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Abstract

In this paper, we study the explicit representation of weighted Pál - type (0,2) - interpolation on two
pairwise disjoint sets of nodes on the unit circle, which are obtained by projecting vertically the zeros of
(1− x2)Pn(x) and P

′′
n (x) respectively, where Pn(x) stands for nth Legendre polynomial.
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1 Introduction
In 1979, Turán [12] studied the (0,2) – Interpolation for getting an approximate solution of differential
equation y′′+fy = 0. Balázs [8] introduced the weighted (0, 2)– Interpolation on the zeros of Ultraspherical

polynomial P
(α)
n (x), α > −1. In 1960, Kǐs [10] initiated the Lacunary interpolation on the unit circle. He

considered (0,2)- Interpolation on the unit circle and established the convergence theorem. After that several
mathematician have considered (0,2) – Interpolation viz. on the unit circle, infinite interval and on the
real line. In 1996, Xie [13] considered (0, 1, 3)∗- interpolation on the vertically projected nodes onto the
unit circle. He claimed the regularity, explicit representation and convergence of (0,1,3)* - Interpolation.
In 2003, Dikshit [9] considered the Pál – type Interpolation on non uniformly distributed nodes on the
unit circle. After that author and Mathur [1] considered the weighted (0,2)* – Interpolation on the set
of nodes obtained by projecting vertically the zeros of (1 − x2)Pn(x) on the unit circle and established
a convergence theorem for that interpolatory polynomial. In 2012, she [2,3] considered weighted (0;0,2)
and (0,2;0) – Interpolation on projected nodes onto the unit circle, obtained the regularity, fundamental
polynomial and established a convergence theorem. In 2017, authors [4] considerd the regularity and explicit
forms of weighted (0,2;0)- interpolation on the unit circle on two pairwise disjoint sets of nodes obtained
by projecting vertically the zeros of (1− x2)Pn(x) and P

′′

n (x) respectively onto the unit circle, where Pn(x)
stands for nth Legendre polynomial. After that the auhors [5] also established convergence for the above said
interpolatory polynomials. Recently, authors [6] considered weighted Lacunary interpolation on the nodes,
which are obtained by projecting vertically the zeros of the (1−x2)P

′

n(x) onto the unit circle and established
a convergence theorem for the same. Recently, author with Iqram [7] considered generalized Hermite-Fejér

interpolation on the nodes, which are obtained by vertically projected zeros of the (1 + x)P
(α,β)
n (x) on the

unit circle, where P
(α,β)
n (x) stands for Jacobi polynomial established the convergence theorem. These have

motivated us to consider (0;0,2) interpolation on two pairwise disjoint sets of nodes on the unit circle. Let

(1.1) Zn=

{
zk = cosθk + i sinθk

zn+k = zk , k = 1 (1)n,

(1.2) Tn =

{
tk = cosϕk + i sinϕk,

t(n−2)+k = tk , k = 1 (1)n− 2,

be two set of nodes. In which the Lagrange data is prescribed on the first set of nodes whereas Lacunary
data on the other one.We obtained regularity, explicit forms and established a convergence theorem of the
interpolatory polynomials. In Section 2, we give some preliminaries, in Section 3, we describe the problem
and regularity, in Section 4 and Section 5, we present the explicit forms and convergence of weighted Pál –
type (0,2) – interpolation on the unit circle respectively.
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2 Preliminaries
The differential equation satisfied by Pn (x) is

(2.1)
(
1− x2

)
P ′′n (x)− 2x P ′n (x) + n (n+ 1)Pn (x) = 0.

(2.2) W (z) =

2n∏
k=1

(z − zk) = Kn Pn

(
1 + z2

2z

)
zn,

(2.3) R (z) =
(
z2 − 1

)
W (z) ,

(2.4) H (z) =

2n−4∏
k=1

(z − tk) = K∗∗n P
′′

n

(
1 + z2

2z

)
zn−2.

