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Abstract

In this paper, the author considered a new class for Pál type interpolation problems. They termed
Pál type interpolation problems as PTIP . This new class for PTIP is defined by omitting a non-zero
complex node from the set of value nodes and simultaneously adding another complex node to the set of
derivative nodes.
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1 Introduction
Lacunary Polynomial Interpolation is an extension of Hermite Interpolation. It comprises the matching of
values and derivatives at certain points but does not insist that these points be consecutive. The author
termed Lacunary Polynomial Interpolation as LPI. LPI problems are not always regular due to matching
at non-consecutive derivatives.

The study on LPI started with the evolution of Birkhoff interpolation. It is a finely honed theory on real
nodes [9, 20]. LPI problems on non-uniformly distributed nodes received attention after the investigations
of Brueck [1]. He studied non-uniformly distributed nodes on the unit disk, obtained by applying Mbius
transform to the set of zeros of roots of unity. He defined the following polynomials;

(1.1) vαn(z) = (z + α)n − (1 + αz)n,

(1.2) wαn(z) = (z + α)n + (1 + αz)n.

where 0 < α < 1.
A revolution in the theory of LPI at special nodes was due to Pál [12]. He introduced a new type of

interpolation on zeros of two different polynomials, referred as Pál type interpolation.
Let A(z) ∈ πm and B(z) ∈ πn, where πn be the set of polynomials of degree less than or equal to n with
complex coefficients. For a given positive integer r the problem of (0, r) Pál type interpolation i.e. (0, r)-
PTIP consists finding a polynomial P (z) ∈ πm+n−1, that has prescribed values at m pairwise distinct nodes
and prescribed value for rth derivative at n pairwise distinct nodes. These m nodes are called value nodes,
and n nodes are called derivative nodes.

The (0, r)-PTIP on the pair {A(z), B(z)} is regular if and only if any P (z) ∈ πm+n−1 with the following
sets of interpolation conditions:

P (yi) = 0; where A(yi) = 0; i = 1, 2, . . . ,m,
P (r)(zj) = 0; where B(zj) = 0; j = 1, 2, . . . , n.

implies that P (z) ≡ 0. Here the zeros of A(z), B(z) are assumed to be simple.
De Bruin [2, 4, 5], De Bruin et al. [3], De Bruin and Dikshit [6], Bokari et al. [7], Dikshit [8], Pathak

[13], Mandloi and Pathak [10], Modi et al. [11], studied regularity of Pál type interpolation problems with
some additional nodes.

De Bruin [2] evaluated regularity of incomplete Pál type interpolation on the zeros of polynomials given
by (1.1) and (1.2). He omitted one or two real nodes from zeros of wαn(z) and/or vαn(z).
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The author [14, 15] investigated the regularity of Birkhoff interpolation in certain dimensions. They revisited
PTIP for the sets consisting of the zeros of polynomials with complex coefficients with some additional nodes.
Also, they assessed the maximum number of nodes that can be added at value nodes to get regular PTIP
[16]. They studied the regularity of ‘incomplete’ PTIP for several pairs, where they omitted real as well as
complex nodes from zeros of certain polynomials [17, 18]. The author [19] defined a new class of Pál type
interpolation obtained by adding a real node to one set of interpolation points and omitting a real node from
another set of interpolation points.
In section 2, we consider (0, 1)-PTIP , where we omit a non-zero complex node ζ from vα2n(z) and add −ζ
to wαn(z) or vαn(z).
In section 3, We consider the polynomials am(z) ∈ πm and bn(z) ∈ πn (m ≥ n) with simple zeros and take
Am(z) and Bn(z) as the sets of the zeros of these polynomials respectively with Bn(z) ⊆ Am(z). We assess
the regularity of (0, 1)-PTIP and (0, 2)- PTIP by omitting a non-zero complex node ζ from am(z) and
adding −ζ to bn(z).

2 A new class of PTIP on non-uniformly distributed nodes

Theorem 2.1. Let 0 < α < 1, n ≥ 2 then (0, 1)-PTIP on
{
vα2n(z)
(z−ζ) , (z + ζ)wαn(z)

}
is regular, for ±ζ ∈ vα2n(z),

±ζ /∈ wαn(z).

Proof. Here, we have total 3n interpolation points.
The problem is to find a polynomial P (z) ∈ π3n−1 with

P (yi) = 0 ; yi is zero of
vα2n(z)
(z−ζ) ; i = 1, 2, . . . , (2n− 1),

P ′(−ζ) = 0,
P ′(zj) = 0; zj is zero of wαn(z); j = 1, 2, . . . , n.

Let P (z) =
vα2n(z)
(z−ζ)Q(z); where Q(z) ∈ πn,

then P (z) ∈ π3n−1.
The problem will be regular if P (z) ≡ 0.
As P ′(zj) = 0, we get

vα2n(zj)

(zj − ζ)
Q′(zj) +

{
{vα2n(zj)}′

(zj − ζ)
− vα2n(zj)

(zj − ζ)2

}
Q(zj) = 0.

Also, zj ∈ wαn(z) ⊆ vα2n(z), thus we have

{vα2n(zj)}′

(zj − ζ)
Q(zj) = 0.

Since,

{vα2n(zj)}′ =
2n(1− α2)(zj + α)n−1

(1 + αzj)
6= 0,

Therefore,

Q(zj) = 0.

Since zj has n zeros, therefore

(2.1) Q(z) = Cqn(z).

