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Abstract

It’s remarkable to note that Complex valued Integro-differential and integral type equations are
currently intensifying the attention of appreciable researchers due to their comprehensive applications.
Thus, this study is fully devoted to the application part of the complex valued controlled, double
controlled metric ðC. We introduce an extended version of the Fisher and Banach type contraction
theorem and present some examples to sustain our results. As part of the main theorem’s application,
we address a common solution with uncertainty in two different folds as follows: [I] Applying the fractional
Adams-Bashforth method to the (1.1) FVIdE. [II] Applying it to the integral type equation (1.2) in the
setting of the Extended complex valued metric space.
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1 Introduction
The terms calculus of integral equation and fractional calculus are introduced more than 10 decade back.
These ten decade seems like a really big time but predominantly these topics are extensively gain new
structures and effectively applied in different part of mathematics like fixed point theory, fuzzy theory and
so on. Recently Atangana-Baleanu [1] studied new type of fractional derivative targeting non singular/local
kernel. Subsequently in 2023 Shinde [33] gave complex valued version of existence and common solution
for second order nonlinear boundary value problem using greens function along with another application
of fixed point results for multivalued mapping in setting of CVMS. In 2017, Kumar et al. [19] studied
a fractional non-linear biological model problem and its approximate solutions through Volterra Integral
Equation. In 2019, Kumar [20] studied a class of two variable sequence of functions satisfying Abel’s Integral
equation and the phase shifts. in 2019 [20] H. Kumar given A class of two variables sequence of functions
satisfying Abel’s integral equation and the phase shifts. In literature we can see many generalizations of
Atangana-Baleanu fractional derivative like AB -derivative [13], AB derivative via MHD channel flow [34],
ABRL type [12], we can see more [8,9,11,16,17,18,21,22,26,29,31,32,34,35]. Here we recollecting the definition
of Atangana-Baleanu fractional integral, Let ω ∈ (0, 1] and integral define as,

AB
s Dω

t f(t) =
(1− ω)

ζ(ω)
f(t) +

ω

Ξ(ω)ζ(ω)

∫ t

s

f(h)
(t− h)ω

(t− h)
dh.

where, 0 < t < s ; normalization function ζ(0) = ζ(1) = 1.
Subsequently, by applying fractional Adams Bashforth method to the (1.1) FVIdE in the setting of complex
valued controlled metric we deal with following conditions,

(1.1) ĩ0 = ĩ(0; `);ABC0 Dω
~ ĩ(~; `)

= ℵ(~) + <(~).ĩ(~, `) +

∫ ~

0

f1(~, ξ).χ1(ĩ(ξ, `))dξ +

∫ 1

0

f2(~, ξ)χ2(ĩ(ξ, `))dξ,
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where, ABC
0 Dω

~ ABC type of order ω such that ĩ(~; `) = [i(~; `),i(~; `)]; continuous function f1,f2 :
∇×∇ → R, ℵ : ∇ → R; Lipschitz continuous function χ1, χ2 : ∇ → R; Lz(∇,R) and Cz(∇,R) are space of all
continuous functions and the space of all Lebesgue integrable functions on ∇, ĩ(~; `) ∈ Lz(∇,R)∩Cz(∇,R).
At the end we deal with following Integral type equation,

(1.2) <1(~)−f(~) =

∫ ~

0

χ(~, `)ℵ(`,<1`)d`,

which has two bounded continuous function namely f(~) : [0, 1]→ R and ℵ(~,<1(~)) : [0, 1]× R→ R. The
function χ : [0, 1) × [0, 1) → [0,∞) with χ(~, .) ∈ L1[0, 1] and 0 ≤ ~ ≤ 1. We successfully applied fixed
point solution to above integral type equation. The novel approach has a promising uniqueness of solution
in different fields, for more we can see[10, 11, 19, 22, 23, 24, 25, 26].

2 Preliminaries
Azam, Khan and Fisher [2] studied notion of complex valued metric and given important definition as follows,

Definition 2.1. Consider a partial order - defined on a complex number(C), ~ - ` iff Real part of (~) ≤
Real part of (`) ; Imaginary part of (~) ≤ Imaginary part of (`). It follows, ~ ≤ `

1. Real part (~)<Real part (`) ; Imaginary part (~) < Imaginary part (`).
2. Real part (~) = Real part (`) ; Imaginary part (~) = Imaginary part (`).
3. Real part (~) < Real part (`) ; Imaginary part (~) = Imaginary part (`).
4. Real part (~) = Real part (`) ; Imaginary part (~) < Imaginary part (`).

Definition 2.2. Lets define the function ðC : ∇ × ∇ → C, where non empty set ∇; the function ψ, ζ :
∇×∇ → [1,∞) and C be the set of complex numbers. We define following condition for ∀ ~, `, µ ∈ ∇ ,
S1 : ~ = ` if and only if ðC(~, `) = 0.
S2 : ðC(~, `) = ðC(`, ~).
S3 : Controlled triangle inequality- ðC(~, `) - ψ(~, µ)ðC(~, µ) + ψ(µ, `)ðC(µ, `).
S4 : Extended triangle inequality- ðC(~, `) - ψ(~, `)[ðC(~, µ) + ðC(µ, `)].
S5 : Double controlled triangle inequality- ðC(~, `) - ψ(~, µ)ðC(~, µ) + ζ(µ, `)ðC(µ, `).

Definition 2.3. If ðC satisfied S1, S2 and S4, then ðC is called complex valued extended metric and the
pair (∇,ðC) called complex valued extended metric space.

Definition 2.4. If ðC satisfied S1, S2 and S3, then ðC is called complex valued controlled metric and the
pair (∇,ðC) called complex valued controlled metric space.

Definition 2.5. If ðC satisfied S1, S2 and S5, then ðC is called complex valued double Controlled metric
and the pair (∇,ðC) called complex valued double Controlled metric space.

Example 2.1. Lets define the function ðC : ∇×∇ → C and the set ∇ = {2, 3, 1} which has, ðC(2, 3) = i;
ðC(1, 2) = 2 + 4i; ðC(3, 2) = i; ðC(2, 1) = 2 + 4i ðC(1, 1) = 0; ðC(1, 3) = 1− i; ðC(2, 2) = 0; ðC(3, 1) = 1− i;
ðC(3, 3) = 0. Again define ζ, ψ : ∇×∇ → [1,∞) as
ψ(2, 3) = ψ(3, 2) = 8

7 , ψ(1, 2) = ψ(2, 1) = 1, ψ(1, 3) = ψ(3, 1) = 3
2 ,

ζ(2, 3) = ζ(3, 2) = 9
2 , ζ(1, 2) = ζ(2, 1) = 7

6 , ζ(3, 1) = ζ(1, 3) = 1.

Proposition 2.1. In above example we easily verify ðC is double controlled metric type but ðC is neither a
complex valued extended metric nor a complex valued controlled metric.

Lemma 2.1. Suppose (∇,ðC) be a ðC metric space. Then the sequence {~n} in ∇ is a cauchy sequence if
and only if | ðC(~n, ~n+s) |→ 0 as n→∞ where s ∈ N.

Lemma 2.2. Suppose (∇,ðC) be a ðC metric space. Then the sequence {~n} in ∇ Converges to ~ if and
only if | ðC(~n, ~) |→ 0 as n→∞.

Definition 2.6. Assume {~n} be a sequence in a ðC metric space (∇,ðC) and ~ ∈ ∇, then (∇,ðC) is said
to be a complete ðC metric space if every Cauchy sequence is convergent in (∇,ðC).

