COEFFICIENT INEQUALITY FOR A CLASS OF ANALYTIC FUNCTIONS
 APPROACHING TO CLASS OF CONVEX FUNCTIONS IN THE LIMIT FORM AND CLASS OF STARLIKE FUNCTIONS DIRECTLY Gurmeet Singh
 Khalsa College Patiala, Punjab, India-147001
 Email: meetgur111@gmail.com

(Received: September 08, 2022; In format: September 21, 2023; Revised: December 15, 2023;
Accepted: December 16, 2023)
DOI: https://doi.org/10.58250/jnanabha.2023.53229

Abstract

We introduce a class of analytic functions and obtain sharp upper bounds of the functional $\left|a_{3}-\mu a_{2}^{2}\right|$ for the analytic function $f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n},|z|<1$ belonging to this class with special character that it tends to the class of convex functions as $\alpha \rightarrow \frac{\pi}{2}$. 2020 Mathematical Sciences Classification: 30C50 Keywords and Phrases: Univalent functions, Starlike functions, Close to convex functions and bounded functions

1 Introduction

Let \mathcal{A} denote the class of functions of the form

$$
\begin{equation*}
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n} \tag{1.1}
\end{equation*}
$$

which are analytic in the unit disc $\mathbb{E}=\{z:|z|<1\}$. Let \mathcal{S} be the class of functions of the form (1.1), which are analytic univalent in \mathbb{E}.
In 1916, Bieber Bach [1, 2] proved that $\left|a_{2}\right| \leq 2$ for the functions $f(z) \mathcal{S}$. In 1923, Löwner [10] proved that $\left|a_{3}\right| \leq 3$ for the functions $f(z) \in \mathcal{S}$.

With the known estimates $\left|a_{2}\right| \leq 2$ and $\left|a_{3}\right| \leq 3$, it was expected to try to find some relation between a_{3} and $a_{2}{ }^{2}$ for the class \mathcal{S}, Fekete and Szegö [4] [8]used Löwner's method to prove the following well known result for the class \mathcal{S}.

Let $f(z) \in \mathcal{S}$, then

$$
\left|a_{3}-\mu a_{2}^{2}\right|=\left\{\begin{array}{cl}
3-4 \mu & \text { if } \mu \leq 0 \tag{1.2}\\
1+2 \exp \left(\frac{-2 \mu}{1-\mu}\right) & \text { if } 0 \leq \mu \leq 1 \\
4 \mu-3 & \text { if } \mu \geq 1
\end{array}\right.
$$

The inequality (1.2) plays a very important role in determining estimates of higher coefficients for some sub classes $\mathcal{S}[3,9]$.

Let us define some subclasses of \mathcal{S}.
We denote by \mathcal{S}^{*}, the class of univalent starlike functions

$$
g(z)=z+\sum_{n=2}^{\infty} b_{n} z^{n} \in \mathcal{A}
$$

and satisfying the condition

$$
\begin{equation*}
\operatorname{Re}\left(\frac{z g(z)}{g(z)}\right)>0, z \in \mathbb{E} \tag{1.3}
\end{equation*}
$$

We denote by \mathcal{K}, the class of univalent convex functions

$$
h(z)=z+\sum_{n=2}^{\infty} c_{n} z^{n} \in \mathcal{A}
$$

and satisfying the condition

$$
\begin{equation*}
\operatorname{Re}\left(\frac{\left(z h^{\prime}(z)\right.}{h^{\prime}(z)}\right)>0, z \in \mathbb{E} \tag{1.4}
\end{equation*}
$$

A function $f(z) \in \mathcal{A}$ is said to be close to convex if there exists $g(z) \in \mathcal{S}^{*}$ such that

$$
\begin{equation*}
\operatorname{Re}\left(\frac{z f^{\prime}(z)}{g(z)}\right)>0, z \in \mathbb{E} \tag{1.5}
\end{equation*}
$$

The class of close to convex functions is denoted by C and was introduced by Kaplan [7] and it was shown by him that all close to convex functions are univalent.

