ON WEIGHTED PÁL TYPE (0,2) - INTERPOLATION ON THE UNIT CIRCLE
 Swarnima Bahadur and Sariya Bano
 Department of Mathematics and Astronomy, University of Lucknow, Lucknow ,Uttar Pradesh, India - 226007
 Email: swarnimabahadur@ymail.com,sariya2406@gmail.com
 (Received: December 31, 2022; In format: January 15, 2023; Revised: March 23, 2023;

Accepted: September 02, 2023)
DOI: https://doi.org/10.58250/jnanabha.2023.53203

Abstract

In this paper, we study the explicit representation of weighted Pál - type $(0,2)$ - interpolation on two pairwise disjoint sets of nodes on the unit circle, which are obtained by projecting vertically the zeros of $\left(1-x^{2}\right) P_{n}(x)$ and $P_{n}^{\prime \prime}(x)$ respectively, where $P_{n}(x)$ stands for $n^{t h}$ Legendre polynomial. 2020 Mathematical Sciences Classification: 65D05, 41A10, 41A05, 40A30, 30E10 Keywords and Phrases: Legendre polynomial; weight function; interpolatory polynomials; Existence; Explicit forms; Convergence.

1 Introduction

In 1979, Turán [12] studied the (0,2) - Interpolation for getting an approximate solution of differential equation $y^{\prime \prime}+f y=0$. Balázs [8] introduced the weighted (0,2)- Interpolation on the zeros of Ultraspherical polynomial $P_{n}^{(\alpha)}(x), \alpha>-1$. In 1960, Kiš [10] initiated the Lacunary interpolation on the unit circle. He considered (0,2)- Interpolation on the unit circle and established the convergence theorem. After that several mathematician have considered $(0,2)$ - Interpolation viz. on the unit circle, infinite interval and on the real line. In 1996, Xie [13] considered $(0,1,3)^{*}$ - interpolation on the vertically projected nodes onto the unit circle. He claimed the regularity, explicit representation and convergence of $(0,1,3)^{*}$ - Interpolation. In 2003, Dikshit [9] considered the Pál - type Interpolation on non uniformly distributed nodes on the unit circle. After that author and Mathur [1] considered the weighted (0,2$)^{*}$ - Interpolation on the set of nodes obtained by projecting vertically the zeros of $\left(1-x^{2}\right) P_{n}(x)$ on the unit circle and established a convergence theorem for that interpolatory polynomial. In 2012, she $[2,3]$ considered weighted $(0 ; 0,2)$ and $(0,2 ; 0)$ - Interpolation on projected nodes onto the unit circle, obtained the regularity, fundamental polynomial and established a convergence theorem. In 2017, authors [4] considerd the regularity and explicit forms of weighted (0,$2 ; 0$)- interpolation on the unit circle on two pairwise disjoint sets of nodes obtained by projecting vertically the zeros of $\left(1-x^{2}\right) P_{n}(x)$ and $P_{n}^{\prime \prime}(x)$ respectively onto the unit circle, where $P_{n}(x)$ stands for $n^{t h}$ Legendre polynomial. After that the auhors [5] also established convergence for the above said interpolatory polynomials. Recently, authors [6] considered weighted Lacunary interpolation on the nodes, which are obtained by projecting vertically the zeros of the $\left(1-x^{2}\right) P_{n}^{\prime}(x)$ onto the unit circle and established a convergence theorem for the same. Recently, author with Iqram [7] considered generalized Hermite-Fejér interpolation on the nodes, which are obtained by vertically projected zeros of the $(1+x) P_{n}^{(\alpha, \beta)}(x)$ on the unit circle, where $P_{n}^{(\alpha, \beta)}(x)$ stands for Jacobi polynomial established the convergence theorem. These have motivated us to consider $(0 ; 0,2)$ interpolation on two pairwise disjoint sets of nodes on the unit circle. Let

$$
\begin{gather*}
Z_{n}=\left\{\begin{array}{c}
z_{k}=\cos \theta_{k}+i \sin \theta_{k} \\
z_{n+k}=\overline{z_{k}}, \quad k=1(1) n,
\end{array}\right. \tag{1.1}\\
T_{n}=\left\{\begin{array}{c}
t_{k}=\cos \varphi_{k}+i \sin \varphi_{k}, \\
t_{(n-2)+k}=\overline{t_{k}}, \quad k=1(1) n-2,
\end{array}\right. \tag{1.2}
\end{gather*}
$$

be two set of nodes. In which the Lagrange data is prescribed on the first set of nodes whereas Lacunary data on the other one.We obtained regularity, explicit forms and established a convergence theorem of the interpolatory polynomials. In Section 2, we give some preliminaries, in Section 3, we describe the problem and regularity, in Section 4 and Section 5, we present the explicit forms and convergence of weighted Pál type $(0,2)$ - interpolation on the unit circle respectively.