Definition 2.7. Suppose {~n} be a sequence in a ðC metric space (∇,ðC) and ~ ∈ ∇, then ~ is a limit point

of {~n} if for every ε ∈ C there exist n0 ∈ N such that ðC({~n}, n) ≺ ε,∀n � n0 that is limn→∞, ~n = n.
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Definition 2.8. Suppose {~n} be a sequence in a ðC metric space (∇,ðC) and ~ ∈ ∇, then {~n} is a cauchy
sequence if for any ε ∈ C there exist n0 ∈ N such that ðC(~n, ~n+s) ≺ ε, ∀n � n0 and s ∈ N .

Remark 2.1 ([1]). The left sided AB fractional integral of order ω ∈ (0, 1] for a function ĩ is defined as

ABßω0 ĩ(~) =
1

ζ(ω)
[(1− ω)ĩ(~) +

ω

Ξ(ω)

∫ ~

0

(~− ξ)ω

(~− ξ)
ĩ(ξ)dξ].

where, we have continuous function ĩ(~) on the interval (0, b).

Remark 2.2 ([7]). Consider the map ψ : R→ ∇ satisfying following properties,
• The closure of Supp(ψ) is compact.
• ψ- normal, Upper semi-continuous and convex.

Remark 2.3 ([7]). The parametric interval of ψ̃ is given by,

ψ̃ = [ψ(β), ψ(β)] and 0 ≤ β ≤ 1

• With respect to β, ψ(β) is a left continuous and non-decreasing,

• ∀ β ∈ ∇, we have ψ(β) ≤ ψ(β),

• With respect to β, ψ(β) is a right continuous and non-decreasing.

Lemma 2.3. Let (∇,ðC) be a complex valued controlled metric space. If the functional ðC : ∇×∇ → C is
continuous then limit of every convergent sequence is unique.

Lemma 2.4. Let (∇,ðC) be a complex valued controlled metric space. If a sequence {~n} in ∇ is Cauchy
sequence, such that ~n 6= ~m when m 6= n. Then we say {~n} converges at most one point.

In this article, we present a new fixed point result under extended complex valued metric space with
suitable examples, results and finally two folds of the application part.

3 Main Results
Moving towards the following Theorem and its hypothesis, we generalize some ideas via controlled, double
controlled complex valued metric space.

Theorem 3.1. Consider (∇,ðC) be a complete ðC metric space. Suppose ℵ = η
(<[−µ)

< 1 and

(3.1)
1

ℵ
> sup

1≤m
lim
i→∞

ψ(~i+1, ~i+2)

ψ(~i, ~i+1)
ζ(~i+1, ~m).

For every ~, ` ∈ ∇ & 0 ≺ ðC(~, `), we use µ, λ, η are non negative real numbers with µ+ λ+ η < 1, 1 ≤ <, [
we choose ~n = ĩ2

n~0 ∈ ∇ for all ~0 ∈ ∇ then the map ĩ1, ĩ2 : ∇ → ∇ satisfying,

(3.2) ðC(ĩ1~, ĩ2`).<[ - µ{ðC(~, ĩ1~)ðC(`, ĩ2`)

1 + ðC(~, `)
}+ λ{ðC(ĩ1~, `).ðC(ĩ2~, ~)

1 + ðC(~, `)
}+ η{ðC(~, `)},

afterward Assume that, limn→∞ ζ(~n, ~) , limn→∞ ψ(~, ~n) both are exist and finite, then ĩ1 and ĩ2 admits
unique common fixed point.

Proof. Suppose, ~0 ∈ ∇ be any arbitrary point. Let the sequence ~n = ĩ2
n~0 ∈ ∇ which satisfies hypothesis

of theorem and we define it as,

(3.3) ĩ1~2n = ~2n+1 ; ĩ2~2n+1 = ~2n+2, n = 0, 1, 2, ...

ðC(~2n+1, ~2n+2).<[ = ðC(ĩ1~2n, ĩ2~2n+1).<[ -

µ{ðC(~2n, ĩ1~2n)ðC(~2n+1, ĩ2~2n+1)

1 + {ðC(~2n, ~2n+1)}
}+ λ{ðC(ĩ1~2n, ~2n+1).ðC(ĩ2~2n, ~2n)

1 + {ðC(~2n, ~2n+1)}
}+ η{ðC(~2n, ~2n+1)}

ðC(~2n+1, ~2n+2)<[ - µ{ðC(~2n, ~2n+1)ðC(~2n+1, ~2n+2)

1 + {ðC(~2n, ~2n+1)}
}+λ{ðC(~2n+1, ~2n+1).ðC(~2n+1, ~2n)

1 + {ðC(~2n, ~2n+1)}
}+η{ðC(~2n, ~2n+1)},

ðC(~2n+1, ~2n+2).<[ - µ{ðC(~2n+1, ~2n+2)}+ η{ðC(~2n, ~2n+1)},

ðC(~2n+1, ~2n+2).(<[ − µ) - η{ðC(~2n, ~2n+1)},
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ðC(~2n+1, ~2n+2) -
η

(<[ − µ)
{ðC(~2n, ~2n+1)},

ðC(~2n+1, ~2n+2) - ℵ.{ðC(~2n, ~2n+1)}.

Similarly, we get

(3.4) ðC(~2n+2, ~2n+3) -
η

(<[ − µ)
{ðC(~2n+1, ~2n+2)}

ðC(~2n+1, ~2n+2) - ℵ{ðC(~2n, ~2n+1)} where, ℵ =
η

(<[ − µ)
< 1

| ðC(~n, ~n+1) |- ℵ | {ðC(~n−1, ~n)} |,

| ðC(~n, ~n+1) |- ℵ2 | {ðC(~n−2, ~n−1)} |,

| ðC(~n, ~n+1) |- ℵn | {ðC(~0, ~1)} | .

For every n < m, where m,n ∈ N
(3.5) | ðC(~n, ~m) |- ψ(~n, ~n+1) | ðC(~n, ~n+1) | +ζ(~n+1, ~m) | ðC(~n+1, ~m) |
- ψ(~n, ~n+1) | ðC(~n, ~n+1) | +ζ(~n+1, ~m)[ψ(~n+1, ~n+2) | ðC(~n+1, ~n+2) | +ζ(~n+2, ~m) | ðC(~n+2, ~m) |]

- ψ(~n, ~n+1) | ðC(~n, ~n+1) | +ζ(~n+1, ~m)ψ(~n+1, ~n+2) | ðC(~n+1, ~n+2) | +ζ(~n+1, ~m)ζ(~n+2, ~m) | ðC(~n+2, ~m) |

- ψ(~n, ~n+1) | ðC(~n, ~n+1) | +
m−2∑
i=n+1

(

i∏
j=n+1

ζ(~j , ~m))ψ(~i, ~i+1) | ðC(~i, ~i+1) | +
m−1∏
k=n+1

ζ(~k, ~m) | ðC(~m−1, ~m) |

- ψ(~n, ~n+1).ℵn | {ðC(~0, ~1)} | +
m−2∑
i=n+1

(

i∏
j=n+1

ζ(~j , ~m))ψ(~i, ~i+1).ℵi | {ðC(~0, ~1)} |

+

m−1∏
i=n+1

ζ(~i, ~m).ℵm−1 | {ðC(~0, ~1)} |

- ψ(~n, ~n+1)ℵn | {ðC(~0, ~1)} | +
m−2∑
i=n+1

(

i∏
j=n+1

ζ(~j , ~m))ψ(~i, ~i+1)ℵi | {ðC(~0, ~1)} | +

m−1∏
i=n+1

ζ(~i, ~m)ℵm−1ψ(~m−1, ~m) | {ðC(~0, ~1)} |

- ψ(~n, ~n+1).ℵn | {ðC(~0, ~1)} | +
m−1∑
i=n+1

(

i∏
j=n+1

ζ(~j , ~m))ψ(~i, ~i+1).ℵi | {ðC(~0, ~1)} |

- ψ(~n, ~n+1).ℵn | {ðC(~0, ~1)} | +
m−1∑
i=n+1

(

i∏
j=0

ζ(~j , ~m))ψ(~i, ~i+1).ℵi | {ðC(~0, ~1)} | .

