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Abstract

Biswas [2] introduced the idea of (p, q)th-relative Gol’dberg order and (p, q)th-relative Gol’dberg type
of an entire function of several complex variables. In this paper we want to establish some results of
the growth analysis of entire function of several complex variables on the basis of their (p, q)-ψ relative
Gol’dberg order and (p, q)-ψ relative Gol’dberg type of an entire function of several complex variables.
2020 Mathematical Sciences Classification: 32A15, 30D35
Keywords and Phrases: (p, q)-ψ relative Gol’dberg order, (p, q)-ψ relative Gol’dberg type, growth,
entire function of several complex variables, (p, q)-ψ relative Gol’dberg weak type.

1 Introduction
Let Cn and Rn respectively denotes the complex and real n-spaces. Also, let us indicate the point
(z1, z2, . . . , zn), (m1,m2, . . . ,mn) of Cn or In by their corresponding unsuffixed symbols z, m respectively
where I denotes the set of non negative integers. The modulus of z, denoted by |z|, is defined as |z| =

(|z1|2 + |z2|2 + · · ·+ |zn|2)
1
2 . If the coordinates of the vector m are non-negative integers, then zn will denote

zm1
1 , zm2

2 , . . . , zmnn and ‖m‖ = m1 +m2 + · · ·+mn. If D ⊆ Cn be an arbitrary bounded complex n-circular
domain with center at the origin of coordinates, then for any entire function f(z) on n-complex variables
and R > 0, Mf,D(R) may be defined as Mf,D(R) = supz∈DR |f(z)|, where a point z ∈ DR iff z

R ∈ D. If f(z)

is non-constant, then Mf,D(R) is strictly increasing and its inverse M−1
f,D : (|f(0)|,∞) → (0,∞) exists such

that limR→∞M−1
f,D(R) =∞. For k ∈ N, we define exp[k]R = exp(exp[k−1]R) and log[k]R = log(log[k−1]R),

where N is the set of all positive integers. We also denote log[0]R = R, log[−1]R = expR, exp[0]R = R
and exp[−1]R = logR, where p and q always denote positive integers. Maji and Datta [9] introduced
the definitions of (p, q)th-Gol’dberg order and (p, q)th-Gol’dberg lower order of an entire function f(z) of
n-complex variables, where p ≥ q in the following ways;

(1.1) ρ
(p,q)
D (f) = lim sup

R→∞

log[p]Mf,D(R)

log[q]R
,

and

(1.2) λ
(p,q)
D (f) = lim inf

R→∞

log[p]Mf,D(R)

log[q]R
.

For p = 2 and q = 1 the symbols ρ
(p,q)
D (f) and λ

(p,q)
D (f) are respectively denoted by ρD(f) and λD(f) which

are actually classical growth indicators [7, 8]. However in the line of Gol’dberg [7, 8], it may be easily

established that ρ(p,q)(f) and λ(p,q)(f) instead of ρ
(p,q)
D (f) and λ

(p,q)
D (f) respectively.

2 Definitions
Biswas [5] introduced the defintions of (p, q)-ψ order and (p, q)-ψ lower order of an entire function of n-
complex variables.
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Definition 2.1 ([5]). Let ψ(R) : [0,+∞) → (0,+∞) be a non-decreasing unbounded function. Then the

(p, q)-ψ Gol’dberg order ρ
(p,q)
D (f, ψ) and (p, q)-ψ Gol’dberg lower order λ

(p,q)
D (f, ψ) of an entire function f(z)

of n-complex variables are defined as,

ρ
(p,q)
D (f, ψ) = lim sup

R→∞

log[p]Mf,D(R)

log[q] ψ(R)
,(2.1)

and

λ
(p,q)
D (f, ψ) = lim inf

R→∞

log[p]Mf,D(R)

log[q] ψ(R)
.(2.2)

Definition 2.1 avoids the restriction for p ≥ q. However, an entire function f(z) for which ρ
(p,q)
D (f, ψ)

and λ
(p, q)
D (f, ψ) are called regular (p, q)-ψ Gol’dberg growth. Otherwise, f(z) is said to be irregular (p, q)-ψ