$$
\begin{align*}
& S^{*}(A, B)=\left\{f(z) \in \mathcal{A} ; \frac{z f^{\prime}(z)}{f(z)} \prec \frac{1+A z}{1+B z},-1 \leq B<A \leq 1, z \in \mathbb{E}\right\} \tag{1.6}\\
& \mathcal{K}(A, B)=\left\{f(z) \in \mathcal{A} ; \frac{\left(z f^{\prime}(z)\right)^{\prime}}{f^{\prime}(z)} \prec \frac{1+A z}{1+B z},-1 \leq B<A \leq 1, z \in \mathbb{E}\right\} \tag{1.7}
\end{align*}
$$

It is obvious that $S^{*}(A, B)$ is a subclass of S^{*} and $\mathcal{K}(A, B)$ is a subclass of \mathcal{K}.
We introduce a new subclass as

$$
\left\{f(z) \in \mathcal{A} ;\left(\frac{z f^{\prime}(z)}{f(z)}\right)^{\beta}+\tan \alpha\left(\frac{\left(z f^{\prime}(z)\right)^{\prime}}{f^{\prime}(z)}\right)^{1-\beta} \prec\left\{\frac{1+w(z)}{1-w(z)}\right\}^{\gamma} ; z \in \mathbb{E}\right\}
$$

and we shall denote this class as $\mathcal{K} S^{*}(\alpha, \beta\}$.
We shall deal with two subclasses of $S^{*}\left(f, f^{\prime}, \alpha, \beta\right)$ defined as follows in our next paper:

$$
\begin{gather*}
\mathcal{K S}^{*}(\alpha, \beta, A, B)=\left\{f(z) \in \mathcal{A} ;\left(\frac{z f^{\prime}(z)}{f(z)}\right)^{\beta}+\tan \alpha\left(\frac{\left(z f^{\prime}(z)\right)^{\prime}}{f^{\prime}(z)}\right)^{1-\beta} \prec \frac{1+A z}{1+B z} ; z \in \mathbb{E}\right\}, \tag{1.8}\\
\mathcal{K} \mathcal{S}^{*}(A, B, \alpha, \beta, \gamma)=\left\{f(z) \in \mathcal{A} ;\left(\frac{z f^{\prime}(z)}{f(z)}\right)^{\beta}+\tan \alpha\left(\frac{\left(z f^{\prime}(z)\right)^{\prime}}{f^{\prime}(z)}\right)^{1-\beta} \prec\left\{\frac{1+A z}{1+B z}\right\}^{\gamma} ; z \in \mathbb{E}\right\} . \tag{1.9}
\end{gather*}
$$

Several researchers established new subclasses using these classes and gave amazing results about coefficient inequality. [12], [15].

Symbol \prec stands for subordination, which we define as follows:
Principle of Subordination. Let $f(z)$ and $F(z)$ be two functions analytic in \mathbb{E}. Then $f(z)$ is called subordinate to $F(z)$ in \mathbb{E} if there exists a function $w(z)$ analytic in \mathbb{E} satisfying the conditions $w(0)=0$ and $|w(z)|<1$ such that $f(z)=F(w(z)) ; z \mathbb{E}$ and we write $f(z) \prec F(z) .[11]$
By \mathcal{U}, we denote the class of analytic bounded functions of the form

$$
\begin{equation*}
w(z)=\sum_{n=1}^{\infty} d_{n} z^{n}, w(0)=0,|w(z)|<1 \tag{1.10}
\end{equation*}
$$

It is known that

$$
\begin{equation*}
\left|d_{1}\right| \leq 1,\left|d_{2}\right| \leq 1-\left|d_{1}\right|^{2} \tag{1.11}
\end{equation*}
$$

2 Preliminary Lemmas.
For $0<c<1$, we write $w(z)=\left(\frac{c+z}{1+c z}\right)$ so that

$$
\begin{equation*}
\frac{1+w(z)}{1-w(z)}=1+2 c z+2 z^{2}+\cdots \tag{2.1}
\end{equation*}
$$