We shall require the following fundamental polynomials of Lagrange interpolation based on the zeros of
W (z) and R (z) , are respectively defined as

L1k (z) =
W (z)

(z − zk)W ′ (zk)
, k = 1 (1) 2n,(2.5)

Lk (z) =
R (z)

(z − zk)R′ (zk)
, k = 0 (1) 2n+ 1,(2.6)

l2k (z) =
H (z)

(z − tk) H
′
(tk)

, k = 1 (1) 2n− 4,(2.7)

Jk (z) =

∫ z

0

t l2k (t) dt,(2.8)

J (z) =

∫ z

0

H (t) dt,(2.9)

which satisfies

(2.10) J (−z) = −J (z) .

We shall also use the following results in our investigations :

(2.11) W ′ (zk) =
Kn

2

(
z

2

k − 1
)
P ′n (xk) z

n−2

k , k = 1(1)2n− 2,

(2.12) W
′′

(zk) = Kn

[
(n− 1)

(
z2
k − 1

)
− 1
]
zn−3
k P

′

n (xk) , k = 1 (1) 2n,

(2.13) H
′
(tk) =

K∗∗n
2

(
t2k − 1

)
tn−4
k P

′′′

n (x∗k) , k = 1(1)2n− 4,

(2.14) W
′
(tk) = Kn

n
{

(n+ 3)
(
t2k − 1

)
+ 4
}

2 (t2k + 1)
tn−1
k P

n
(x∗k) ,

(2.15) W
′′

(tk) = Kn

n (n− 1)
{

(n− 1)
(
t2k − 1

)
− 1
}

2 (t2k + 1)
tn−2
k Pn (x∗k) ,

(2.16) R
′
(tk) =

(
z2
k −1

)
W
′
(zk) ,

(2.17) R
′′

(zk) = 4zk W
′
(zk) +

(
z2
k − 1

)
W
′′

(zk) ,

(2.18) R
′
(tk) =

(
t2k − 1

)
W
′
(tk) ,
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(2.19) R
′′

(tk) = 4tkW
′
(tk) +

(
t2k − 1

)
W
′′

(tk) + 2W (tk),

(2.20) H
′′

(tk) = K∗n
{

(n− 5)
(
t2k − 1

)
− 5
}
tn−5
k P

′′′

n (x∗k) .

We shall also use the following well known inequalities:
For −1 < x < 1

(2.21) |Pn (x) | ≤ 1,

(2.22)
(
1− x2

)1/4|Pn (x) | ≤
√

2

π
n−1/2,

(2.23)
(
1− x2

)3/4 |P ′n (x)| ≤
√

2 n1/2,

(2.24)
(
1− x2

) ∣∣∣P ′′n (x)
∣∣∣ ∼ n2 .

Let xk = cosθk, k = 1(1)n are the zeros of nth Legendre polynomial Pn (x) , with 1 > x1 > x2 > · · · >
xn > −1, then

(2.25)
(
1− x2

k

)−1 ∼
(
k

n

)−2

,

(2.26)
∣∣∣P (s)
n (xk)

∣∣∣ ∼ k−s−
1
2 n2s , s = 0, 1, 2, 3 .

For more details one can refer to [11].

3 The Problem and Regularity
Let Zn∪{−1, 1} and Tn be two disjoint set of nodes obtained by projecting vertically the zeros of (1−x2)Pn(x)
and P

′′

n (x) onto the unit circle respectively, where Pn(x) stands for nth Legendre polynomial, Zn and Tn are
defined in (1.1) and (1.2), we take here z0 = 1, z2n+1 = −1.
Here we are interested to determine the following polynomial Q6n−7 (z) of degree ≤ 6n − 7 satisfying the
conditions:

(3.1)


Q6n−7 (zk) = αk, k = 0 (1) 2n+ 1

Q6n−7 (tk) = βk, k = 1 (1) 2n− 4[
p (z)Q6n−7 (z)

]′′
z=tk

= γk, k = 1 (1) 2n− 4,

where α′ks , β′ks and γ′ks are arbitrary complex constants and

p (z) = zn(n−3)/2
(
z2 − 1

)7/2(
z2 + 1

)−n(n+1)/2

is a weight function.