Gol’dberg growth. For any non-decreasing unbounded function ψ(R) : [0,+∞) → (0,+∞), if it is assumed

that limR→+∞
log[q] ψ(αR)

log[q] ψ(R)
= 1, for all α > 0, then one can easily verify that ρ

(p,q)
D (f, ψ) and λ

(p,q)
D (f, ψ)

are independent of the choice of the domain D and use the symbols ρ(p,q)(f, ψ) and λ(p,q)(f, ψ) instead

of ρ
(p,q)
D (f, ψ) and λ

(p,q)
D (f, ψ) respectively. Now for any two entire functions f(z) and g(z) of n-complex

variables, Mondal and Roy [11] introduced the concept of relative Gol’dberg order of f(z) with respect to
g(z) and relative Gol’berg lower order of f(z) with respect to g(z). For the (p, q)-ψ relative Goldberg order
introduced by Biswas and Biswas [5] in the following definitions:

Definition 2.2 ([5]). Let ψ(R) : [0,+∞)→ (0,+∞) be a non-decreasing unbounded function. Also, let f(z)
and g(z) be any two entire functions of n-complex variables. The (p, q)-ψ relative Gol’dberg order and the
(p, q)-ψ relative Gol’dberg lower order of f(z) with respect to g(z) are defined as

ρ
(p,q)
g,D (f, ψ) = lim sup

R→∞

log[p]M−1
g,D(Mf,D(R))

log[q] ψ(R)
,(2.3)

and

λ
(p,q)
g,D (f, ψ) = lim inf

R→∞

log[p]M−1
g,D(Mf,D(R))

log[q] ψ(R)
.(2.4)

Further an entire function f(z) of n-complex variables for which ρ
(p,q)
g,D (f, ψ) and λ

(p,q)
g,D (f, ψ) are same, is

called a function of (p, q)-ψ relative Gol’dberg growth with respect to an entire function g(z) of n-complex
variables. Otherwise, f(z) is said to be irregular (p, q)-ψ relative Gol’dberg growth with respect to g(z).

Definition 2.3 ([6]). Let f(z) and g(z) be two entire functions of n-complex variables with the index-pair
(m, q) and (m, p) respectively, where p, q, m are the integers such that m ≥ q + 1 ≥ 1 and m ≥ p+ 1 ≥ 1, if

b < ρ
(p,q)
g,D (f, ψ) < +∞ and ρ

(p−1,q−1)
g,D (f, ψ) is not a non-zero finite number, where b = 1, if p = q, and b = 0

for otherwise. Moreover, if 0 < ρ
(p,q)
g,D (f, ψ) <∞,

ρ
(p−n,q)
g,D (f, ψ) =∞ , for n < p;

ρ
(p,q−n)
g,D (f, ψ) = 0 , for n < q;

ρ
(p+n,q+n)
g,D (f, ψ) = 1 , for n = 1, 2, . . . .

.(2.5)

Similarly for 0 < λ
(p,q)
g,D (f, ψ) <∞, then

λ
(p−n,q)
g,D (f, ψ) =∞ , for n < p;

λ
(p,q−n)
g,D (f, ψ) = 0 , for n < q;

λ
(p+n,q+n)
g,D (f, ψ) = 1 , for n = 1, 2, . . . .

.(2.6)

If ψ(R) = R and p ≥ q, then Definition 2.2 coincides with the definition of (p, q)-ψ relative Gol’dberg
order and (p, q)-ψ relative Gol’dberg lower order introduced by T. Biswas and R. Biswas [6]. Consequently
for ψ(R) = R and p ≥ q, Definition 2.3 reduces to the definition of index-pair (p, q) of an entire function
with respect to another entire function of n-complex variables [3].