2 Preliminaries

The differential equation satisfied by $P_{n}(x)$ is

$$
\begin{equation*}
\left(1-x^{2}\right) P_{n}^{\prime \prime}(x)-2 x P_{n}^{\prime}(x)+n(n+1) P_{n}(x)=0 \tag{2.1}
\end{equation*}
$$

$$
\begin{gather*}
W(z)=\prod_{k=1}^{2 n}\left(z-z_{k}\right)=K_{n} P_{n}\left(\frac{1+z^{2}}{2 z}\right) z^{n} \tag{2.2}\\
R(z)=\left(z^{2}-1\right) W(z) \tag{2.3}\\
H(z)=\prod_{k=1}^{2 n-4}\left(z-t_{k}\right)=K_{n}^{* *} \quad P_{n}^{\prime \prime}\left(\frac{1+z^{2}}{2 z}\right) z^{n-2} . \tag{2.4}
\end{gather*}
$$

We shall require the following fundamental polynomials of Lagrange interpolation based on the zeros of $W(z)$ and $R(z)$, are respectively defined as

$$
\begin{align*}
L_{1 k}(z) & =\frac{W(z)}{\left(z-z_{k}\right) W^{\prime}\left(z_{k}\right)}, \quad k=1(1) 2 n, \tag{2.5}\\
L_{k}(z) & =\frac{R(z)}{\left(z-z_{k}\right) R^{\prime}\left(z_{k}\right)}, \quad k=0(1) 2 n+1, \tag{2.6}\\
l_{2 k}(z) & =\frac{H(z)}{\left(z-t_{k}\right) H^{\prime}\left(t_{k}\right)}, \quad k=1(1) 2 n-4, \tag{2.7}\\
J_{k}(z) & =\int_{0}^{z} t l_{2 k}(t) d t \tag{2.8}\\
J(z) & =\int_{0}^{z} H(t) d t \tag{2.9}
\end{align*}
$$

which satisfies

$$
\begin{equation*}
J(-z)=-J(z) \tag{2.10}
\end{equation*}
$$

We shall also use the following results in our investigations :

$$
\begin{gather*}
W^{\prime}\left(z_{k}\right)=\frac{K_{n}}{2}\left(z_{k}^{2}-1\right) P_{n}^{\prime}\left(x_{k}\right) z_{k}^{n-2}, k=1(1) 2 n-2, \tag{2.11}\\
W^{\prime \prime}\left(z_{k}\right)=K_{n}\left[(n-1)\left(z_{k}^{2}-1\right)-1\right] z_{k}^{n-3} P_{n}^{\prime}\left(x_{k}\right), k=1(1) 2 n, \tag{2.12}\\
H^{\prime}\left(t_{k}\right)=\frac{K_{n}^{* *}}{2}\left(t_{k}^{2}-1\right) t_{k}^{n-4} P_{n}^{\prime \prime \prime}\left(x_{k}^{*}\right), k=1(1) 2 n-4, \tag{2.13}\\
W^{\prime}\left(t_{k}\right)=K_{n} \frac{n\left\{(n+3)\left(t_{k}^{2}-1\right)+4\right\}}{2\left(t_{k}^{2}+1\right)} t_{k}^{n-1} P_{n}\left(x_{k}^{*}\right), \tag{2.14}\\
W^{\prime \prime}\left(t_{k}\right)=K_{n} \frac{n(n-1)\left\{(n-1)\left(t_{k}^{2}-1\right)-1\right\}}{2\left(t_{k}^{2}+1\right)} t_{k}^{n-2} P_{n}\left(x_{k}^{*}\right), \tag{2.15}\\
R^{\prime}\left(t_{k}\right)=\left(\mathrm{z}_{\mathrm{k}}^{2}-1\right) \mathrm{W}^{\prime}\left(\mathrm{z}_{\mathrm{k}}\right), \tag{2.16}\\
R^{\prime \prime}\left(z_{k}\right)=4 z_{k} W^{\prime}\left(z_{k}\right)+\left(z_{k}^{2}-1\right) W^{\prime \prime}\left(z_{k}\right), \tag{2.17}\\
R^{\prime}\left(t_{k}\right)=\left(t_{k}^{2}-1\right) W^{\prime}\left(t_{k}\right), \tag{2.18}
\end{gather*}
$$

