≤1

| ĩ<1(~)− ĩ<2(~) | e−iz~] ≤ 1

z
(

∫ ~

0

sup
0≤~≤1

χ(~, `)e−iz~d`)[ sup
0≤~≤1

| [<1~−<2~] | e−iz~d`].

with the help of (4.2) and II, we get

ðC(ĩ<1, ĩ<2) = ‖ĩ<1 − ĩ<2‖∞ ≤
1

z
‖<1 −<2‖∞ =

1

z
ðC(<1,<2).

We can check easily both cases of ψ(<1,<2) when 0 ≤ <1 ≤ 1 ; 0 ≤ <2 ≤ 1 or else (3.13) true. Hence for
0 < 1

z < 1, all hypothesis of Theorem 3.2 hold true, which finally gives that (1.2) admits unique solution.

5 Conclusion
To study and contribute to worldly problems we consider the concept of controlled, double controlled metric
in the setting of Extended complex valued metric space. Afterwards, we present our paper in three folds as,
Firstly, we introduce fixed point theorem which is the extended version of famous results from literature,
namely Fisher and Banach [16] contraction type results along with some examples to sustain our results.
Secondly with the help of ABC fractional derivative (1.1), we introduced common fixed point Theorem 4.1
for FVIdE and its unique fixed point solution. Thirdly we introduced a fixed point solution to the integral
type equation (1.2) in ðC metric as the application part of main results.
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Abstract

Trigonometric and Hyperbolic inequalities, which have been obtained by C. Huygens[5], D. S.
Mitrinovic[10] and many more, have attracted attention of several researchers. We offer several
refinements and generalization of few trigonometric and hyperbolic inequalities involving tangent
function, cotangent function, sine function, secant function and cosecant function. The established
results are obtained with the aid of the Schwab-Borchardt mean.
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1 Introduction
It is well known from basic calculus that,

arcsin(x) =

∫ x

0

1

(1− t2)
1
2

dt, 0 ≤ x ≤ 1

and
π

2
= arcsin(1) =

∫ 1

0

1

(1− t2)
1
2

dt.

We can define the function sin on [0, π2 ] as the inverse of arcsine and extend it to (−∞,∞).
Let, p > 1, we can generalize arcsin(x) as

arcsinp(x) =

∫ x

0

1

(1− tp)
1
p

dt, 0 ≤ x ≤ 1

and
πp
2

= arcsinp(1) =

∫ 1

0

1

(1− tp)
1
p

dt.

So, we define the πp[4] function as,

πp = 2

∫ 1

0

1

(1− tp)
p+1
p

dt. = 2
Γ(p+1

p )Γ( 1
p )

Γ( 2
p )

.

The generalized sin function is the inverse of arcsinp(x) defined on [0,
πp
2 ]. Now we can define generalized

cosine function as the derivative of generalized sine function,

cosp(x) =
d

dx
sinp(x).

It is clear that,

cosp(x) = (1− sinp(x)p)
1
p , x ∈

[
0,
πp
2

]
,

and

(1.1) | sinp(x) |p + | cosp(x) |p= 1, x ∈ R.
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It is easy to prove that,
d

dx
cosp(x) = −cosp(x)p−2sinp(x)p−1, x ∈

[
0,
πp
2

]
.

The generalized tangent function is defined as,

tanp(x) =
sinp(x)

cosp(x)
, x ∈ R \ {kπp +

πp
2

: k ∈ Z}.

It follows from the equation (1.1) that,

d

dx
tanp(x) = 1+ | tanp(x) |p, x ∈

(
−πp

2
,
πp
2

)
.

Now we can define generalized inverse hyperbolic function as,

arcsinhp(x) =


∫ x

0

1

(1 + tp)
1
p

dt , x ∈ [0,∞)

−arcsinhp(−x) , x ∈ (−∞, 0].

The inverse of arcsinhp(x) is called as the generalized hyperbolic sine function and it is denoted by
sinhp(x). The generalized hyperbolic cosine function is defined as,

coshp(x) =
d

dx
sinhp(x).

These definitions show that,
coshp(x)p− | sinhp(x) |p= 1, x ∈ R

and
d

dx
coshp(x) = coshp(x)2−psinhp(x)p−1, x ≥ 0.

The generalized Hyperbolic tangent function is defined as,

tanhp(x) =
sinhp(x)

coshp(x)
,

and
d

dx
tanhp(x) = 1− | tanhp(x) |p .

It is clear that all these generalized functions coincide with the classical ones when p = 2 [7].
In recent years, the following two sided inequality for hyperbolic functions has attracted attention of several
researchers,

(1.2) (cosh(x))
1
3 <

sinh(x)

x
<
cosh(x) + 2

3
, x 6= 0.

We define same inequality in generalized hyperbolic form as follows,

(1.3) (coshp(x))
1
3 <

sinhp(x)

x
<
coshp(x) + 2

3
, x 6= 0.

The left inequality in (1.2) and (1.3) has been obtained by Lazarevic [23]. The counterpart of (1.2) and (1.3)
for trigonometric functions are defined as,

(1.4) (cos(α))
1
3 <

sin(α)

α
<
cos(α) + 2

3
, 0 < α <

π

2
,

and

(1.5) (cosp(α))
1
3 <

sinp(α)

α
<
cosp(α) + 2

3
, 0 < α <

πp
2
.