Theorem 3.1. Q6n−7(z) is regular on Zn ∪ {−1, 1} and Tn.

Proof. It is sufficient, if we show that the unique solution of (3.1) is

Q6n−7 (z) ≡ 0,

when all data αk = βk = γk = 0.
In this case, we have

Q6n−7 (z) = W (z)H (z) q (z) ,

where q (z) is a polynomial of degree ≤ 2n− 3, W (z) and H (z) are defined in (2.2) and (2.4) respectively.
Obviously

Q6n−7 (zk) = 0, k = 1 (1) 2n,

Q6n−7 (tk) = 0, k = 1 (1) 2n− 4.
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From
[p (z)Q6n−7 (z)]

′′

z=tk
= 0,

using (2.13) - (2.15) and (2.20), we get

(3.2) q′ (tk) = 0.

Therefore, we have

(3.3) q′ (z) = a H (z) ,

where a is an arbitrary constant.
Thus, we get

(3.4) q (z) = a J (z) + b,

where

(3.5) J (z) =

∫ z

0

H (t) dt.

For q (±1) = 0, we have

(3.6)

{
a J (1) + b = 0
a J (−1) + b = 0.

Since

(3.7) J (−z) = −J (z) ,

therefore, using (3.7) in (3.6), we get a = b = 0.
Hence the theorem follows.

4 Explicit Representation of Interpolatory Polynomials
We shall write Q6n−7 (z) satisfying (3.1) as

(4.1) Q6n−7 (z) =

2n+1∑
k=0

αkB
∗
0k (z) +

2n−4∑
k=1

βkB0k (z) +

2n−4∑
k=1

γkB2k (z),

where B∗0k, B0k and B2k are unique polynomials, each of degree at most 6n−7 satisfying the conditions:

For k = 0 (1) 2n+ 1

(4.2)


B∗0k (zj) = δjk, j = 0 (1) 2n+ 1
B∗0k (tj) = 0, j = 1 (1) 2n− 4

[p (z)B∗0k (z)]
′′

z=tj
= 0, j = 1 (1) 2n− 4.

For k = 1 (1) 2n− 4

(4.3)


B0k (zj) = 0, j = 0 (1) 2n+ 1
B0k (tj) = δjk, j = 1 (1) 2n− 4

[p (z)B0k (z)]
′′

z=tj
= 0, j = 1 (1) 2n− 4.

For k = 1 (1) 2n− 4

(4.4)


B2k (zj) = 0, j = 0 (1) 2n+ 1
B2k (tj) = 0, j = 1 (1) 2n− 4

[p (z)B2k (z)]
′′

z=tj
= δjk, j = 1 (1) 2n− 4.

Theorem 4.1. For k = 1 (1) 2n− 4, we have

(4.5) B2k (z) = W (z)H (z) {ck Jk (z) + c∗k J (z) + c∗∗k } ,
where Jk (z) is defined in (2.8)

(4.6) ck =
1

2tk p (tk)W (tk)H ′ (tk)
,

(4.7) c∗k = − ck
{Jk (1)− Jk (−1)}

2 J (1)
,

(4.8) c∗∗k = − ck
{Jk (1) + Jk (−1)}

2
,

and J (z) is defined in (2.9) .
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From (4.5), we have
B2k (zj) = 0, j = 1 (1) 2n,

B2k (tj) = 0, j = 1 (1) 2n− 4.

For j = 1 (1) 2n− 4, we get

[p (z)B2k (z)]
′′

z=tj
= 0, for j 6= k .

For j = k, we get (4.6).
From B2k (zj) = 0, for j = 0 and 2n+ 1, we get (4.7) –(4.8).