T. Biswas and C. Biswas [4] introduced the definition of (p, q)-ψ relative Gol’dberg type 4(p,q)
g,D (f, ψ) and

(p, q)-ψ relative Gol’dberg lower type ∇(p,q)
g,D (f, ψ), (p, q)-ψ relative Gol’dberg weak type 4(p,q)

g,D (f, ψ) and the

growth indicator ∇(p,q)

g,D (f, ψ) in the following ways;
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Definition 2.4 ([4]). Let ψ(R) : [0,+∞)→ (0,+∞) be a non-decreasing unbounded function. Also, let f(z)
and g(z) be any two entire functions of n-complex variables. The (p, q)-ψ relative Gol’dberg type and (p, q)-ψ
relative Gol’dberg lower type of f(z) with respect to g(z) are defined as,

4(p,q)
g,D (f, ψ) = lim sup

R→∞

log[p−1]M−1
g,D(Mf,D(R))(

log[q−1] ψ(R)
)ρ(p,q)

g,D (f,ψ)
, 0 < ρ

(p,q)
g,D (f, ψ) < +∞,(2.7)

and

∇(p,q)
g,D (f, ψ) = lim inf

R→∞

log[p−1]M−1
g,D(Mf,D(R))(

log[q−1] ψ(R)
)ρ(p,q)

g,D (f,ψ)
, 0 < ρ

(p,q)
g,D (f, ψ) < +∞.(2.8)

Definition 2.5 ([4]). Let ψ(R) : [0,+∞)→ (0,+∞) be a non-decreasing unbounded function. Let f(z) and
g(z) be any two entire functions of n-complex variables. The relative (p, q)-ψ Gol’dberg weak type and the
growth indicator of f(z) with respect to g(z) are defined as,

4(p,q)

g,D (f, ψ) = lim inf
R→∞

log[p−1]M−1
g,D(Mf,D(R))(

log[q−1] ψ(R)
)λ(p,q)

g,D (f,ψ)
, 0 < λ

(p,q)
g,D (f, ψ) < +∞,(2.9)

and

∇(p,q)

g,D (f, ψ) = lim sup
R→∞

log[p−1]M−1
g,D(Mf,D(R))(

log[q−1] ψ(R)
)λ(p,q)

g,D (f,ψ)
, 0 < λ

(p,q)
g,D (f, ψ) < +∞.(2.10)

During the past decades, the several authors [1, 2, 3, 5, 6, 10] made closed investigation on the growth
properties of entire functions of n-complex variables using different growth indicator such as (p, q)-ψ relative
order, (p, q)-ψ relative lower order etc.

3 Mains Results
Theorem 3.1. Let f , g, h and k be any four entire functions of n-complex variables such that 0 <

λ
(p,m)
h,D (f, ψ) < ρ

(p,m)
h,D (f, ψ) < +∞, and 0 < λ

(q,m)
k,D (g, ψ) < ρ

(q,m)
k,D (g, ψ) < +∞, where p, q, m, are all

positive integers.
Then

λ
(p,m)
h,D (f, ψ)

ρ
(q,m)
k,D (g, ψ)

≤ lim inf
R→∞

log[p]M−1
h,D(Mf,D(R))

log[q]M−1
k,D(Mg,D(R))

≤
λ

(p,m)
h,D (f, ψ)

λ
(q,m)
k,D (g, ψ)

≤ lim sup
R→∞

log[p]M−1
h,D(Mf,D(R))

log[q]M−1
k,D(Mg,D(R))

≤
ρ

(p,m)
h,D (f, ψ)

λ
(q,m)
k,D (g, ψ)

.

Proof. From the definition of λ
(p,m)
h,D (f, ψ) and ρ

(q,m)
k,D (g, ψ), we get for arbitrary positive ε > 0 for all large

values of R,

log[p]M−1
h,D(Mf,D(R)) ≥ (λ

(p,m)
h,D (f, ψ)− ε) log[m] ψ(R),(3.1)

and

log[q]M−1
k,D(Mg,D(R)) ≤ (ρ

(q,m)
k,D (g, ψ) + ε) log[m] ψ(R).(3.2)

Now from (3.1) and (3.2), it follows that for all sufficiently large values of R

log[p]M−1
h,D(Mf,D(R))

log[q]M−1
k,D(Mg,D(R))

≥
λ

(p,m)
h,D (f, ψ)− ε

ρ
(q,m)
k,D (g, ψ) + ε

.

