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Abstract
In this paper, we study the explicit representation of weighted P4l - type (0,2) - interpolation on two
pairwise disjoint sets of nodes on the unit circle, which are obtained by projecting vertically the zeros of
(1 —2?)P,(z) and P () respectively, where P, (x) stands for n'" Legendre polynomial.
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1 Introduction

In 1979, Turan [12] studied the (0,2) — Interpolation for getting an approximate solution of differential
equation y” 4 fy = 0. Baldzs [8] introduced the weighted (0, 2)— Interpolation on the zeros of Ultraspherical
polynomial Py(fl)(;zc)7 a > —1. In 1960, Kis [10] initiated the Lacunary interpolation on the unit circle. He
considered (0,2)- Interpolation on the unit circle and established the convergence theorem. After that several
mathematician have considered (0,2) — Interpolation viz. on the unit circle, infinite interval and on the
real line. In 1996, Xie [13] considered (0, 1,3)*- interpolation on the vertically projected nodes onto the
unit circle. He claimed the regularity, explicit representation and convergence of (0,1,3)* - Interpolation.
In 2003, Dikshit [9] considered the P&l — type Interpolation on non uniformly distributed nodes on the
unit circle. After that author and Mathur [1] considered the weighted (0,2)* — Interpolation on the set
of nodes obtained by projecting vertically the zeros of (1 — 22)P,(x) on the unit circle and established
a convergence theorem for that interpolatory polynomial. In 2012, she [2,3] considered weighted (0;0,2)
and (0,2;0) — Interpolation on projected nodes onto the unit circle, obtained the regularity, fundamental
polynomial and established a convergence theorem. In 2017, authors [4] considerd the regularity and explicit
forms of weighted (0,2;0)- interpolation on the unit circle on two pairwise disjoint sets of nodes obtained
by projecting vertically the zeros of (1 — 22)P,(z) and P, () respectively onto the unit circle, where P, (x)
stands for n!" Legendre polynomial. After that the auhors [5] also established convergence for the above said
interpolatory polynomials. Recently, authors [6] considered weighted Lacunary interpolation on the nodes,
which are obtained by projecting vertically the zeros of the (1—22) P, (z) onto the unit circle and established
a convergence theorem for the same. Recently, author with Iqram [7] considered generalized Hermite-Fejér
interpolation on the nodes, which are obtained by vertically projected zeros of the (1 + x)Pyga’B ) (x) on the

unit circle, where P,E“’ﬂ )(x) stands for Jacobi polynomial established the convergence theorem. These have
motivated us to consider (0;0,2) interpolation on two pairwise disjoint sets of nodes on the unit circle. Let

_ 2y, = cosO, + 1 sinby

T o { tr = cospi + 1 sinpg,

Lo t(n—2)+k:E, kil(l)T‘L*Q,
be two set of nodes. In which the Lagrange data is prescribed on the first set of nodes whereas Lacunary
data on the other one.We obtained regularity, explicit forms and established a convergence theorem of the
interpolatory polynomials. In Section 2, we give some preliminaries, in Section 3, we describe the problem
and regularity, in Section 4 and Section 5, we present the explicit forms and convergence of weighted P&l —
type (0,2) — interpolation on the unit circle respectively.

(1.2)
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2 Preliminaries
The differential equation satisfied by P, (x) is

(2.1) (1—2*) P} (z) =22 P, (z) + n(n+1) P, (z) = 0.
2n 1 + 22
(2.2) W)= [[ (- 2) = Kn P ( - > -~
k=1
(23) R(E)= (- 1)W (),
2n—4 . 22
(2.4) Hz) = [[ G-t =K Pl (1 ; )2”2.
k=1

We shall require the following fundamental polynomials of Lagrange interpolation based on the zeros of
W (z) and R (z), are respectively defined as

(2.5) Lip(z) = (Z_:kv)(;g(zk) k=1(1)2n,
(2.6) Li(z) = (Z_Z)%, k=0(1)2n+1,
(2.7) b (2) = (25)% k=1(1)2n—4,
(2.8) Ti(z) = /o 4l (1) dt,

(2.9) J(z) = H (t) dt,

0
which satisfies

(2.10) J(—z) = —J(2).

