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Abstract

This mathematical study comprising of a catheterized artery with clot and stenosis is conducted to
highlight the usage of nanoparticles in treatment of thrombosis. Catheter coated with silver nanoparticles
is inserted in the lumen of artery having clot and stenosis. The behavior of blood with nanoparticles
is described using nanofluid. Navier-Stokes equation and diffusion equation for temperature as well as
concentration are used to model the flow problem. Our prime intention is to study how concentration and
nanoparticle size effect nanofluid flow considering the influence of various thermal features like thermal
conductivity, specific heat capacity and thermal expansion. Solution has been obtained for concentration,
temperature and velocity is obtained using finite difference method. The effects of radius of nanoparticle,
Brownian motion parameter, stenosis depth, Grashof number and Darcy number have been examined
graphically using MATLAB. It has been concluded that nanoparticles highly concentrate on the clot and
stenosis and thus point to possible significant use of nanoparticles in antithrombotic therapy. This model
can be, thus, utilized in thrombolytic therapies by proper optimization of concentration of nanoparticles
as well as their geometries.
2020 Mathematical Sciences Classification: 76A05, 76D05, 35A08, 35A24, 9210, 92C10.
Keywords and Phrases: Nanofluids, Thermal conductivity, Viscosity, Concentration, Brownian
motion.

1 Introduction
Nanoparticles have emerged as a promising technology that has revolutionized every field of science [11].
Recent years have witnessed an extensive attention of scientific researchers and clinicians in the field of
nanomedicine or the use of nanoparticles in medicine. Nanoparticles provide enhanced treatment efficiency
due to their convertible geometries and physiochemical properties because they mimic platelets by moving
rapidly towards clots. Many nanoparticles-based drug delivery system have been used in medication and
therapy of cardiovascular diseases and cancer. The application of nanoparticle in the therapeutics of
thrombosis have exhibited amplified treatment efficiency [19]. In this paper we seek to understand the
behavior of nanoparticles at the clot by controlling their concentration and size.

Thrombosis is the buildup of malignant clot in the blood vessels. It is a global health issue. The flow
conditions of blood are affected by thrombus formation because clotted arteries have higher shear rates
than healthy arteries. The thrombus or the malignant clot can be dissolved or reduced with the help of
antiplatelet and anticoagulant agents like heparin, recombinant tPA (rtPA), urokinase plasminogen activator
(uPA) and streptokinase (SK) [19]. These agents are protein-based and have lesser bio-availability, thus,
lesser therapeutic effect. Thus, it is important to develop such therapeutics that have higher bio-availability
and efficiency. Here, nanoparticles have proven useful as their geometry and physio-chemical properties can
be suitably controlled. Thus, nanoparticles have growing appeals in the treatment of clots.

Nanofluids are advanced fluids containing nanometer size particles suspended in a standard fluid like
alcohol, water etc. Nanofluids hold an aptitude for heat transfer owing to its enhanced thermophysical
properties. Thus, nanofluids are advantageous due to their better stability and better viscosity and dispersion
properties.
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Saleem et al. [20] analysed nanofluid in an artery with a catheter having stenosis and clot. Rathore
and Srikanth [15] worked on an artery with stenosis, clot and catheter whose outer surface is layered with
nanoparticles. Guan and Dou [5] outlined the recent advances in the use of nanoparticles as thrombus-
targeting agents. Shah and Kumar [16] studied blood with nanoparticles in a tapered artery having a blood
clot. By the above literature survey, it is clear that the effect of nanoparticle concentration present in blood
along with their temperature of nanofluid has not been inspected much. Thus, in the current mathematical
analysis, we have developed a model for an artery with a clot including a catheter layered with nanoparticles
and probed into influence of varying concentrations of nanoparticles and temperature of nanofluid.

Primary properties of nanoparticles depend on their thermal conductivity [17]. In return viscosity and
thermal conductivity of nanofluid rely on Reynolds number and Prandtl number because of convections
arising in them. Saito [21] gave a model for viscosity of nanofluids containing very small spherical
nanoparticles with pronounced Brownian motion, as

(1.1) µnf = µf

(
1 +

2.5φ

1− φ
0.87

)
,

where φ is volume fraction of nanoparticles, µnf describes viscosity of nanofluid while µf is viscosity of base
fluid. The interactions of nanoparticles caused by Brownian motion produces effects similar to convection
at the nanoscale level. Thus, we have used this model to describe the viscosity of nanofluid.