3 Main Results

Theorem 3.1. Let $f(z) \in \mathcal{K} \mathcal{S}^{*}(\alpha, \beta, \gamma)$
$\left|a_{3}-\mu a_{2}^{2}\right| \leq$

$$
\left\{\begin{array}{l}
\frac{1}{\{\beta+2(1-\beta) \tan \alpha\}^{2}}\left[\frac{\{4(1-\beta)(\beta+2) \alpha-\beta(\beta-3)\}\{\beta+2(1-\beta) \tan \alpha\}}{\{\beta+3(1-\beta) \tan \alpha\}}-4 \gamma^{2} \mu\right] \tag{3.1}\\
\text { if } \mu \leq \frac{\{4(1-\beta)(\beta+2) \tan \alpha-\beta(\beta-3)\}\{\beta+2(1-\beta) \tan \alpha\}-\gamma\{(1-\alpha) \beta+2 \alpha(1-\beta)\}}{4\{\beta+3(1-\beta) \tan \alpha\}} \\
\frac{1}{3 \alpha+\beta-4 \alpha \beta} \\
\text { if } \frac{\{4(1-\beta)(\beta+2) \tan \alpha-\beta(\beta-3)\}\{\beta+2(1-\beta) \tan \alpha\}-\gamma\{(1-\alpha) \beta+2 \alpha(1-\beta)\}^{2}}{4\{\beta+3(1-\beta) \tan \alpha\}} \leq \\
\mu \leq \frac{\{4(1-\beta)(\beta+2) \tan \alpha-\beta(\beta-3)\}\{\beta+2(1-\beta) \tan \alpha\}+\gamma\{(1-\alpha) \beta+2 \alpha(1-\beta)\}^{2}}{4 \gamma^{2}\{\beta+3(1-\beta) \tan \alpha\}} \\
\frac{1}{\{\beta+2(1-\beta) \tan \alpha\}^{2}}\left[4 \gamma^{2} \mu-\frac{\{4(1-\beta)(\beta+2) \tan \alpha-\beta(\beta-3)\}\{\beta+2(1-\beta) \tan \alpha\}}{\{\beta+3(1-\beta) \tan \alpha\}}\right] \\
\text { if } \mu \geq \frac{\{4(1-\beta)(\beta+2) \tan \alpha-\beta(\beta-3)\}\{\beta+2(1-\beta) \tan \alpha\}+\gamma\{(1-\alpha) \beta+2 \alpha(1-\beta)\}^{2}}{4 \gamma^{2}\{\beta+3(1-\beta) \tan \alpha\}}
\end{array}\right.
$$

The results are sharp.
Proof. By definition of $\mathcal{K} \mathcal{S}^{*}(\alpha, \beta, \gamma)$, we have

$$
\begin{equation*}
f(z) \in \mathcal{A} ;\left(\frac{z f^{\prime}(z)}{f(z)}\right)^{\beta}+\tan \alpha\left(\frac{\left(z f^{\prime}(z)\right)^{\prime}}{f^{\prime}(z)}\right)^{1-\beta}=\left\{\frac{1+w(z)}{1-w(z)}\right\}^{\gamma} ; w(z) \in \mathcal{U} \tag{3.4}
\end{equation*}
$$

Expanding the series (2.1), we get

$$
\begin{align*}
& \left\{1+\beta a_{2} z+\left(2 \beta a_{3}+\frac{\beta(\beta-3)}{2} a_{2}^{2}\right) z^{2}+\ldots\right\}+\tan \alpha\left\{1+2(1-\beta) a_{2} z+2(1-\beta)\left(3 a_{3}-(\beta+2) a_{2}^{2}\right) z^{2}+\ldots\right\} \tag{3.5}\\
& =\left(1+2 \gamma c_{1} z+2 \gamma\left(c_{2}+\gamma c_{1}^{2}\right) z^{2}+\ldots\right)
\end{align*}
$$