We shall also use the following results in our investigations :

(2.11) W (1) = % (ZZ - 1) P (x) 2 oy k=1(1)2n—2,

(2.12) W' (z) = K, [(n—1) (22 —1) = 1] 227°P, (x1), k=1(1)2n,
’ K’:* 2 ’I’L74 g *

(2.13) H (t) = 5 (te =) tp* P, (zf), k=1(1)2n—4,

, 7 n{(n+3) (2 —1)+4}
(2.14) W (ty) = K, 22 ’; )

th P, (2}),

(2.15) W () = e m DA D (6 —1)

—1
}tZ_ZP” ('rlt) )

2(t2 +1)
(2.16) R (ty) = (22 —1) W (z),
(2.17) R (z) =4z, W (z) + (22 — )W (1),
(2.18) R (ty) = (2 =)W (tx),
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" 1"

(2.19) R (ty) = 46, W' (1) + (82 — 1) W' (tg) +2W (¢,

(2.20) H' (ty) = K: {(n—5) (2 —1) =5} 627°P, (a).
We shall also use the following well known inequalities:
For -1 <z <1

(2.21) [P ()| <1,

(2.22) (1-a)"|Pu ()| < \/zn/
(2.23) (1— %) 1P ()] < V2 0t/?,
(2.24) (1-2%) | (@) ~n? .

Let xj, = cost, k= 1(1)n are the zeros of n'" Legendre polynomial P, (z), with 1 >z > 29 > ---

T, > —1, then

(2.25) (1-a3) "~ (k> _2,

n

(2.26)

P (mk)‘ ~ kT % §=0,1,2,3.
For more details one can refer to [11].

3 The Problem and Regularity

>

Let Z,U{—1,1} and T,, be two disjoint set of nodes obtained by projecting vertically the zeros of (1—z2)P, (z)
and P, (x) onto the unit circle respectively, where P, (z) stands for n‘* Legendre polynomial, Z,, and T;, are

defined in (1.1) and (1.2), we take here zg = 1, 29,41 = —1.

Here we are interested to determine the following polynomial Qg,—7 (2) of degree < 6n — 7 satisfying the

conditions:

Qon—7 (2k) = g, E=0(1)2n+1
(3.1) Qon—7 (tk) =0k k=1(1)2n—4
[P (2) Qgp_7 (2)] = Vk> k=1(1)2n—4,

where o5 , 8.5 and ~; s are arbitrary complex constants and

z=tp

p(z) = Hn(n=3)/2 (ZQ _ 1)7/2 (22 n 1) —n(n+1)/2
is a weight function.
Theorem 3.1. Qgn—7(2) is regular on Z, U{-1,1} and T,,.

Proof. 1t is sufficient, if we show that the unique solution of (3.1) is

Qon—7(2) =0,
when all data ai = B = v = 0.
In this case, we have

Qon-7(2) =W (2) H (2)q(2),

where ¢ (z) is a polynomial of degree < 2n —3, W (z) and H (z) are defined in (2.2) and (2.4) respectively.

Obviously
Qﬁn_7 (Zk) = 0, k=1 (1) 2n,

Qﬁn—? (tk) = O, k= 1(1) 2n — 4.
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From

using (2.13) - (2.15) and (2.20), we get

(3.2) q (tr) = 0.
Therefore, we have

(3.3) q ()= aH\(z),

where a is an arbitrary constant.

Thus, we get

(3.4) q(z)=aJ(z)+b,

where B

(3.5) () = / H (1) dt.

0

For ¢ (£1) = 0, we have

a J(1)+b=0

(3.6) { aJ(-1)+b=0
Since

(3.7) J(=2)=—-J(2),

therefore, using (3.7) in (3.6), we get a = b= 0.
Hence the theorem follows.

