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Abstract

A Taylor wavelet technique is used to obtain the approximate solution of the Fredholm integro-
differential equations (IDEs) of the second kind. Taylor wavelet method is based on an estimate of
the unknown function involved in a given IDEs using the Taylor wavelet basis. The simplicity of the
technique is a highly striking feature for the estimate of the unknown function. The applicability of the
technique on various numerical problems shows the preciseness and usefulness of the technique. The
suggested wavelets approach stands out for its simple operations, easy implementation, and accurate
answers. A comparison is made with previous findings.
2020 Mathematical Sciences Classification: 45D05, 45D99.
Keywords and Phrases: Taylor wavelet, Operational integration matrix, Collocation points, Integro-
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1 Introduction
Integral equations play a crucial role in various branches of mathematics, engineering, and the sciences.
These equations involve the unknown function as part of the integrand, and they arise in diverse fields due
to their ability to model a wide range of phenomena. Integral equations can be solved using a variety of
analytical and numerical methods. The choice of method often depends on the specific characteristics of
the integral equation and the problem at hand. Problems involving heat transfer and fluid dynamics often
lead to integro-differential equations. These equations can describe the distribution of temperature or fluid
velocity in a given domain, accounting for both differential effects (diffusion or convection) and integral effects
(boundary interactions). Here are some common techniques used to handle integral equations including the
series solution method, Adomian decomposition method (ADM ) and its modification, variational iteration
method (VIM ), Homotopy perturbation method, Nystrm method, and so on. On the other hand, recently
Kumar, Chandel, and Srivastava [11], discussed a fractional non-linear biological model problem and its
approximation. Further Kumar [12] discussed a class of two variable sequence of functions satisfying Able’s
integral equation and phase shifts. Take into account the Fredholm integro-differential equation (IDEs) of
the following form:

(1.1)

{
Λ′(ρ) = h(ρ,Λ(ρ)) +

∫ 1

0
κ(ρ, ξ,Λ(ξ))dξ, 0 ≤ ρ ≤ 1

Λ(0) = Λ0,

where Λ(ρ) is the function(unknown) to be evaluated and h(ρ,Λ(ρ)) ∈ L2[0, 1] and the kernel κ(ρ, ξ) ∈ L2(R)
are known functions. In this paper, we present a new estimate solution for the Fredholm integro-differential
equation (IDEs) (1.1). In this study, we investigate a fresh unified method for the solution of the integral
equations, where the integral equations are expanded in terms of the Taylor wavelet with unique coefficients,
leading to the reduction of the integral equations to algebraic equations.

A wavelet is a waveform that is localized in both time and frequency domains, and it is often used in signal
processing and the analysis of time-varying signals. Wavelets have the property that they start from zero,
oscillate, and then return to zero, and they come in different shapes and sizes. In the context of wavelets, the
term ”oscillation” refers to the repetitive pattern or behavior of the wavelet. The amplitude of a wavelet may
indeed start at zero, rise or fall, and return to zero, and this property is often desirable in applications where
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a localized representation of a signal or function is needed. The ability of wavelets to capture both high and
low-frequency components of a signal in a localized manner makes them well-suited for analyzing signals
with complex and changing patterns. Multiresolution analysis (MRA), density, orthogonality, and compact
support characteristics collectively make wavelets powerful tools in various fields, including signal processing,
image compression, data analysis, and solving differential equations. The adaptability of wavelets to analyze
signals at different scales, their ability to capture localized features, and their efficiency in representation
and computation make them valuable tools in diverse scientific, engineering, and mathematical applications.
Different types of wavelets are often chosen based on the specific requirements of the application at hand.
Wavelet analysis is based on the concept of multiresolution analysis, meaning that it can represent a signal
at different levels of detail or resolution. This is particularly useful for signals with non-stationary or time-
varying characteristics.

Indeed, The use of orthogonal basis functions, especially in the form of orthogonal wavelet bases, has
played a crucial role in the success and widespread adoption of wavelet analysis in numerical applications.
The orthogonality property enhances the efficiency, stability, and accuracy of numerical procedures involving
wavelet transformations. Wavelet basis functions lead to a sparse representation of signals. This sparsity
often allows for a significant reduction in the number of coefficients needed to represent a signal accurately.
As a result, the underlying problems, whether they are differential equations or integral equations, can
be translated into a system of algebraic equations. This reduction simplifies the computational burden
and facilitates efficient numerical solutions. The sparsity of wavelet representations makes computations
more efficient. Since only a small subset of coefficients is required to represent a signal, algorithms based on
wavelets can be computationally faster than methods that use non-sparse representations. This is particularly
advantageous in applications such as signal processing and image compression. The reduction to algebraic
equations, computational efficiency, ease of implementation, and the rapid combination of algorithms make
wavelet basis functions a powerful tool in various applications, contributing to their widespread use in
scientific, engineering, and computational domains. One of the important aspects of wavelet analysisis the
ability to explicitly illustrate and represent other operators and functions through wavelet basis functions.
When wavelets are used as basis functions, they provide a way to analyze and represent functions in a multi-
resolution fashion, allowing for efficient and flexible representation of signals and operators. Other operators
and functions can be explicitly illustrated using wavelets, after which they become apparent in continuous
time as νij(ρ) basis functions. A function’s set contains a linearly independent set(basis) that spans the
entire space. The basis of the set of functions generates all permissible functions, say h(ρ) downsides