Identifying terms in (3.5), we get

$$
\begin{gather*}
a_{2}=\frac{2 \gamma}{\beta+2(1-\beta) \tan \alpha} c_{1} . \tag{3.6}\\
a_{3}=\frac{\gamma}{\beta+3(1-\beta) \tan \alpha} c_{2}+\frac{4(1-\beta)(\beta+2) \tan \alpha-\beta(\beta-3)}{\{\beta+3(1-\beta) \tan \alpha\}\{\beta+2(1-\beta) \tan \alpha\}\}} \gamma^{2} c_{1}{ }^{2} . \tag{3.7}
\end{gather*}
$$

From (3.6) and (3.7), we obtain

$$
\begin{align*}
a_{3}-\mu a_{2}^{2}= & \frac{\gamma c_{2}}{\beta+3(1-\beta) \tan \alpha} \\
& +\left[\frac{4(1-\beta)(\beta+2) \tan \alpha-\beta(\beta-3)}{\{\beta+3(1-\beta) \tan \alpha\}\{\beta+2(1-\beta) \tan \alpha\}\}}-\frac{4 \gamma^{2} \mu}{\{\beta+2(1-\beta) \tan \alpha\}^{2}}\right] c_{1}^{2} . \tag{3.8}
\end{align*}
$$

Taking absolute value and using Triangular inequality, (3.8) can be rewritten as

$$
\begin{align*}
& \left|a_{3}-\mu a_{2}^{2}\right| \leq \frac{\gamma\left|c_{2}\right|}{\beta+3(1-\beta) \tan \alpha} \\
& +\frac{1}{\{\beta+2(1-\beta) \tan \alpha\}^{2}}\left|\frac{\{4(1-\beta)(\beta+2) \tan \alpha-\beta(\beta-3)\}\{\beta+2(1-\beta) \tan \alpha\}\}}{\{\beta+3(1-\beta) \tan \alpha\}}-4 \gamma^{2} \mu\right|\left|c_{1}^{2}\right| \tag{3.9}
\end{align*}
$$

Using (1.9) in (3.6), simple calculations yield

$$
\begin{equation*}
\left|a_{3}-\mu a_{2}^{2}\right| \leq \frac{\gamma}{\beta+3(1-\beta) \tan \alpha}+\frac{1}{\{\beta+2(1-\beta) \tan \alpha\}^{2}} \tag{3.10}
\end{equation*}
$$

$$
\left[\left|\frac{\{4(1-\beta)(\beta+2) \tan \alpha-\beta(\beta-3)\}\{\beta+2(1-\beta) \tan \alpha\}\}}{\{\beta+3(1-\beta) \tan \alpha\}}-4 \gamma^{2} \mu\right|-\frac{\gamma\{(1-\alpha) \beta+2 \alpha(1-\beta)\}^{2}}{\beta+3(1-\beta) \tan \alpha}\right]\left|c_{1}\right|^{2}
$$

Case I. $\mu \leq \frac{\{4(1-\beta)(\beta+2) \tan \alpha-\beta(\beta-3)\}\{\beta+2(1-\beta) \tan \alpha\}\}}{4 \gamma^{2}\{\beta+3(1-\beta) \tan \alpha\}}$. In this case, (3.10) can be rewritten as

$$
\begin{align*}
& \text { 11) }\left|a_{3}-\mu a_{2}^{2}\right| \leq \frac{\gamma}{\beta+3(1-\beta) \tan \alpha}+\frac{1}{\{\beta+2(1-\beta) \tan \alpha\}^{2}} \tag{3.11}\\
& {\left[\frac{\{4(1-\beta)(\beta+2) \tan \alpha-\beta(\beta-3)\}\{\beta+2(1-\beta) \tan \alpha\}\}-\gamma\{(1-\alpha) \beta+2 \alpha(1-\beta)\}^{2}}{\{\beta+3(1-\beta) \tan \alpha\}}-4 \mu\right]\left|c_{1}\right|^{2}}
\end{align*}
$$

