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Abstract

In this paper using the notion of weighted sharing,we consider the value distribution of a L- function
and meromorphic function when certain type of difference-differential polynomials which share a small
function and rational function and obtain some uniqueness results which extends recent results due to
Hao and Chen[2].
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1 Introduction and preliminaries
In this paper, C denotes the complex plane and N denotes the set of natural numbers. Now, towards the end
of twentieth century, a new class of Dirichlet series called the Selberg class was introduced by Atle Selberg[15].
The concept of L- function where L means Selberg class function with the Riemann Zeta function is the most
speculative open world problem in today’s pure mathematics. L- functions can be analytically continued as
meromorphic functions in C. A meromorphic function L is said to be an L-function in the Selberg class if it
satisfies the following properties.

(i) L(z) can be expressed as a Dirichlet series L(z) =
∑∞
m=1 a(m)/mz.

(ii) |a(m)| = O(mε), for any ε > 0.
(iii) There exists a non negetive integer n such that (z− 1)nL(z) becomes an entire function of finite order.
(iv) Every L- function satisfies the functional equation

λL(z) = ωλL(1− z),
where

λL(z) = L(z)Az
n∏
j=1

Γ(ηjz + vj),

with positive real numbers A, ηj and complex numbers vj , ω with Re(vj) ≥ 0 and |ω| = 1.
(v) L(z) satisfies L(z) =

∏
p Lp(z), where Lp(z) = exp(

∑∞
n=1 b(p

n)/pnz) with b(pn) = O(pnθ) for some
θ < 1/2 and p denotes prime number.

If L satisfies (i)-(iv) then we say that L is an L-function in the extended Selberg class. In this paper, by
an L-function we always mean an L-function in the extended Selberg class with a(1) = 1. Here we use the
standard notations and definitions of the value distribution theory [3].

The Nevanlinna value distribution theory is an important area of research which has seen extensive work.
It primarily focuses on the analysis of the distribution of solutions to the equation f(z) = a, where f is an
entire or meromorphic function in C. Let α ∈ C ∪ {∞} and f , g be meromorphic functions in the complex
plane. The set of all α- points of f with multiplicities not exceeding l is denoted by El)(α, f)(El)(α, f)),
where l is a positive integer and we consider(ignore) the multiplicities of the α- points. The hyper order
ρ2(f) of f is defined by

ρ2(f) = limr→∞
loglogT (r, f)

logr
.

We denote S(r, f) by any quantity satisfying S(r, f) = o{T (r, f)} as r →∞, outside a possible exceptional
set of finite linear measure. We say that f and g share α CM if they have the set of α- points with the same
multiplicities and if we do not consider the multiplicity then we say that f and g share α IM.
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In general, for a meromorphic function f(z), the quantity m(r, f) denotes the proximity function of
f(z), while N(r, f) denotes the counting function of poles of f(z) whose multiplicities are taken into
account(respectively N(r, f) denotes the reduced counting function when multiplicities are ignored). The
Nevanlinna characteristic function of a meromorphic function f plays a very important role in the value
distribution theory and it is denoted by T (r, f). We have T (r, f) = m(r, f) + N(r, f), which clearly shows
that T (r, f) is non-negative.

We can see a lot of work on uniqueness results with the help of Nevanlinna Theory. Recently people have
raised great interest in difference analogues of Nevanlinna’s theory and obtained many profound results. A
number of papers have focused on value distribution and uniqueness of difference polynomials, which are
analogues of Nevanlinna theory (see [11], [17]).

The value distribution of an L-function concerned with the distribution of the zeros of L and more
generally, with the roots of the equation L(s) = c for some c ∈ C ∪ {∞}. Since L-functions are analytically
continued as meromorphic functions, it is possible to study the value distribution and uniqueness outcomes
between the L- functions and any arbitrary meromorphic functions (see [12], [13]).

We state the following standard definitions of Nevanlinna theory and it is important to note that all the
definitions discussed also applies to the L-function.

In addition we need the following definitions.