h(ρ) =
∑
i,j

βijνij(ρ),where βi,j = 〈h, νij〉.

The functions νij(ρ) are built from a single mother wavelet ν(ρ) ∈ L2[0, 1], which is a small pulse,
which is a unique property of the wavelet basis. The development of the integration’s operational matrix is a
critical job in Fredholm (IDEs) numerical findings. Many matrix approaches are mentioned in the literature,
as mentioned here: CAS wavelet operational matrix [4], integral and integro-differential equations [18]
and Abel’s integral equations [16], Bernoulli wavelet [17], Legendre wavelets operational matrix [19], Haar
wavelets operational matrix [7], Laguerre wavelets [10] and Hermite wavelet method for solving integro-
differential equations [13]. This work investigates a unique operational integration matrix for the Taylor
wavelet-assisted numerical solution of IDEs. Additionally, some wavelet-based numerical methods can be
found in [22, 21].

2 Definitions and Preliminaries
2.1 Wavelets
A family of functions known as wavelets is generated by dilatating and translating a single function known
as the mother wavelet. We have the following family of continuous wavelets when the dilation variable x and
the translation variable y vary continuously.

νx,y(ρ) = |x|− 1
2 ν

(
ρ− y
x

)
, x, y ∈ R, x 6= 0.

Discrete wavelets family is defined by restricting the variables x and y to discrete quantities like x =
x−Θ

0 , y = ωy0x
−Θ
0 , x0 > 1, and y0 > 1, where ω and Θ are natural numbers.

νΘ,ω(ρ) =
∣∣x−Θ

0

∣∣−1
2 ν

(
ρ− ωy0x

−Θ
0

x−Θ
0

)
= |x0|

Θ
2 ν
(
xΘ

0 ρ− ωy0

)
,
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where νΘ,ω(ρ) is a basis(wavelet basis) of L2(R).
2.2 Taylor Wavelets

Four arguments exist for Taylor wavelets νω,r(ρ) = ν(Θ, ω̂, r, ρ): ω̂ = ω−1, ω = 1, 2, . . . , 2Θ−1. When Taylor
polynomials have order r, we define them as follows on the range [0, 1].

(2.1) νω,r(ρ) =

{
2

Θ−1
2 L̃r

(
2Θ−1ρ− ω̂

)
, ω̂

2Θ−1 ≤ ρ < ω̂+1
2Θ−1

0, otherwise

with
L̃r(ρ) =

√
2r + 1Lr(ρ),

where r = 0, 1, 2, . . . , µ − 1 and ω = 1, 2, . . . , 2Θ−1. The coefficient
√

2r + 1 is for normality, the dilation
parameter is a = 2−(Θ−1) and the translation parameter is b = ω̂2−(Θ−1). Here, Lr(ρ) are the well-known
Taylor polynomials of order r which form a complete basis over the interval [0, 1], which are defined by
Lr(ρ) = ρr[20].
2.3 Approximation Technique
Any function Λ(ρ) ∈ L2[0, 1] can be expressed in terms of the Taylor wavelet basis in the following way:

Λ(ρ) =

∞∑
ω=1

∞∑
r=0

gω,rνω,r(ρ)

and consider the truncated series of approximation for Λ(ρ),

(2.2) Λ(ρ) '
2Θ−1∑
ω=1

µ−1∑
r=0

gω,rνω,r(ρ) = Eᵀν(ρ) = Λn(ρ)

where ᵀ indicates transposition, and E, ν(ρ) are n× 1
(
n = 2Θ−1µ

)
matrices given as

(2.3) E =
[
g1,0, g1,1, . . . , g1,µ−1, g2,0, . . . , g2,µ−1, . . . , g2Θ−1,µ−1, . . . , g2Θ−1,µ−1

]ᵀ
,

(2.4) ν(ρ) =
[
ν1,0(ρ), ν1,1(ρ), . . . , ν1,µ−1(ρ), ν2,0(ρ), . . . , ν2,µ−1(ρ), . . . , ν2Θ−1,0(ρ), . . . , ν2Θ−1,µ−1(ρ)

]ᵀ
.