Theorem 4.2. For k = 1 (1) 2n− 4, we have

(4.9) B0k (z) =

(
z2 − 1

)
W (z)

(t2k − 1)W (tk)
l22k (z) +

W (z)H (z)

(t2k − 1)W (tk)H ′ (tk)
{Sk (z) + b∗k J (z) + b∗∗k } + bkB2k (z)

where

(4.10) Sk (z) = −
∫ z

0

(
t2 − 1

) [l′2k (t)− l′2k (tk) l2k (t)]

(t− tk)
dt,

(4.11) bk = −4{l′2k (tk)}2p(tk)−
{
p (z)

(
z2 − 1

)
W (z)

}′′
z=tk

(t2k − 1)W (tk)
− 4 l′2k (tk)

{
p (z)

(
z2 − 1

)
W (z)

}′
z=tk

(t2k − 1)W (tk)

(4.12) b∗k = −{Sk (1)− Sk (−1)}
2 J (1)

,

(4.13) b∗∗k = −{Sk (1) + Sk (−1)}
2

.

From (4.9) one can see
B0k (zj) = 0, j = 1 (1) 2n .

B0k (tj) = δjk , j = 1 (1) 2n− 4.

Now from
[p (z)B0k (z)]

′′

z=tj
= 0, for j 6= k,

we get

S
′

k (tj) = −
(
t2j − 1

)(
tj − tk

) l′2k (tj) .

Owing to third condition of (4.3), we derive

S
′

k (z) =
(
z2 − 1

) [l′2k (z)− l′2k (tk) l2k (z)
]

(z − tk)
.

On solving it we obtain (4.10).
From

[p (z)B0k (z)]
′′

z=tj
= 0, for j = k,

we establish (4.11).
From (4.9), for

B0k (zj) = 0, j = 0 and 2n+ 1,

we derive (4.12) - (4.13).
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Theorem 4.3. For k = 1 (1) 2n, we have

(4.14) B∗0k (z) =

(
z2 − 1

)
H2 (z)

(z2
k − 1)H2 (zk)

L1k (z) +
W (z)H(z)

(z2
k − 1)W ′ (zk)H3 (zk)

{Mk (z) + a∗k J (z) + a∗∗k } ,

where

(4.15) Mk (z) = −
∫ z

0

[(
t2 − 1

)
H ′ (t)H (zk)−

(
z2
k − 1

)
H ′ (zk)H (t)

]
(t− zk)

dt,

(4.16) a∗k = −{Mk (1)−Mk (−1)}
2 J (1)

(4.17) a∗∗k = −{Mk (1) +Mk (−1)}
2

.

For k = 0 and 2n+ 1, we have

(4.18) B∗0k (z) = W (z)H (z) {a∗1k J (z) + a∗2k} ,
where

(4.19) a∗1k =
1

2 W (zk)H (zk) J (zk)
,

(4.20) a∗2k =
1

2 W (zk)H (zk)
.

From (4.14)
B∗0k (zj) = δjk, j = 1 (1) 2n,

B∗0k (tj) = 0, j = 1 (1) 2n− 4.

From
[p (z)B∗0k (z)]

′′

z=tj
= 0, j = 1 (1) 2n− 4,

we derive

M
′

k (tj) = −H (zk)

(
t2j − 1

)
H
′
(tj)

(tj − zk)
,

Employing to third condition of (4.2), we establish

M
′

k (z) = −

[(
z2 − 1

)
H
′
(z)H (zk)−

(
z2
k − 1

)
H
′
(zk)H (z)

]
(z − zk)

.

On solving it we get (4.15).
From (4.14), for

B∗0k (zj) = 0, j = 0 and 2n+ 1,

we derive (4.16) and (4.17).
For k = 0 and 2n+ 1, from (4.18), we have

B∗0k (zj) = 0, j = 1 (1) 2n,

B∗0k (tj) = 0, j = 1 (1) 2n− 4.

[p (z)B∗0k (z)]
′′

z=tj
= 0, j = 1 (1) 2n− 4.

For
B∗0k (zj) = δjk , j = 0 and 2n+ 1,

we get (4.19) and (4.20).
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5 Estimation of Fundamental Polynomials

Lemma 5.1. For z = eiθ, (0 ≤ θ < 2π) , we have

(5.1)

2n−4∑
k=1

|p(z) B2k (z)| ≤ c logn ,

where B2k (z) be defined in Theorem 4.1 and c is a constant independent of n and z.