Definition 1.1 ([6]). Let f be a meromorphic function defined in the complex plane. Let n be a positive
integer and α ∈ C ∪ {∞}. By N(r, α; f |≤ n) we denote the counting function of the α- points of f
with multiplicity less than or equal to n and by N(r, α; f |≤ n) the reduced counting function. Also by
N(r, α; f |≥ n) we denote the counting function of the α- points of f with multiplicity greater than or equal
to n and by N(r, α; f |≥ n) the reduced counting function. We define

Nn(r, α; f) = N(r, α; f) +N(r, α; f |≥ 2) + ....+N(r, α; f |≥ n).

Definition 1.2 ([6]). Let f be a meromorphic function defined in C and p(z) be a small function of f
or a rational function. Then we denote the notations by N(r, p; f |≤ m), N(r, p; f |≤ m), N(r, p; f |≥
m), N(r, p; f |≥ m), Nm(r, p; f) etc, the counting functions N(r, 0; f−p |≤ m), N(r, 0; f−p |≤ m), N(r, 0; f−
p |≥ m), N(r, 0; f − p |≥ m), Nm(r, 0; f − p) respectively.

Definition 1.3 ([5]
)
. Let f and g be two meromorphic functions defined in the complex plane and n be an

integer (≥ 0) or infinity. We denote by En(α; f) the set of all zeros of f − α and α ∈ C∪ {∞}and a zero of
multiplicity k is counted k times if k ≤ n and n+ 1 times if k > n, we say that f and g share α with weight
n if En(α; f) = En(α; g). We say that f and g share (α, n) to mean that f, g share α with weight n. Clearly
f, g share α IM or CM if and only if f and g share (α, 0) or (α,∞) respectively.

Definition 1.4 ([9]). Let f be a meromorphic function defined in the complex plane and p(z) be a rational
function or a small function of f . Then we denote by Em)(p; f), Em)(p; f) and Em(p; f) the sets Em)(r, 0; f−
p), Em)(r, 0; f−p) and Em(r, 0; f−p) respectively. We write f ,g share (p, n) to mean that f−p and g−p share
the value 0 with weight n. Clearly, if f ,g share (p, n) then f ,g share (p,m) for all integers m , 0 ≤ m < n.
Also we note that f ,g share p IM or CM if and only if f ,g share (p, 0) or (p,∞) respectively.

Definition 1.5 ([4]). Let f and g be two non-constant meromorphic functions share a value α IM. Denote
by N∗(r, α; f, g) the counting function of the α-points of f and g with different multiplicities, where each α-
point is counted only once.

Definition 1.6 ([10]). Let f and g be two non-constant meromorphic functions share a value α IM. Denote
by N(r, α; f |> g) the counting function of the α- points of f and g with multiplicities with respect to f is
greater than the multiplicities with respect to g, where each α- points is counted only once.

Definition 1.7 ([10]). Let f and g be two non-constant meromorphic functions share a value α IM. We
denote by NE(r, α; f, g |> m) the counting function of the α-points of f and g with multiplicities greater
than m and the multiplicities with respect to f is equal to the multiplicities with respect to g, where each
α-points is counted only once.

In 2017, Liu, Li and Yi [8] proved the following uniqueness theorems.
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Theorem A ([8]) Let j ≥ 1 and k ≥ 1 be integers such that j > 3k + 6. Also let L be an L-function and
f be a non-constant meromorphic function. If {f j}(k) and {Lj}(k) share (1,∞), then f ≡ αL for some
non-constant α satisfying αj = 1.

Theorem B ([8]). Let j ≥ 1 and k ≥ 1 be integers such that j > 3k + 6. Also let L be an L-function
and f be a non-constant meromorphic function. If {f j}(k) and {Lj}(k) share (z,∞), then f ≡ αL for some
non-constant α satisfying αj = 1.