The Navier-Stokes equation and temperature diffusion equation show that nanoparticle dispersion is
elevated under strong Brownian forces. Jang and Choi [9] fabricated a model to define thermal conductivity
accounting for contribution of nanoparticle Brownian motion in nanofluid, given as

(1.2) knf = kf (1− φ) + kpφ+ 3s
r0

rp
kfRe

2Prφ,

where φ is volume fraction of nanoparticles, knf describes thermal conductivity of nanofluid while kf is
thermal conductivity of base fluid and kpis thermal conductivity of nanoparticles. Pr is Prandtl number and
Re is Reynolds number. r0 is radius of base fluid particles and rpis radius of nanoparticles. s is an empirical
constant. The vital role of Brownian motion is thus considered in our problem as we have used this model
to describe the thermal conductivity of nanofluid.

Volume fraction of a solute present in a solvent is a measure of concentration of solute. The volume
fraction is same as the concentration in an ideal solution i.e. where there is no reaction between the solute
and solvent particles. In our case, the blood cells do not react with the nanoparticles in the nanofluid but
accumulate only at the clot and stenosis. Thus, we have considered volume fraction of nanoparticles as
concentration of nanoparticles in the nanofluid. The formulations have been carried out following the same.

When nanoparticles are administered in systemic circulation, they have their first encounter with blood
cells. Nanoparticles are schemed specifically to deal with diseased cells to treat thrombosis. The compatibility
of administered nanoparticles depends on their concentrations. Thus, to fine tune the nanoparticles before
they are used in nanomedicine, it is important to understand their mathematical modelling. Hence, in this
paper we have made an attempt to study blood flow in an artery with a clot in presence of a catheter coated
with nanoparticles. The mathematical equations are modelled using Navier-Stokes equation, temperature
and concentration diffusion equation in cylindrical co-ordinates. The concentration, temperature and
velocity of nanofluid is found using finite difference method. The effects of nanoparticle concentration,
temperature and velocity of nanofluid has been observed on parameters like radius of nanoparticle, Brownian
motion parameter, stenosis depth, Grashof number and Darcy number. Outcomes have been discussed
through graphs plotted using MATLAB. This study could act as a prototype in bio-medicine for the use of
nanoparticles in treating thrombosis.

2 Mathematical Formulation
The incompressible, steady and laminar blood flow is assumed in an artery of length L and radius R0

with a clot ε′ (z′) and stenosis R(z) (Fig 2.1). Silver nanoparticles are coated on the catheter of radius
Rc. Cylindrical co-ordinates (r′, θ′, z′) are taken into consideration. Equation of continuity, Navier-Stokes
equation and diffusion equations for temperature and concentration are employed to frame the mathematical
model.

The clot ε′ (z′) [20] is defined as

(2.1) ε′ (z′) =

{
R0(1 + e( − π2(z′ − 0.5)2)) a′ ≤ z′ ≤ a′ + b′,

Rc otherwise.
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The geometry of the stenosis R′(z′)[23] is given as:-

(2.2) R′ (z′) =

{
R0 − δ′e( − m2z′2

L′2 ) a′ ≤ z′ ≤ a′ + b′,

R0 otherwise.

where δ′ is the depth of stenosis and m is a parametric constant 

Figure 2.1: Geometrical representation.

The governing equations are given as: Equation of continuity in cylindrical co-ordinates

(2.3)
∂ρnf
∂t′

=
1

r′
∂(r ρnfv

′)

∂r′
+

1

r′
∂ρnfw

′

∂θ′
+
∂ρnfu

′

∂z′
= 0,

Navier-Stokes equation in cylindrical co-ordinates

ρnf (
∂v′

∂t′
+ v′

∂v′

∂r′
+
u′

r′
∂v′

∂θ′
− u′

2

r′
+ u′

∂v′

∂z′
)

(2.4) = Fr′ −
∂p′

∂r′
+ µnf (− v

′

r2
+

1

r′
∂

∂r′

(
r′
∂v′

∂r′

)
+

1

r′2
∂2v′

∂θ′2
+
∂2v′

∂z′2
− 2

r′2
∂w′

∂θ′
),

ρnf (
∂w′

∂t′
+ v′

∂w′

∂r′
+
u′

r′
∂w′

∂θ′
− v′w′

r′
+ u′

∂w′

∂z′
)