$$
\begin{align*}
& R^{\prime \prime}\left(t_{k}\right)=4 t_{k} W^{\prime}\left(t_{k}\right)+\left(t_{k}^{2}-1\right) W^{\prime \prime}\left(t_{k}\right)+2 W\left(t_{k}\right), \tag{2.19}\\
& H^{\prime \prime}\left(t_{k}\right)=K_{n}^{*}\left\{(n-5)\left(t_{k}^{2}-1\right)-5\right\} t_{k}^{n-5} P_{n}^{\prime \prime \prime}\left(x_{k}^{*}\right) . \tag{2.20}
\end{align*}
$$

We shall also use the following well known inequalities:
For $-1<x<1$

$$
\begin{gather*}
\left|P_{n}(x)\right| \leq 1, \tag{2.21}\\
\left(1-x^{2}\right)^{1 / 4}\left|P_{n}(x)\right| \leq \sqrt{\frac{2}{\pi}} n^{-1 / 2}, \tag{2.22}\\
\left(1-x^{2}\right)^{3 / 4}\left|P_{n}^{\prime}(x)\right| \leq \sqrt{2} n^{1 / 2}, \tag{2.23}\\
\left(1-x^{2}\right)\left|P_{n}^{\prime \prime}(x)\right| \sim n^{2} . \tag{2.24}
\end{gather*}
$$

Let $x_{k}=\cos \theta_{k}, \quad k=1(1) n$ are the zeros of $n^{\text {th }}$ Legendre polynomial $P_{n}(x)$, with $\quad 1>x_{1}>x_{2}>\cdots>$ $x_{n}>-1$, then

$$
\begin{gather*}
\left(1-x_{k}^{2}\right)^{-1} \sim\left(\frac{k}{n}\right)^{-2}, \tag{2.25}\\
\left|P_{n}^{(s)}\left(x_{k}\right)\right| \sim k^{-s-\frac{1}{2}} n^{2 s}, \quad s=0,1,2,3 \tag{2.26}
\end{gather*}
$$

For more details one can refer to [11].

3 The Problem and Regularity

Let $Z_{n} \cup\{-1,1\}$ and T_{n} be two disjoint set of nodes obtained by projecting vertically the zeros of $\left(1-x^{2}\right) P_{n}(x)$ and $P_{n}^{\prime \prime}(x)$ onto the unit circle respectively, where $P_{n}(x)$ stands for $n^{\text {th }}$ Legendre polynomial, Z_{n} and T_{n} are defined in (1.1) and (1.2), we take here $z_{0}=1, z_{2 n+1}=-1$.
Here we are interested to determine the following polynomial $Q_{6 n-7}(z)$ of degree $\leq 6 n-7$ satisfying the conditions:

$$
\left\{\begin{array}{cll}
Q_{6 n-7}\left(z_{k}\right) & =\alpha_{k}, & k=0(1) 2 n+1 \tag{3.1}\\
Q_{6 n-7}\left(t_{k}\right) & =\beta_{k}, & k=1(1) 2 n-4 \\
{\left[p(z) Q_{6 n-7}(z)\right]_{z=t_{k}}^{\prime \prime}} & =\gamma_{k}, & k=1(1) 2 n-4,
\end{array}\right.
$$

where $\alpha_{k}^{\prime} s, \beta_{k}^{\prime} s$ and $\gamma_{k}^{\prime} s$ are arbitrary complex constants and

$$
p(z)=z^{n(n-3) / 2}\left(z^{2}-1\right)^{7 / 2}\left(z^{2}+1\right)^{-n(n+1) / 2}
$$

is a weight function.
Theorem 3.1. $Q_{6 n-7}(z)$ is regular on $Z_{n} \cup\{-1,1\}$ and T_{n}.
Proof. It is sufficient, if we show that the unique solution of (3.1) is

$$
Q_{6 n-7}(z) \equiv 0,
$$

when all data $\alpha_{k}=\beta_{k}=\gamma_{k}=0$.
In this case, we have

$$
Q_{6 n-7}(z)=W(z) H(z) q(z),
$$

where $q(z)$ is a polynomial of degree $\leq 2 n-3, W(z)$ and $H(z)$ are defined in (2.2) and (2.4) respectively. Obviously

$$
\begin{aligned}
Q_{6 n-7}\left(z_{k}\right) & =0, & k=1(1) 2 n, \\
Q_{6 n-7}\left(t_{k}\right) & =0, & k=1(1) 2 n-4 .
\end{aligned}
$$