Generalization of inequalities (1.2) and (1.3) to Jacobian elliptic functions are established in[12].
The left inequalities in (1.4) and (1.5) have been proved by Neumann [20] and Mitrinovic [10], while second
inequality is due to Cusa Huygens [5]. Inequalities mentioned in (1.2), (1.3), (1.4) and (1.5) also have been
obtained in [2, 15, 19]. For the recent research work in theory of inequalities for hyperbolic and trigonometric
functions refer [6, 8, 9, 11, 13, 17, 18]. The goal of this paper is to derive inequalities involving hyperbolic and
trigonometric functions. Most of them are the two-sided inequalities which are similar to inequalities (1.2),
(1.3), (1.4) and (1.5). In section 2 we recall definition and basic properties of the Schwab-Borchardt mean.
Definions of four particular bivariate means, which can be regarded as special case of the Schwab-Borchardt
mean, are also included in this section. The main result is derived in section 3.
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2 Definitions and Preliminaries
The geometric, arithmetic and the root mean square means of a > 0, b > 0 will be denoted by G, A and R
respectively and they are defined as follows,

(2.1) G = G(u, v) =
√
uv,A = A(u, v) =

u+ v

2
, R = R(u, v) =

√
u2 + v2

2
.

Other bivariate means used in the subsequent sections include the logarithmic mean which is defined as,

(2.2) L =

(
a

tanh−1
p (a)

)
A.

The first and second Seiffert means are,

(2.3) P =

(
a

sinh−1
p (a)

)
A.

and

(2.4) T =

(
a

tan−1
p (a)

)
A.

For this, one can refer to [8, 11, 18, 20]. Here,

(2.5) a =
u− v
u+ v

, u 6= v

Another mean introduced in [14], which is defined as follows,

(2.6) M =

(
a

sinh−1
p (a)

)
A.

It is known that, G < L < P < A < M < T < R[14].
All the bivariate means mentioned above are strict homogeneous of degree one and they are strictly increasing
in each of it’s variables. Let the letter W stand for one of these means. The homogeneity of W implies that,

W (u, v) =
√
uvW (ex, e−x), where, x =

1

2
ln (

u

v
).

It means L,P, T and M are special cases of Schwab-Borchardt mean for u ≥ 0, v > 0.
This mean will be denoted by SB(u, v) = SB. The Schwab-Borchardt mean is the iterative mean. i.e.

SB = lim
n→∞

un = lim
n→∞

vn,

where,

(2.7) u0 = u, v0 = v, un+1 =
un + vn

2
, vn+1 =

√
un+1vn, n = 0, 1, 2, .

Due to[1, 3], it is known that,

SB(u, v) =


√
v2−u2

cos−1
p (uv )

, if u < v,
√
u2−v2

cosh−1
p (uv )

, if v < u.

The mean SB is non symmetric, homogeneous of degree one and strictly increasing in it’s variables. It
has been shown in [14] that,

(2.8) L = SB(A,B), P = SB(G,A), T = SB(A,R),M = SB(R,A).

The following two sided inequality is known [14],

(2.9) (uv2)
1
3 < SB(u, v) <

u+ 2v

3
.

using the in variance property, an invariant is a property of a mathematical object which remains unchanged
after operations or transformations of a certain type are applied to the objects, it implies that,
SB(un, vn) = SB(u, v) see equation (2.6).
The previous inequality can be generalised as,

(2.10) (unv
2
n)

1
3 < SB(u, v) <

un + 2vn
3

.

The sequence of left inequality is strictly increasing while sequence of right inequality is strictly decreasing
provided u 6= v [13, 15].
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3 Main Result
Theorem 3.1. Let x 6= 0, then,

(3.1) (coshp(x))
2
3 <

sinhp(x)

sin−1
p (tanhp(x))

<
1 + 2coshp(x)

3
,

(3.2) ((coshp(2x))
1
2 cosh2

p(x))
1
3 <

sinhp(x)

sinh−1
p (tanhp(x))

<
(coshp(2x))

1
2 + 2coshp(x)

3
,

and

(3.3) ((coshp(2x))coshp(x))
1
3 <

sinhp(x)

tan−1
p (tanhp(x))

<
2(coshp(2x))

1
2 + 2coshp(x)

3
.

Proof. For, (u, v) = (ex, e−x), we have,

G = 1, A = coshp(x), R = (coshp(2x))
1
2

and using equation(2.6), we get, a = tanhp(x).
Moreover using equation (2.8), (2.9) and (2.10), we obtain

(3.4) P =
sinhp(x)

sin−1
p (tanhp(x))

,M =
sinhp(x)

sinh−1
p (tanhp(x))

, T =
sinhp(x)

tan−1
p (tanhp(x))

.