As ε > 0 is arbitrary,

lim inf
R→∞

log[p]M−1
h,D(Mf,D(R))

log[q]M−1
k,D(Mg,D(R))

≥
λ

(p,m)
h,D (f, ψ)

ρ
(q,m)
k,D (g, ψ)

.(3.3)
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Again for a sequence of value of R tending to infinity,

log[p]M−1
h,D(Mf,D(R)) ≤ (λ

(p,m)
h,D (f, ψ) + ε) log[m] ψ(R),(3.4)

and for all sufficiently large values of R,

log[q]M−1
k,D(Mg,D(R)) ≥ (λ

(q,m)
k,D (g, ψ)− ε) log[m] ψ(R).(3.5)

Now from (3.4) and (3.5), we obtain for a sequence of values of R tending to infinity

log[p]M−1
h,D(Mf,D(R))

log[q]M−1
k,D(Mg,D(R))

≤
λ

(p,m)
h,D (f, ψ) + ε

λ
(q,m)
k,D (g, ψ)− ε

.

As ε > 0 is arbitrary,

lim inf
R→∞

log[p]M−1
h,D(Mf,D(R))

log[q]M−1
k,D(Mg,D(R))

≤
λ

(p,m)
h,D (f, ψ)

λ
(q,m)
k,D (g, ψ)

.(3.6)

Also for all sufficient values of R,

log[q]M−1
k,D(Mg,D(R)) ≤ (λ

(q,m)
k,D (g, ψ) + ε) log[m] ψ(R).(3.7)

Combining (3.1) and (3.7), we obtain for a sequence of values of R tending to infinity,

log[p]M−1
h,D(Mf,D(R))

log[q]M−1
k,D(Mg,D(R))

≥
λ

(p,m)
h,D (f, ψ)− ε

λ
(q,m)
k,D (g, ψ) + ε

.

As ε > 0 is arbitrary,

lim sup
R→∞

log[p]M−1
h,D(Mf,D(R))

log[q]M−1
k,D(Mg,D(R))

≥
λ

(p,m)
h,D (f, ψ)

λ
(q,m)
k,D (g, ψ)

.(3.8)

Also for all sufficiently large values of R,

log[p]M−1
h,D(Mf,D(R)) ≤ (ρ

(p,m)
h,D (f, ψ) + ε) log[m] ψ(R).(3.9)

Now combining (3.5) and (3.9), for all sufficiently large values of R,

log[p]M−1
h,D(Mf,D(R))

log[q]M−1
k,D(Mg,D(R))

≤
ρ

(p,m)
h,D (f, ψ) + ε

λ
(q,m)
k,D (g, ψ)− ε

.

Since ε is arbitrary

lim sup
R→∞

log[p]M−1
h,D(Mf,D(R))

log[q]M−1
k,D(Mg,D(R))

≤
ρ

(p,m)
h,D (f, ψ)

λ
(q,m)
k,D (g, ψ)

.(3.10)

Thus the theorem follows from (3.3), (3.6), (3.8) and (3.10).

Theorem 3.2. Let f , g, h and k be any four entire functions of n-complex variables such that 0 <

ρ
(p,m)
h,D (f, ψ) < +∞, and 0 < ρ

(q,m)
k,D (g, ψ) < +∞, where p, q, m, are all positive integers.

Then

lim inf
R→∞

log[p]M−1
h,D(Mf,D(R))

log[q]M−1
k,D(Mg,D(R))

≤
ρ

(p,m)
h,D (f, ψ)

ρ
(q,m)
k,D (g, ψ)

≤ lim sup
R→∞

log[p]M−1
h,D(Mf,D(R))

log[q]M−1
k,D(Mg,D(R))

.

Proof. From the definition of ρ
(q,m)
k,D (g, ψ), we get for a sequence of values of R tending to infinity,

log[q]M−1
k,D(Mg,D(R)) ≥ (ρ

(q,m)
k,D (g, ψ)− ε) log[m] ψ(R).(3.11)

Now from (3.9) and (3.11), we get for a sequence of values of R tending to infinity,

log[p]M−1
h,D(Mf,D(R))

log[q]M−1
k,D(Mg,D(R))

≤
ρ

(p,m)
h,D (f, ψ) + ε

ρ
(q,m)
k,D (g, ψ)− ε

.

