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Abstract

The application of Dickson polynomial in public key cryptography is observed due to its permutation
behaviors and semi-group property under composition. Here we have mostly concentrated on checking the
one-wayness and semantic security of our scheme. The proposed scheme is based on Dickson polynomial
over a finite field with 2¥, whose security depends on the Integer Factorization Problem(IFP) and the
Discrete Dickson Problem(DDP), which is as difficult as solving discrete logarithmic Problem (DLP).
Our proposed cryptosystem is computationally secured with one-wayness and semantic security, it also
reduces the complexity of many other proposed schemes.
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1 Introduction

Diffie and Hellman [5] in 1976 firstly proposed a cryptosystem, where transmission of messages takes place
in an open network, known as Public Key Cryptography or asymmetric cryptosystem. In symmetric
cryptosystem, the transmission of the secret key is done over an insecure channel and hence it is of higher
insecurity. However, in asymmetric cryptosystem, separate keys are being used for encryption and decryption
and hence it overcomes the insecurity problem. Security is of key importance in cryptography, as it is on
which the proposed cryptosystem depends on.

Various parameters including number theory, group theory, field theory, braid group[21] and many others
were involved to propose numerous cryptosystem to improve the security & efficiency and hence also came
the involvement of Dickson polynomials too for the preparation of a more computationally secured and
efficient cryptosystem. The application of Dickson polynomial in public key cryptography[10, 11, 12, 13]
was involved due to its permutation behaviors and semi-group property under composition. It gave the
researchers a new direction in cryptography. Dickson polynomial was firstly introduced by Dickson [4] in
1896, but it was later named by Schur[23] as Dickson polynomial. Lidl [13], in his paper have also surveyed
the algebraic properties of Dickson polynomial over I, and over the integers Z,,, which helped to found the
better way of its application in public key cryptography.

If prior knowledge of the hard problems is known only then it can be solved both ways, based on which
most of the cryptographic schemes are being developed. Discrete logarithm and factoring of a large composite
number in terms of primes, taken only one hard problem at a time were initially the hard problems that were
being used includes for the propose of schemes. In 1988, two different number theoretic assumption were
involved in the development of a single key distribution protocol by McCurley [17]. Numerous cryptosystem
were proposed in the later year by [2, 6, 7, 8, 9, 18, 20, 24, 25, 26] which were based on the merging of two
hard problems such as Discrete logarithm and factoring of a large composite number, Elliptic Curve discrete
Logarithm, knapsack problem, and many more.

Here Discrete Logarithm and Integer Factorization is operated on Discrete Dickson Problem(DDP) over
the finite field with cardinality 2¥ and proposed a cryptosystem whose security is based on the hardness of
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solving IFP and DDP. Our work is mainly based on checking the one-wayness and semantic security of the
scheme.

The rest of the paper is started with defining dickson polynomial, then followed by the security of our
proposed cryptosystem which involved the One-way security and semantic security and finally the conclusion.

2 Dickson Polynomial
In 1896, Dickson [4] introduced a type of polynomial of the form
(k=1)/2

. (k—i—1)(k—20+1) , o0 . .
k k is odd
vt ; 23..1 @y, ks oaq,

over finite field F,, which later came to be known as Dickson polynomial by Schur[23].
Definition 2.1. (Dickson polynomial of first kind) ([27]). Let N be a positive integer and a € F,,then the
Dickson polynomial Dy (y,a) of the first kind over any finite field Fy is defined by
7] .
N (N—i i, N—2i
Dx(a) = Y s ()

i =0

where L%J is the largest integer less than or equal to 3.

The Dickson polynomial satisfy the resurrence relation : Dy(y,a) = yDny-1(y,a) — aDn—_2(y,a), N > 2.
under the initial condition Dy(y,a) = 2 and D1(y,a) = y and few initial polynomial are given below:

D2(y7a): y2 - 2@,

Ds(y,a)=y* — 3ay,

Dy(y,a)=y"* — day® + 2a°,

Ds(y,a)=y> — 5ay® + 5a%y.

Commutativity under composition is of considerable importance satisfied by Dickson polynomial for a =
0 or 1 [19] and hence it satisfies the semi-group property under composition:

Dyn(y,1) = Dyu(Dn(y,1),1) = Dy(y,1) o Dn(y,1) = Dn(y,1) o Das(y, 1) = Dy (y, 1)

Definition 2.2 (Modified Dickson Polynomial). Let us define a map, Dp : Zn — Zn defined as z =
Dp(y)(modN), where y and N are positive integers. Here, we call z = Dp(y)(modN) as the modified
Dickson polynomial. Below are few properties satisfied by modified dickson polynomial.

1. Modified Dickson polynomial is commutative under composition, that is

Dp(Dq(y)(modN)) = Dpq(y)(modN) = Dq(Dp(y)(modN)).