Since,
P ′(−ζ) = 0,

Therefore,
{vα2n(−ζ)}′

(2ζ)
Q(−ζ) = 0.

As,
{vα2n(−ζ)}′

2ζ
6= 0,
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we have

(2.2) Q(−ζ) = 0.

Equations (2.1), (2.2) and interpolatory conditions, give

C = 0.

Hence,
Q(z) ≡ 0.

Remark 2.1. One of the essential conditions for the above result is wαn(z) ⊆ V α2n(z) . Since one more similar
condition satisfies for the polynomials given by equations (1.1) and (1.2) viz. vαn(z) ⊆ V α2n(z). Therefore, the
following result must hold.

Theorem 2.2. Let 0 < α < 1, n ≥ 2 then (0, 1)-PTIP on
{
vα2n(z)
(z+ζ) , (z − ζ)vαn(z)

}
is regular, for ±ζ ∈ vα2n(z),

±ζ /∈ vαn(z).

3 A new class of PTIP on the zeros of the polynomials with complex coefficients

Theorem 3.1. (0, 1)-PTIP on
{
am(z)
(z−ζ) , (z + ζ)bn(z)

}
,m > n ≥ 1 for ± ζ ∈ Am(z),±ζ /∈ Bn(z) is regular.

Proof. Here we have total m+ n interpolation points.
The problem is to find a polynomial P (z) ∈ πm+n−1 with

P (yi) = 0 ; where yi is a zero of am(z)
(z−ζ) ; i = 1, 2, . . . , (m− 1),

P ′(−ζ) = 0,
P ′(zj) = 0 ; where zj is a zero of bn(z) ; j = 1, 2, . . . , n.

Let P (z) = am(z)
(z−ζ)Q(z) ; where Q(z) ∈ πn,

then P (z) ∈ πm+n−1.
The problem will be regular if P (z) ≡ 0.
Now,
P ′(zj) = 0, we have

am(zj)

(zj − ζ)
Q′(zj) +

{
a′m(zj)

(zj − ζ)
− am(zj)

(zj − ζ)2

}
Q(zj) = 0.

As P ′(−ζ) = 0,−ζ ∈ Am(z) and am(z) has simple zeros, the polynomial and its derivative cant vanish
simultaneously

(3.1) Q(−ζ) = 0.

Also, zj ∈ Bn(z) ⊆ Am(z), we have
a′m(zj)

(zj − ζ)
Q(zj) = 0.

Since ζ /∈ Bn(z) and a′m(zj) 6= 0, therefore we get

Q(zj) = 0.

As zj has n zeros, thus we have

(3.2) Q(z) = Cqn(z).

Equations (3.1), (3.2) and interpolatory conditions, give

C = 0.

Hence,
Q(z) ≡ 0.

Theorem 3.2. The (0, 2)-PTIP on
{
am(z)
(z−ζ) , (z + ζ)bn(z)

}
, m > n ≥ 1 for ±ζ ∈ Am(z),±ζ /∈ Bn(z) is

regular.
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Proof. Here we have total m+ n interpolation points.
The problem is to find a polynomial P (z) ∈ πm+n−1 with

P (yi) = 0 ; where yi is a zero of am(z)
(z−ζ) ; i = 1, 2, . . . , (m− 1),

P ′′(−ζ) = 0,
P ′′(zj) = 0 ; where zj is a zero of bn(z) ; j = 1, 2, . . . , n.

Let P (z) = am(z)
(z−ζ)Q(z) ; where Q(z) ∈ πn,

then P (z) ∈ πm+n−1.
The problem will be regular if P (z) ≡ 0.
Now,
P ′′(zj) = 0,
Therefore,

am(zj)

(zj − ζ)
Q′′(zj) + 2

{
a′m(zj)

(zj − ζ)
− am(zj)

(zj − ζ)2

}
Q′(zj) +

{
a′′m(zj)

(zj − ζ)
− 2

a′m(zj)

(zj − ζ)2
+ 2

am(zj)

(zj − ζ)3

}
Q(zj) = 0.

Also zj ∈ Bn(z) ⊆ Am(z) and am(z) has simple zeros, the polynomial and its derivative cant vanish
simultaneously, therefore we get

2(zj − ζ)a′m(zj)Q
′(zj) + {(zj − ζ)a′′m(zj)− 2a′m(zj)}Q(zj) = 0.

Since zj has n zeros and Q(z) ∈ πn, therefore the differential equation is given by

(3.3) 2(z − ζ)a′m(z)Q′(z) + {(z − ζ)a′′m(z)− 2a′m(z)}Q(z) = C(z + ζ)bn(z).

The integrating factor of the differential equation (3.3) is given by

Φ(z) =
{a′m(z)}1/2

(z − ζ)
.

The solution of the differential equation (3.3) is given by

{a′m(z)}1/2

(z − ζ)
Q(z) = C

∫
bn(t)(t+ ζ)

{a′m(z)}1/2 (t− ζ)2
dt.

C
bn(t)(t+ ζ)

{a′m(z)}1/2 (t− ζ)2

∣∣∣∣∣
t=ζ

= 0⇒ C = 0.

Hence,
Q(z) ≡ 0

.

4 Conclusion
The posed problems of (0, 1)-PTIP and (0, 2)-PTIP obtained by adding and omitting a non-zero complex
node simultaneously are found to be regular on considered sets of value nodes and derivative nodes.
Acknowledgement. We are very much grateful to the Editor and Reviewer for their valuable suggestions
for improving the paper in its present form.
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