Lemma 5.2. For z = eiθ, (0 ≤ θ < 2π) , we have

(5.2)
∣∣p (z)B∗0,0 (z)

∣∣ ≤ c, ∣∣p (z)B∗0,2n+1 (z)
∣∣ ≤ c,

and

(5.3)

2n∑
k=1

|p (z)B∗0k (z)| ≤ cn2logn ,

Lemma 5.3. For z = eiθ, (0 ≤ θ < 2π) , we have

(5.4)

2n−4∑
k=1

|p (z)B0k (z)| ≤ cn2logn ,

where B0k (z) be defined in Theorem 4.2 and c is a constant independent of n and z.

Proof. Using the conditions from (2.21) – (2.26), we get the result.

6 Convergence
Theorem 6.1. Let f (z) be continuous for |z| ≤ 1 and analytic for |z| < 1. Let the arbitrary numbers γ′ks
be such that

(6.1) |γk| = O

(
n2 ω3

(
f,

1

n

))
, k = 1 (1) 2n− 4.

Then {Q6n−7 (z)} defined by

(6.2) Q6n−7 (z) =

2n+1∑
k=0

f (zk)B∗0k (z) +

2n−4∑
k=1

f (tk)B0k (z) +

2n−4∑
k=1

γk B2k (z),

satisfies the relation

(6.3)
∣∣p(z){ Q6n−7 (z)− f (z)

}∣∣ = O
(
ω3

(
f, n−1

)
logn

)
,

where ω3

(
f, n−1

)
be the third modulus of continuity of f (z).

To prove the Theorem 6.1, we shall need the followings:
Remark 6.1. Let f (z) be continuous for |z| ≤ 1 and analytic for |z| < 1 and f

′′ ∈ Lip α, α > 0, then
the sequence {Q6n−7 (z)} converges uniformly to f (z) in |z| ≤ 1, which follows from (6.3) provided

(6.4) ω3

(
f, n−1

)
= O

(
n−2−α) .

There exists a polynomial Fn (z) of degree ≤ 6n− 7, satisfying Jackson’s inequality

(6.5) |f (z)− Fn (z)| ≤ c ω3

(
f, n−1

)
, z= eiθ (0 ≤ θ < 2π) ,

and the inequality due to Kiš [10],

(6.6)
∣∣∣F (m)
n (z)

∣∣∣ ≤ c nm ω3

(
f, n−1

)
, m ∈ I+.

Proof. Since Q6n−7 (z) be a uniquely determined polynomial of degree ≤ 6n− 7 and the polynomial Fn (z)
of degree ≤ 6n− 7 satisfying (6.5) and (6.6) can be expressed as

Fn (z) =

2n+1∑
k=0

Fn (zk) B∗0k (z) +

2n−4∑
k=1

Fn (tk)B0k (z) +

2n−4∑
k=1

F
′′

n (tk)B2k (z).

Then
|p(z) {Q6n−7 (z)− f (z)}| ≤ |p (z) {Q6n−7 (z)− Fn (z)}|+ |p(z) {Fn (z)− f (z)}|
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≤
2n+1∑
k=0

|f (zk)− Fn (zk)| |p (z) B∗0k (z)|

+

2n−4∑
k=1

|f (tk)− Fn (tk)| |p (z) B0k (z)|

+

2n−4∑
k=1

{
|γk|+

∣∣∣F ′′n (tk)
∣∣∣} |p (z) B2k (z)|

+ |p(z)| |Fn (z)− f (z)| .

Using (6.1), (6.2), (6.4) – (6.6) and Lemmas 5.1 – 5.3, we get (6.3) .

7 Conclusion
In this paper, we defined the weighted Pal - type (0,2) - interpolation on two pairwise disjoint sets of nodes
on the unit circle, which converges uniformly to f

′′ ∈ Lip α, α > 0.
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