For the proof of (3.1), we use (2.9) with u = G and v = A followed by the application of the second part of
(2.8) and first formula of (3.4),we get

(3.5) (GA2)
1
3 < SB(G,A) <

G+ 2A

3
=⇒ (GA2)

1
3 < P <

G+ 2A

3
,

=⇒ (coshp(x)2)
1
3 <

sinhp(x)

sin−1
p (tanhp(x))

<
1 + 2coshp(x)

3
(3.6)

=⇒ (coshp(x))
2
3 <

sinhp(x)

sin−1
p (tanhp(x))

<
1 + 2coshp(x)

3
.(3.7)

Hence (3.1) is proved.
For the proof of (3.2) we use (2.9) with u = R and v = A, followed by application of the fourth formula of
equation (2.8),we get

(3.8) (RA2)
1
3 < SB(R,A) <

R+ 2A

3
=⇒ ((coshp(2x))

1
2 cosh2

p(x))
1
3 < M <

(coshp(2x))
1
2 + 2coshp(x)

3
,

=⇒ ((coshp(2x))
1
2 cosh2

p(x))
1
3 <

sinhp(x)

sinh−1
p (tanhp(x))

<
(coshp(2x))

1
2 + 2coshp(x)

3
.(3.9)

Hence (3.2) proved. For the proof of (3.3) we use (2.9) with u = A and v = R, we have

(AR2)
1
3 < SB(A,R) <

A+ 2R

3
, =⇒ (AR2)

1
3 < T <

A+ 2R

3
,

=⇒ (coshp(x)(coshp(2x)
1
2 )2)

1
3 <

sinhp(x)

tan−1
p (tanhp(x))

<
2(coshp(2x))

1
2 + 2coshp(x)

3

=⇒ ((coshp(2x))coshp(x))
1
3 <

sinhp(x)

tan−1
p (tanhp(x))

<
2(coshp(2x))

1
2 + 2coshp(x)

3
.

Hence (3.3) is proved.

Inequality (1.2) is established using the method utilized in the proof of theorem 3.1. Let, u = A, v = G,
using (2.1) and (2.7), we obtain
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Theorem 3.2. Let u = A, v = G, using (2.1) and (2.7), we obtain

SB(A,G) = L =
A

tanh−1
p (A)

A =
sinhp(x)

x
.

Equation (2.9) gives the required result as follows,

(AG2)
1
3 < SB(A,G) <

A+ 2G

3
.

Let,G = 1 and A = coshp(x),

=⇒ (coshp(x))
1
3 <

sinhp(x)

x
<
coshp(x) + 2

3
.

Let us define new variable α as,

(3.10) tanhp(x) = sinα.

This implies that,

(3.11) sinhp(x) = tanα, coshp(x) = secα, x = tanh−1
p (sinα).

Equation (1.5) is verified using (3.10) and (3.11). For x 6= 0,

(3.12) 1 <

(
sinhp(x)

sin−1
p (tanhp(x))

)(
tanhp(x)

x

)
and for 0 < α <

πp
2 ,

(3.13) 1 <

(
sinp(α)

tanh−1
p (sinp(α))

)(
tanp(α)

α

)
.

Proof. Using left inequality of equation (2.9), let u = A and v = G, we have

(3.14) (AG2)
1
3 < SB(A,G) =⇒ (AG2)

1
3 < L.

Similarly, let u = G and v = A in (2.9), we obtain

(3.15) (GA2)
1
3 < SB(G,A) =⇒ (GA2)

1
3 < P.

Multiplying (3.14) and (3.15), we get

(3.16) (AG2)
1
3 (GA2)

1
3 < PL =⇒ AG < PL.

Let, (u, v) = (ex, e−x) and

A = coshp(x), G = 1, P =
sinhp(x)

sin−1
p (tanhp(x))

, L =
sinhp(x)

x
.

Therefore (3.16) gives,

coshp(x) <

(
sinhp(x)

sin−1
p (tanhp(x))

)(
sinhp(x)

x

)
=⇒ 1 <

(
sinhp(x)

sin−1
p (tanhp(x))

)(
tanhp(x)

x

)
.

Hence (3.12) proved. Inequality (3.13) follows from (3.12) by using transformations (3.4) and (3.10).

4 Conclusion
Using Schwab-Borchardt mean, both the refinement of generalized trigonometric and hyperbolic function is
verified.
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Abstract

In this paper using the notion of weighted sharing,we consider the value distribution of a L- function
and meromorphic function when certain type of difference-differential polynomials which share a small
function and rational function and obtain some uniqueness results which extends recent results due to
Hao and Chen[2].
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1 Introduction and preliminaries
In this paper, C denotes the complex plane and N denotes the set of natural numbers. Now, towards the end
of twentieth century, a new class of Dirichlet series called the Selberg class was introduced by Atle Selberg[15].
The concept of L- function where L means Selberg class function with the Riemann Zeta function is the most
speculative open world problem in today’s pure mathematics. L- functions can be analytically continued as
meromorphic functions in C. A meromorphic function L is said to be an L-function in the Selberg class if it
satisfies the following properties.

(i) L(z) can be expressed as a Dirichlet series L(z) =
∑∞
m=1 a(m)/mz.

(ii) |a(m)| = O(mε), for any ε > 0.
(iii) There exists a non negetive integer n such that (z− 1)nL(z) becomes an entire function of finite order.
(iv) Every L- function satisfies the functional equation

λL(z) = ωλL(1− z),
where

λL(z) = L(z)Az
n∏
j=1

Γ(ηjz + vj),

with positive real numbers A, ηj and complex numbers vj , ω with Re(vj) ≥ 0 and |ω| = 1.
(v) L(z) satisfies L(z) =

∏
p Lp(z), where Lp(z) = exp(

∑∞
n=1 b(p

n)/pnz) with b(pn) = O(pnθ) for some
θ < 1/2 and p denotes prime number.