As ε > 0 is arbitrary,

lim inf
R→∞

log[p]M−1
h,D(Mf,D(R))

log[q]M−1
k,D(Mg,D(R))

≤
ρ

(p,m)
h,D (f, ψ)

ρ
(q,m)
k,D (g, ψ)

.(3.12)
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Also for all sufficiently large values of R ,

log[p]M−1
h,D(Mf,D(R)) ≥ (ρ

(q,m)
h,D (f, ψ)− ε) log[m] ψ(R).(3.13)

Now from (3.2) and (3.13), we get for a sequence of values of R tending to infinity,

log[p]M−1
h,D(Mf,D(R))

log[q]M−1
k,D(Mg,D(R))

≥
ρ

(p,m)
h,D (f, ψ)− ε

ρ
(q,m)
k,D (g, ψ) + ε

.

As ε > 0 is arbitrary,

lim sup
R→∞

log[p]M−1
h,D(Mf,D(R))

log[q]M−1
k,D(Mg,D(R))

≥
ρ

(p,m)
h,D (f, ψ)

ρ
(q,m)
k,D (g, ψ)

.(3.14)

Thus the theorem follows from (3.12) and (3.14).

Theorem 3.3. Let f , g, h and k be any four entire functions of n-complex variables such that 0 <

λ
(p,m)
h,D (f, ψ) < ρ

(p,m)
h,D (f, ψ) < +∞ and 0 < λ

(q,m)
k,D (g, ψ) < ρ

(q,m)
k,D (g, ψ) < +∞, where p, q, m, are all

positive integers.
Then

λ
(p,m)
h,D (f, ψ)

ρ
(q,m)
k,D (g, ψ)

≤ lim inf
R→∞

log[p]M−1
h,D(Mf,D(R))

log[q]M−1
k,D(Mg,D(R))

≤ min

{
λ

(p,m)
h,D (f, ψ)

λ
(q,m)
k,D (g, ψ)

,
ρ

(p,m)
h,D (f, ψ)

ρ
(q,m)
k,D (g, ψ)

}

≤ max

{
λ

(p,m)
h,D (f, ψ)

λ
(q,m)
k,D (g, ψ)

,
ρ

(p,m)
h,D (f, ψ)

ρ
(q,m)
k,D (g, ψ)

}
≤ lim sup

R→∞

log[p]M−1
h,D(Mf,D(R))

log[q]M−1
k,D(Mg,D(R))

≤
ρ

(p,m)
h,D (f, ψ)

λ
(q,m)
k,D (g, ψ)

.

Theorem 3.4. Let f , g, h and k be any four entire functions of n-complex variables such that 0 <

∇(p,m)
h,D (f, ψ) < 4(p,m)

h,D (f, ψ) < +∞ and 0 < ∇(q,m)
k,D (g, ψ) < 4(q,m)

k,D (g, ψ) < +∞ and ρ
(p,m)
h,D (f, ψ) =

ρ
(q,m)
k,D (g, ψ), where p, q, m are all positive integers then

∇(p,m)
h,D (f, ψ)

4(q,m)
k,D (g, ψ)

≤ lim inf
R→∞

log[p−1]M−1
h,D(Mf,D(R))

log[q−1]M−1
k,D(Mg,D(R))

≤
∇(p,m)
h,D (f, ψ)

∇(q,m)
k,D (g, ψ)

≤ lim sup
R→∞

log[p−1]M−1
h,D(Mf,D(R))

log[q−1]M−1
k,D(Mg,D(R))

≤
4(p,m)
h,D (f, ψ)

∇(q,m)
k,D (g, ψ)

.