3 Convergence analysis
In this section, two new theorems have been established for the proposed method’s convergence analysis as
well as error estimation in the following form:

Theorem 3.1 Let Λ(ρ) ∈ L2(R) be a continuous function on the interval [0, 1) such that it is bounded
by m i.e. |Λ(ρ)| < m, for every ρ ∈ [0, 1). Then, the Taylor wavelet coefficients of Λ(ρ) in Eq. (2.2) are
bounded as:

|gω,r| <
λ

2
Θ−1

2

m
2

2r + 1
,

where m is a constant and λ is given by
λ =
√

2r + 1.

Proof. Using Taylor wavelets, any arbitrary function Λ(ρ) can be approximated as:

(3.1) Λ(ρ) '
2Θ−1∑
ω=1

µ−1∑
r=0

gω,rνω,r(ρ) = ET ν(ρ) = Λn(ρ),

where E and ν(ρ) are given in Eq. (2.3), (2.4) and the coefficients gω,r are determined as:

(3.2) gω,r = 〈Λ, νω,r〉 =

∫ 1

0

Λ(ρ)νω,r(ρ)dρ = 2
Θ−1

2

√
2r + 1

∫ ω

2Θ−1

ω−1

2Θ−1

Λ(ρ)Lr
(
2Θ−1ρ− ω + 1

)
dρ.

Using the definition of Taylor wavelets νω,r(ρ), we have

(3.3) νω,r(ρ) = 2
Θ−1

2

√
2r + 1Lr

(
2Θ−1ρ− ω + 1

)
,

ω − 1

2Θ−1
≤ ρ < ω

2Θ−1
.

Let λ =
√

2r + 1. Let 2Θ−1ρ− ω + 1 = x, then Eq. (3.2) becomes

gω,r =
λ

2
Θ−1

2

∫ 1

0

Λ

(
x+ ω − 1

2Θ−1

)
Lr(x)dx.
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Therefore,

(3.4) |gω,r| ≤
λ

2
Θ−1

2

∫ 1

0

∣∣∣∣Λ(x+ ω − 1

2Θ−1

)∣∣∣∣ |Lr(x)| dx.

Seeing the properties of Taylor polynomials, we can say that

(3.5)

∫ 1

0

|Lr(v)| dv < 2

2r + 1
, r > 0.

Using the assumption |Λ(ρ)| < m in Eqs. (3.5) and (3.4), we have

(3.6) |gω,r| <
1

2
Θ−1

2

m
2√

2r + 1
.

Thus the proof of Theorem 3.1 has been completed. Also, boundedness of the function implies absolutely

convergent of the series Λ(ρ) =

∞∑
ω=1

∞∑
r=0

gω,r. Hence the Taylor wavelet approximation of the function Λ(ρ)

is absolutely convergent.

Theorem 3.2 Let Λ(ρ) ∈ L2(R) be a continuous function on the interval [0, 1) and |Λ(ρ)| < m for every

ρ ∈ [0, 1). Let Λ∗(ρ) =

2Θ−1∑
ω=1

µ−1∑
r=0

gω,rνω,r(ρ) be the Taylor wavelet series expansions where gω,r, νω,r(ρ) be the

Taylor wavelet coefficients and Taylor wavelet basis respectively. Then, the bound of the truncated error e(ρ)
is given as:

‖e(ρ)‖2 = ‖Λ(ρ)− Λ∗(ρ)‖ <

 ∞∑
ω=2Θ−1+1

µ−1∑
r=0

g2
ω,r

 1
2

+

( ∞∑
ω=1

∞∑
r=µ

g2
ω,r

) 1
2

,

where,

gω,r =
λ

2
Θ−1

2

m
2

2r + 1
, λ =

√
2r + 1.

Proof. Any function Λ ∈ L2[0, 1) can be expanded in terms of Taylor wavelets as:

Λ(ρ) =

∞∑
ω=1

∞∑
r=0

gω,rνω,r(ρ).

If Λ∗(ρ) is the expansion truncated by using Taylor wavelets, then the error obtained by truncating the
above function can be computed as:

(3.7) e(ρ) = Λ(ρ)− Λ∗(ρ) =

∞∑
ω=2Θ−1+1

µ−1∑
r=0

gω,rνω,r(ρ) +

∞∑
ω=1

∞∑
r=µ

gω,rνω,r(ρ).