If L satisfies (i)-(iv) then we say that L is an L-function in the extended Selberg class. In this paper, by
an L-function we always mean an L-function in the extended Selberg class with a(1) = 1. Here we use the
standard notations and definitions of the value distribution theory [3].

The Nevanlinna value distribution theory is an important area of research which has seen extensive work.
It primarily focuses on the analysis of the distribution of solutions to the equation f(z) = a, where f is an
entire or meromorphic function in C. Let α ∈ C ∪ {∞} and f , g be meromorphic functions in the complex
plane. The set of all α- points of f with multiplicities not exceeding l is denoted by El)(α, f)(El)(α, f)),
where l is a positive integer and we consider(ignore) the multiplicities of the α- points. The hyper order
ρ2(f) of f is defined by

ρ2(f) = limr→∞
loglogT (r, f)

logr
.

We denote S(r, f) by any quantity satisfying S(r, f) = o{T (r, f)} as r →∞, outside a possible exceptional
set of finite linear measure. We say that f and g share α CM if they have the set of α- points with the same
multiplicities and if we do not consider the multiplicity then we say that f and g share α IM.
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In general, for a meromorphic function f(z), the quantity m(r, f) denotes the proximity function of
f(z), while N(r, f) denotes the counting function of poles of f(z) whose multiplicities are taken into
account(respectively N(r, f) denotes the reduced counting function when multiplicities are ignored). The
Nevanlinna characteristic function of a meromorphic function f plays a very important role in the value
distribution theory and it is denoted by T (r, f). We have T (r, f) = m(r, f) + N(r, f), which clearly shows
that T (r, f) is non-negative.

We can see a lot of work on uniqueness results with the help of Nevanlinna Theory. Recently people have
raised great interest in difference analogues of Nevanlinna’s theory and obtained many profound results. A
number of papers have focused on value distribution and uniqueness of difference polynomials, which are
analogues of Nevanlinna theory (see [11], [17]).

The value distribution of an L-function concerned with the distribution of the zeros of L and more
generally, with the roots of the equation L(s) = c for some c ∈ C ∪ {∞}. Since L-functions are analytically
continued as meromorphic functions, it is possible to study the value distribution and uniqueness outcomes
between the L- functions and any arbitrary meromorphic functions (see [12], [13]).

We state the following standard definitions of Nevanlinna theory and it is important to note that all the
definitions discussed also applies to the L-function.

In addition we need the following definitions.

Definition 1.1 ([6]). Let f be a meromorphic function defined in the complex plane. Let n be a positive
integer and α ∈ C ∪ {∞}. By N(r, α; f |≤ n) we denote the counting function of the α- points of f
with multiplicity less than or equal to n and by N(r, α; f |≤ n) the reduced counting function. Also by
N(r, α; f |≥ n) we denote the counting function of the α- points of f with multiplicity greater than or equal
to n and by N(r, α; f |≥ n) the reduced counting function. We define

Nn(r, α; f) = N(r, α; f) +N(r, α; f |≥ 2) + ....+N(r, α; f |≥ n).

Definition 1.2 ([6]). Let f be a meromorphic function defined in C and p(z) be a small function of f
or a rational function. Then we denote the notations by N(r, p; f |≤ m), N(r, p; f |≤ m), N(r, p; f |≥
m), N(r, p; f |≥ m), Nm(r, p; f) etc, the counting functions N(r, 0; f−p |≤ m), N(r, 0; f−p |≤ m), N(r, 0; f−
p |≥ m), N(r, 0; f − p |≥ m), Nm(r, 0; f − p) respectively.

Definition 1.3 ([5]
)
. Let f and g be two meromorphic functions defined in the complex plane and n be an

integer (≥ 0) or infinity. We denote by En(α; f) the set of all zeros of f − α and α ∈ C∪ {∞}and a zero of
multiplicity k is counted k times if k ≤ n and n+ 1 times if k > n, we say that f and g share α with weight
n if En(α; f) = En(α; g). We say that f and g share (α, n) to mean that f, g share α with weight n. Clearly
f, g share α IM or CM if and only if f and g share (α, 0) or (α,∞) respectively.

Definition 1.4 ([9]). Let f be a meromorphic function defined in the complex plane and p(z) be a rational
function or a small function of f . Then we denote by Em)(p; f), Em)(p; f) and Em(p; f) the sets Em)(r, 0; f−
p), Em)(r, 0; f−p) and Em(r, 0; f−p) respectively. We write f ,g share (p, n) to mean that f−p and g−p share
the value 0 with weight n. Clearly, if f ,g share (p, n) then f ,g share (p,m) for all integers m , 0 ≤ m < n.
Also we note that f ,g share p IM or CM if and only if f ,g share (p, 0) or (p,∞) respectively.

Definition 1.5 ([4]). Let f and g be two non-constant meromorphic functions share a value α IM. Denote
by N∗(r, α; f, g) the counting function of the α-points of f and g with different multiplicities, where each α-
point is counted only once.

Definition 1.6 ([10]). Let f and g be two non-constant meromorphic functions share a value α IM. Denote
by N(r, α; f |> g) the counting function of the α- points of f and g with multiplicities with respect to f is
greater than the multiplicities with respect to g, where each α- points is counted only once.