Proof. From the definition of 4(q,m)
k,D (g, ψ) and ∇(p,m)

h,D (f, ψ), we have for arbitrary ε > 0 and for all sufficient
large values of R,

log[p−1]M−1
h,D(Mf,D(R)) ≥ (∇(p,m)

h,D (f, ψ)− ε){logm−1 ψ(R)}ρ
(p,m)
h,D (f,ψ),(3.15)

and

log[q−1]M−1
k,D(Mg,D(R)) ≤ (4(q,m)

k,D (g, ψ) + ε){logm−1 ψ(R)}ρ
(q,m)
k,D (g,ψ).(3.16)

Now using the condition ρ
(p,m)
h,D (f, ψ) = ρ

(q,m)
k,D (g, ψ), combining (3.15) and (3.16), we get for a sequence of

values of R tending to infinity,

log[p−1]M−1
h,D(Mf,D(R))

log[q−1]M−1
k,D(Mg,D(R))

≥
(∇(p,m)

h,D (f, ψ)− ε)

(4(q,m)
k,D (g, ψ) + ε)

.

As ε > 0 is arbitrary,

lim inf
R→∞

log[p−1]M−1
h,D(Mf,D(R))

log[q−1]M−1
k,D(Mf,D(R))

≥
∇(p,m)
h,D (g, ψ)

4(q,m)
k,D (g, ψ)

.(3.17)

Also, for all sufficient large values of R,

log[p−1]M−1
h,D(Mf,D(R)) ≤ (∇(p,m)

h,D (f, ψ) + ε){logm−1 ψ(R)}ρ
(p,m)
h,D (f,ψ),(3.18)
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and for all sufficiently large values of R,

log[q−1]M−1
k,D(Mg,D(R)) ≥ (∇(q,m)

k,D (f, ψ)− ε){logm−1 ψ(R)}ρ
(q,m)
k,D (g,ψ).(3.19)

Using the condition ρ
(p,m)
h,D (f, ψ) = ρ

(q,m)
k,D (g, ψ), combining (3.18) and (3.19), we get for a sequence of values

of R tending to infinity,

log[p−1]M−1
h,D(Mf,D(R))

log[q−1]M−1
k,D(Mg,D(R))

≤
(∇(p,m)

h,D (f, ψ) + ε)

(∇(q,m)
k,D (g, ψ)− ε)

.

As ε > 0 is arbitrary,

lim inf
R→∞

log[p−1]M−1
h,D(Mf,D(R))

log[q−1]M−1
k,D(Mg,D(R))

≤
∇(p,m)
h,D (f, ψ)

4(q,m)
k,D (g, ψ)

.(3.20)

Also for all sufficiently large values of R,

(3.21) log[q−1]M−1
k,D(Mg,D(R)) ≤ (∇(q,m)

k,D (g, ψ) + ε){logm−1 ψ(R)}ρ
(q,m)
k,D (g,ψ).

Using the condition ρ
(p,m)
h,D (f, ψ) = ρ

(q,m)
k,D (g, ψ), combining (3.15) and (3.21), we get for a sequence of values

of R tending to infinity,

log[p−1]M−1
h,D(Mf,D(R))

log[q−1]M−1
k,D(Mg,D(R))

≥
(∇(p,m)

h,D (f, ψ)− ε)

(∇(q,m)
k,D (g, ψ) + ε)

.

As ε > 0 is arbitrary,

(3.22) lim sup
R→∞

log[p−1]M−1
h,D(Mf,D(R))

log[q−1]M−1
k,D(Mf,D(R))

≥
∇(p,m)
h,D (f, ψ)

∇(q,m)
k,D (f, ψ)

.

Also for all sufficiently large values of R,

(3.23) log[p−1]M−1
h,D(Mf,D(R)) ≤ (4(p,m)

h,D (f, ψ) + ε){logm−1 ψ(R)}ρ
(p,m)
h,D (f,ψ).

Using the condition ρ
(p,m)
h,D (f, ψ) = ρ

(q,m)
k,D (g, ψ) and combining (3.19) and (3.23), we get for a sequence of

values of R tending to infinity,

log[p−1]M−1
h,D(Mf,D(R))

log[q−1]M−1
k,D(Mf,D(R))

≤
(4(p,m)

h,D (g, ψ) + ε)

(∇(q,m)
k,D (g, ψ)− ε)

.