Hence we write,
| ðC(~n, ~m) |-| ðC(~0, ~1) | [ℵn.ψ(~n, ~n+1) + (fm−1 − fm)],

where, fι =
∑ι
i=0(

∏i
j=0 ζ(~j , ~m))ψ(~i, ~i+1)ℵi.

As we have (3.1) and using ratio test we get limit of {fn} exists, so it is Cauchy. When we apply ratio test
to following term and letting m,n→∞ in (3.6),

(3.6) ωi = (

i∏
j=0

ζ(~j , ~m))ψ(~i, ~i+1), and lim
m,n→∞

| ðC(~n, ~m) |= 0,

which gives sequence {~n} is Cauchy. Since (∇,ðC) is Complete then ∃z ∈ ∇ such that,

(3.7) lim
m,n→∞

| ðC(~n,z) |= 0.
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Now, by triangle inequality,

(3.8) | ðC(z, ~n+1) |- ψ(z, ~n) | ðC(z, ~n) | +ζ(~n, ~n+1) | ðC(~n, ~n+1) | .
By Using (3.6) and (3.8) we finally get,

(3.9) lim
n→∞

| ðC(z, ~n+1) |= 0.

Now we claim z = ĩ1z,

(3.10) | ðC(z, ĩ1z) |- ψ(z, ~n+2) | ðC(z, ~n+2) | +ζ(~n+2, ĩ1z) | ðC(~n+2, ĩ1z) |
| ðC(z, ĩ1z) |- ψ(z, ~n+2) | ðC(z, ~n+2) | +ζ(~n+2, ĩ1z) | ðC(ĩ2~n+1, ĩ1z) |

| ðC(z, ĩ1z) |- ψ(z, ~n+2) | ðC(z, ~n+2) | +ζ(~n+2, ĩ1z).<[ | ðC(ĩ1z, ĩ2~n+1) |

- ψ(z, ~n+2) | ðC(z, ~n+2) | +ζ(~n+2, ĩ1z)µ{ðC(z, ĩ1z)ðC(~n+1, ĩ2~n+1)

1 + ðC(z, ~n+1)
}+

λ{ðC(ĩ1z, ~n+1).ðC(ĩ2z,z)

1 + ðC(z, ~n+1)
}+ η{ðC(z, ~n+1)}.

We write this as,

- ψ(z, ~n+2) | ðC(z, ~n+2) | +ζ(~n+2, ĩ1z)µ{ðC(z, ĩ1z)ðC(~n+1, ~n+2)

1 + ðC(z, ~n+1)
}+

λ{ðC(ĩ1z, ~n+1)ðC(ĩ2z,z)

1 + ðC(z, ~n+1)
}+ η{ðC(z, ~n+1)}.

Using (3.6),(3.7) and (3.8), we get
| ðC(z, ĩ1z) |= 0.

Hence, ĩ1 admits fixed point z. Subsequently we prove ĩ2 admits fixed point as z. Now finally we have to
work on Uniqueness property, that is ĩ1 and ĩ2 admits unique common fixed point.
On Contrary assume that z and z∗ are two common fixed points of ĩ1 and ĩ2 & z 6= z∗.
(3.11) ðC(z,z∗).<[ = ðC(ĩ1z, ĩ2z∗).<[

- µ{ðC(z, ĩ1z)ðC(z∗, ĩ2z∗)
1 + ðC(z,z∗)

}+ λ{ðC(ĩ1z,z∗).ðC(ĩ2z,z)

1 + ðC(z,z∗)
}+ η{ðC(z,z∗)}

ðC(z,z∗).<[ - η{ðC(z,z∗)} which impies ðC(z,z∗).(<[ − η) - 0.

Hence we get, ðC(z,z∗) = 0 which is the contradiction to our assumption. Thus z = z∗, ĩ1 and ĩ2 admits
unique common fixed point.

If we assume ĩ1 & ĩ2 are equal and which is equal to ĩ along with we include map ĩ : ∇ → ∇ be a
continuous mapping; <, [ = 1 & λ, µ = 0 then Theorem 3.1 reduces to following result,

Theorem 3.2. Consider (∇,ðC) be a Complete ðC metric space. Suppose

(3.12)
1

η
> sup

1≤m
lim
i→∞

ψ(~i+1, ~i+2)

ψ(~i, ~i+1)
ζ(~i+1, ~m).

For every ~, ` ∈ ∇ & 0 ≺ ðC(~, `), we use η non negative real numbers with 0 < η < 1, we choose
~n = ĩn~0 ∈ ∇ for all ~0 ∈ ∇ then the map ĩ : ∇ → ∇ be a continuous mapping such that,

(3.13) ðC(ĩ~, ĩ`) - η{ðC(~, `)},
afterward assume that, limn→∞ ζ(~n, ~) , limn→∞ ψ(~, ~n) both exist and finite, then ĩ admits unique
common fixed point.
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Proof. Consider ~n = {ĩn~0} and by Using inequalities (3.13),

ðC(~n, ~n+1) - ηðC(~n−1, ~n) - ... - ηðC(~0, ~1),∀n ≥ 0

for every m > n, where m,n ∈ N
ðC(~n, ~m) - ψ(~n, ~n+1)ðC(~n, ~n+1) + ψ(~n+1, ~m)ðC(~n+1, ~m)

- ψ(~n, ~n+1)ðC(~n, ~n+1)+ψ(~n+1, ~m)ψ(~n+1, ~n+2)ðC(~n+1, ~n+2)+ψ(~n+1, ~m)ψ(~n+2, ~m)ðC(~n+2, ~m)

- ψ(~n, ~n+1)ðC(~n, ~n+1) + ψ(~n+1, ~m)ψ(~n+1, ~n+2)ðC(~n+1, ~n+2) + ψ(~n+1, ~m)

ψ(~n+2, ~m)ψ(~n+3, ~m)ψ(~n+3, ~m) - ...

- ψ(~n, ~n+1)ηnðC(~0, ~1) +

m−2∑
i=n+1

i∏
j=n+1

ψ(~j , ~m)ψ(~i, ~n+1)ηiðC(~0, ~1) +

m−1∏
k=n+1

ψ(~k, ~m)ηm−1ðC(~0, ~1)

If we follow same steps given in main Theorem 3.1, we get

- ψ(~n, ~n+1)ηnðC(~0, ~1) +

m−1∑
i=n+1

i∏
j=0

ζ(~j , ~m)ψ(~i, ~i+1)ηiðC(~0, ~1)

Let,

fι =

ι∑
i=0

ι∏
j=0

ψ(~j , ~m)ψ(~i, ~i+1)ηi.