In 2018, Hao and Chen
(
[2]
)

obtained the following uniqueness results on L -function.
Theorem C ([2]). Let f be a non-constant meromorphic function and L be an L-function such that [fn(f −
1)m](k) and [Ln(L− 1)m](k) share (1,∞) where n,m, k ∈ Z+. If n > m+ 3k + 6 and k ≥ 2, then f ≡ L or
fn(f − 1)m ≡ Ln(L− 1)m.
Theorem D ([2]). Let f be a non-constant meromorphic function and L be an L-function such that [fn(f −
1)m](k) and [Ln(L− 1)m](k) share (1, 0) where n,m, k ∈ Z+. If n > 4m+ 7k + 11 and k ≥ 2, then f ≡ L or
fn(f − 1)m ≡ Ln(L− 1)m.

Now it will be interesting to study the above Theorems A, B, C and D by considering more general
form of difference-differential polynomial. The main motivation of this paper is the fact that the L- function
where L− function has only one possible pole at s = 1 in C.
Question 1.1. Can we consider rational or small function sharing in Theorem C and Theorem D?
Question 1.2. Can we take difference-differential polynomial of the form [fn(f − 1)mf(z + c)](k) and
[Ln(L− 1)mL(z + c)](k) in Theorem C and Theorem D?

In this paper, we try to find the possible answer of the above questions. The following are the main
results of this paper.

2 Main Results
Theorem 2.1. Let f be a transcendental meromorphic function and L be an L- function, n, k,m be positive
integers. If [fn(f − 1)mf(z+ c)](k) and [Ln(L− 1)mL(z+ c)](k) share (α(z), l) and f, L share (∞, 0) , where
α(z) is a small function of f and L then

(1) l = 0 and (n+m) > (5k + 7)(m+ 2) + 1,
(2) l = 1 and (n+m) > 1

2 (5k + 9)(m+ 2) + 1,
(3) l ≥ 2 and (n+m) > (2k + 4)(m+ 2) + 1.

Then one of the following holds:
(i) [fn(f − 1)mf(z + c)](k)≡[Ln(L− 1)mL(z + c)](k),
(ii) [fn(f − 1)mf(z + c)](k)[Ln(L− 1)mL(z + c)](k)≡ [α(z)]2.

Theorem 2.2. Let f be a transcendental meromorphic function and L be an L- function, n, k,m be positive
integers. If [fn(f − 1)mf(z+ c)](k) and [Ln(L− 1)mL(z+ c)](k) share (R(z), l) and f, L share (∞, 0), where
R(z) is a rational function of f and L then

(1) l = 0 and (n+m) > (5k + 7)(m+ 2) + 1,
(2) l = 1 and (n+m) > 1

2 (5k + 9)(m+ 2) + 1,
(3) l ≥ 2 and (n+m) > (2k + 4)(m+ 2) + 1.

Then one of the following holds:
(i) [fn(f − 1)mf(z + c)](k)≡[Ln(L− 1)mL(z + c)](k),
(ii) [fn(f − 1)mf(z + c)](k)[Ln(L− 1)mL(z + c)](k)≡(R(z))2.

Example 2.1. Let us consider L = ζ and f = −ζ, where ζ is Riemann zeta function which has a simple
pole. By hypothesis of the theorem F = [fn(f − 1)mf(z + c)](k) and L = [Ln(L − 1)mL(z + c)](k) share
(α(z), l) and the conditions are satisfied for different weights l = 0, l = 1 and l ≥ 2.

Remark 2.1. Theorem 2.1 and Theorem 2.2 are the extension of Theorems A-D respectively.

3 Auxiliary Lemmas
In this section, we present some necessary Lemmas.

Denote H by the following function.

H =
(F ′′
F ′
− 2F ′

F − 1

)
−
(G′′
G′
− 2G′

G− 1

)
.
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Lemma 3.1 ([16]). Let L be an L- function with degree q. Then

T (r, L) =
q

π
rlogr +O(1).

Lemma 3.2 ([9]). Let L be an L-function. Then

N(r,∞.L) = S(r, L) = O(logr).

Lemma 3.3 ([10]). Let f be a non-constant meromorphic function and L be an L-function. If f and L share
(∞, 0) then

N(r,∞; f) = N(r,∞;L) = S(r, L) = O(logr).