Definition 1.7 ([10]). Let f and g be two non-constant meromorphic functions share a value α IM. We
denote by NE(r, α; f, g |> m) the counting function of the α-points of f and g with multiplicities greater
than m and the multiplicities with respect to f is equal to the multiplicities with respect to g, where each
α-points is counted only once.

In 2017, Liu, Li and Yi [8] proved the following uniqueness theorems.
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Theorem A ([8]) Let j ≥ 1 and k ≥ 1 be integers such that j > 3k + 6. Also let L be an L-function and
f be a non-constant meromorphic function. If {f j}(k) and {Lj}(k) share (1,∞), then f ≡ αL for some
non-constant α satisfying αj = 1.

Theorem B ([8]). Let j ≥ 1 and k ≥ 1 be integers such that j > 3k + 6. Also let L be an L-function
and f be a non-constant meromorphic function. If {f j}(k) and {Lj}(k) share (z,∞), then f ≡ αL for some
non-constant α satisfying αj = 1.

In 2018, Hao and Chen
(
[2]
)

obtained the following uniqueness results on L -function.
Theorem C ([2]). Let f be a non-constant meromorphic function and L be an L-function such that [fn(f −
1)m](k) and [Ln(L− 1)m](k) share (1,∞) where n,m, k ∈ Z+. If n > m+ 3k + 6 and k ≥ 2, then f ≡ L or
fn(f − 1)m ≡ Ln(L− 1)m.
Theorem D ([2]). Let f be a non-constant meromorphic function and L be an L-function such that [fn(f −
1)m](k) and [Ln(L− 1)m](k) share (1, 0) where n,m, k ∈ Z+. If n > 4m+ 7k + 11 and k ≥ 2, then f ≡ L or
fn(f − 1)m ≡ Ln(L− 1)m.

Now it will be interesting to study the above Theorems A, B, C and D by considering more general
form of difference-differential polynomial. The main motivation of this paper is the fact that the L- function
where L− function has only one possible pole at s = 1 in C.
Question 1.1. Can we consider rational or small function sharing in Theorem C and Theorem D?
Question 1.2. Can we take difference-differential polynomial of the form [fn(f − 1)mf(z + c)](k) and
[Ln(L− 1)mL(z + c)](k) in Theorem C and Theorem D?

In this paper, we try to find the possible answer of the above questions. The following are the main
results of this paper.

2 Main Results
Theorem 2.1. Let f be a transcendental meromorphic function and L be an L- function, n, k,m be positive
integers. If [fn(f − 1)mf(z+ c)](k) and [Ln(L− 1)mL(z+ c)](k) share (α(z), l) and f, L share (∞, 0) , where
α(z) is a small function of f and L then

(1) l = 0 and (n+m) > (5k + 7)(m+ 2) + 1,
(2) l = 1 and (n+m) > 1

2 (5k + 9)(m+ 2) + 1,
(3) l ≥ 2 and (n+m) > (2k + 4)(m+ 2) + 1.

Then one of the following holds:
(i) [fn(f − 1)mf(z + c)](k)≡[Ln(L− 1)mL(z + c)](k),
(ii) [fn(f − 1)mf(z + c)](k)[Ln(L− 1)mL(z + c)](k)≡ [α(z)]2.

Theorem 2.2. Let f be a transcendental meromorphic function and L be an L- function, n, k,m be positive
integers. If [fn(f − 1)mf(z+ c)](k) and [Ln(L− 1)mL(z+ c)](k) share (R(z), l) and f, L share (∞, 0), where
R(z) is a rational function of f and L then

(1) l = 0 and (n+m) > (5k + 7)(m+ 2) + 1,
(2) l = 1 and (n+m) > 1

2 (5k + 9)(m+ 2) + 1,
(3) l ≥ 2 and (n+m) > (2k + 4)(m+ 2) + 1.

Then one of the following holds:
(i) [fn(f − 1)mf(z + c)](k)≡[Ln(L− 1)mL(z + c)](k),
(ii) [fn(f − 1)mf(z + c)](k)[Ln(L− 1)mL(z + c)](k)≡(R(z))2.

Example 2.1. Let us consider L = ζ and f = −ζ, where ζ is Riemann zeta function which has a simple
pole. By hypothesis of the theorem F = [fn(f − 1)mf(z + c)](k) and L = [Ln(L − 1)mL(z + c)](k) share
(α(z), l) and the conditions are satisfied for different weights l = 0, l = 1 and l ≥ 2.

Remark 2.1. Theorem 2.1 and Theorem 2.2 are the extension of Theorems A-D respectively.

3 Auxiliary Lemmas
In this section, we present some necessary Lemmas.

Denote H by the following function.

H =
(F ′′
F ′
− 2F ′

F − 1

)
−
(G′′
G′
− 2G′

G− 1

)
.
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Lemma 3.1 ([16]). Let L be an L- function with degree q. Then

T (r, L) =
q

π
rlogr +O(1).

Lemma 3.2 ([9]). Let L be an L-function. Then

N(r,∞.L) = S(r, L) = O(logr).

Lemma 3.3 ([10]). Let f be a non-constant meromorphic function and L be an L-function. If f and L share
(∞, 0) then

N(r,∞; f) = N(r,∞;L) = S(r, L) = O(logr).