(2.5) = Fθ′ −
∂p′

∂θ′
+ µnf (−w

′

r2
+

1

r′
∂

∂r′

(
r′
∂w′

∂r′

)
+

1

r′2
∂2w′

∂θ′2
+
∂2w′

∂z′2
+

2

r′2
∂v′

∂θ′
),

ρnf (
∂u′

∂t′
+ v′

∂u′

∂r′
+
u′

r′
∂u′

∂θ′
+ u′

∂u′

∂z′
)

(2.6) = Fz′ −
∂p′

∂z′
+ µnf (

1

r′
∂

∂r′

(
r′
∂u

∂r′

)
+

1

r′2
∂2u′

∂θ′2
+

∂2u′

∂z′2
),

where F ′ in different indices stands for body forces in different co-ordinates and ρnf is density of nanofluid.
Diffusion equation for temperature T ′ of nanofluid in cylindrical co-ordinates

(v′
∂T ′

∂r′
+ u′

∂T ′

∂z′
)

(2.7) =
knf

ρnfcpnf
(
∂2T ′

∂r′2
+

1

r′
∂T ′

∂r′
+
∂2T ′

∂z′2
) +

DB

ρnfcpnf
(
∂c′

∂r′
∂T ′

∂r′
+
∂c′

∂z′
∂T ′

∂z′
),

where cpnf is specific heat capacity of nanofluid, knf is thermal conductivity of nanofluid and ρnf is density

of the nanofluid. DB is Brownian diffusion coefficient. c′ is concentration of nanoparticles. Temperature
sensitive silver nanoparticles are coated on the catheter inserted in the lumen of artery [18]. The temperature
is provided on the catheter to release nanoparticles for treating the clot.
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Diffusion equation for concentration c′ of nanoparticles in cylindrical co-ordinates

(2.8)
∂c′

∂t′
+ u′

∂c′

∂z′
+ v′

∂c′

∂r′
+ w′

∂c′

∂θ′
= DB(

∂2c′

∂r′2
+

1

r′
∂c′

∂r′
+

1

r′2
∂2c′

∂θ′2
+
∂2c′

∂z′2
),

where DB is Brownian diffusion coefficient. The silver nanoparticles are highly concentrated on the surface
of catheter.
The governing equations (2.3) - (2.8) are solved under the following assumptions

1. Catheter has been inserted at the center of the clot in the artery,
2. Flow is considered two dimensional,
3. Flow is steady,
4. Flow is axisymmetric,
5. The azimuthal component of fluid velocity is zero,
6. The cross-section area is very small; thus, flow is described by low Reynolds number,
7. Free convection effects are ignored,
8. Nanoparticles and blood are in thermal equilibrium,
9. No chemical reaction takes place in the blood,

10. There is no heat transfer due to radiation.
Nanofluids are highly developed colloidal fluids attained by dispersing 1-100 nm nanoparticles in standard

fluid. Studies over the time have proven that nanofluids hold outstanding thermophysical properties as
compared to base fluids. The parameters like volume fraction, size of base fluid particles, their thermal
conductivity, hold significance in defining thermal characteristics of nanofluids like viscosity, thermal
conductivity, and specific heat capacity.

The better thermal characteristics of nanofluids is because of the small sized nanoparticles dispersed
in it. Viscosity is an important thermal property in this momentum because it is caused by interparticle
interactions. It has been observed that viscosity of a base fluid enhances when nanoparticles are suspended
in it. Viscosity is thus a governing factor of the behaviour of nanofluids which is described by the dynamics
of nanoparticles in it. Brownian motion of nanoparticles controls their thermal motion which is responsible
for defining the viscosity. Saito [21] gave the model for describing viscosity of nanofluids by accounting for
Brownian motion of spherical nanoparticles described as:

(2.9) µnf = µf (1 +
2.5c′

1− c′/0.87
),

where c′ is concentration of nanoparticles; µnf is viscosity of nanofluid and µf is viscosity of blood.
Thermal conductivity is a relevant property of nanofluids as it is influenced by nanoparticle geometry,

concentration and viscosity of base fluid. Thermal conductivity of nanofluids is evolved than their respective
base fluids. The significant mechanism thar effects thermal conductivity of nanofluid is Brownian motion.
Jang and Choi [9] gave the formula for thermal conductivity of nanofluid considering vital role of Brownian
motion in thermal conduction. It has been reported by Gupta and Kumar [6] that Brownian motion enhances
the thermal conductivity to 6 percent than their base fluids. Nanoparticles have a high random diffusion
because of Brownian motion owing to their small dimensions. Thus, to study thermal conductivity of
nanofluids, we use the formulation by Jang and Choi [9],