2. Let Q be an odd prime and let y € Z such that 0 < y < Q. Then the period of the sequence Dy (y)(mod
Q) for N =0,1,2,3,4,... is a divisor of Q* — 1.

Miiller and Nébauer [19] in 1981, firstly introduced the first key exchange cryptosystem which was based
on Dickson polynomial, where the power functuions of the RSA system, introduced by Rivest et al.[22] in
1978, was replaced by Dickson ploynomials Dy, (z,a) with parameter a = —1,0,1. It was also observed the
RSA cryptosystem was equivalent to Dickson system for parameter a = 0[19] . In 2011, Wei [27] introduced
in his paper that Dickson polynomial D, (x,1) over a finite field 2™ is a permutation polynomial if and
only if n is odd and proved that solving a discrete Dickson problem(DDP) is as difficult as solving discrete
logarithmic problem (DLP). Note that, The hardness of DLP was also observed by McCurley [16] in his paper.
It is also observed that, computable groups where DLP is hard to solve [1, 3, 13] are of very importance in

cryptography.

Definition 2.3 (Discrete Dickson Problem). Let R be a commutative ring with unity, for any n € Z*, and
giveny and x , the problem of calculating the value of n such thaty = D, (x, 1) is called the Discrete Dickson
Problem(DDP).

It is observed throughout the paper that we have used for a =1, Dy(z,1) = Dy, (x).

3 Security of the proposed public key encryption scheme
For the completeness of our work, here we have included our proposed public key encryption scheme. The
scheme consists of three parts, that includes key generation, encryption and decryption.
Key Generation
1. Choose two random large primes P and @ of the same size, such that 2° — 1 and 29 — 1 is prime.
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Using the above P and Q compute N = 2% where k = P x Q.

For the value of N, find ¢(N), where ¢(NN) = (22F — 2P+1)x(22Q — 20+1),
Choose f, such that 1 < f < ¢(N) and ged(f, #(N)) = 1.

Find ¢, such that ¢f =1 (mod ¢(N)), where ¢ is the modular inverse of f.
Choose h, such that 0 < h < ¢(N) - 1.

. Choose a random « € Z} and compute y = £ Dj,(2c) (mod N).

e PUBLIC KEY: (N, f,y,a),

e PRIVATE KEY: (P,Q,h,c).

Encryption

Here the process of encrypting the simple plain text into cipher text is permormed, so that an intruder
doesn’t get to read the message. For the message M € Zy,

1. Select a random s € Z} and for the selected s, Compute p; = $Df(2s) (mod N).

2. Simillarly select ¢ € Z3 and for the selected ¢, compute p; = $D;(2a) (mod N).

3. Now finally compute ps using selected s and the given y, where p3 = %Dt(Qy)Df(Zs) (mod N).

For the plain text message 'M’, the encrypted ciphertext is (pi1,p2,ps), which will be received by the
decoder to generate the message.

Decryption

On receiving the encrypted message (p1, ps, p3), the receiver performs the below given steps:

1. Firstly, he/she deals with obtaining the value of s, by computing 1 D.(2p;) (mod N).

2. Followed by computing U, where U = p;* (mod N).

3. Compute V', where V = p3U (mod N).

4. Then compute T, where T = 3 Djsv+1(2p2) (mod N) = 2D;(2y) (mod N).

5. Finally obtain the plain-text message M = VT~ (mod N).

The security of the proposed cryptosystem is found to be completely build upon Integer Factorization
Problem(IFP) and Discrete Dickson Problem(DDP). Here we have observed few cases of common attacks,
one-wayness and semantic security, where the proposed cryptosystem was found to be computationally
secured.

As the encrypted message can be assessed by an intruder, he/she can have assess to (p1, p2, p3). Now, for
him/her to generate the message M, he/she have to obtain the value of P and @ of k and so the value of ¢ and
followed by finding A from 3 Dj,(2c)(mod N). And this can only be achieved if Integer factorization problem
and Discrete Dickson problem can be solved. The value of P and @ is chosen in such a way that the size of k
is 1024-bit and above, so no known algorithm can be used to factor k. And also to find & from $Dj,(2cr) (mod
N), the intruder have to solve DDP. Also the value of @ and s should be large enough to prevent exhaustive
search attack. It should be kept in mind that to encrypt different messages different values of s and ¢ should
be used. Because if a sender uses same parameters for the encryption of two different messages M7 and Ms,
then the intruder can obtain p3 = 21 Dy (2y)D(2s)(modN) and Py = A Dy (2y) Dy (2s)(modN). And hence
from the relation My = p:;pglMl, the intruder can have the message My on knowing M;. So on choosing
different values of s and ¢, the message Ms cannot be known even on knowing M.