Lemma 3.4 ([21]). Let f(z) = α0+α1z+....+αnz
n

β0+β1z+....+βmzm
be a non-constant rational function defined in the complex

plane C, where α0, α1, ...., αn( 6= 0) and β0, β1, ...., βm( 6= 0) are complex constants. Then

T (r, f) = max(m,n)logr +O(1).

Lemma 3.5 ([18]). Let f be a transcendental meromorphic function of hyper order ρ2(f) < 1. Then for any
α ∈ C− {0}.

T (r, f(z + α)) = T (r, f) + S(r, f),

N(r,∞; f(z + α)) = N(r,∞; f) + S(r, f),

N(r, 0; f(z + α)) = N(r, 0; f) + S(r, f).

Lemma 3.6 ([14]). Let F and G be two non-constant meromorphic functions sharing (1, 1) and (∞, 0). If
H 6≡ 0, then

T (r, F ) ≤ N2(r, 0;F ) +N2(r, 0;G) +
3

2
N(r, F ) +N(r,G)

+N∗(r,∞;F,G) +
1

2
N(r, 0;F ) + S(r, F ) + S(r,G).

T (r,G) ≤ N2(r, 0;F ) +N2(r, 0;G) +
3

2
N(r,G) +N(r, F )

+N∗(r,∞;F,G) +
1

2
N(r, 0;G) + S(r, F ) + S(r,G).

Lemma 3.7 ([14]). Let F and G be two non-constant meromorphic functions sharing (1, 0) and (∞, 0). If
H 6≡ 0, then

T (r, F ) ≤ N2(r, 0;F ) +N2(r, 0;G) + 3N(r, F ) + 2N(r,G) +N∗(r,∞;F,G) + 2N(r, 0;F )

+N(r, 0;G) + S(r, F ) + S(r,G).

T (r,G) ≤ N2(r, 0;F ) +N2(r, 0;G) + 3N(r,G) + 2N(r, F ) +N∗(r,∞;F,G) + 2N(r, 0;G)

+N(r, 0;F ) + S(r, F ) + S(r,G).

Lemma 3.8 ([1]). Let F and G be two non-constant meromorphic functions sharing (1, l) and (∞, 0) where
2 ≤ l <∞ and H 6≡ 0 then

T (r, F ) ≤ N2(r, 0;F ) +N2(r, 0;G) +N(r, F ) +N(r,G) +N∗(r,∞;F,G)−m(r, 1, G)

−NE(r, 1;F | > 3)−N(r, 1;G > F ) + S(r, F ) + S(r,G).

T (r,G) ≤ N2(r, 0;F ) +N2(r, 0;G) +N(r, F ) +N(r,G) +N∗(r,∞;F,G)−m(r, 1, F )

−NE(r, 1;G| > 3)−N(r, 1;F > G) + S(r, F ) + S(r,G).

Lemma 3.9 ([20]). Let F be a non-constant meromorphic function and k,p be two positive integers, then

T (r, F (k)) ≤ T (r, F ) + kN(r,∞;F ) + S(r, F ),

Np(r, 0;F (k)) ≤ T (r, F (k))− T (r, F ) +Np+k(r, 0;F ) + S(r, F ),

Np(r, 0;F (k)) ≤ Np+k(r, 0;F ) + kN(r,∞;F ) + S(r, F ),

N(r, 0;F (k)) ≤ N(r, 0;F ) + kN(r,∞;F ) + S(r, F ).
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Lemma 3.10 ([20]). Let f be a non-constant meromorphic function, define then polynomial P (f) = a0 +
a1f + ....+ anf

n, where a0, ....an are complex constants and an 6= 0 , then

T (r, P (f)) = nT (r, f) + S(r, f).

Lemma 3.11 ([3]). Let f(z) be a meromorphic function and a ∈ C. Then

T

(
r,

1

f

)
= T (r, f) +O(1).

T

(
r,

1

f − a

)
= T (r, f) +O(1).

Lemma 3.12. Let f be a transcendental meromorphic function of hyper order ρ2(f) < 1 and L be a L−
function with ρ2(L) < 1. Let F1 = [fn(f − 1)mf(z+ c)]. where n,m are positive integers and c is a complex
constant. Then

(n+m− 1)T (r, f) ≤ T (r, F1) + S(r, f)

Proof. Since f is a meromorphic function, from Lemmas 3.5, 3.10, 3.11 we have

(n+m+ 1)T (r, f) = T (r, fn+m+1) + S(r, f)

≤ T (r, fn(f − 1)mf) + S(r, f)

≤ T
(
r,

F1f

f(z + c)

)
+ S(r, f)

≤ T (r, F1) + T

(
r,
f(z + c)

f

)
+ S(r, f)

≤ T (r, F1) +m

(
r,
f(z + c)

f

)
+N

(
r,
f(z + c)

f

)
+ S(r, f)

(n+m− 1)T (r, f) ≤ T (r, F1) + S(r, f).