4 Explicit Representation of Interpolatory Polynomials
We shall write Qen—7 (2) satistying (3.1) as

2n+1 2n—4 2n—4
(4.1) Qen—7(2) = > wBi (2) + Y BiBok (2) + Y Bk (2),
k=0 k=1 k=1

where Bj,,, Bor and Boy, are unique polynomials, each of degree at most 6n — 7 satisfying the conditions:

For k=0(1)2n+1

B, (25) = jk, i=0()2n+1
(4.2) B (t5) = 0, j=1(1)2n—4
{ [p (2) Bgy (Z)]z:tj 0, 1(1)2n — 4.
Fork=1(1)2n—4
Bogk (zj) =0, ji=0()2n+1
(4.3) { Boy (t5) ) = 6k, j=1(1)2n—4
[p(2) Box (2)].—, =0, j=1(1)2n—4
Fork=1(1)2n—4
Bok (25) =0, j=0(1)2n+1
(4.4) { Boy (t;) ) =0, j=1(1)2n—4
p(2) Ba (], =0 G=1(1)2n—4

Theorem 4.1. For k = 1(1)2n — 4, we have
(4.5) Bok (2) =W (2) H (2) {ck Jr(2) + ¢ J(2) + i},
where Jy (2) is defined in (2.8)

1
(4.6) = 2tk p (te) W (tg) H' (tr) ~
(4.7) ko= {Jku;ﬂ]f)(l)} ’
(4.8) = Ck{Jk W +2Jk (71)}’

and J (z) is defined in (2.9) .
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From (4.5), we have

ng (Z]) :O, j = 1(1) 277,,
ng (tj) ZO, j = 1(1) 2n — 4.

For j =1(1)2n — 4, we get
p(2) Bax ()], =0, for j#k.

For j =k, we get (4.6).

From By (z;) =0, for j=0 and 2n+1, we get (4.7) —(4.8).

Theorem 4.2. For k = 1(1)2n — 4, we have

(Z2-1)W(2) , (2) + W (z) H (2)

(G =W (te) (t; = D)W (tx) H' (1)

(49)  Box () = {Sk(2) + b T (2) + 0"} + biBay (2)

where

(4.10) S (2) = — /O : (22— 1) [lo, (2) _(tl/% izl;)lzk ®) 4

/

{p(2) (2 -1) W)},
(tz — 1) W (tg)

(=) (2-1)W )}, ,
@-oww e

{5k (M) =Sk (1)}

(411) by = —4{lhy, ()} p(te) —

(4.12) by = 2 7 () ,
(4.13) b = {8 () +25k (=1}
From (4.9) one can see
B()k (Zj) :0, j:1(1)2n
Boy (t;) = djk , j=1(1)2n—4.
Now from .
p() B ()], = 0, for Ak,
we get
’ (t2 - 1) ’
Se(t)) = —L—%1o (4
k(j) (tj_tk) Qk(J)

Owing to third condition of (4.3), we derive

[t () = Uy (1) Lo (2)]

Sk (2) = (° = 1) RN

On solving it we obtain (4.10).
From

[p (2) Bok (2)].—, = 0, for  j=F,

we establish (4.11).
From (4.9), for
Bok (2;) =0, j=0and2n+1,

we derive (4.12) - (4.13).
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Theorem 4.3. For k =1(1) 2n, we have

(1.14) B )= G B o+

W (2) H(2)

(Z,% _ I)W’ (Zk) H3 (Zk) {Mk (Z) + GZ J(Z) + GZ* )

where
(a.15 (o= - [HESDITO RGN eI o,
0 2k
(4.16) az — _{Mk (1%;?14)16 (_1)}
For k =0 and 2n + 1, we have
(4.18) By, (2) = W (2) H (2) {aiy J (2) + a3},
where
(4.19) - !
' W T W () H () T (1)
. 1
(4.20) ay = 3 W o) H (o)
From (4.14)
By (25) = djk, j=1(1)2n,
By (t;) =0,  j=1()2n-4
From .
P B (i, =0, j=1(1)2n—4,
we derive

, (2 -1)H (t;)
M. (t:) = —H Ay T NI
k(]) (Zk) (tj_zkr)
Employing to third condition of (4.2), we establish
{(22 ~ 1) H (2)H(z%) - (22— 1) H (2) H (z)}

(z — 2p)

M (z) = -

On solving it we get (4.15).
From (4.14), for
Bg, (z;) =0, j=0and 2n+1,
we derive (4.16) and (4.17).
For k =0 and 2n + 1, from (4.18), we have
ng (ZJ) =0, ]:1(1)2n7
Biy(t) =0, j=1(1)2n—4

[p(2) By (2)]._, =0, j=1(1)2n—4.