From Eq. (3.7), we can write

‖e(ρ)‖ ≤

∥∥∥∥∥∥
∞∑

ω=2Θ−1+1

µ−1∑
r=0

gω,rνω,r(ρ)

∥∥∥∥∥∥+

∥∥∥∥∥
∞∑
ω=1

∞∑
r=µ

gω,rνω,r(ρ)

∥∥∥∥∥(3.8)

=

∫ 1

0

∣∣∣∣∣∣
∞∑

ω=2Θ−1+1

µ−1∑
r=0

gω,rνω,r(ρ)

∣∣∣∣∣∣
2

dρ


1
2

+

∫ 1

0

∣∣∣∣∣
∞∑
ω=1

∞∑
r=µ

gω,rνω,r(ρ)

∣∣∣∣∣
2

dρ

 1
2

≤

 ∞∑
ω=2Θ−1+1

µ−1∑
r=0

|gω,r|2
∫ 1

0

|νω,r(ρ)|2 dρ

 1
2

+

( ∞∑
ω=1

∞∑
r=µ

|gω,r|2
∫ 1

0

|νω,r(ρ)|2 dρ

) 1
2

.

From Theorem 3.1, using the property

|gω,r| <
λ

2
Θ−1

2

m
2

2r + 1
,
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Eq. (3.8) reduces to

(3.9) ‖e(ρ)‖2 <

 ∞∑
ω=2Θ−1+1

µ−1∑
r=0

|gω,r|2
∫ 1

0

|νω,r(ρ)|2 dρ

 1
2

+

( ∞∑
ω=1

∞∑
r=µ

|gω,r|2
∫ 1

0

|νω,r(ρ)|2 dρ

) 1
2

.

Let us define

(3.10) dω,r =
λ

2
Θ−1

2

m
2

2r + 1
.

Then from Eqs. (3.9) and (3.10), we get

(3.11) ‖e(ρ)‖2 <

 ∞∑
ω=2Θ−1+1

µ−1∑
r=0

|dω,r|2
∫ 1

0

|νω,r(ρ)|2 dρ

 1
2

+

( ∞∑
ω=1

∞∑
r=µ

|dω,r|2
∫ 1

0

|νω,r(ρ)|2 dρ

) 1
2

.

Therefore,

(3.12) ‖e(ρ)‖2 <

 ∞∑
ω=2Θ−1+1

µ−1∑
r=0

d2
ω,r

∫ 1

0

|νω,r(ρ)|2 dρ

 1
2

+

( ∞∑
ω=1

∞∑
r=µ

d2
ω,r

∫ 1

0

|νω,r(ρ)|2 dρ

) 1
2

.

By the definition of Taylor wavelets, we have

(3.13) ν2
ω,r(ρ) = 2Θ−1(2r + 1)L2

r

(
2Θ−1ρ− ω + 1

)
,

ω − 1

2Θ−1
≤ ρ < ω

2Θ−1
.

Integrating Eq. (3.13) with respect to ρ, we get

(3.14)

∫ 1

0

ν2
ω,r(ρ) = 2Θ−1(2r + 1)

∫ ω

2Θ−1

ω−1

2Θ−1

L2
r

(
2Θ−1ρ− ω + 1

)
dρ.

Let 2Θ−1ρ− ω + 1 = u, Eq. (3.14) becomes

(3.15)

∫ 1

0

ν2
ω,r(ρ)dρ = (2r + 1)

∫ 1

0

L2
r(u)du.

But the standard definition of Taylor polynomial implies that,

(3.16)

∫ 1

0

L2
r(u)du =

∫ 1

0

u2rdu =
1

2r + 1
.

Substituting Eq. (3.16) in Eq. (3.15), we get∫ 1

0

ν2
ω,r(ρ)dρ = 1.

Thus Theorem 3.2 has been proved. This theorem also implies consistency and stability of the
approximation.
3.1 Integration Matrix of Taylor Wavelets
Let ν(ρ) be the vector consisting of Taylor wavelets defined in the previous section, then

Iν(ρ) = Sν(ρ),

where I and S are the integral operator and the n × n operational integration matrix , respectively for
n = 2Θ−1µ . Using the Eq. (2.1) , formulation of the Taylor basis, for ω = 1, · · · , 2Θ−1 and r = 0, 1, · · · , µ−1,
we have

I (νω,r(ρ)) = I
(

2
Θ−1

2 L̃r
(
2Θ−1ρ− ω̂

)
χ[ ω̂

2Θ−1 ,
ω̂+1

2Θ−1 ](ρ)
)

(3.17)

= 2
Θ−1

2 I
(√

2r + 1
(
2Θ−1ρ− ω̂

)r
χ[ ω̂

2Θ−1 ,
ω̂+1

2Θ−1 ](ρ)
)
,

where χ[ ω̂

2Θ−1 ,
ω̂+1

2Θ−1 ](ρ) is the characteristic function defined as

χ[ ω̂

2Θ−1 ,
ω̂+1

2Θ−1 ](ρ) =

{
1, ω̂

2Θ−1 ≤ ρ ≤ ω̂+1
2Θ−1

0, otherwise
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and ω̂ = ω − 1. For ω = 1, Eq. (??) gives

I (ν1,r(ρ)) = 2
Θ−1

2

√
2r + 12(Θ−1)rI

(
ρrχ[ ω̂

2Θ−1 ,
ω̂+1

2Θ−1 ](ρ)
)
.