4 Proof of the Main Results

Proof of Theorem 2.1. Let F =
F

(k)
1

α(z) andG =
G

(k)
1

α(z) where F1 = fn(f−1)mf(z+c) and L1 = Ln(L−1)mL(z+c)

respectively. Then F and G share (1, l) and share (∞, 0) except for zeros and poles of α(z). Clearly by
Lemma 3.1, L is a transcendental meromorphic function. We have by Lemmas 3.9 and 3.12

N2(r, 0;F ) ≤ N2(r, 0;F
(k)
1 ) + S(r, f)

≤ T (r, F
(k)
1 )− T (r, F1) +Nk+2(r, 0;F1) + S(r, f)

≤ T

(
r,
F

(k)
1

α(z)

)
− (n+m− 1)T (r, f) +Nk+2(r, 0;F1) + S(r, f).(4.1)

Hence from inequality (4.1), we get

(n+m− 1)T (r, f) ≤ T (r, F )−N2(r, 0;F ) +Nk+2(r, 0;F1) + S(r, f).(4.2)

Similarly,

(n+m− 1)T (r, L) ≤ T (r,G)−N2(r, 0;G) +Nk+2(r, 0;L1) + S(r, f).(4.3)

Now we have to consider the following two cases.
Case 4.1. Let H 6≡ 0. In this case we have to consider the following three subcases.
Subcase 4.1.1. Let l = 0. Hence by Lemmas 3.2, 3.3 and 3.7 and inequality (4.2) we have

(n+m− 1)T (r, f) ≤ N2(r, 0;F ) +N2(r, 0;G) + 2N(r,∞;G) + 3N(r,∞;F ) +N∗(r,∞;F,G)

+ 2N(r, 0;F ) +N(r, 0;G)−N2(r, 0;F ) +Nk+2(r, 0;F1) + S(r, f) + S(r, L)

≤ N2(r, 0;F ) +N2(r, 0;G) + 2N(r, 0;F ) +N(r, 0;G)−N2(r, 0;F )

+Nk+2(r, 0;F1) + S(r, f) + S(r, L).

≤ N2(r, 0;F
(k)
1 ) +N2(r, 0;L

(k)
1 ) + 2N(r, 0;F

(k)
1 ) +N(r, 0;L

(k)
1 )−N2(r, 0;F

(k)
1 )
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+Nk+2(r, 0;F1) + S(r, f) + S(r, L).

≤ N2(r, 0;L
(k)
1 ) + 2N(r, 0;F

(k)
1 ) +N(r, 0;L

(k)
1 ) +Nk+2(r, 0;F1)

+ S(r, f) + S(r, L).

≤ Nk+2(r, 0;L1) + 2Nk+1(r, 0;F1) +Nk+1(r, 0;L1) +Nk+2(r, 0;F1)

+ S(r, f) + S(r, L).

≤ (3 + 2k)(m+ 2)T (r, L) + (3k + 4)(m+ 2)T (r, f) + S(r, f) + S(r, L).

Hence

(n+m− 1)T (r, f) ≤ (3 + 2k)(m+ 2)T (r, L) + (3k + 4)(m+ 2)T (r, f) + S(r, f) + S(r, L).(4.4)

Similarly,

(n+m− 1)T (r, L) ≤ (3 + 2k)(m+ 2)T (r, f) + (3k + 4)(m+ 2)T (r, L) + S(r, f) + S(r, L).(4.5)

From inequalities (4.4) and (4.5) we get

(n+m− 1)[T (r, f) + T (r, L)] ≤ (7 + 5k)(m+ 2)[T (r, f) + T (r, L)] + S(r, f) + S(r, L).(4.6)

which is a contradiction from (4.6) as n+m > (7 + 5k)(m+ 2) + 1.
Subcase 4.1.2. Let l = 1. Hence by Lemmas 3.2, 3.3 and 3.6 and inequality (4.2) we have

(n+m− 1)T (r, f) ≤ N2(r, 0;G) +
3

2
N(r,∞;F ) +N(r,∞;G) +N∗(r,∞;F,G) +

1

2
N(r, 0;F )

+Nk+2(r, 0;F1) + S(r, f) + S(r, L).

≤ N2(r, 0;L
(k)
1 ) +

1

2
Nk+1(r, 0;F1) +N(r, 0;L

(k)
1 ) +Nk+2(r, 0;F1)

+ S(r, f) + S(r, L).

≤ (k + 2)(m+ 2)T (r, L) +
1

2
(3k + 5)(m+ 2)T (r, f)

+ S(r, f) + S(r, L).

Hence

(n+m− 1)T (r, f) ≤ (k + 2)(m+ 2)T (r, L) +
1

2
(3k + 5)(m+ 2)T (r, f) + S(r, f) + S(r, L).(4.7)

Similarly

(n+m− 1)T (r, L) ≤ (k + 2)(m+ 2)T (r, f) +
1

2
(3k + 5)(m+ 2)T (r, L) + S(r, f) + S(r, L).(4.8)

From inequalities (4.7) and (4.8) we arrive at a contradiction as (n+m) > 1
2 (5k + 9)(m+ 2) + 1.

Subcase 4.1.3. Let 2 ≤ l < 1. Hence by Lemmas 3.2, 3.3 and 3.8 and inequality (4.2)

(n+m− 1)T (r, L) ≤ N2(r, 0;F ) +N2(r, 0;G) +N(r, F ) +N(r,G) +N∗(r,∞;F,G)

−m(r, 1, F )−NE(r, 1;G| > 3)−N(r, 1;F > G) + S(r, f) + S(r, L)

≤ N2(r, 0;F
(k)
1 ) +N2(r, 0;L

(k)
1 ) + S(r, f) + S(r, L)

≤ (k + 2)(m+ 2)T (r, f) + (k + 2)(m+ 2)T (r, L) + S(r, f) + S(r, L).