Lemma 3.4 ([21]). Let f(z) = α0+α1z+....+αnz
n

β0+β1z+....+βmzm
be a non-constant rational function defined in the complex

plane C, where α0, α1, ...., αn( 6= 0) and β0, β1, ...., βm( 6= 0) are complex constants. Then

T (r, f) = max(m,n)logr +O(1).

Lemma 3.5 ([18]). Let f be a transcendental meromorphic function of hyper order ρ2(f) < 1. Then for any
α ∈ C− {0}.

T (r, f(z + α)) = T (r, f) + S(r, f),

N(r,∞; f(z + α)) = N(r,∞; f) + S(r, f),

N(r, 0; f(z + α)) = N(r, 0; f) + S(r, f).

Lemma 3.6 ([14]). Let F and G be two non-constant meromorphic functions sharing (1, 1) and (∞, 0). If
H 6≡ 0, then

T (r, F ) ≤ N2(r, 0;F ) +N2(r, 0;G) +
3

2
N(r, F ) +N(r,G)

+N∗(r,∞;F,G) +
1

2
N(r, 0;F ) + S(r, F ) + S(r,G).

T (r,G) ≤ N2(r, 0;F ) +N2(r, 0;G) +
3

2
N(r,G) +N(r, F )

+N∗(r,∞;F,G) +
1

2
N(r, 0;G) + S(r, F ) + S(r,G).

Lemma 3.7 ([14]). Let F and G be two non-constant meromorphic functions sharing (1, 0) and (∞, 0). If
H 6≡ 0, then

T (r, F ) ≤ N2(r, 0;F ) +N2(r, 0;G) + 3N(r, F ) + 2N(r,G) +N∗(r,∞;F,G) + 2N(r, 0;F )

+N(r, 0;G) + S(r, F ) + S(r,G).

T (r,G) ≤ N2(r, 0;F ) +N2(r, 0;G) + 3N(r,G) + 2N(r, F ) +N∗(r,∞;F,G) + 2N(r, 0;G)

+N(r, 0;F ) + S(r, F ) + S(r,G).

Lemma 3.8 ([1]). Let F and G be two non-constant meromorphic functions sharing (1, l) and (∞, 0) where
2 ≤ l <∞ and H 6≡ 0 then

T (r, F ) ≤ N2(r, 0;F ) +N2(r, 0;G) +N(r, F ) +N(r,G) +N∗(r,∞;F,G)−m(r, 1, G)

−NE(r, 1;F | > 3)−N(r, 1;G > F ) + S(r, F ) + S(r,G).

T (r,G) ≤ N2(r, 0;F ) +N2(r, 0;G) +N(r, F ) +N(r,G) +N∗(r,∞;F,G)−m(r, 1, F )

−NE(r, 1;G| > 3)−N(r, 1;F > G) + S(r, F ) + S(r,G).

Lemma 3.9 ([20]). Let F be a non-constant meromorphic function and k,p be two positive integers, then

T (r, F (k)) ≤ T (r, F ) + kN(r,∞;F ) + S(r, F ),

Np(r, 0;F (k)) ≤ T (r, F (k))− T (r, F ) +Np+k(r, 0;F ) + S(r, F ),

Np(r, 0;F (k)) ≤ Np+k(r, 0;F ) + kN(r,∞;F ) + S(r, F ),

N(r, 0;F (k)) ≤ N(r, 0;F ) + kN(r,∞;F ) + S(r, F ).
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Lemma 3.10 ([20]). Let f be a non-constant meromorphic function, define then polynomial P (f) = a0 +
a1f + ....+ anf

n, where a0, ....an are complex constants and an 6= 0 , then

T (r, P (f)) = nT (r, f) + S(r, f).

Lemma 3.11 ([3]). Let f(z) be a meromorphic function and a ∈ C. Then

T

(
r,

1

f

)
= T (r, f) +O(1).

T

(
r,

1

f − a

)
= T (r, f) +O(1).