From

$$
\left[p(z) Q_{6 n-7}(z)\right]_{z=t_{k}}^{\prime \prime}=0
$$

using (2.13) - (2.15) and (2.20), we get

$$
\begin{equation*}
q^{\prime}\left(t_{k}\right)=0 \tag{3.2}
\end{equation*}
$$

Therefore, we have

$$
\begin{equation*}
q^{\prime}(z)=a H(z) \tag{3.3}
\end{equation*}
$$

where a is an arbitrary constant.
Thus, we get

$$
\begin{equation*}
q(z)=a J(z)+b \tag{3.4}
\end{equation*}
$$

where

$$
\begin{equation*}
J(z)=\int_{0}^{z} H(t) d t \tag{3.5}
\end{equation*}
$$

For $q(\pm 1)=0$, we have

$$
\left\{\begin{array}{c}
a \quad J(1)+b=0 \tag{3.6}\\
a J(-1)+b=0 .
\end{array}\right.
$$

Since

$$
\begin{equation*}
J(-z)=-J(z) \tag{3.7}
\end{equation*}
$$

therefore, using (3.7) in (3.6), we get $a=b=0$.
Hence the theorem follows.

4 Explicit Representation of Interpolatory Polynomials

We shall write $Q_{6 n-7}(z)$ satisfying (3.1) as

$$
\begin{equation*}
Q_{6 n-7}(z)=\sum_{k=0}^{2 n+1} \alpha_{k} B_{0 k}^{*}(z)+\sum_{k=1}^{2 n-4} \beta_{k} B_{0 k}(z)+\sum_{k=1}^{2 n-4} \gamma_{k} B_{2 k}(z) \tag{4.1}
\end{equation*}
$$

where $B_{0 k}^{*}, B_{0 k}$ and $B_{2 k}$ are unique polynomials, each of degree at most $6 n-7$ satisfying the conditions:
For $k=0(1) 2 n+1$

$$
\left\{\begin{array}{lll}
B_{0 k}^{*}\left(z_{j}\right) & =\delta_{j k}, & \tag{4.2}\\
B_{0 k}^{*}\left(t_{j}\right) & & j=0(1) 2 n+1 \\
{\left[p(z) B_{0 k}^{*}(z)\right]_{z=t_{j}}^{\prime \prime}} & =0, & \\
j=1(1) 2 n-4 \\
& j=1(1) 2 n-4
\end{array}\right.
$$

For $k=1(1) 2 n-4$

$$
\left\{\begin{array}{lll}
B_{0 k}\left(z_{j}\right) & =0, & j=0(1) 2 n+1 \tag{4.3}\\
B_{0 k}\left(t_{j}\right) & =\delta_{j k}, & j=1(1) 2 n-4 \\
{\left[p(z) B_{0 k}(z)\right]_{z=t_{j}}^{\prime \prime}} & =0, & j=1(1) 2 n-4 .
\end{array}\right.
$$

For $k=1(1) 2 n-4$

$$
\left\{\begin{array}{lll}
B_{2 k}\left(z_{j}\right) & =0, & \tag{4.4}\\
B_{2 k}\left(t_{j}\right) & =0, & \\
{\left[p(z) B_{2 k}(z)\right]_{z=t_{j}}^{\prime \prime}} & =\delta_{j k}, & \\
{[=1(1) 2 n+1(1) 2 n-4} \\
& j=1(1) 2 n-4
\end{array}\right.
$$