For
Boy. (25) =0k, j=0and 2n+1,

we get (4.19) and (4.20).
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5 Estimation of Fundamental Polynomials

Lemma 5.1. For z = €¥, (0 <6 < 27), we have
2n—4

(5.1) Z|p By, (2)] < ¢ logn |

where Bay, (2) be defined in Theorem 4.1 and c is a constant independent of n and z.

Lemma 5.2. For z = ¢, (0 <6 < 27), we have

(5.2) Ip(2) Bgo(2)| <¢,  |p(2) Byani1 (2)] <,
and

2n
(5.3) > Ip(2) By, (2)] < en’logn.

k=1

Lemma 5.3. For z = ¢, (0 <0 < 27), we have
2n—4

(5.4) Z Ip (2) Bok (2)] < cn*logn |

where Bog, (2) be defined in Theorem 4.2 and c is a constant independent of n and z.
Proof. Using the conditions from (2.21) — (2.26), we get the result. O

6 Convergence
Theorem 6.1. Let f (z) be continuous for |z| <1 and analytic for |z| < 1. Let the arbitrary numbers ~},s
be such that

(6.1) |7k|o(n w3 <f, )> k=1(1)2n— 4.
Then {Qen—7 (2)} defined by

2n+1 2n—4 2n—4

(6.2) Qon—1 ( Z f(z) By (2) + > f(tx) Box (2 Z Vi Bor (2
k=1

satisfies the relation

(6.3) | ){ Qen_z ( }| O (ws (f, nil) logn ),
where ws (f,n_l) be the third modulus of contmuzty of f(2).

To prove the Theorem 6.1, we shall need the followings:

Remark 6.1. Let f(z) be continuous for |z| < 1 and analytic for |2| < 1 and f € Lip o, a > 0, then
the sequence {Qgn—7 (2)} converges uniformly to f (z) in |z| < 1, which follows from (6.3) provided

(6.4) w3 (f, nil) =0 (n*Q*O‘) .

There exists a polynomial F), (z) of degree < 6n — 7, satisfying Jackson’s inequality
(6.5) 1f(2) = Fy(2)| S cws (fin'), z=¢?(0<6<2m),
and the inequality due to Kis [10],

(6.6) ‘Fw (z)‘ <en™wy(f,nl), m el

Proof. Since Qg,,—7 (2) be a uniquely determined polynomial of degree < 6n — 7 and the polynomial F), (2)
of degree < 6n — 7 satisfying (6.5) and (6.6) can be expressed as

2n+1 2n—4 2n—4
Z F,(z1) Bl (2 Z Fy, (tr) Bok (2) + Z F, (tr) Baxk (2).
k=1

Then
Ip(2) {Qon—7 (2) = f ()} < Ip(2) {Qon—7 (2) — Fn (2)} + [p(2) {Fn (2) = f (2)}]
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<D @) = Fuallp(z) B (2)]

+ D I () = Fu(to)llp(2) Box (2)]

k=1
2n—4

+ > {inl+
k=1

+ P [Fn (2) = F (2)]-

F, (t)|} Ip(2) Bax (2)

Using (6.1), (6.2), (6.4) — (6.6) and Lemmas 5.1 — 5.3, we get (6.3) . O

7 Conclusion
In this paper, we defined the weighted Pal - type (0,2) - interpolation on two pairwise disjoint sets of nodes
on the unit circle, which converges uniformly to f € Lip o, a > 0.
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