(2.10) knf = kf (1− c′) + kpc
′ + 3s

r0

rp
kfRe

2Prc′,

where c′ is concentration of nanoparticles; knf is thermal conductivity of nanofluid, kf is thermal conductivity
of blood and kp is thermal conductivity of nanoparticles; Pr is Prandtl number and Re is Reynolds number;
r0 is radius of blood particles (taken average), rpis radius of nanoparticles and s is an empirical constant.

Specific heat capacity is also one of the relevant parameters for stating the thermal characteristics of
nanofluids. Specific heat capacity dictates transfer of heat. It has been proved that specific heat capacity of
nanofluids is lesser compared to their base fluid. Xuan et al. [25] modelled specific heat capacity for thermal
equilibrium in nanoparticles and its base fluid which is given as,

(2.11) cpnf =
(1− c′) ρfcpf + c′ρpcpp

(1− c′) ρf + c′ρp
,

where c′ is concentration of nanoparticles; cpnf is specific heat capacity of nanofluid, cpf is specific heat
capacity of blood and cpp is specific heat capacity of nanoparticles; ρf density of blood and ρpis density of
nanoparticles.
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The thermal expansion of the nanofluid is modelled using a simple formula based on mixture rule as

(2.12) (ργ)nf = (1− c′) ρfγf + c′ρpγp,

where c′ is concentration of nanoparticles; (ργ)nf is thermal expansion of nanofluid, γf is specific thermal
expansion of blood and γpis specific thermal expansion of nanoparticles; ρf density of blood and ρp is density
of nanoparticles.

The modified equations using the assumptions and equations (2.9), (2.10), (2.11) and (2.12), along with
their boundary conditions are given henceforth.

The equation of continuity

(2.13)
∂u′

∂z′
= 0,

The equation of motion in the catheterized artery with clot at the center

(2.14) g (ργ)nf (T ′ − T0) + g (ργ)nf (c′ − c0)− (1/ρnf )
∂p′

∂z′
+ (µnf /ρnf )(

1

r′
∂

∂r′

(
r′
∂u

∂r′

)
) = 0,

No-slip at the boundary of the catheter is assumed.

(2.15) u′ = 0 at r′ = ε′(z′),

Using Beavers and Joseph condition [1] at the boundary of the artery, we get

(2.16) u′ = u′B and
∂u′

∂r′
=

σ′√
Da

(u′B − u′p) at r′ = R′(z′),

where

(2.17) u′p = −Da
µnf

∂p′

∂z′
,

is velocity at the permeable boundary where u′B is slip velocity, σ′ is slip parameter, Da is Darcy number

The diffusion equation for temperature of the catheterized artery with clot at the center

(2.18)
knf

ρnfcpnf

(
∂2T ′

∂r′2
+

1

r′
∂T ′

∂r′

)
+

DB

ρnfcpnf

(
∂c′

∂r′
∂T ′

∂r′

)
= 0.

Temperature T1 is prescribed over the catheter and clot for releasing nanodrug

(2.19) T ′ = T1 at r′ = ε′(z′).

Temperature at the boundary of the artery is To

(2.20) T ′ = T1 at r′ = R′(z′).

The diffusion equation for concentration of nanoparticles in the catheterized artery with clot
at the center

(2.21) DB

(
∂2c′

∂r′2
+

1

r′
∂c′

∂r′

)
= 0.

Concentration c1 of nanoparticles on the catheter and clot

(2.22) c′ = c1 at r′ = ε′(z′).

Concentration of nanoparticles at the boundary of the artery is co

(2.23) c′ = c0 at r′ = R′(z′).