Theorem 4.1. For $k=1$ (1) $2 n-4$, we have

$$
\begin{equation*}
B_{2 k}(z)=W(z) H(z)\left\{c_{k} J_{k}(z)+c_{k}^{*} J(z)+c_{k}^{* *}\right\} \tag{4.5}
\end{equation*}
$$

where $J_{k}(z)$ is defined in (2.8)

$$
\begin{align*}
c_{k} & =\frac{1}{2 t_{k} p\left(t_{k}\right) W\left(t_{k}\right) H^{\prime}\left(t_{k}\right)} \tag{4.6}\\
c_{k}^{*} & =-c_{k} \frac{\left\{J_{k}(1)-J_{k}(-1)\right\}}{2 J(1)} \tag{4.7}\\
c_{k}^{* *} & =-c_{k} \frac{\left\{J_{k}(1)+J_{k}(-1)\right\}}{2} \tag{4.8}
\end{align*}
$$

and $J(z)$ is defined in (2.9).

From (4.5), we have

$$
\begin{array}{cr}
B_{2 k}\left(z_{j}\right)=0, & j=1(1) 2 n, \\
B_{2 k}\left(t_{j}\right)=0, & j=1(1) 2 n-4 .
\end{array}
$$

For $j=1(1) 2 n-4$, we get

$$
\left[p(z) B_{2 k}(z)\right]_{z=t_{j}}^{\prime \prime}=0, \quad \text { for } \quad j \neq k
$$

For $j=k$, we get (4.6).
From $B_{2 k}\left(z_{j}\right)=0, \quad$ for $j=0$ and $2 n+1$, we get (4.7) -(4.8).
Theorem 4.2. For $k=1$ (1) $2 n-4$, we have

$$
\begin{equation*}
B_{0 k}(z)=\frac{\left(z^{2}-1\right) W(z)}{\left(t_{k}^{2}-1\right) W\left(t_{k}\right)} l_{2 k}^{2}(z)+\frac{W(z) H(z)}{\left(t_{k}^{2}-1\right) W\left(t_{k}\right) H^{\prime}\left(t_{k}\right)}\left\{S_{k}(z)+b_{k}^{*} J(z)+b_{k}^{* *}\right\}+b_{k} B_{2 k}(z) \tag{4.9}
\end{equation*}
$$

where

$$
\begin{gather*}
S_{k}(z)=-\int_{0}^{z}\left(t^{2}-1\right) \frac{\left[l_{2 k}^{\prime}(t)-l_{2 k}^{\prime}\left(t_{k}\right) l_{2 k}(t)\right]}{\left(t-t_{k}\right)} d t \tag{4.10}\\
b_{k}=-4\left\{l_{2 k}^{\prime}\left(t_{k}\right)\right\}^{2} p\left(t_{k}\right)-\frac{\left\{p(z)\left(z^{2}-1\right) W(z)\right\}_{z=t_{k}}^{\prime \prime}-4 l_{2 k}^{\prime}\left(t_{k}\right) \frac{\left\{p(z)\left(z^{2}-1\right) W(z)\right\}_{z=t_{k}}^{\prime}}{\left(t_{k}^{2}-1\right) W\left(t_{k}\right)}}{\left(t_{k}^{2}-1\right) W\left(t_{k}\right)} \tag{4.11}\\
b_{k}^{*}=-\frac{\left\{S_{k}(1)-S_{k}(-1)\right\}}{2 J(1)} \tag{4.12}\\
b_{k}^{* *}=-\frac{\left\{S_{k}(1)+S_{k}(-1)\right\}}{2} \tag{4.13}
\end{gather*}
$$

From (4.9) one can see

$$
\begin{array}{lr}
B_{0 k}\left(z_{j}\right)=0, & j=1(1) 2 n \\
B_{0 k}\left(t_{j}\right)=\delta_{j k}, & j=1(1) 2 n-4
\end{array}
$$

Now from

$$
\left[p(z) B_{0 k}(z)\right]_{z=t_{j}}^{\prime \prime}=0, \quad \text { for } \quad j \neq k
$$

we get

$$
S_{k}^{\prime}\left(t_{j}\right)=-\frac{\left(t_{j}^{2}-1\right)}{\left(t_{j}-t_{k}\right)} l_{2 k}^{\prime}\left(t_{j}\right)
$$

Owing to third condition of (4.3), we derive

$$
S_{k}^{\prime}(z)=\left(z^{2}-1\right) \frac{\left[l_{2 k}^{\prime}(z)-l_{2 k}^{\prime}\left(t_{k}\right) l_{2 k}(z)\right]}{\left(z-t_{k}\right)}
$$

On solving it we obtain (4.10).
From

$$
\left[p(z) B_{0 k}(z)\right]_{z=t_{j}}^{\prime \prime}=0, \quad \text { for } \quad j=k
$$

we establish (4.11).
From (4.9), for

$$
B_{0 k}\left(z_{j}\right)=0, \quad j=0 \text { and } 2 n+1
$$

we derive (4.12) - (4.13).