Subcase I (a). $\mu \leq \frac{\{4(1-\beta)(\beta+2) \tan \alpha-\beta(\beta-3)\}\{\beta+2(1-\beta) \tan \alpha\}\}-\gamma\{(1-\alpha) \beta+2 \alpha(1-\beta)\}^{2}}{4\{\beta+3(1-\beta) \tan \alpha\}}$. Using (1.9), (3.8) becomes

$$
\begin{equation*}
\left|a_{3}-\mu a_{2}^{2}\right| \leq \frac{1}{\{\beta+2(1-\beta) \tan \alpha\}^{2}}\left[\frac{\{4(1-\beta)(\beta+2) \tan \alpha-\beta(\beta-3)\}\{\beta+2(1-\beta) \tan \alpha\}\}}{\{\beta+3(1-\beta) \tan \alpha\}}-4 \gamma^{2} \mu\right] \tag{3.12}
\end{equation*}
$$

Subcase I (b). $\mu \geq \frac{\{4(1-\beta)(\beta+2) \tan \alpha-\beta(\beta-3)\}\{\beta+2(1-\beta) \tan \alpha\}\}-\gamma\{(1-\alpha) \beta+2 \alpha(1-\beta)\}^{2}}{4\{\beta+3(1-\beta) \tan \alpha\}}$.
We obtain from (3.8)

$$
\begin{equation*}
\left|a_{3}-\mu a_{2}^{2}\right| \leq \frac{\gamma}{\beta+3(1-\beta) \tan \alpha} \tag{3.13}
\end{equation*}
$$

Case II. $\mu \geq \frac{\{4(1-\beta)(\beta+2) \tan \alpha-\beta(\beta-3)\}\{\beta+2(1-\beta) \tan \alpha\}\}}{4 \gamma^{2}\{\beta+3(1-\beta) \tan \alpha\}}$
Preceding as in case I, we get

$$
\begin{align*}
& \text { 3.14) }\left|a_{3}-\mu a_{2}^{2}\right| \leq \frac{1}{3 \alpha+\beta-4 \alpha \beta}+\frac{1}{\{(1-\alpha) \beta+2 \alpha(1-\beta)\}^{2}} \tag{3.14}\\
& {\left[4 \gamma^{2} \mu-\frac{\{4(1-\beta)(\beta+2) \tan \alpha-\beta(\beta-3)\}\{\beta+2(1-\beta) \tan \alpha\}\}+\gamma\{(1-\alpha) \beta+2 \alpha(1-\beta)\}^{2}}{\{\beta+3(1-\beta) \tan \alpha\}}\right]\left|c_{1}\right|^{2}}
\end{align*}
$$

Subcase II (a). $\mu \leq \frac{\{4(1-\beta)(\beta+2) \tan \alpha-\beta(\beta-3)\}\{\beta+2(1-\beta) \tan \alpha\}\}+\gamma\{(1-\alpha) \beta+2 \alpha(1-\beta)\}^{2}}{4 \gamma^{2}\{\beta+3(1-\beta) \tan \alpha\}}$
(3) takes the form

$$
\begin{equation*}
\left|a_{3}-\mu a_{2}^{2}\right| \leq \frac{\gamma}{\beta+3(1-\beta) \tan \alpha} \tag{3.15}
\end{equation*}
$$

Combining subcase I (b) and subcase II (a), we obtain

$$
\begin{align*}
& \left|a_{3}-\mu a_{2}^{2}\right| \leq \frac{\gamma}{\beta+3(1-\beta) \tan \alpha} \text { if } \tag{3.16}\\
& \frac{\{4(1-\beta)(\beta+2) \tan \alpha-\beta(\beta-3)\}\{\beta+2(1-\beta) \tan \alpha\}\}-\gamma\{(1-\alpha) \beta+2 \alpha(1-\beta)\}^{2}}{4\{\beta+3(1-\beta) \tan \alpha\}} \leq \\
& \mu \leq \frac{\{4(1-\beta)(\beta+2) \tan \alpha-\beta(\beta-3)\}\{\beta+2(1-\beta) \tan \alpha\}\}+\gamma\{(1-\alpha) \beta+2 \alpha(1-\beta)\}^{2}}{4 \gamma^{2}\{\beta+3(1-\beta) \tan \alpha\}}
\end{align*}
$$