Therefore, we can obtain seven Taylor Wavelet basis as follows:

ν1,0(ρ) = 1,

ν1,1(ρ) =
√

3ρ,

ν1,2(ρ) =
√

5ρ2,

ν1,3(ρ) =
√

7ρ3,

ν1,4(ρ) =
√

9ρ4,

ν1,5(ρ) =
√

11ρ5,

ν1,6(ρ) =
√

13ρ6,

for Θ = 1 and µ = n = 7.
Let ν(ρ) = [ν1,0(ρ), ν1,1(ρ), ν1,2(v), ν1,3(ρ), ν1,4(ρ), ν1,5(ρ), ν1,6(ρ)].

Now integrate each element of the above vector with respect to the variable ρ limit taking from 0 to ρ,
then represent them as a linear combination of Taylor wavelet basis,

∫ ρ

0

ν1,0(ρ)dρ =
[

0 1√
3

0 0 0 0 0
]
ν7(ρ),∫ ρ

0

ν1,1(ρ)dρ =
[

0 0
√

3
2
√

5
0 0 0 0

]
ν7(ρ),∫ ρ

0

ν1,2(ρ)dρ =
[

0 0 0
√

5
3
√

7
0 0 0

]
ν7(ρ),∫ ρ

0

ν1,3(ρ)dρ =
[

0 0 0 0
√

7
4
√

9
0 0

]
ν7(ρ),∫ ρ

0

ν1,4(ρ)dρ =
[

0 0 0 0 0
√

9
5
√

11
0
]
ν7(ρ),∫ ρ

0

ν1,5(ρ)dρ =
[

0 0 0 0 0 0
√

11
6
√

13

]
ν7(ρ),∫ ρ

0

ν1,6(ρ)dρ =
[

0 0 0 0 0 0 0
]
ν7(ρ) +

√
13

7
√

15
ν1,7(ρ).

.

Thus, we have
∫ ρ

0
ν(ρ)dρ = S7×7ν7(ρ) + ν7(ρ). where,

S7×7 =



0 1√
3

0 0 0 0 0

0 0
√

3
2
√

5
0 0 0 0

0 0 0
√

5
3
√

7
0 0 0

0 0 0 0
√

7
4
√

9
0 0

0 0 0 0 0
√

9
5
√

11
0

0 0 0 0 0 0
√

11
6
√

13

0 0 0 0 0 0 0


.
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Here, S is defined to be the operational integration matrix of order 7× 7, and

ν7(ρ) =



0
0
0
0
0
0√

13
7
√

15
ν1,7(ρ)


.

This Operational Integration Matrix of Taylor Wavelet basis (OIMTW) can also be produced using the
same technique for all other values of n.

4 Proposed method for solving the Integro-Diferential Equations (IDEs)
Let,

(4.1) Λ′(ρ) = h(ρ,Λ) +

∫ 1

0

κ(ρ, ξ,Λ(ξ))dξ

be the integro-differential equation having the initial condition Λ(0) = δ. Here, h(ρ,Λ) is a continuous
function and δ is a constant.
Now we use the Taylor wavelet bases to approximate the highest derivative appearing in the given IDEs as
follows,

(4.2) Λ′(ρ) = Eᵀν(ρ),

here Θ = 1 and r = 0, 1, . . . µ− 1, where,

Eᵀ = [g1,0, g1,1, . . . , g1,µ−1] ,

ν(ρ) = [ν1,0, ν1,1, . . . , ν1,µ−1]
ᵀ
.

Apply integration on both sides of Eq. (4.2) concerning ρ limit from 0 to ρ.

Λ(ρ) = Λ(0) + Eᵀ[Sν(ρ) + ν(ρ)](4.3)

= δ + Eᵀ[Sν(ρ) + ν(ρ)].

Substituting Eq. (4.2) and (4.3) in (4.1), we have

(4.4) Eᵀν(ρ) = h
(
ρ,
(
δ + Eᵀ[Sν(ρ) + ν(ρ)]

))
+

∫ 1

0

κ
(
ρ, ξ,

(
δ + Eᵀ[Sν(ξ) + ν(ξ)]

))
dξ.