Theorem 4.3. For $k=1$ (1) $2 n$, we have

$$
\begin{equation*}
B_{0 k}^{*}(z)=\frac{\left(z^{2}-1\right) H^{2}(z)}{\left(z_{k}^{2}-1\right) H^{2}\left(z_{k}\right)} L_{1 k}(z)+\frac{W(z) H(z)}{\left(z_{k}^{2}-1\right) W^{\prime}\left(z_{k}\right) H^{3}\left(z_{k}\right)}\left\{M_{k}(z)+a_{k}^{*} J(z)+a_{k}^{* *}\right\} \tag{4.14}
\end{equation*}
$$

where

$$
\begin{gather*}
M_{k}(z)=-\int_{0}^{z} \frac{\left[\left(t^{2}-1\right) H^{\prime}(t) H\left(z_{k}\right)-\left(z_{k}^{2}-1\right) H^{\prime}\left(z_{k}\right) H(t)\right]}{\left(t-z_{k}\right)} d t \tag{4.15}\\
a_{k}^{*}=-\frac{\left\{M_{k}(1)-M_{k}(-1)\right\}}{2 J(1)} \tag{4.16}\\
a_{k}^{* *}=-\frac{\left\{M_{k}(1)+M_{k}(-1)\right\}}{2} \tag{4.17}
\end{gather*}
$$

For $k=0$ and $2 n+1$, we have

$$
\begin{equation*}
B_{0 k}^{*}(z)=W(z) H(z)\left\{a_{1 k}^{*} J(z)+a_{2 k}^{*}\right\} \tag{4.18}
\end{equation*}
$$

where

$$
\begin{align*}
a_{1 k}^{*} & =\frac{1}{2 W\left(z_{k}\right) H\left(z_{k}\right) J\left(z_{k}\right)} \tag{4.19}\\
a_{2 k}^{*} & =\frac{1}{2 W\left(z_{k}\right) H\left(z_{k}\right)} . \tag{4.20}
\end{align*}
$$

From (4.14)

$$
\begin{aligned}
& B_{0 k}^{*}\left(z_{j}\right)=\delta_{j k}, \quad j=1(1) 2 n, \\
& B_{0 k}^{*}\left(t_{j}\right)=0, \quad j=1(1) 2 n-4 .
\end{aligned}
$$

From

$$
\left[p(z) B_{0 k}^{*}(z)\right]_{z=t_{j}}^{\prime \prime}=0, \quad j=1(1) 2 n-4
$$

we derive

$$
M_{k}^{\prime}\left(t_{j}\right)=-H\left(z_{k}\right) \frac{\left(t_{j}^{2}-1\right) H^{\prime}\left(t_{j}\right)}{\left(t_{j}-z_{k}\right)}
$$

Employing to third condition of (4.2), we establish

$$
M_{k}^{\prime}(z)=-\frac{\left[\left(z^{2}-1\right) H^{\prime}(z) H\left(z_{k}\right)-\left(z_{k}^{2}-1\right) H^{\prime}\left(z_{k}\right) H(z)\right]}{\left(z-z_{k}\right)} .
$$

On solving it we get (4.15).
From (4.14), for

$$
B_{0 k}^{*}\left(z_{j}\right)=0, \quad j=0 \text { and } 2 n+1,
$$

we derive (4.16) and (4.17).
For $k=0$ and $2 n+1$, from (4.18), we have

$$
\begin{gathered}
B_{0 k}^{*}\left(z_{j}\right)=0, \quad j=1(1) 2 n, \\
B_{0 k}^{*}\left(t_{j}\right)=0, \quad j=1(1) 2 n-4 . \\
{\left[p(z) B_{0 k}^{*}(z)\right]_{z=t_{j}}^{\prime \prime}=0, \quad j=1(1) 2 n-4 .}
\end{gathered}
$$

For

$$
B_{0 k}^{*}\left(z_{j}\right)=\delta_{j k}, \quad j=0 \text { and } 2 n+1
$$

we get (4.19) and (4.20).