Non-dimensional scheme
is given below as

(2.24)


r = r′

R0
, z = z′

R0
, u = u′

uavg
, P = P ′

ρfu2
avg

Re =
Ro uavgρf

µf
, Da =

kf
R2

0
, P r =

µf
DB

,

Nb =
ρf cpfDB(c1−c2)

kf
, θ = T ′−T0

T1−T0
, c = c′−c0

c1−c0 , Gr =
g(ργ)fR

2
0(T1−T0)

uavgµf
,

Br =
g(ργ)fR

2
0(c1−c0)

uavgµf
, σ′ = σ

R0
, δ′ = δ

R0
,

where uavg is average reference velocity, Re is Reynolds number, Da is Darcy number, Pr is Prandtl Number,
Gr is Grashof number and Br is solutary Grashof number, Nb is Brownian motion parameter.
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Non-dimensional equation for clot
is given below as

(2.25) ε (z) =

{
1 + e−π

2(z−0.5)2

a ≤ z ≤ a+ b,

0.1 otherwise.

Non-dimensional equation for stenosis
is given below as

(2.26) ε (z) =

{
1− δ

R0
e−m

2z2/L2

a ≤ z ≤ a+ b,

1 otherwise.

Non-dimensional equations
are given below as

(2.27)
∂u

∂z
= 0,

(2.28)
∂P

∂z
= µf

(
1 +

2.5c

1− c/0.87

)(
∂2u

∂r2
+

1

r

∂u

∂r

)
+ θGr

(
(1− c) + c

(ργ)p
(ργ)f

)
+ cBr

(
(1− c) + c

(ργ)p
(ργ)f

)
,

(2.29)
∂2θ

∂r2
+

1

r

∂θ

∂r
+
∂θ

∂r

∂c

∂r
Nb

(
(1− c) + c

kp
kf

+ 3s
r0

rp
Re2Prc

) ( (1−c)
cpf

+ c
ρp

ρf cpf
)(

(1− c) + c
ρpcpp
ρfcpf

) = 0,

(2.30)
∂2c

∂r2
+

1

r

∂c

∂r
= 0,

Non-dimensional boundary conditions
are given below as

(2.31) c = 0 at r = R(z),

(2.32) θ = 0 at r = R(z),

(2.33) u = uB and
∂u

∂r
=

σ√
Da

(uB − up) at r = R(z),

(2.34) u = 0 at r = ε(z),

(2.35) θ = 1 at r = ε(z),

(2.36) c = 1 at r = ε(z).

3 Solution
Mathematical solution for equations (2.25) to (2,30) employing the boundary conditions (2.31) to (2.36) is
calculated numerically using MATLAB version 9.1R2016b.

Finite difference method

Denote cki or Θk
i+1as the value of c or Θ at node ri or zi. In this notation, the finite difference formulation

of various partial derivatives are given as

(3.1)
∂c

∂r
∼=
cki+1 − cki−1

2∆r
= cr,

(3.2)
∂2c

∂r2
∼=
cki+1 − 2cki + cki−1

(∆r)2
= crr,

(3.3)
∂Θ

∂r
∼=

Θk
i+1 −Θk

I+1

2∆r
= Θr,
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(3.4)
∂2Θ

∂r2
∼=

Θk
i+1 − 2Θk

i + Θk
i−1

(∆r)2
= Θrr,

(3.5)
∂u

∂r
∼=
uki+1 − uki−1

2∆r
= ur,

(3.6)
∂2u

∂r2
∼=
uki+1 − 2uki + uki−1

(∆r)2
= urr,

The governing equations (2.28), (2.29) and (2.30) are as follows

(3.7)
cki+1 − cki−1

2∆z
+

1

r

cki+1 − 2cki + cki−1

(∆r)2
= 0,

Θk
i+1 − 2Θk

i + Θk
i−1

(∆r)2

1

r

Θk
i+1 −Θk

I+1

2∆r
+

Θk
i+1 −Θk

I+1

2∆r

cki+1 − cki−1

2∆z

(3.8) Nb(
(
1− cki

)
+
kp
kf
cki 3s

r0

rp
Re2Prcki )

(
1− cki

)
+

kp
kf
cki 3s r0rpRe

2Prcki

(
(
1− cki

)
+

kp
kf
cki 3s r0rpRe

2Prcki )
= 0,

∆P

∆z
= µf (1 +

2.5ci
1− ci/0.87

)(
uki+1 − 2uki + uki−1

(∆r)
2 +

1

r

uki+1 − ukI+1

2∆r
)

(3.9) +θki Gr((1− cki ) + cki
(ργ)p
(ργ)f

) + ckiBr((1− cki ) + cki
(ργ)p
(ργ)f

),

(3.10) cki = 1 at ri = ε(zi),

(3.11) cki = 0 at ri = R(zi),

(3.12) Θk
i = 1 at ri = ε(zi),

(3.13) Θk
i = 0 at ri = R(zi),

(3.14) uki = 0 at ri = ε(zi),

(3.15) uki = uiB and ur =
σ√
Da

(uiB − up) at ri = R(zi).