Collocate Eq. (4.4), n number of algebraic equations followed by using grid points ρi = 2i−1
2n , where

i = 0, 1, 2, . . . , n . Solving these n equations with a suitable method provides Taylor wavelet coefficients.
The required numerical solution will next be presented by substituting these coefficients in Eq.(4.3)

5 Quantitive Testings
We present several problems from the field and confirm the productivity as well as the accuracy of the
findings to assess the method’s efficacy:

Y = ‖Λe (ρi)− Λa (ρi)‖2 =

√√√√ n∑
i=1

[Λe (ρi)− Λa (ρi)]
2
,

where Λe is the approximate solution, Λa is the accurate solution and Y is denoting the absolute error. The
following illustrative problems show the presented method’s efficiency, accuracy, and validity with respect to
other existing methods.
Problem 5.1 Let

(5.1)

{
Λ′(ρ) = ρeρ + eρ − ρ+

∫ 1

0
ρΛ(ξ)dξ

Λ(0) = 0,

be the IDEs [2, 4, 5, 6, 8, 15, 20]. Λ(ρ) = ρeρ is the precise solution (PS) of this problem. When utilizing the
present approach to solve Eq. (5.1), the accuracy of the current approach depends on the size n of the matrix
of integration. Comparison between the solution of Taylor’s method (current method) or TS and the precise
solution is shown in Table 5.1, whereas absolute error (AE) is shown in Table 5.2. Finally, Table 5.3 shows
the numerical findings obtained by the current approach and compared to one of the existing approaches
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[4]. Table 5.4 compares the absolute inaccuracy of the current procedure to that of other methods. Fig. 5.1
describes a geometrical interpretation of numerical values of the current method with precise solutions. In
Fig. 5.2, error variation for different values of n for the current approach can be observed.

Table 5.1: Value comparison between the current approach (TS) and the accurate solution for the Problem 5.1

ρ TS at n=6 TS at n=7 TS at n=8 TS at n=9 Precise solution
0 0 0 0 0 0
0.1 0.110517248729256 0.110517084061229 0.110517092019904 0.110517091798469 0.110517091807565
0.2 0.244280532997289 0.244280546432053 0.244280551607897 0.244280551621848 0.244280551632034
0.3 0.404957540507024 0.404957630933154 0.404957642172328 0.404957642254503 0.404957642272801
0.4 0.596729754231302 0.596729861627843 0.596729878676599 0.596729879030421 0.596729879056508
0.5 0.824360295875318 0.824360613332353 0.824360634706961 0.824360635310779 0.824360635350064
0.6 1.093270675744187 1.093271244789225 1.093271279256232 1.093271280183089 1.093271280234305
0.7 1.409626449015646 1.409626852859123 1.409626893661343 1.409626895155630 1.409626895229334
0.8 1.780431778417886 1.780432706086411 1.780432741677801 1.780432742722952 1.780432742793974
0.9 2.213632903312502 2.213642415993803 2.213642788219453 2.213642799701517 2.213642800041255
1 2.718230515182594 2.718278904461437 2.718281684837148 2.71828182217887 2.718281828459046

Table 5.2: Error variation in the current approach for the Problem 5.2

ρ n=6 n=7 n=8 n=9
0.0 0 0 0 0
0.1 1.56 e-07 0.77 e-8 2.12 e-10 0.90 e-11
0.2 0.18 e-07 0.51 e-8 0.24 e-10 1.01 e-11
0.3 1.01 e-07 1.13 e-8 1.00 e-10 1.82 e-11
0.4 1.24 e-07 1.74 e-8 3.79 e-10 2.60 e-11
0.5 3.39 e-07 2.20 e-8 6.43 e-10 3.92 e-11
0.6 6.04 e-07 3.54 e-8 9.78 e-10 5.12 e-11
0.7 4.46 e-07 4.23 e-8 1.56 e-9 7.37 e-11
0.8 9.64 e-07 3.67 e-8 1.11 e-9 7.10 e-11
0.9 9.89 e-06 3.84 e-7 1.18 e-8 3.39 e-10
1 5.13 e-05 2.92 e-6 1.43 e-7 6.28 e-09

Table 5.3: The current method is compared to an existing method for the Problem 5.1.

ρ Precise solution CAS in [4] TS at n=9 CAS’s AE [4]
AE of
current
approach

0.1 0.110517091807565 0.00134917637 0.110517091798469 1.09 e-01 0.90 e-11
0.2 0.244280551632034 0.00115960044 0.244280551621848 2.43 e-01 1.01 e-11
0.3 0.404957642272801 0.00567152531 0.404957642254503 3.99 e-01 1.82 e-11
0.4 0.596729879056508 0.05931056450 0.596729879030421 5.37 e-01 2.60 e-11
0.5 0.824360635350064 0.01323307510 0.824360635310779 8.11 e-01 3.92 e-11
0.6 1.093271280234300 0.04392877200 1.093271280183089 1.05 e+00 5.12 e-11
0.7 1.409626895229330 0.01412016240 1.409626895155630 1.40 e+00 7.37 e-11
0.8 1.780432742793970 0.01345141170 1.780432742722952 1.77 e+00 7.10 e-11
0.9 2.213642800041250 0.01320452090 2.213642799701517 2.20 e+00 3.39 e-10
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Table 5.4: Comparison between the AE of the current approach with some other methods for the Problem 5.1.