(3.14) ðC(~n, ~m) - ðC(~0, ~1)[ηnψ(~n, ~n+1) + (fm−1,fn)].

By using ratio test and (3.12), limm,n→∞fn exists which implies sequence {fn} is Cauchy. Applying
limm,n→∞ to (3.14), we get

(3.15) lim
m,n→∞

ðC(~n, ~m) = 0.

As we know {~n} is Cauchy in complete ðC -metric space, then we say that {~n} is converges to a point
~∗ ∈ ∇. Now next part ~∗ is fixed point of ĩ. We use definition of continuity of ĩ,

~∗ = lim
n→∞

~n+1 = lim
n→∞

ĩ~n = ĩ( lim
n→∞

~n) = ĩ~∗

and finally remaining part is uniqueness of fixed point. On contrary we assume ĩ has two fixed point say z
and z∗,

ðC(z,z∗) = ðC(ĩz, ĩz∗) - ψðC(z,z∗),
which holds only when ðC(z,z∗) = 0 and Hence it finally gives uniqueness of fixed point.

If we assume ĩ1 & ĩ2 are equal and which is equal to ĩ along with we avoid map ĩ : ∇ → ∇ is continuous;
<, [ = 1 & λ, µ = 0 then Theorem 3.1 reduces to following result:

Theorem 3.3. Consider (∇,ðC) be a complete ðC metric space. Suppose

(3.16)
1

η
> sup

1≤m
lim
i→∞

ψ(~i+1, ~i+2)

ψ(~i, ~i+1)
ζ(~i+1, ~m).

For every ~, ` ∈ ∇ & 0 ≺ ðC(~, `), we use η non negative real numbers with 0 < η < 1, we choose
~n = ĩn~0 ∈ ∇ for all ~0 ∈ ∇ then the map ĩ : ∇ → ∇ be a mapping such that,

(3.17) ðC(ĩ~, ĩ`) - η{ðC(~, `)},
afterward assume that, limn→∞ ζ(~n, ~) , limn→∞ ψ(~, ~n) both exist and finite, then ĩ admits unique
common fixed point.

Proof. If we follow similar steps like Theorem 3.2 we can easily get the Cauchy sequence {~n} under ðC-
metric space (∇,ðC). Subsequently we say {~n} converges to ~∗ ∈ ∇. We shall prove ĩ admits ~∗ as a fixed
point, we consider the triangle inequality of complex valued controlled metric space,

ðC(~∗, ~n+1) - ψ(~∗, ~n)ðC(~∗, ~n) + ψ(~n, ~n+1)ðC(~n, ~n+1).

with the help of Statement (b) of Theorem 3.3, we write

(3.18) lim
n→∞

ðC(~∗, ~n+1) = 0.

Again by (3.17) and triangle inequality, we get

ðC(~∗, ĩ~∗) - ψ(~∗, ~n+1)ðC(~∗, ~n+1) + ψ(~n+1, ĩ~∗)ðC(~n+1, ĩ~∗)
- ψ(~∗, ~n+1)ðC(~∗, ~n+1) + ηψ(~n+1, ĩ~∗)ðC(~n, ĩ~∗).

Letting limn→∞ and Statement of Theorem 3.3, we get ðC(~∗, ĩ~∗) = 0, Hence proved.
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We use following example to verify above results:

Example 3.1. Let ðC : ∇×∇ → C be a symmetric metric. Suppose ∇ = {1, 2, 0} and ðC(1, 2) = ðC(0, 1) =
1 + i & ðC(0, 2) = 4 + 4i again function ψ : ∇×∇ → [1,∞) is symmetric and

ψ(1, 1) = 4
3 ,ψ(2, 2) = 6

5 ,ψ(1, 2) = 5
4 .

ψ(0, 2) = 4
3 ,ψ(0, 1) = 3

2 ,ψ(0, 0) = 2.

It’s easy to verify ðC is a metric space, Suppose self map ĩ follows ĩ(2) = ĩ(1) = ĩ(0) = 0 & use η = 2
5 and

we clearly see that (3.17) holds for ~0 ∈ ∇ then condition (3.16) is satisfied. We follow the following cases
to verify hypothesis of Theorem 3.3,
Case I. If ~ = 1, ` = 2 then,
ðC(ĩ~, ĩ`) = ðC(ĩ1, ĩ2) = ðC(2, 2) = 0 - 2

5 (1 + i) = ηðC(1, 2) = ηðC(~, `).
Case II. If ~ = 0, ` = 1 then,
ðC(ĩ~, ĩ`) = ðC(ĩ0, ĩ1) = ðC(2, 2) = 0 - 2

5 (1 + i) = ηðC(0, 1) = ηðC(~, `).
Case III.If ~ = 0, ` = 2 then,
ðC(ĩ~, ĩ`) = ðC(ĩ0, ĩ2) = ðC(2, 2) = 0 - 2

5 (4 + 4i) = ηðC(0, 2) = ηðC(~, `)
Case IV. If ~ = 0, ` = 0 ; ~ = 1, ` = 1 ; ~ = 2, ` = 2 then, the results hold good. Then we say that ĩ
admits a unique fixed point as ~∗ = 0.

If we assume ĩ1 and ĩ2 are equal and which is equal to ĩ; <, [ = 1 & λ = 0 then Theorem 3.1 reduces
to following result,

Theorem 3.4. Consider (∇,ðC) be a Complete ðC metric space. Suppose ℵ = η
(1−µ) < 1 and

(3.19)
1

ℵ
> sup

1≤m
lim
i→∞

ψ(~i+1, ~i+2)

ψ(~i, ~i+1)
ζ(~i+1, ~m).

For every ~, ` ∈ ∇ & 0 ≺ ðC(~, `), we use µ, η are non negative real numbers with 0 ≤ η < 1, 0 ≤ µ < 1 we
choose ~n = ĩn~0 ∈ ∇ for all ~0 ∈ ∇ then the map ĩ : ∇ → ∇ be a Continuous map satisfying,

(3.20) ðC(ĩ~, ĩ`) - µ{ðC(~, ĩ~)ðC(`, ĩ`)
1 + ðC(~, `)

}+ η{ðC(~, `)}

afterward Assume that, limn→∞ ζ(~n, ~) , limn→∞ ψ(~, ~n) both are exist and finite, then ĩ admits unique
common fixed point.

Proof. The proof of the above result is similar to Theorem 3.1 therefore we omit it.

Proposition 3.1. Above results gives generalization of [10] D.Lateef rational functions result, Fisher type,
under Complex valued double controlled metric space [11].

Suppose that ĩ1 & ĩ2 are equal and which is equal to ĩ along with we map ĩ : ∇ → ∇ is not continuous;
<, [ = 1 & λ = 0 then Theorem 3.1 reduces to following result,

Theorem 3.5. Consider (∇,ðC) be a Complete ðC metric space. Suppose ℵ = η
(1−µ) < 1 and

(3.21)
1

ℵ
> sup

1≤m
lim
i→∞

ψ(~i+1, ~i+2)

ψ(~i, ~i+1)
ζ(~i+1, ~m).

For every ~, ` ∈ ∇ and 0 ≺ ðC(~, `), we use µ, η are non negative real numbers with 0 ≤ η < 1, 0 ≤ µ < 1
we choose ~n = ĩn~0 ∈ ∇ for all ~0 ∈ ∇ then the map ĩ : ∇ → ∇ be a mapping such that,

(3.22) ðC(ĩ~, ĩ`) - µ{ðC(~, ĩ~)ðC(`, ĩ`)
1 + ðC(~, `)

}+ η{ðC(~, `)}.

afterward assume that, limn→∞ ζ(~n, ~) , limn→∞ ψ(~, ~n) both are exist and finite, then ĩ admits unique
common fixed point.