The algorithm for solving the equations is given as
1. The radial domain is represented by a mesh of (n+ 1) grid points 0 = r0 < r1 < . . . < rn−1 < rn = 1.
2. We seek the solution for c, θ and u at the mesh points for their respective regions.
3. The difference equations (3.7) to (3.9) and boundary conditions (3.10) to (3.15) are solved using bvp4c

solver to obtain the values at each grid point applying Thomas algorithm for tridiagonal system of
matrices

The value of concentration c in the thrombolytic and non-thrombolytic regions against radial direction
r is given by Table 3.1 as Rc = 0.1,m = 1, δ = 0.01
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Table 3.1

Radius Concentration in non-thrombolytic region Concentration in thrombolytic region
0.1 1 19.0743
0.2 0.6989 15.7190
0.3 0.5228 12.4227
0.4 0.3979 9.5837
0.5 0.3010 7.2690
0.6 0.2218 5.3592
0.7 0.1549 3.7422
0.8 0.0969 2.3142
0.9 0.4575 1.1054
1.0 0 0

The value of temperature of nanofluid θ against radial direction r is given by Table 3.2 as Rc = 0.1, δ =
0.01, rp = 30nm,Nb = 1.5

Table 3.2

Radius Temperature of nanofluid
0.1 0
0.2 0.6225
0.3 0.4359
0.4 0.3168
0.5 0.2313
0.6 0.1657
0.7 0.1129
0.8 0.0692
0.9 0.3210
1.0 0

The value of velocity of nanofluid u against radial direction r is given by Table 3.3 as Rc = 0.1, δ =
0.01, rp = 30nm,Nb = 1.5, Gr = 0.2, Br = 0.1, Da = 0.1

Table 3.3

Radius Velocity of nanofluid
0.1 0
0.2 2.6577
0.3 3.8602
0.4 4.3308
0.5 4.3001
0.6 3.8707
0.7 3.0970
0.8 2.0117
0.9 0.6354
1.0 -1.0176

4 Graphical results and discussions
This article gives theoretical research about the effects of treating clot in an artery using nanoparticles with
respect to concentration of nanoparticles, radius of nanoparticles, Brownian motion parameter, Grashof
number and Darcy number on velocity and temperature of nanofluids. Figures 4.1-4.11 show the graphs of
results obtained.
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Fig 4.1 shows graph of concentration of nanoparticles (c) against radial direction (r) for thrombolytic
and non-thrombolytic regions. The graph shows that concentration is decreasing with the increase in radial
direction. This is because the concentration of nanoparticles is highest at the catheter and clot as compared
to the wall of the artery and stenosis. It can be concluded from the graph that concentration of nanoparticles
is greater in thrombolytic region than in non-thrombolytic region. This result highlights the applications of
nanoparticles in the treatment of clot. Khurshid et al. [12] gave identical conclusions in their experimental
study.

Fig 4.2 shows graph of concentration of nanoparticles (c) against radial direction (r) for different values
of catheter radius (Rc). The plots show that greater the value of catheter radius greater the concentration of
nanoparticles in the artery. This is directly related to the fact that greater radius would accommodate greater
number of nanoparticles on the surface of catheter. However, the radius of catheter should be optimized
depending upon the severity of the clot. Comparative results have also been given by Karami et al. [13].

Fig 4.3 depicts graph of temperature of nanofluid (θ) against radial direction (r) for different values of
radius of nanoparticles (rp). Graph of temperature of decreases with increasing radial distance. This happens
because nanoparticles present towards wall of catheter are at a higher temperature which causes them to
migrate to walls of the artery which is at a lower temperature. The trend shows that the increase in radius
of nanoparticle brings about a rise in the temperature of nanofluid. Qu et al. [14] gave this result in their
experimental study. This happens because the increase in radius enhances the size of nanoparticles which
causes greater interparticle collision owing to reduction in interparticle space. Hoshyar et al. [7] summarized
similar results in their review on effect of nanoparticle size on their cellular interactions. They reported that
larger diameter nanoparticles offer decreased cellular uptake. The optimal size of nanoparticle should be
30nm- 60 nm for effective delivery of drug.