As ε > 0 is arbitrary,

(3.24) lim sup
R→∞

log[p−1]M−1
h,D(Mf,D(R))

log[q−1]M−1
k,D(Mg,D(R))

≤
4(p,m)
h,D (f, ψ)

∇(q,m)
k,D (g, ψ)

.

Thus the theorem follows from (3.17), (3.20), (3.22) and (3.24).

Theorem 3.5. Let f , g, h and k be any four entire functions of n-complex variables such that 0 <

4(p,m)
h,D (f, ψ) < +∞, and 0 < 4(q,m)

k,D (g, ψ) < +∞ and ρ
(p,m)
h,D (f, ψ) = ρ

(q,m)
k,D (g, ψ) where p, q, m are all

positive integers.
Then

lim inf
R→∞

log[p−1]M−1
h,D(Mf,D(R))

log[q−1]M−1
k,D(Mg,D(R))

≤
4(p,m)
h,D (f, ψ)

4(q,m)
k,D (g, ψ)

≤ lim sup
R→∞

log[p−1]M−1
h,D(Mf,D(R))

log[q−1]M−1
k,D(Mg,D(R))

.

Proof. From the definition of 4(q,m)
k,D (g, ψ), we have for arbitrary ε and for all sufficient large values of R,

log[q−1]M−1
k,D(Mg,D(R)) ≥ (4(q,m)

k,D (g, ψ)− ε){logm−1 ψ(R)}ρ
(q,m)
h,D (g,ψ),(3.25)

Using condition ρ
(p,m)
h,D (f, ψ) = ρ

(q,m)
k,D (g, ψ) and combining (3.23) and (3.25), we get for a sequence of values

of R tending to infinity,

log[p−1]M−1
h,D(Mf,D(R))

log[q−1]M−1
k,D(Mg,D(R))

≤
4(p,m)
h,D (f, ψ) + ε

4(q,m)
k,D (g, ψ)− ε

.
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As ε > 0 is arbitrary,

lim inf
R→∞

log[p−1]M−1
h,D(Mf,D(R))

log[q−1]M−1
k,D(Mg,D(R))

≤
4(p,m)
h,D (f, ψ)

4(q,m)
k,D (g, ψ)

.(3.26)

Also for all sufficiently large values of R,

log[p−1]M−1
h,D(Mf,D(R)) ≥ (4(p,m)

h,D (f, ψ)− ε){logm−1 ψ(R)}ρ
(p,m)
h,D (f,ψ).(3.27)

Using condition ρ
(p,m)
h,D (f, ψ) = ρ

(q,m)
k,D (g, ψ) and combining (3.16) and (3.27), we get for a sequence of values

of R tending to infinity,

log[p−1]M−1
h,D(Mf,D(R))

log[q−1]M−1
k,D(Mg,D(R))

≥
4(p,m)
h,D (f, ψ)− ε

4(q,m)
k,D (g, ψ) + ε

.

As ε > 0 is arbitrary,

lim sup
R→∞

log[p−1]M−1
h,D(Mf,D(R))

log[q−1]M−1
k,D(Mg,D(R))

≥
4(p,m)
h,D (f, ψ)

4(q,m)
k,D (g, ψ)

.(3.28)

Thus, the theorem follows from (3.26) and (3.28).

Theorem 3.6. Let f , g, h and k be any four entire functions of n-complex variables such that 0 <

∇(p,m)
h,D (f, ψ) < 4(p,m)

h,D (f, ψ) < +∞, and 0 < ∇(q,m)
k,D (g, ψ) < 4(q,m)

k,D (g, ψ) < +∞ and ρ
(p,m)
h,D (f, ψ) =

ρ
(q,m)
k,D (g, ψ) where p, q, m are all positive integers.