Proof. If we follow similar steps like Theorem 3.1 we can easily get the Cauchy sequence {~n} under ðC-
metric space (∇,ðC). Subsequently we say {~n} converges to ~∗ ∈ ∇. We shall prove ĩ admits ~∗ as a fixed
point. Lets consider the triangle inequality of complex valued controlled metric space,

ðC(~∗, ~n+1) - ψ(~∗, ~n)ðC(~∗, ~n) + ψ(~n, ~n+1)ðC(~n, ~n+1).
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with the help of Statement of Theorem 3.5, we write

(3.23) lim
n→∞

ðC(~∗, ~n+1) = 0.

Again by inequalities (3.22) and triangle inequality, we get

ðC(~∗, ĩ~∗) - ψ(~∗, ~n+1)ðC(~∗, ~n+1) + ψ(~n+1, ĩ~∗)ðC(~n+1, ĩ~∗)

- ψ(~∗, ~n+1)ðC(~∗, ~n+1) + ηψ(~n+1, ĩ~∗)µ{
ðC(~n, ĩ~n)ðC(~∗, ĩ~∗)

1 + ðC(~n, ~∗)
}+ ηðC(~n, ~∗)

- ψ(~∗, ~n+1)ðC(~∗, ~n+1) + ηψ(~n+1, ĩ~∗)µ{
ðC(~n, ~n+1)ðC(~∗, ĩ~∗)

1 + ðC(~n, ~∗)
}+ ηðC(~n, ~∗).

Letting limn→∞ and Statement of Theorem 3.5, we get ðC(~∗, ĩ~∗) = 0, Hence proved.

Lets verify above result through the following example.

Example 3.2. Let ðC : ∇×∇ → C be a symmetric metric. Suppose ∇ = {1, 2, 0} and ðC(1, 2) = ðC(0, 1) =
1 + i & ðC(0, 2) = 4 + 4i again function ψ : ∇×∇ → [1,∞) is symmetric and

ψ(1, 1) = 7
3 ,ψ(2, 2) = 9

5 ,ψ(1, 2) = 2; ψ(0, 2) = 7
3 ,ψ(0, 1) = 3,ψ(0, 0) = 5

It’s easy to verify ðC is a metric space, Suppose self map ĩ follows ĩ(2) = ĩ(1) = ĩ(0) = 1 & use µ, η = 2
5

and we clearly see that (3.20) holds for ~0 ∈ ∇ then condition (3.19) is satisfied. We follow the following
cases to verify hypothesis of Theorem 3.5,
Case I.) If ~ = 1, ` = 2 then,

ðC(ĩ~, ĩ`) = 0 - µ{ðC(~,ĩ~)ðC(`,ĩ`)
1+ðC(~,`) }+ η{ðC(~, `)}.

Case II. If ~ = 0, ` = 1 then,

ðC(ĩ~, ĩ`) = 0 - µ{ðC(~,ĩ~)ðC(`,ĩ`)
1+ðC(~,`) }+ η{ðC(~, `)}.

Case III.If ~ = 0, ` = 2 then,

ðC(ĩ~, ĩ`) = 0 - µ{ðC(~,ĩ~)ðC(`,ĩ`)
1+ðC(~,`) }+ η{ðC(~, `)}.

Case IV. If ~ = 0, ` = 0 ; ~ = 1, ` = 1 ; ~ = 2, ` = 2 then ðC(ĩ~, ĩ`) = 0, results hold good. Then we say
that ĩ admits a unique fixed point as ~∗ = 1.

4 Application of the Main theorem
We divide application part of main Theorem in to two following folds,
4.1 Application Part I
In this part we would like to introduce the notion of Existence and unique fixed point solution in the context
of fractional FV IdE. By applying fractional Adams Bashforth method to the (1.1) FV IdE,

ĩ0 = ĩ(0; `) and ABC
0 Dω

~ ĩ(~; `) = ℵ(~)+<(~).ĩ(~, `)+

∫ ~

0

f1(~, ξ).χ1(ĩ(ξ, `))dξ+

∫ 1

0

f2(~, ξ)χ2(ĩ(ξ, `))dξ

in the setting of complex valued controlled metric space we prove following application part.
4.1.1 Application to fractional Fredholm Volterra integro differential equation.
We consider the following hypothesis,

1. < and ℵ both function are continuous,
2.

| ð(ĩ1(~; `), ĩ2(~; `)) | .α1 ≥| (ð(χ1(ĩ1(~; `))), (χ1(ĩ2(~; `)))) |,∀ĩ1, ĩ2 ∈ Cz(∇), α1, α2 > 0,

(4.1) | ð(ĩ1(~; `), ĩ2(~; `)) | .α2 ≥| (ð(χ2(ĩ1(~; `))), (χ2(ĩ2(~; `)))) |,∀ĩ1, ĩ2 ∈ Cz(∇), α1, α2 > 0.

3. For the function f∗1 and f∗2,

(4.2) f∗1 <∞⇒ f∗1 = sup
~∈∇

∫ ~

0

| f1(~, ξ) | dξ and f∗2 <∞⇒ f∗2 = sup
~∈∇

∫ ~

0

| f2(~, ξ) | dξ,

Cz(∇,R) be the space of all continuous functions i : ∇ → R which has ‖i‖∞ = max{| i(ρ) |: ∀ρ ∈ ∇} then
(Cz(∇,R), ‖.‖∞) is banach space.
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Theorem 4.1. Suppose (4.1),(4.2) and (1) are satisfied. If

(4.3) Ψ1 = [
ζω.[Ξ(ω + 1).(1− ω) + ω]

ζ2(ω).Ξ(ω + 1)
]‖<‖∞<1.

Then above problem (1.1) FVIdE admits at least one solution ĩ(~, `).

Before starting our proof we go through following result;

(4.4) 0 < ω ≤ 1 and ĩ(~, `)− ĩ0 =
1

ζ(ω)
[(1− ω)ℵ̃(~, `) +

ω

Ξ(ω)

∫ ~

0

(~− ξ)ω

(~− ξ)
ℵ̃(ξ, `)dξ],

which is the solution of, ĩ0 = ĩ(0; `) and ℵ̃(~, `) = ABC
0 Dω

~ ĩ(~; `). Applying the operator (AB0 Bω~ ) to above

equation, (AB0 Bω~ ) ℵ̃(~, `) = (AB0 Bω~ ) ABC0 Dω
~ ĩ(~; `). Hence we write (4.4) as,

ĩ(~, `)− ĩ(0; `) =
1

ζ(ω)
[(1− ω)ℵ̃(~, `) +

ω

Ξ(ω)

∫ ~

0

(~− ξ)ω

(~− ξ)
ℵ̃(ξ, `)dξ].

Proof. As we know that,

(4.5) ĩ(~, `)− ĩ(0; `) =
1

ζ(ω)
[(1− ω)ℵ̃(~, `) +

ω

Ξ(ω)

∫ ~

0

(~− ξ)ω

(~− ξ)
ℵ̃(ξ, `)dξ].

We write main equation (1.1) as,

ℵ̃(~, `)− ℵ(~) = <(~).ĩ(~, `) +

∫ ~

0

f1(~, ξ).χ1(ĩ(ξ, `))dξ +

∫ 1

0

f2(~, ξ).χ2(ĩ(ξ, `))dξ.