(n+m− 1)T (r, L) ≤ (k + 2)(m+ 2)T (r, f) + (k + 2)(m+ 2)T (r, L) + S(r, f) + S(r, L).(4.9)

Similarly

(n+m− 1)T (r, f) ≤ (k + 2)(m+ 2)T (r, L) + (k + 2)(m+ 2)T (r, f) + S(r, f) + S(r, L).(4.10)

From inequalities (4.9) and (4.10) we arrive at a contradiction as l ≥ 2 and (n+m) > (2k + 4)(m+ 2) + 1.
Case 4.2. Let H ≡ 0. Then

H =
(F ′′
F ′
− 2F ′

F − 1

)
−
(G′′
G′
− 2G′

G− 1

)
≡ 0.

Integrating both sides we get

F − 1 =
G− 1

b− c(G− 1)
,(4.11)

where b 6= 0 and c are constants. Now we have to consider the following subcases.
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Subcase 4.2.1. Let c = 0. Then from (4.11) we have

F − 1 =
G− 1

b
.(4.12)

If b 6= 1 then from (4.12)

N(r, 0;F ) = N(r, 1− b;G).(4.13)

By Lemmas 3.2 and 3.9, using Second Fundamental Theorem of Nevanlinna and from inequality (4.3) we
have

(n+m− 1)T (r, L) ≤ T (r,G)−N2(r, 0;G) +Nk+2(r, 0;L1) + S(r, L)

≤ N(r, 0;G) +N(r, 1− b;G) +N(r,∞;G)−N2(r, 0;G)

+Nk+2(r, 0;L1) + S(r, L).

≤ N(r, 0;G) +N(r, 0;F )−N2(r, 0;G) +Nk+2(r, 0;L1) + S(r, L)

≤ N(r, 0;F
(k)
1 ) +N(r, 0;L

(k)
1 ) +Nk+2(r, 0;L1) + S(r, L)

≤ Nk+1(r, 0;F1) +Nk+1(r, 0;L1) +Nk+2(r, 0;L1) + S(r, L)

≤ (2k + 3)(m+ 2)T (r, L) + (k + 1)(m+ 2)T (r, f)

+ S(r, f) + S(r, L).

Hence

(n+m− 1)T (r, L) ≤ (2k + 3)(m+ 2)T (r, L) + (k + 1)(m+ 2)T (r, f) + S(r, f) + S(r, L).(4.14)

Similarly

(n+m− 1)T (r, f) ≤ (2k + 3)(m+ 2)T (r, f) + (k + 1)(m+ 2)T (r, L) + S(r, f) + S(r, L).(4.15)

From the inequalities (4.14) and (4.15) we arrive at a contradiction as n+m > (3k + 4)(m+ 2) + 1.
Hence b = 1 and therefore we get from (4.12)

[fn(f − 1)mf(z + c)](k)≡[Ln(L− 1)mL(z + c)](k).
Subcase 4.2.2. Let c 6= 0 and b = −c.

If c = 1, then from (4.11) we have FG ≡ 1. Hence
[fn(f − 1)mf(z + c)](k)[Ln(L− 1)mL(z + c)](k) = [α(z)]2.

If c 6= 1, then from (4.11) we have,
1

F
=

−cG
(1− c)G− 1

.

Hence N(r, 0;F ) = N(r, 1
1−c ;G).

Now proceeding as in subcase (4.2.1), we arrive at a contradiction. If c = 1, then from (4.11) we have

F ≡ −b
G− b− 1

.(4.16)

Hence by Lemma 3.3 we have from (4.16)
N(r, b+ 1;G) = N(r, F ) = N(r, f) + S(r, L) = S(r, L).

Now proceeding as in subcase (4.2.1), we arrive at a contradiction. If c 6= 1, then from (4.11) we have

F −
(

1− 1

c

)
≡ −b

c2
(
G− b+c

c

) .
Therefore by Lemma 3.3 we have

N

(
r,
b+ c

c
;G

)
= N(r, F ) = N(r, f) + S(r, L) = S(r, L).

Hence proceeding as in subcase (4.2.1) we arrive at a contradiction.
This completes the proof of the Theorem 2.1.

Proof of Theorem 2.2. Since f and L are transcendental meromorphic function and R(z) is a rational function
therefore R(z) is a small function of f and L. Thus, Theorem 2.2 can be proved in a similar way as Theorem
2.1.
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5 Conclusion
We have investigate the value distribution of a L- function and an arbitrary meromorphic function using
the concept of weighted sharing when certain type of difference-differential polynomials fn(f − 1)mf(z + c)
and Ln(L− 1)mL(z + c) share a small and rational function. L- functions can be analytically continued as
meromorphic functions in C and it has only one possible pole at s = 1 in C is the main concept of this paper.
Our results extends earlier results due to Hao and Chen.

6 Open Questions
1. Can the condition for n in Theorem 2.1 and Theorem 2.2 be still reduced?
2. Can the difference polynomials in Theorems 2.1 - 2.2 be replaced by difference polynomials of the form
fnP (f)∆cf by using weakly weighted sharing and truncated weighted sharing?

Acknowledgement. Authors are very much thankful to the editor and refrees for their careful reading and
valuable suggestions which helped to improve the manuscript significantly.
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