Lemma 3.12. Let f be a transcendental meromorphic function of hyper order ρ2(f) < 1 and L be a L−
function with ρ2(L) < 1. Let F1 = [fn(f − 1)mf(z+ c)]. where n,m are positive integers and c is a complex
constant. Then

(n+m− 1)T (r, f) ≤ T (r, F1) + S(r, f)

Proof. Since f is a meromorphic function, from Lemmas 3.5, 3.10, 3.11 we have

(n+m+ 1)T (r, f) = T (r, fn+m+1) + S(r, f)

≤ T (r, fn(f − 1)mf) + S(r, f)

≤ T
(
r,

F1f

f(z + c)

)
+ S(r, f)

≤ T (r, F1) + T

(
r,
f(z + c)

f

)
+ S(r, f)

≤ T (r, F1) +m

(
r,
f(z + c)

f

)
+N

(
r,
f(z + c)

f

)
+ S(r, f)

(n+m− 1)T (r, f) ≤ T (r, F1) + S(r, f).

4 Proof of the Main Results

Proof of Theorem 2.1. Let F =
F

(k)
1

α(z) andG =
G

(k)
1

α(z) where F1 = fn(f−1)mf(z+c) and L1 = Ln(L−1)mL(z+c)

respectively. Then F and G share (1, l) and share (∞, 0) except for zeros and poles of α(z). Clearly by
Lemma 3.1, L is a transcendental meromorphic function. We have by Lemmas 3.9 and 3.12

N2(r, 0;F ) ≤ N2(r, 0;F
(k)
1 ) + S(r, f)

≤ T (r, F
(k)
1 )− T (r, F1) +Nk+2(r, 0;F1) + S(r, f)

≤ T

(
r,
F

(k)
1

α(z)

)
− (n+m− 1)T (r, f) +Nk+2(r, 0;F1) + S(r, f).(4.1)

Hence from inequality (4.1), we get

(n+m− 1)T (r, f) ≤ T (r, F )−N2(r, 0;F ) +Nk+2(r, 0;F1) + S(r, f).(4.2)

Similarly,

(n+m− 1)T (r, L) ≤ T (r,G)−N2(r, 0;G) +Nk+2(r, 0;L1) + S(r, f).(4.3)

Now we have to consider the following two cases.
Case 4.1. Let H 6≡ 0. In this case we have to consider the following three subcases.
Subcase 4.1.1. Let l = 0. Hence by Lemmas 3.2, 3.3 and 3.7 and inequality (4.2) we have

(n+m− 1)T (r, f) ≤ N2(r, 0;F ) +N2(r, 0;G) + 2N(r,∞;G) + 3N(r,∞;F ) +N∗(r,∞;F,G)

+ 2N(r, 0;F ) +N(r, 0;G)−N2(r, 0;F ) +Nk+2(r, 0;F1) + S(r, f) + S(r, L)

≤ N2(r, 0;F ) +N2(r, 0;G) + 2N(r, 0;F ) +N(r, 0;G)−N2(r, 0;F )

+Nk+2(r, 0;F1) + S(r, f) + S(r, L).

≤ N2(r, 0;F
(k)
1 ) +N2(r, 0;L

(k)
1 ) + 2N(r, 0;F

(k)
1 ) +N(r, 0;L

(k)
1 )−N2(r, 0;F

(k)
1 )
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+Nk+2(r, 0;F1) + S(r, f) + S(r, L).

≤ N2(r, 0;L
(k)
1 ) + 2N(r, 0;F

(k)
1 ) +N(r, 0;L

(k)
1 ) +Nk+2(r, 0;F1)

+ S(r, f) + S(r, L).

≤ Nk+2(r, 0;L1) + 2Nk+1(r, 0;F1) +Nk+1(r, 0;L1) +Nk+2(r, 0;F1)

+ S(r, f) + S(r, L).

≤ (3 + 2k)(m+ 2)T (r, L) + (3k + 4)(m+ 2)T (r, f) + S(r, f) + S(r, L).