ρ CAS’s [4] DPE’s [5] IHPM’s [20] SBM’s [2] HWM’s [6] HEK’s [8]
AE of
TS

0.1 1.34 e-03 1.00 e-02 0.23 e-05 1.01 e-07 1.85 e-06 3.69 e-03 0.90 e-11
0.2 1.15 e-03 0.23 e-05 1.01 e-07 1.30 e-06 1.30 e-06 1.45 e-02 1.01 e-11
0.3 5.67 e-03 2.78 e-02 0.92 e-05 4.82 e-07 1.40 e-06 3.20 e-02 1.82 e-11
0.4 5.93 e-02 5.08 e-02 0.20 e-04 1.01 e-07 2.15 e-06 5.56 e-02 2.60 e-11
0.5 1.32 e-02 7.55 e-02 0.37 e-04 1.61 e-06 5.03 e-07 8.47 e-02 3.92 e-11
0.6 4.39 e-02 9.71 e-02 0.57 e-04 2.30 e-06 2.55 e-06 1.18 e-01 5.12 e-11
0.7 1.41 e-02 1.09 e-01 0.83 e-04 3.09 e-06 2.20 e-06 1.55 e-01 7.37 e-11
0.8 1.34 e-02 1.04 e-01 0.11 e-03 3.97 e-06 2.50 e-06 1.95 e-01 7.10 e-11
0.9 1.32 e-02 6.94 e-02 0.14 e-03 4.99 e-06 3.46 e-06 2.35 e-01 3.39 e-10

 

Figure 5.1: Graph representation of the Approximate solution (TS) for n=6 and the Precise solution (PS) for the
Problem 5.1.
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Figure 5.2: Graphical comparison of AE of current method at n = 6, 7, 8 and 9 for the Problem 5.1.

Problem 5.2 Let

(5.2)

{
Λ′(ρ) = 1− 1

3ρ+
∫ 1

0
ρξΛ(ξ)dξ

Λ(0) = 0.

be the IDEs [2, 4, 5, 6, 8, 15, 20]. Λ(ρ) = ρ is the accurate solution of the problem 5.2. Applying the current
method at n=10 for solving this problem, we have Ten Taylor wavelet coefficients as follows:

g1,0 = 1
g1,1 = 0
g1,2 = 0
g1,3 = 0
g1,4 = 0
g1,5 = 0
g1,6 = 0
g1,7 = 0
g1,8 = 0
g1,9 = 0


The Taylor wavelet solution, which is identical to the analytic solution, is obtained by replacing these
coefficients in Eq. (4.3). This problem demonstrates the method’s efficiency, applicability, and validity.
Numerical values of the solution of problem 5.2 as shown in Table 5.5 obtained in different existing methods
and the current method (TS) along with the absolute error.
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Table 5.5: Numerical comparison of current solution with certain other existing methods for the Problem 5.2.

ρ PS CAS [4] TS CAS’s AE [4] CAS in [4] DPEM [5] SAM [2] HWM [6] HEK [8]
AE of
TS

0.1 0.1 0.00021794238 0.1 9.98 e-02 2.17 e-04 1.60 e-03 3.79 e-06 1.60 e-06 1.50 e-03 0
0.2 0.2 0.00063854821 0.2 1.99 e-01 6.38 e-04 6.09 e-03 1.51 e-05 2.36 e-06 5.36 e-03 0
0.3 0.3 0.00077137049 0.3 2.99 e-01 7.91 e-04 1.32 e-02 3.41 e-05 2.26 e-06 1.06 e-02 0
0.4 0.4 0.02155860050 0.4 3.78 e-01 2.15 e-02 2.29 e-02 6.06 e-05 1.31 e-06 1.65 e-02 0
0.5 0.5 0.00499358429 0.5 4.95 e-01 4.99 e-03 3.51 e-02 9.47 e-05 4.85 e-07 2.21 e-02 0
0.6 0.6 0.02217288150 0.6 5.78 e-01 2.21 e-02 6.69 e-02 1.36 e-05 9.28 e-07 2.67 e-02 0
0.7 0.7 0.00010564545 0.7 7.00 e-01 1.05 e-04 7.12 e-02 1.85 e-04 1.48 e-06 2.95 e-02 0
0.8 0.8 0.00143233681 0.8 7.99 e-01 1.43 e-03 8.63 e-02 2.42 e-04 1.19 e-06 2.98 e-02 0
0.9 0.9 0.02077474610 0.9 8.79 e-01 2.07 e-02 1.08 e-01 3.06 e-04 5.40 e-08 2.71 e-02 0

Problem 5.3 Let

(5.3)

{
Λ′(ρ) =

∫ 1

0
sin[4πρ+ 2πξ]Λ(ξ)dξ + Λ(ρ)− 2π sin(2πρ)− cos(2πρ)− 1

2 sin(4πρ)
Λ(0) = 1

be the IDEs [4], Λ(ρ) = cos(2πρ) is the precise answer to this problem. Numerical values obtained in the
current method (TS) and precise solution are shown in Table 5.6 and compared with an existing method
after simplifying Eq. (5.3). The numerical answer is graphically compared to the precise solution in Fig.
5.3. The absolute error that occurred in this problem is compared with an existing method in Fig. 5.4.