Similarly, we write

ℵ̃(ξ, `)− ℵ(ξ) = <(ξ).ĩ(ξ, `) +

∫ ξ

0

f1(ξ,z).χ1(ĩ(z, `))dz+

∫ 1

0

f2(ξ,z).χ2(ĩ(z, `))dz.

Applying above two equations in (4.5), we get

ĩ(~, `)− ĩ(0; `) =
(1− ω)

ζ(ω)
[ℵ(~) + <(~).ĩ(~, `) +

∫ ~

0

f1(~, ξ).χ1(ĩ(ξ, `))dξ +

∫ 1

0

f2(~, ξ)χ2(ĩ(ξ, `))dξ]

+
ω

Ξ(ω)ζ(ω)

∫ ~

0

(~− ξ)ω

(~− ξ)
[ℵ(ξ) + <(ξ)ĩ(ξ, `) +

∫ ξ

0

f1(ξ,z)χ1(ĩ(z, `))dz+

∫ 1

0

f2(ξ,z)χ2(ĩ(z, `))dz]dξ.

Now lets use operator Υ in above equation,

Υĩ(~, `)− ĩ(0; `) =
(1− ω)

ζ(ω)
[ℵ(~) + <(~).ĩ(~, `) +

∫ ~

0

f1(~, ξ).χ1(ĩ(ξ, `))dξ +

∫ 1

0

f2(~, ξ)χ2(ĩ(ξ, `))dξ]

+
ω

Ξ(ω)ζ(ω)

∫ ~

0

(~− ξ)ω

(~− ξ)
[ℵ(ξ) + <(ξ).ĩ(ξ, `) +

∫ ξ

0

f1(ξ,z)χ1(ĩ(z, `))dz+

∫ 1

0

f2(ξ,z)χ2(ĩ(z, `))dz]dξ.

Here we claim, operator Υ admits fixed point and we defined it as,

Υ : Lz(∇,R) ∩ Cz(∇,R)→ Lz(∇,R) ∩ Cz(∇,R)

So, we divide our proof into following folds, Firstly, we show χ1, χ2 continuous which finally gives Υ is
continuous. Suppose {ĩn} be a sequence such that ĩn → ĩ in C(∇,Rz). Then ~ ∈ ∇ we get,

| ð(Υĩn(~, `),Υĩ(~, `)) |≤ ĩn(0; `) +
(1− ω)

ζ(ω)
[ℵ(~) +<(~)ĩn(~, `) +

∫ ~

0

f1(~, ξ)χ1(ĩn(ξ, `))dξ+

∫ 1

0

f2(~, ξ)

χ2(ĩn(ξ, `))dξ] +
ω

Ξ(ω)ζ(ω)

∫ ~

0

(~− ξ)ω

(~− ξ)
[ℵ(ξ) + <(ξ)ĩn(ξ, `) +

∫ ξ

0

f1(ξ,z)χ1(ĩn(z, `))dz+

∫ 1

0

f2(ξ,z)

χ2(ĩn(z, `))dz]dξ−[ĩ(0; `)+
(1− ω)

ζ(ω)
[ℵ(~)+<(~)ĩ(~, `)+

∫ ~

0

f1(~, ξ)χ1(ĩ(ξ, `))dξ+

∫ 1

0

f2(~, ξ)χ2(ĩ(ξ, `))dξ]

+
ω

Ξ(ω)ζ(ω)

∫ ~

0

(~− ξ)ω

(~− ξ)
[ℵ(ξ) + <(ξ)ĩ(ξ, `) +

∫ ξ

0

f1(ξ,z)χ1(ĩ(z, `))dz+

∫ 1

0

f2(ξ,z)χ2(ĩ(z, `))dz]dξ].
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≤ (1− ω)

ζ(ω)
[| <(~) || ĩn(~, `)−ĩ(~, `) | +

∫ ~

0

| f1(~, ξ) || χ1(ĩn(ξ, `))−χ1(ĩ(ξ, `)) | dξ+
∫ 1

0

| f2(ξ,z) || χ2(ĩn(z, `))−χ2

(ĩ(z, `)) | dz]+
ω

Ξ(ω)ζ(ω)

∫ ~

0

(~− ξ)ω

(~− ξ)
[| <(ξ) || ĩn(ξ, `)−ĩ(ξ, `) | +

∫ ξ

0

| f1(ξ,z) || χ1(ĩn(z, `))−χ1(ĩ(z, `)) | dz]dξ

Apply supremum then,

‖ð(Υĩn(~, `)−Υĩ(~, `))‖∞ ≤
(1− ω)

ζ(ω)
[‖ℵ‖∞+‖ĩn− ĩ‖∞+f∗1‖χ1(ĩn)−χ1(ĩ)‖∞+f∗2‖χ2(ĩn)−χ2(ĩ)‖∞]

+
ω~ω

Ξ(ω + 1)ζ(ω)
[‖ℵ‖∞ + ‖ĩn − ĩ‖∞ + f∗1‖χ1(ĩn)− χ1(ĩ)‖∞ + f∗2‖χ2(ĩn)− χ2(ĩ)‖∞].

≤ (1− ω)

ζ(ω)
+

ω~ω

Ξ(ω + 1)ζ(ω)
[‖ℵ‖∞ + ‖ĩn − ĩ‖∞ + f∗1‖χ1(ĩn)− χ1(ĩ)‖∞ + f∗2‖χ2(ĩn)− χ2(ĩ)‖∞]

‖ð(Υĩn(~, `)−Υĩ(~, `))‖∞ → 0, whenĩn → ĩ,

which finally gives that Υ is continuous. Secondly we work on compactness property for Υ and then
completely continuous. Let CR = {ĩ ∈ C(∇,Rz) : ‖ĩ‖∞ ≤ R} be a convex, closed and bounded set with,

Ψ2

1−Ψ1
≤ R and we define λj = supĩ∈∇×[0,R] χj(ĩ(ξ, `) + 1), j = 1, 2, ..

(4.6) Ψ2 =| ĩ0 | +[
ζω.[Ξ(ω + 1).(1− ω) + ω]

ζ2(ω).Ξ(ω + 1)
][‖ℵ‖∞+f∗1λ1+f∗2λ2],

ĩ ∈ CR, | Υĩ(~, `) | − | ĩ(0; `) |≤ (1− ω)

ζ(ω)
[| ℵ(~) | + | <(~) || ĩ(~, `) | +

∫ ~

0

| f1(~, ξ) || χ1(ĩ(ξ, `)) | dξ+∫ 1

0

| f2(~, ξ) || χ2(ĩ(ξ, `)) | dξ] +
ω

Ξ(ω)ζ(ω)

∫ ~

0

(~− ξ)ω

(~− ξ)
[| ℵ(ξ) | + | <(ξ) || ĩ(ξ, `) | +

∫ ξ

0

| f1(ξ,z) |

| χ1(ĩ(z, `)) | dz+

∫ 1

0

| f2(ξ,z) || χ2(ĩ(z, `)) | dz]dξ,

| Υĩ(~, `) | − | ĩ(0; `) |≤ (1− ω)

ζ(ω)
[| ℵ(~) | + | <(~) || ĩ(~, `) | +f∗1λ1 + f∗2λ2] +

ω~ω

Ξ(ω + 1)ζ(ω)

[| ℵ(ξ) | + | <(ξ) || ĩ(ξ, `) | +f∗1λ1 + f∗2λ2].