Fig 4.4 displays graph of temperature of nanofluid (θ) against radial direction (r) for different values of
Brownian motion parameter (N b). The graph shows that temperature of nanofluid increases with increase in
Brownian motion parameter. Nanoparticle motion increases with rise in Brownian motion, thus, temperature
increases. Experimental validation was given by Jiang et al. [10].

Fig 4.5 shows graph of temperature of nanofluid (θ) against radial direction (r) for different values
of stenosis depth (δ). Greater the stenosis depth, lesser the temperature. Xinting et al. [26] presented
comparable experimental result for the effect of stenosis depth on the temperature of nanofluid.

Fig 4.6 depicts graph of velocity of nanofluid (u) against radial direction (r) for different values of radius
of nanoparticles (rp). Graph shows a parabolic variation similar to Hagen-Poiseuille flow. This is because
the velocity is affected by zero acceleration because of constant pressure drop in the artery. Graph also
shows that greater radius of nanoparticle lesser the velocity. Larger sized nanoparticles aggregate to increase
flow resistance, hence velocity decreases. Hu et al. [8] analyzed similar result in their experimental study of
effect of nanoparticle size on viscosity.

Fig 4.7 displays graph of velocity of nanofluid (u) against radial direction (r) for different values of
Brownian motion parameter (N b). It is seen that velocity decreases with increase in value of Brownian
motion parameter. Brownian motion parameter is directly related to size of nanoparticles. Thus, larger
the size, greater the Brownian motion parameter, lesser is the velocity. Saghir and Rahman [22] proved
analogous experimental results.

Fig 4.8 shows graph of velocity of nanofluid (u) against radial direction (r) for different values of stenosis
depth (δ). The results show that velocity increases with increase in stenosis depth. It follows from Bernoullis
law for incompressible fluids, that reduction in cross-section area increases the velocity of fluid. This can
also be supported by the fact that arteriosclerotic and thrombolytic arteries have higher blood pressure as
compared to normal arteries [2].

Fig 4.9 shows graph of velocity of nanofluid (u) against radial direction (r) for different values of Grashof
number (Gr). Grashof number stands for ratio of buoyancy force to viscous force. Thus, increase in its value
increases the velocity of nanofluid because of the increase in temperature due to reduction in viscous forces
[24].

Fig 4.10 depicts graph of velocity of nanofluid (u) against radial direction (r) for different values of
solutary Grashof number (Br). Solutary Grashof number Br defines ratio between buoyant force and
viscous hydrodynamic forces [18]. The trend observed is similar to Grashof number. It is because as the
concentration increases the flow increases, thus increasing velocity.

Fig 4.11 displays graph of velocity of nanofluid (u) against radial direction (r) for different values of

52



Darcy number (Da). It is seen that increase in Darcy number increases velocity. Darcy number physically
represents permeability at the arterial wall. Enhancing its value reduces flow resistance at the wall thus
increasing velocity at arterial wall. Such experimental investigation was given by Boettcher et al. [3].
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5 Conclusion
This study focuses on the influence of nanoparticle concentration, temperature and velocity of nanofluid
in a catheterized artery with clot and stenosis. The study contributes to the understanding and use of
nanoparticles as anti-thrombolytic agents. The outcomes are encapsulated as

1. The concentration of nanoparticles is higher at the clot compared to other regions.
2. The temperature of nanofluid increases with increase in nanoparticle radius, Brownian motion

parameter and decreases with increase in stenosis depth.
3. The velocity of nanofluid decreases with increase in nanoparticle radius and Brownian motion

parameter.
4. The velocity of nanofluid increases with increase in stenosis depth, Grashof number, solutary Grashof

number and Darcy number.
The above model has useful application in the treatment of cardiovascular diseases.
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6 Appendix
The thermophysical properties of blood are

Table 6.1

Physical properties Blood
Heat Capacitance (cp) 3594J/KgK

Thermal Conductivity (k) 0.492W/mK
Density (ρ) 1060Kg/m3

Thermal expansion coefficient (γ) 0.18X10−5K−1
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