 

Figure 5.3: Graphical representation of the TS for n=10 and the precise solution for the Problem 5.3.
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Figure 5.4: Point diagram of absolute errors (AE) for the current method at n=10 and CAS’s AE [4] for the Problem
5.3.

Table 5.6: Current method is compared with an existing method for the Problem 5.3.

ρ PS CAS method in [4] TS at n=10 CAS’s AE [4]
Absolute error of
TS

0.1 0.809016994374947 0.00240432854 0.809022044656112 8.07 e-01 5.05 e-06
0.2 0.309016994374947 0.00507123331 0.309016289100111 3.04 e-01 0.70 e-06
0.3 -0.309016994374948 0.00625477225 -0.309018658682028 3.15 e-01 1.66 e-06
0.4 -0.809016994374947 0.00387315246 -0.809014212286664 8.13 e-01 2.78 e-06
0.5 -1.000000000000000 0.01746016710 -0.999993298619171 1.02 e+00 6.70 e-06
0.6 -0.809016994374947 0.01584825600 -0.809012181620363 8.25 e-01 4.81 e-06
0.7 -0.309016994374948 0.00841721725 -0.309016273658540 3.17 e-01 0.72 e-06
0.8 0.309016994374947 0.00965467633 0.309025332212964 2.99 e-01 8.33 e-06
0.9 0.809016994374947 0.00948709579 0.809005478573982 8.00 e-01 1.15 e-05

Problem 5.4 Let,

(5.4) Λ′(ρ) =
5

4
− 1

3
ρ2 +

∫ 1

0

(
ρ2 − ξ

)
(Λ(ξ))2dξ, Λ(0) = 0,

be IDEs [14, 15].The nonlinear Eq. (5.4) has a precise solution as Λ(ρ) = ρ. Using the current approach at
n = 3 to simplify Eq. (5.4), we have Taylor wavelet approximation coefficients as g1,0 = 1, g1,1 = 0, g1,2 = 0,
obtained by using Newton’s iterative technique (taking an initial guess (1,0,0)) in MATLAB. Now using
these coefficients in Eq.(4.3), We find a solution that is identical to the precise solution. This problem
demonstrates the effectiveness of our method. Numerical values and Absolute errors of the current approach
are placed in Table 5.6 and can be compared with the precise solution and different known methods [14, 15].
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Table 5.7: The current method is compared with some other existing methods for the Problem 5.4.

ρ PS TS
RHFs [15] at

k = 32
RHF’s AE [15]

B-spline’s AE
[14] at N = 27

Absolute error of
TS

0.1 0.1 0.1 0.10002 2.0 e-05 1.94 e-14 0
0.2 0.2 0.2 0.20008 8.0 e-05 3.83 e-14 0
0.3 0.3 0.3 0.30007 7.0 e-05 5.05 e-14 0
0.4 0.4 0.4 0.40008 8.0 e-05 6.77 e-14 0
0.5 0.5 0.5 0.50001 1.0 e-05 8.37 e-14 0
0.6 0.6 0.6 0.60001 1.0 e-05 9.30 e-14 0
0.7 0.7 0.7 0.70002 2.0 e-05 10.5 e-14 0
0.8 0.8 0.8 0.80008 8.0 e-05 11.4 e-14 0
0.9 0.9 0.9 0.89991 9.0 e-05 12.1 e-14 0

6 Conclusion
From the above analysis, it is concluded that the Taylor wavelet-based collocation method is much better
efficient compared to many different existing methods for numerically solving IDEs in numerous disciplines
of science and engineering. To get more accurate results, the number of collocation points can be increased.
Acknowledgement. All authors are thankful to the editor and referees for their suggestions to bring the
paper in its present form.

References
[1] D. Bahuguna, A. Ujlayan and D. N. Pandey, A comparative study of numerical methods for solving an

Integro differential equation, Comp. Math. Appl., 57(2009), 1485-1493.
[2] M. I. Berenguer, M. V. F. Munoz, A. I. Garralda-Guillem and M. R. Galan, A sequential approach for

solving the Fredholmintegro-differential equation, Appl. Math. Comput., 62(2012), 297-304 .
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