Take Supremum on both side,

(4.7) ‖Υĩ‖∞− | ĩ(0; `) |≤ (1− ω)

ζ(ω)
+

ω

Ξ(ω + 1)ζ(ω)
[‖ℵ‖∞ + ‖<‖∞R+ f∗1λ1 + f∗2λ2],

≤ [
ζω[Ξ(ω + 1)(1− ω) + ω]

ζ2(ω)Ξ(ω + 1)
][‖ℵ‖∞ + f∗1λ1 + f∗2λ2] + [

ζω[Ξ(ω + 1)(1− ω) + ω]

ζ2(ω)Ξ(ω + 1)
]‖<‖∞R

≤ Ψ1R+ Ψ2 ≤ R.

It gives that Υ is uniformly bounded. Now our next claim is that Υ is equicontinuous. Let ~1 < ~2,

| ð(Υĩ(~2, `),Υĩ(~1, `)) |=|
(1− ω)

ζ(ω)
[ℵ(~2) + <(~2).ĩ(~2, `) +

∫ ~2

0

f1(~2, ξ)χ1(ĩ(ξ, `))dξ +

∫ 1

0

f2(~2, ξ)

χ2(ĩ(ξ, `))dξ] +
ω

Ξ(ω)ζ(ω)

∫ ~2

0

(~2 − ξ)ω

(~2 − ξ)
[ℵ(ξ) + <(ξ)ĩ(ξ, `) +

∫ ξ

0

f1(ξ,z)χ1(ĩ(z, `))dz+

∫ 1

0

f2(ξ,z)

χ2(ĩ(z, `))dz]dξ− [
(1− ω)

ζ(ω)
[ℵ(~1)+<(~1)ĩ(~1, `)+

∫ ~1

0

f1(~1, ξ).χ1(ĩ(ξ, `))dξ+

∫ 1

0

f2(~1, ξ)χ2(ĩ(ξ, `))dξ]

+
ω

Ξ(ω)ζ(ω)

∫ ~1

0

(~1 − ξ)ω

(~1 − ξ)
[ℵ(ξ)+<(ξ).ĩ(ξ, `)+

∫ ξ

0

f1(ξ,z)χ1(ĩ(z, `))dz+

∫ 1

0

f2(ξ,z).χ2(ĩ(z, `))dz]dξ] |

≤ (1− ω)

ζ(ω)
(| ℵ(~2)− ℵ(~1) | + | <(~2).ĩ(~2, `)−<(~1).ĩ(~1, `) | +

∫ ~1

0

(f1(~2, ξ)− f1(~1, ξ))χ1(ĩ(ξ, `))dξ
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+

∫ ~2

~1

f1(~2, ξ)χ1(ĩ(ξ, `))dξ+

∫ 1

0

(f2(~2, ξ)−f2(~2, ξ))χ2(ĩ(ξ, `))dξ+
ω

Ξ(ω)ζ(ω)

∫ ~1

0

(
(~2 − ξ)ω

(~2 − ξ)
− (~1 − ξ)ω

(~1 − ξ)
)

[<(ξ).ĩ(ξ, `) +

∫ ξ

0

f1(ξ,z)χ1(ĩ(z, `))dz+

∫ 1

0

f2(ξ,z).χ2(ĩ(z, `))dz]dξ

∫ ~2

~1

(~2 − ξ)ω

(~2 − ξ)

[<(ξ).ĩ(ξ, `) +

∫ ξ

0

f1(ξ,z)χ1(ĩ(z, `))dz+
ω

Ξ(ω)ζ(ω)

∫ 1

0

f2(ξ,z).χ2(ĩ(z, `))dz]dξ

= S + T + U, where

(4.8) S =
(1− ω)

ζ(ω)
(| ℵ(~2)− ℵ(~1) | + | <(~2).ĩ(~2, `)−<(~1).ĩ(~1, `) | +

∫ ~1

0

(f1(~2, ξ)− f1(~1, ξ))

χ1(ĩ(ξ, `))dξ +

∫ ~2

~1

f1(~2, ξ)χ1(ĩ(ξ, `))dξ +

∫ 1

0

(f2(~2, ξ)− f2(~2, ξ))χ2(ĩ(ξ, `))dξ.

If we use ~2 → ~1 then S→ 0. Again for T we write ,

ω

Ξ(ω)ζ(ω)

∫ ~1

0

(
(~2 − ξ)ω

(~2 − ξ)
− (~1 − ξ)ω

(~1 − ξ)
)[<(ξ)ĩ(ξ, `)+

∫ ξ

0

f1(ξ,z)χ1(ĩ(z, `))dz+

∫ 1

0

f2(ξ,z)χ2(ĩ(z, `))dz]dξ

≤ (‖<‖∞R+ f∗1λ1 + f∗2λ2)
ω

Ξ(ω)ζ(ω)

∫ ~1

0

(
(~2 − ξ)ω

(~2 − ξ)
− (~1 − ξ)ω

(~1 − ξ)
)dξ

(4.9) T ≤ ((~2 − ~1)ω − (~2)ω + (~1)ω)
(‖<‖∞R+ f∗1λ1 + f∗2λ2)ω

Ξ(ω + 1)ζ(ω)
.

If we use ~2 → ~1 then T→ 0. Again similar for U,

U =
ω

Ξ(ω)ζ(ω)

∫ ~2

~1

(~2 − ξ)ω

(~2 − ξ)
[<(ξ).ĩ(ξ, `) +

∫ ξ

0

f1(ξ,z)χ1(ĩ(z, `))dz+

∫ 1

0

f2(ξ,z)χ2(ĩ(z, `))dz]dξ

≤ (‖<‖∞R+ f∗1λ1 + f∗2λ2)
ω

Ξ(ω)ζ(ω)

∫ ~2

~1

(
(~2 − ξ)ω

(~2 − ξ)
)dξ

(4.10) U ≤ ((~2 − ~1)ω)
(‖<‖∞R+ f∗1λ1 + f∗2λ2)ω

Ξ(ω + 1)ζ(ω)
.

and hence, If we use ~2 → ~1 then U→ 0. By using above condition of U of (4.10) , S of (4.9) and T of (4.9),

‖ð(Υĩ(~2, `),Υĩ(~1, `))‖∞ → 0,

as ~2 → ~1, which implies Υ is equicontinuous. With the help of Arzelà-Ascoli theorem, we say Υ is
completely continuous, as we have Υ is compact in C(∇,Rz).
Thirdly we deduce Υ admits at least one fixed point in ∇. Suppose, ĩ(~, `) ∈ ß. Then ĩ(~, `) = [Υĩ(~, `)
Set ß = {ĩ(~, `) ∈ C(∇,Rz) : ĩ(~, `) = [Υĩ(~, `), 0 < [ < 1} bounded. Now for 0 ≤ ~ ≤ 1,

| ĩ(~, `) |=| [Υĩ(~, `) |≤| Υĩ(~, `) |≤| ĩ(0; `) | +(
(1− ω)

ζ(ω)
+

ω

Ξ(ω + 1)ζ(ω)
)[‖ℵ‖∞ + ‖<‖∞R+ f∗1λ1 + f∗2λ2]

≤| ĩ(0; `) | +[
ζω[Ξ(ω + 1)(1− ω) + ω]

ζ2(ω)Ξ(ω + 1)
][‖ℵ‖∞ + f∗1λ1 + f∗2λ2] + [

ζω[Ξ(ω + 1)(1− ω) + ω]

ζ2(ω)Ξ(ω + 1)
].