5 Estimation of Fundamental Polynomials

Lemma 5.1. For $z=e^{i \theta},(0 \leq \theta<2 \pi)$, we have

$$
\begin{equation*}
\sum_{k=1}^{2 n-4}\left|p(z) B_{2 k}(z)\right| \leq c \log n \tag{5.1}
\end{equation*}
$$

where $B_{2 k}(z)$ be defined in Theorem 4.1 and c is a constant independent of n and z.
Lemma 5.2. For $z=e^{i \theta},(0 \leq \theta<2 \pi)$, we have

$$
\begin{equation*}
\left|p(z) B_{0,0}^{*}(z)\right| \leq c, \quad\left|p(z) B_{0,2 n+1}^{*}(z)\right| \leq c \tag{5.2}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{k=1}^{2 n}\left|p(z) B_{0 k}^{*}(z)\right| \leq c n^{2} \log n \tag{5.3}
\end{equation*}
$$

Lemma 5.3. For $z=e^{i \theta},(0 \leq \theta<2 \pi)$, we have

$$
\begin{equation*}
\sum_{k=1}^{2 n-4}\left|p(z) B_{0 k}(z)\right| \leq c n^{2} \log n \tag{5.4}
\end{equation*}
$$

where $B_{0 k}(z)$ be defined in Theorem 4.2 and c is a constant independent of n and z.
Proof. Using the conditions from (2.21) - (2.26), we get the result.

6 Convergence

Theorem 6.1. Let $f(z)$ be continuous for $|z| \leq 1$ and analytic for $|z|<1$. Let the arbitrary numbers $\gamma_{k}^{\prime} s$ be such that

$$
\begin{equation*}
\left|\gamma_{k}\right|=O\left(n^{2} \omega_{3}\left(f, \frac{1}{n}\right)\right), \quad k=1(1) 2 n-4 \tag{6.1}
\end{equation*}
$$

Then $\left\{Q_{6 n-7}(z)\right\}$ defined by

$$
\begin{equation*}
Q_{6 n-7}(z)=\sum_{k=0}^{2 n+1} f\left(z_{k}\right) B_{0 k}^{*}(z)+\sum_{k=1}^{2 n-4} f\left(t_{k}\right) B_{0 k}(z)+\sum_{k=1}^{2 n-4} \gamma_{k} B_{2 k}(z) \tag{6.2}
\end{equation*}
$$

satisfies the relation

$$
\begin{equation*}
\left|p(z)\left\{Q_{6 n-7}(z)-f(z)\right\}\right|=O\left(\omega_{3}\left(f, n^{-1}\right) \log n\right), \tag{6.3}
\end{equation*}
$$

where $\omega_{3}\left(f, n^{-1}\right)$ be the third modulus of continuity of $f(z)$.
To prove the Theorem 6.1, we shall need the followings:
Remark 6.1. Let $f(z)$ be continuous for $|z| \leq 1$ and analytic for $|z|<1$ and $f^{\prime \prime} \in \operatorname{Lip} \alpha, \alpha>0$, then the sequence $\left\{Q_{6 n-7}(z)\right\}$ converges uniformly to $f(z)$ in $|z| \leq 1$, which follows from (6.3) provided

$$
\begin{equation*}
\omega_{3}\left(f, n^{-1}\right)=O\left(n^{-2-\alpha}\right) . \tag{6.4}
\end{equation*}
$$

There exists a polynomial $F_{n}(z)$ of degree $\leq 6 n-7$, satisfying Jackson's inequality

$$
\begin{equation*}
\left|f(z)-F_{n}(z)\right| \leq c \omega_{3}\left(f, n^{-1}\right), \quad z=e^{i \theta}(0 \leq \theta<2 \pi) \tag{6.5}
\end{equation*}
$$

and the inequality due to Kiš [10],

$$
\begin{equation*}
\left|F_{n}^{(m)}(z)\right| \leq c n^{m} \omega_{3}\left(f, n^{-1}\right), \quad m \in I^{+} \tag{6.6}
\end{equation*}
$$