Then

lim inf
R→∞

log[p−1]M−1
h,D(Mf,D(R))

log[q−1]M−1
k,D(Mg,D(R))

≤ min

{
∇(p,m)
h,D (f, ψ)

∇(q,m)
k,D (g, ψ)

,
4(p,m)
h,D (f, ψ)

4(q,m)
k,D (g, ψ)

}

≤ max

{
∇(p,m)
h,D (f, ψ)

∇(q,m)
k,D (g, ψ)

,
4(p,m)
h,D (f, ψ)

4(q,m)
k,D (g, ψ)

}
≤ lim sup

R→∞

log[p−1]M−1
h,D(Mf,D(R))

log[q−1]M−1
k,D(Mg,D(R))

.

Theorem 3.7. Let f , g, h and k be any four entire functions of n-complex variables such that 0 <

4(p,m)

h,D (f, ψ) < ∇(p,m)

h,D (f, ψ) < +∞ and 0 < 4(q,m)

k,D (g, ψ) < ∇(q,m)

k,D (g, ψ) < +∞ and λ
(p,m)
h,D (f, ψ) =

λ
(q,m)
k,D (g, ψ) where p, q, m are all positive integers.

Then
4(p,m)

h,D (f, ψ)

∇(q,m)

k,D (g, ψ)
≤ lim inf

R→∞

log[p−1]M−1
h,D(Mf,D(R))

log[q−1]M−1
k,D(Mg,D(R))

≤
4(p,m)

h,D (f, ψ)

4(q,m)

k,D (g, ψ)

≤ lim sup
R→∞

log[p−1]M−1
h,D(Mf,D(R))

log[q−1]M−1
k,D(Mg,D(R))

≤
∇(p,m)

h,D (f, ψ)

4(q,m)

k,D (g, ψ)
.

Similarly, in line with Theorem 3.8 and Theorem 3.9 and with help of Theorems 3.5 and 3.6, one may
easily prove the following two theorems, and therefore their proofs are omitted.

Theorem 3.8. Let f , g, h and k be any four entire functions of n-complex variables such that 0 <

∇(p,m)

h,D (f, ψ) < +∞, 0 < ∇(q,m)

k,D (g, ψ) < +∞ and λ
(p,m)
h,D (f, ψ) = λ

(q,m)
k,D (g, ψ) where p, q, m are all positive

integers,

lim inf
R→∞

log[p−1]M−1
h,D(Mf,D(R))

log[q−1]M−1
k,D(Mg,D(R))

≤
∇(p,m)

h,D (f, ψ)

∇(q,m)

k,D (g, ψ)
≤ lim sup

R→∞

log[p−1]M−1
h,D(Mf,D(R))

log[q−1]M−1
k,D(Mg,D(R))

.

Theorem 3.9. Let f , g, h and k be any four entire functions of n-complex variables such that 0 <

4(p,m)

h,D (f, ψ) < ∇(p,m)

h,D (f, ψ) < +∞, 0 < 4(q,m)

k,D (g, ψ) < ∇(q,m)

k,D (g, ψ) < +∞ and λ
(p,m)
h,D (f, ψ) = λ

(q,m)
k,D (g, ψ)

where p, q, m are all positive integers

lim inf
R→∞

log[p−1]M−1
h,D(Mf,D(R))

log[q−1]M−1
k,D(Mg,D(R))

≤ min

4
(p,m)

h,D (f, ψ)

4(q,m)

k,D (g, ψ)
,
∇(p,m)

h,D (f, ψ)

∇(q,m)

k,D (g, ψ)


≤ max

4
(p,m)

h,D (f, ψ)

4(q,m)

k,D (g, ψ)
,
∇(p,m)

h,D (f, ψ)

∇(q,m)

k,D (g, ψ)

 ≤ lim sup
R→∞

log[p−1]M−1
h,D(Mf,D(R))

log[q−1]M−1
k,D(Mg,D(R))

.
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4 Conclusion
In this paper, we want to establish some growth properties of entire function of n-complex variables on the
basis of their of (p, q)-ψ relative Gol’dberg order, (p, q)-ψ relative Gol’dberg type, (p, q)-ψ relative Gol’dberg
weak type and growth indicator where p, q are any positive integer.
Acknowledgement. We are very grateful to the Editor and Referees for their useful suggestions in bringing
the paper to its present form.
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