‖<‖∞R ≤ Ψ2R+ Ψ2. By equation (4.3), we get Ψ2R+ Ψ2 ≤ R. Hence we say ß is bounded, as we given in
our main Theorem 3.2 we conclude Υ admits at least one fixed point. Hence, we deduce that Problem (1.1)
admits at least one fixed point solution in ∇. Lastly We work on the uniqueness of solution for our FVIdE
(1.1). We have to show here Υ admits unique solution. For that we consider ĩ1(~, `),ĩ2(~, `) ∈ C(∇,Rz),

(4.11) f = (
ζω.[Ξ(ω + 1).(1− ω) + ω~ω]

ζ2(ω).Ξ(ω + 1)
)[‖<‖∞ + f∗1c1 + f∗2c2] < 1,

| ð(Υĩ1(~, `),Υĩ2(~, `)) |≤ (1− ω)

ζ(ω)
[| <(~) || ĩ1(~, `)−ĩ2(~, `) | +

∫ ~

0

| f1(~, ξ) || χ1(ĩ1(ξ, `))−χ1(ĩ2(ξ, `)) | dξ
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+

∫ 1

0

| f2(~, ξ) || χ2(ĩ1(ξ, `))− χ2(ĩ2(ξ, `)) | dξ] +
ω

Ξ(ω)ζ(ω)

∫ ~

0

(~− ξ)ω

(~− ξ)
[| <(ξ) || ĩ1(ξ, `)− ĩ2(ξ, `) | +∫ ξ

0

| f1(ξ,z) || χ1(ĩ1(z, `))− χ1(ĩ2(z, `)) | dz+

∫ 1

0

| f2(ξ,z) || χ2(ĩ1(z, `))− χ2(ĩ2(z, `)) | dz]dξ.

Apply supremum both sides, we get

‖ð(Υĩ1(~, `),Υĩ2(~, `))‖∞ ≤
(1− ω)

ζ(ω)
[‖<‖∞ + f∗1c1 + f∗2c2] + ‖ĩ1 − ĩ2‖∞ +

ω~ω

Ξ(ω + 1)ζ(ω)
[‖<‖∞+

f∗1c1 + f∗2c2] + ‖ĩ1 − ĩ2‖∞ = (
(1− ω)

ζ(ω)
+

ω~ω

Ξ(ω + 1)ζ(ω)
)[‖<‖∞ + f∗1c1 + f∗2c2] + ‖ĩ1 − ĩ2‖∞

= (
ζω.[Ξ(ω + 1).(1− ω) + ω~ω]

ζ2(ω).Ξ(ω + 1)
)[‖<‖∞ + f∗1c1 + f∗2c2] + ‖ĩ1 − ĩ2‖∞.

So, By equation (4.11), we write ‖ð(Υĩ1(~, `),Υĩ2(~, `))‖∞ ≤ f‖ĩ1 − ĩ2‖∞, which shows that Υ is a
Contraction map. Thus using Theorem 3.2, Υ admits a unique fixed point solution and hence we say system
(1.1) admits a unique solution ĩ(~, `).

4.2 Application Part II
We consider the integral type of equation (1.2), which has two bounded continuous function namely f(~) :
[0, 1] → R and ℵ(~,<1(~)) : [0, 1] × R → R. The function χ : [0, 1) × [0, 1) → [0,∞) with χ(~, .) ∈ L1[0, 1]
and 0 ≤ ~ ≤ 1. Here we present Theorem 4.2 for existence and common solution to the equation (1.2).
4.2.1 Application to the integral type equation
Theorem 4.2. Suppose,
I) The continuous function, f(~) : [0, 1]→ R and ℵ(~,<1(~)) : [0, 1]×R→ R. Let ĩ : ∇×∇ be an operator
of,

(4.12) ∇<1(~)−f(~) =

∫ ~

0

χ(~, `)ℵ(`,<1`)d`

II) | ℵ(~,<1(~))− ℵ(~,<2(~)) |≤ 1
zeiz~ | <1(~)−<2(~) | for ∀ <1,<2 ∈ ∇ & 1 < z ≤ 1

η ; 0 < η < 1.

III) The function χ : [0, 1)× [0, 1)→ [0,∞) with χ(~, .) ∈ L1[0, 1] and 0 ≤ ~ ≤ 1;

(4.13) 1 ≥ ‖
∫ ~

0

χ(~, `)d`‖,

where,∇ = C([0, 1],R) be real valued continuous function on [0, 1] and <1(~) ∈ ∇ then (1.2) admits unique
solution.

Proof. Let the mapping, ψ(~) : ∇×∇ → [1,∞) defined as,

ψ(~) =


z+ max{<1(~),<2(~)}, Otherwise

1, if <1,<2 ∈ [0, 1].

Assume ðC : ∇×∇ → C be a complex valued ðC metric space,

ðC(<1,<2) = ‖<1‖∞ = sup
0≤~≤1

| <1(~) | e−iz~,

where, ∇ = C([0, 1],R), 1 < z ≤ 1
η ; 0 < η < 1 and (i)2 = −1. Here its easy to say (∇,ðC) is complete

complex valued ðC metric space. Main integral type equation (1.2) can be again resumed to find the element
~∗ ∈ ∇ which gives fixed point for ĩ, Now

| ĩ<1(~)− ĩ<2(~) |≤|
∫ ~

0

[χ(~, `)ℵ(`,<1`)− χ(~, `)ℵ(`,<2`)] | d` ≤|
∫ ~

0

| χ(~, `)[ℵ(`,<1`)− ℵ(`,<2`)] | d`

≤ (

∫ ~

0

χ(~, `)d`)
∫ ~

0

| [ℵ(`,<1`)− ℵ(`,<2`)] | d` ≤
1

ßeiz~ (

∫ ~

0

χ(~, `)d`)
∫ ~

0

| [<1`−<2`] | d`

=
eiz~

ßeiz~e−iz~ (

∫ ~

0

χ(~, `)e−iz~d`)

∫ ~

0

| [<1`−<2`] | e−iz~d`.
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Apply Supremum to both side, we get

[ sup
0≤~≤1

| ĩ<1(~)− ĩ<2(~) | e−iz~] ≤ 1

z
(

∫ ~

0

sup
0≤~≤1

χ(~, `)e−iz~d`)[ sup
0≤~≤1

| [<1~−<2~] | e−iz~d`].

with the help of (4.2) and II, we get

ðC(ĩ<1, ĩ<2) = ‖ĩ<1 − ĩ<2‖∞ ≤
1

z
‖<1 −<2‖∞ =

1

z
ðC(<1,<2).

We can check easily both cases of ψ(<1,<2) when 0 ≤ <1 ≤ 1 ; 0 ≤ <2 ≤ 1 or else (3.13) true. Hence for
0 < 1

z < 1, all hypothesis of Theorem 3.2 hold true, which finally gives that (1.2) admits unique solution.

5 Conclusion
To study and contribute to worldly problems we consider the concept of controlled, double controlled metric
in the setting of Extended complex valued metric space. Afterwards, we present our paper in three folds as,
Firstly, we introduce fixed point theorem which is the extended version of famous results from literature,
namely Fisher and Banach [16] contraction type results along with some examples to sustain our results.
Secondly with the help of ABC fractional derivative (1.1), we introduced common fixed point Theorem 4.1
for FVIdE and its unique fixed point solution. Thirdly we introduced a fixed point solution to the integral
type equation (1.2) in ðC metric as the application part of main results.
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