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Abstract

This paper focuses on obtaining non-zero integer quintuples (x, y, z, w, p) satisfying the bi-quadratic
equation with five unknowns given by 2(x − y)(x3 + y3) + x4 − y4 = 2(z2 − w2)p2. Various patterns of
solutions are obtained by reducing the given bi-quadratic equation to solvable ternary quadratic equation
through employing linear transformations.
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1 Introduction
The theory of Diophantine equations offers a rich variety of fascinating problems. In particular biquadratic
Diophantine equation, homogeneous and non-homogeneous have aroused the interest of numerous mathe-
maticians, since antiquity. In this context , one may refer [1-31] for various problems on biquadratic equations
with three ,four and five variables. This paper concerns with yet another problem of determining non-trivial
integral solutions on the biquadratic equation with five unknowns given by 2(x − y)(x3 + y3) + x4 − y4 =
2(z2 − w2)p2.

2 Method of Analysis
The Diophantine equation representing the biquadratic equation under consideration with five unknowns is
given by

(2.1) 2(x− y)(x3 + y3) + x4 − y4 = 2(z2 − w2)p2.

Introducing the linear transformations

(2.2) x = u+ v, y = u− v, z = 2u+ v, w = 2u− v
in (2.1) , we get

(2.3) u2 + 2v2 = p2.

The above equation (2.3) is solved through different methods and thus, one obtains different patterns of
distinct integer solutions to (2.1).

3 Patterns
Pattern 3.1
The most cited solutions to (2.3) are

(3.1) v = 2rs, u = 2r2 − s2

and

(3.2) p = 2r2 + s2.

Using (3.1) in (2.2) , we get

(3.3) x = 2r2 − s2 + 2rs, y = 2r2 − s2 − 2rs, z = 4r2 − 2s2 + 2rs, w = 4r2 − 2s2 − 2rs.

Thus,(3.2) and (3.3) give the integer solutions to (2.1).
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Pattern 3.2
Rewrite (2.3) as

(3.4) u2 + 2v2 = p2 ∗ 1.

Assume

(3.5) p = a2 + 2b2.

Express integer 1 on the R.H.S of (3.4) as the product of complex conjugates as

(3.6) 1 =
(1 + i2

√
2)(1− i2

√
2)

9
.

Substituting (3.5) and (3.6) in (3.4) and employing the method of factorization we define

u+ i
√

2v =
(a+ i

√
2b)2(1 + i2

√
2)

3
,

from which, on equating the real and imaginary parts, we obtain

(3.7) u =
(a2 − 2b2 − 8ab)

3
, v =

(2a2 − 4b2 + 2ab)

3
.

As our interest is on finding integer solutions, replacing a by 3A and b by 3B in (3.5) and (3.7) and in view
of (2.2) , the corresponding integer solutions to (2.1) are given by

x = 3(3A2 − 6B2 − 6AB), y = 3(−A2 + 2B2 − 10AB),

z = 3(4A2 − 8B2 − 14AB), w = −54AB, p = 9(A2 + 2B2).

Observation 3.2.1
Apart from (3.6), the integer 1 on the R.H.S. of (3.4) is expressed as

1 =
(7 + i6

√
2)(7− i6

√
2)

121
.

For this choice ,the corresponding integer solutions to (2.1) are obtained as

x = 11(13A2 − 26B2 − 10AB), y = 11(A2 − 2B2 − 38AB)

z = 11(20A2 − 40B2 − 34AB), w = 11(8A2 − 16B2 − 62AB), p = 11(11A2 + 22B2).

Observation 3.2.2
It is worth to mention here that the integer 1 on the R.H.S. of (3.4) may be written in the general form as

1 =
(2p2 − q2 + i

√
22pq)(2p2 − q2 − i

√
22pq)

(2p2 + q2)2
.

The repetition of the above process leads to a set of integer solutions to (2.1).
Pattern 3.3
Consider (2.3) as

(3.8) p2 − 2v2 = u2 ∗ 1.

Assume

(3.9) u = a2 − 2b2.

Express integer 1 on the R.H.S of (3.8) as the product of irrational pairs as

(3.10) 1 = (3 + 2
√

2)(3− 2
√

2).

Substituting (3.9) and (3.10) in (3.4) and employing the method of factorization, define

p+
√

2v = (a+
√

2b)2(3 + 2
√

2).

from which, we get

(3.11) v = 2a2 + 4b2 + 6ab

and

(3.12) p = 3a2 + 6b2 + 8ab.

Using (3.9) and (3.11) in (2.2) , we write

(3.13) x = 3a2 + 2b2 + 6ab, y = −a2 − 6b2 − 6ab, z = 4a2 + 6ab, w = −8b2 − 6ab.

Thus,(3.12) and (3.13) give the integer solutions to (2.1).
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Observation 3.3.1
Apart from (3.10), the integer 1 on the R.H.S. of (3.8) is expressed as

1 =
(11 + 6

√
2)(11− 6

√
2)

49
.

For this choice, the corresponding integer solutions to (2.1) are obtained as

x = 7(13A2 − 2B2 + 22AB), y = 7(A2 − 26B2 − 22AB),

z = 7(20A2 − 16B2 + 22AB), w = 7(8A2 − 40B2 − 22AB), p = 7(11A2 + 22B2 + 24AB).

Observation 3.3.2
It is worth to mention here that the integer 1 on the R.H.S. of (3.8) may be written in the general form as

1 =
(2p2 + q2 +

√
22pq)(2p2 + q2 −

√
22pq)

(2p2 − q2)2
.

The repetition of the above process leads to a set of integer solutions to (2.1).

4 Conclusion
An attempt has been made to determine many non-zero distinct integer solutions to the considered fourth
degree equation with five unknowns in the title. It is worth to mention that, in addition to the transformations
presented in (2.2) ,one may also consider the transformations represented by

(4.1) x = u+ v, y = u− v, z = u+ 2v, w = u− 2v,

(4.2) x = u+ v, y = u− v, z = 2uv + 1, w = 2uv − 1.

To conclude, the readers of this paper may search for integer solutions to other forms of homogeneous or
non-homogeneous quinary bi-quadratic Diophantine equations.
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