Hence

(n+m− 1)T (r, f) ≤ (3 + 2k)(m+ 2)T (r, L) + (3k + 4)(m+ 2)T (r, f) + S(r, f) + S(r, L).(4.4)

Similarly,

(n+m− 1)T (r, L) ≤ (3 + 2k)(m+ 2)T (r, f) + (3k + 4)(m+ 2)T (r, L) + S(r, f) + S(r, L).(4.5)

From inequalities (4.4) and (4.5) we get

(n+m− 1)[T (r, f) + T (r, L)] ≤ (7 + 5k)(m+ 2)[T (r, f) + T (r, L)] + S(r, f) + S(r, L).(4.6)

which is a contradiction from (4.6) as n+m > (7 + 5k)(m+ 2) + 1.
Subcase 4.1.2. Let l = 1. Hence by Lemmas 3.2, 3.3 and 3.6 and inequality (4.2) we have

(n+m− 1)T (r, f) ≤ N2(r, 0;G) +
3

2
N(r,∞;F ) +N(r,∞;G) +N∗(r,∞;F,G) +

1

2
N(r, 0;F )

+Nk+2(r, 0;F1) + S(r, f) + S(r, L).

≤ N2(r, 0;L
(k)
1 ) +

1

2
Nk+1(r, 0;F1) +N(r, 0;L

(k)
1 ) +Nk+2(r, 0;F1)

+ S(r, f) + S(r, L).

≤ (k + 2)(m+ 2)T (r, L) +
1

2
(3k + 5)(m+ 2)T (r, f)

+ S(r, f) + S(r, L).

Hence

(n+m− 1)T (r, f) ≤ (k + 2)(m+ 2)T (r, L) +
1

2
(3k + 5)(m+ 2)T (r, f) + S(r, f) + S(r, L).(4.7)

Similarly

(n+m− 1)T (r, L) ≤ (k + 2)(m+ 2)T (r, f) +
1

2
(3k + 5)(m+ 2)T (r, L) + S(r, f) + S(r, L).(4.8)

From inequalities (4.7) and (4.8) we arrive at a contradiction as (n+m) > 1
2 (5k + 9)(m+ 2) + 1.

Subcase 4.1.3. Let 2 ≤ l < 1. Hence by Lemmas 3.2, 3.3 and 3.8 and inequality (4.2)

(n+m− 1)T (r, L) ≤ N2(r, 0;F ) +N2(r, 0;G) +N(r, F ) +N(r,G) +N∗(r,∞;F,G)

−m(r, 1, F )−NE(r, 1;G| > 3)−N(r, 1;F > G) + S(r, f) + S(r, L)

≤ N2(r, 0;F
(k)
1 ) +N2(r, 0;L

(k)
1 ) + S(r, f) + S(r, L)

≤ (k + 2)(m+ 2)T (r, f) + (k + 2)(m+ 2)T (r, L) + S(r, f) + S(r, L).

(n+m− 1)T (r, L) ≤ (k + 2)(m+ 2)T (r, f) + (k + 2)(m+ 2)T (r, L) + S(r, f) + S(r, L).(4.9)

Similarly

(n+m− 1)T (r, f) ≤ (k + 2)(m+ 2)T (r, L) + (k + 2)(m+ 2)T (r, f) + S(r, f) + S(r, L).(4.10)

From inequalities (4.9) and (4.10) we arrive at a contradiction as l ≥ 2 and (n+m) > (2k + 4)(m+ 2) + 1.
Case 4.2. Let H ≡ 0. Then

H =
(F ′′
F ′
− 2F ′

F − 1

)
−
(G′′
G′
− 2G′

G− 1

)
≡ 0.

Integrating both sides we get

F − 1 =
G− 1

b− c(G− 1)
,(4.11)

where b 6= 0 and c are constants. Now we have to consider the following subcases.
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Subcase 4.2.1. Let c = 0. Then from (4.11) we have

F − 1 =
G− 1

b
.(4.12)

If b 6= 1 then from (4.12)

N(r, 0;F ) = N(r, 1− b;G).(4.13)

By Lemmas 3.2 and 3.9, using Second Fundamental Theorem of Nevanlinna and from inequality (4.3) we
have

(n+m− 1)T (r, L) ≤ T (r,G)−N2(r, 0;G) +Nk+2(r, 0;L1) + S(r, L)

≤ N(r, 0;G) +N(r, 1− b;G) +N(r,∞;G)−N2(r, 0;G)

+Nk+2(r, 0;L1) + S(r, L).