Proof. Since $Q_{6 n-7}(z)$ be a uniquely determined polynomial of degree $\leq 6 n-7$ and the polynomial $F_{n}(z)$ of degree $\leq 6 n-7$ satisfying (6.5) and (6.6) can be expressed as

$$
F_{n}(z)=\sum_{k=0}^{2 n+1} F_{n}\left(z_{k}\right) B_{0 k}^{*}(z)+\sum_{k=1}^{2 n-4} F_{n}\left(t_{k}\right) B_{0 k}(z)+\sum_{k=1}^{2 n-4} F_{n}^{\prime \prime}\left(t_{k}\right) B_{2 k}(z)
$$

Then

$$
\left|p(z)\left\{Q_{6 n-7}(z)-f(z)\right\}\right| \leq\left|p(z)\left\{Q_{6 n-7}(z)-F_{n}(z)\right\}\right|+\left|p(z)\left\{F_{n}(z)-f(z)\right\}\right|
$$

$$
\begin{aligned}
& \leq \sum_{k=0}^{2 n+1}\left|f\left(z_{k}\right)-F_{n}\left(z_{k}\right)\right|\left|p(z) B_{0 k}^{*}(z)\right| \\
& +\sum_{k=1}^{2 n-4}\left|f\left(t_{k}\right)-F_{n}\left(t_{k}\right)\right|\left|p(z) B_{0 k}(z)\right| \\
& +\sum_{k=1}^{2 n-4}\left\{\left|\gamma_{k}\right|+\left|F_{n}^{\prime \prime}\left(t_{k}\right)\right|\right\}\left|p(z) B_{2 k}(z)\right| \\
& \quad+|p(z)|\left|F_{n}(z)-f(z)\right|
\end{aligned}
$$

Using (6.1), (6.2), (6.4) - (6.6) and Lemmas $5.1-5.3$, we get (6.3).

7 Conclusion

In this paper, we defined the weighted Pal - type $(0,2)$ - interpolation on two pairwise disjoint sets of nodes on the unit circle, which converges uniformly to $f^{\prime \prime} \in \operatorname{Lip} \alpha, \alpha>0$.

Acknowledgment

The authors would like to thanks for the anonymous referees and the Editor for their useful remark and suggestions for the improvement of the paper.

References

[1] S. Bahadur and K.K. Mathur, Weighted (0,2)*- interpolation on unit circle, Int. J. Appl. Math. and Stats., 20 (2011), 73-78
[2] S. Bahadur, Pál - type ($0 ; 0,2$) - Interpolation on the unit circle, Int. J. Math. Sci., 11 (2012), 103-111.
[3] S. Bahadur, (0,$2 ; 0$) - Interpolation on the unit circle, Italian J. of Pure and App. Math., 32 (2014), 57-66.
[4] S. Bahadur and S. Bano, Weighted $(0,2 ; 0)$ - Interpolation on The Unit Circle , Journal of Computer and Mathematical Sciences, 8(9)(2017), 424-429.
[5] S. Bahadur and S. Bano, Convergence of Weighted (0,$2 ; 0$) - Interpolation on The Unit Circle , International Journal of Scientific Research in Mathematical and Statistical Sciences, 5 (2018), 278281.
[6] S. Bahadur and S. Bano, On Weighted Lacunary Interpolation, Applications and Applied Mathematics : An International Journal (AAM), 17(1) (2022), 172-185.
[7] S. Bahadur and S. Iqram, Generalized Hermite - Fejér Interpolation by the Function with non - uniorm nodes on the Unit circle Jñānābha, 52(2) (2022), 267-271.
[8] J. Balázs, Súlyozott, (0,2) -Interpoláció Ultrasz, férifus Polinomok Gyôkein, MTA III.Oszt. Közl., 11 (1961), 303-338.
[9] H.P. Dikshit,Pál-type interpolation on non-uniformly distributed nodes on the unit circle , Journal of computational and Applied Mathematics, 155 (2) (2003), 253-261.
[10] O. Kiš, Remarks on interpolation(Russian), Acta. Math. Acad. Sci. Hungar, 11 (1960), 49-64.
[11] G. Szegö, Orthogonal Polynomials, Amer. Math. Soc. Coll.Publ., 1959.
[12] P. Turán, A Turan's problem on the $(0,2)$ - Interpolation based on the zeros of Jacobi polynomials, Acta Mathematica Acad. Sci. Hung., 33 (1979), 317-321.
[13] S. Xie, $(0,1,3)^{*}$ - Interpolation on unit circle, Acta. Math. Sinica, 39(5) (1996), 690-700.