Suppose the intruder somehow manages to find the value of P and @ and then computes s =
1D.(2p1)(modN) and V = p3U(modN) = p3p; ' (modN) = & D;(2y)(modN). To find the message M from
above, one has to know ¢, which is computationally impossible assumption of Discrete Dickson Problem
which is equivalent to solving DLP.

3.1 One-wayness
Here we check the one wayness of our proposed cryptosystem mentioned above.

Moo ot

Theorem 3.1. Our proposed cryptosystem is one-way secured if both Integer Factorization Problem(IFP)
and Discrete Dickson Problem(DDP) holds.

Proof. Let us suppose that both integer factorization problem and discrete dickson problem is simple i.e.,
given a composite integer X, finding integers p and ¢ such that p.q = X is effortless and under a commutative
ring R with unity, with given y and z, the task of obtaining the value of N, such that z = Dy(y, 1) is also
effortless, where N € ZT, which means that , there exist a PPT algorithm A which can solve both integer
factorization problem and discrete dickson problem. Our motive is to break the one-wayness of our proposed
scheme by using the algorithm A and hence recover the plain text message m.
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Let the challenging ciphertext be (pi,ps2,ps3), p1 = 2Dy(2s) (mod N), po = 1Dy(2e) (mod N) and
ps = 4D, (2y)Ds(2s) (mod N) and the public key be (N, f,y,a), where y = £ Dj,(2a) (mod N). Now we
commence with aquiring the value of M. From the given value of p; and f, we obtain the value of s, followed
by using the algorithm 4 we obtain the value of ¢ from ps = %Dt(Qa) (mod N), followed by obtaining the
value of M, as M = 4p3(D;(2y)) "1 (Dy(2s))~! (mod N). O

3.2 Semantic Security

In this section we are involved with checking the semantic security of our proposed cryptosystem. In semantic
security the challenger generates the public key and the private key, pk and sk respectively. Keeps the private
key to himself/herself and sends the public key to the adversary. Next the adversary selects two distinct
messages mgo and my € M of same length and send it to the challenger. Here, the challenger selects any one
of mgy or my and encrypts the corresponding ciphertext to it and send it to the adversary. On receiving the
ciphertext from the challenger, the adversary objective is to identify which message was encrypted. If it can
be achieved then the encryption scheme is not semantically secured else not, then semantically secured.
Discrete Dickson Assumption

Under the Discrete Dickson assumption, we assume that it is computationally hard to obtain the value of
N € Z*, given the value of z and y, where z = Dy/(y, 1).

Computational Discrete Dickson Assumption

The Computational Discrete Dickson Assumption states that, given the value of y and z, it is computationally
hard to obtain the value of N from z = Dy (y, 1).

Theorem 3.2. If Computational Discrete Dickson Assumption holds, then the scheme presented in section
3, is semantically secured.

Proof. Let us presume that the scheme proposed in section 3 is not semantically secured for the purpose of
contradiction. Which speaks about the existence of a polynomial time algorithm A, which can break the
semantic security of our proposed scheme. With this, our objective is that to, given G = (y, z, w), with the
help of algorithm A4, it is to decide whether it is conjugacy search problem of a random one (i.e p = ab or
not). Where y = £D,(2) (mod N), z = 1Dy(2a) (mod N) and w = 3Dg(2c) (mod N). We first set
the public key (N, f,y,a), where y = 1D,(2a) (mod N) and o € Z%;; then once the adversary has chosen
the messages mo and mq, we overturn a bit ¢ and we encrypt m, as follows: E(my) = (p1,p2,p3) where
p1 = 3Ds(2s) (mod N), po = 1D;y(2) (mod N) and p3 = 52Dy (2y)Ds(2s) (mod N).

Seemingly if G is a discrete dickson assumption, the above is an authentic encryption of m, and algorithm
A will deliver the accurate output with non negligible gain. On the contrary, if G is not a discrete dickson
assumption, we assert that even a polynomially unbounded adversary gains no information about m, from
E(mg) in a strong information-theoretic sense.

Let p = ab, and then the information received by the adversary is of the form p; = %Df (2s) (mod N),
p2 = 3Di(2a) (mod N) and p3 = Z2Dy(2y)Dy(2s) (mod N) = Z2Dy(Dap(20))Dy(2s) (mod N) =
L4 Day(Dy(20)) Dy (25) (mod N) = my = 4ps(Dap(2p2)) "1 (Dy(2s))~" (mod N), and hence making the
value of m,, infeasible which is completely hidden. And thus A cannot guess ¢ better than at random. [

4 Conclusion

In this paper we have proved the one-way security and semantic security of our proposed public key
cryptosystem based on IFP and DDP. Satisfying the one-wayness and semantic security by our proposed
cryptosystem has proven that, it is computationally well secured against any known attack.
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