≤ N(r, 0;G) +N(r, 0;F )−N2(r, 0;G) +Nk+2(r, 0;L1) + S(r, L)

≤ N(r, 0;F
(k)
1 ) +N(r, 0;L

(k)
1 ) +Nk+2(r, 0;L1) + S(r, L)

≤ Nk+1(r, 0;F1) +Nk+1(r, 0;L1) +Nk+2(r, 0;L1) + S(r, L)

≤ (2k + 3)(m+ 2)T (r, L) + (k + 1)(m+ 2)T (r, f)

+ S(r, f) + S(r, L).

Hence

(n+m− 1)T (r, L) ≤ (2k + 3)(m+ 2)T (r, L) + (k + 1)(m+ 2)T (r, f) + S(r, f) + S(r, L).(4.14)

Similarly

(n+m− 1)T (r, f) ≤ (2k + 3)(m+ 2)T (r, f) + (k + 1)(m+ 2)T (r, L) + S(r, f) + S(r, L).(4.15)

From the inequalities (4.14) and (4.15) we arrive at a contradiction as n+m > (3k + 4)(m+ 2) + 1.
Hence b = 1 and therefore we get from (4.12)

[fn(f − 1)mf(z + c)](k)≡[Ln(L− 1)mL(z + c)](k).
Subcase 4.2.2. Let c 6= 0 and b = −c.

If c = 1, then from (4.11) we have FG ≡ 1. Hence
[fn(f − 1)mf(z + c)](k)[Ln(L− 1)mL(z + c)](k) = [α(z)]2.

If c 6= 1, then from (4.11) we have,
1

F
=

−cG
(1− c)G− 1

.

Hence N(r, 0;F ) = N(r, 1
1−c ;G).

Now proceeding as in subcase (4.2.1), we arrive at a contradiction. If c = 1, then from (4.11) we have

F ≡ −b
G− b− 1

.(4.16)

Hence by Lemma 3.3 we have from (4.16)
N(r, b+ 1;G) = N(r, F ) = N(r, f) + S(r, L) = S(r, L).

Now proceeding as in subcase (4.2.1), we arrive at a contradiction. If c 6= 1, then from (4.11) we have

F −
(

1− 1

c

)
≡ −b

c2
(
G− b+c

c

) .
Therefore by Lemma 3.3 we have

N

(
r,
b+ c

c
;G

)
= N(r, F ) = N(r, f) + S(r, L) = S(r, L).

Hence proceeding as in subcase (4.2.1) we arrive at a contradiction.
This completes the proof of the Theorem 2.1.

Proof of Theorem 2.2. Since f and L are transcendental meromorphic function and R(z) is a rational function
therefore R(z) is a small function of f and L. Thus, Theorem 2.2 can be proved in a similar way as Theorem
2.1.
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5 Conclusion
We have investigate the value distribution of a L- function and an arbitrary meromorphic function using
the concept of weighted sharing when certain type of difference-differential polynomials fn(f − 1)mf(z + c)
and Ln(L− 1)mL(z + c) share a small and rational function. L- functions can be analytically continued as
meromorphic functions in C and it has only one possible pole at s = 1 in C is the main concept of this paper.
Our results extends earlier results due to Hao and Chen.

6 Open Questions
1. Can the condition for n in Theorem 2.1 and Theorem 2.2 be still reduced?
2. Can the difference polynomials in Theorems 2.1 - 2.2 be replaced by difference polynomials of the form
fnP (f)∆cf by using weakly weighted sharing and truncated weighted sharing?

Acknowledgement. Authors are very much thankful to the editor and refrees for their careful reading and
valuable suggestions which helped to improve the manuscript significantly.
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