Subcase II (b). $\mu \geq \frac{\{4(1-\beta)(\beta+2) \tan \alpha-\beta(\beta-3)\}\{\beta+2(1-\beta) \tan \alpha\}\}+\gamma\{(1-\alpha) \beta+2 \alpha(1-\beta)\}^{2}}{4 \gamma^{2}\{\beta+3(1-\beta) \tan \alpha\}}$
Preceding as in subcase I (a), we get

$$
\begin{equation*}
\left|a_{3}-\mu a_{2}^{2}\right| \leq \frac{1}{\{\beta+2(1-\beta) \tan \alpha\}^{2}}\left[4 \gamma^{2} \mu-\frac{\{4(1-\beta)(\beta+2) \tan \alpha-\beta(\beta-3)\}\{\beta+2(1-\beta) \tan \alpha\}\}}{\{\beta+3(1-\beta) \tan \alpha\}}\right] \tag{3.17}
\end{equation*}
$$

Combining (3.9), (3.13) and (3.14), the theorem is proved.
Extremal function for (3.1) and (3.3) is defined by

$$
f_{1}(z)=(1+a z)^{b}
$$

where

$$
a=\frac{2 \gamma\{\beta+3(1-\beta) \tan a\}}{\{4(1-\beta)(\beta+2) \tan \alpha-\beta(\beta-3)\}\{\beta+2(1-\beta) \tan a\}^{3}-2 \gamma}
$$

and

$$
b=\frac{\{4(1-\beta)(\beta+2) \tan \alpha-\beta(\beta-3)\}\{\beta+2(1-\beta) \tan \alpha\}\}^{3}-2 \gamma}{\{\beta+3(1-\beta) \tan \alpha\}\{\beta+2(1-\beta) \tan \alpha\}\}}
$$

Extremal function for (3.2) is defined by $f_{2}(z)=z\left(1+c z^{2}\right)^{d}$,
where $c=\frac{\tan \alpha}{\beta+3(1-\beta) \tan \alpha}$ and $d=\frac{\gamma}{\tan \alpha}$.
Corollary 3.1. Putting $\gamma=1, \beta=0$ and applying limit as $\alpha \rightarrow \frac{\pi}{2}$ in the theorem, we get

$$
\left|a_{3}-\mu a_{2}^{2}\right| \leq\left\{\begin{array}{l}
1-\mu, \text { if } \mu \leq 1 \\
\frac{1}{3} \text { if } 1 \leq \mu \leq \frac{4}{3} \\
\mu-1, \text { if } \mu \geq \frac{4}{3}
\end{array}\right.
$$

These estimates were derived by Keogh and Merkes [8] and are results for the class of univalent convex functions.
Corollary 3.2. Putting $\alpha=0, \beta=1, \gamma=0$ in the theorem, we get

$$
\left|a_{3}-\mu a_{2}^{2}\right| \leq\left\{\begin{array}{c}
3-4 \mu \text { if } \mu \leq \frac{1}{2} \\
1 \text { if } \frac{1}{2} \leq \mu \leq 1 \\
4 \mu-3, \text { if } \mu \geq 1
\end{array}\right.
$$

These estimates were derived by Keogh and Merkes [8] and are results for the class of univalent starlike functions.

Conclusion : A subclass of analytic functions which take a broad view of some well-known subclasses of analytic and univalent functions was demarcated. The better estimates for the Fekete-Szeg functional for the defined class were obtained along with extremal functions. The study combines existing results and attains new outcomes in geometric function theory. Forthcoming researches can be done to acquire the geometric properties.

References

[1] L. Bieberbach, Uber einige Extremal problemeim Gebiete der konformen Abbildung, Math. Ann, 77 (1916), 153-172.
[2] L. Bieberbach,Uber die Koeffzientem derjenigen Potenzreihen, welche eine schlithe Abbildungdes Einheitskreises vermitteln, Preuss. Akad. Wiss. Sitzungsb., (1916), 940-955.
[3] P. N. Chichra,New subclasses of the class of close-to-convex functions, Proc. Amer. Math. Society, 62 (1977), 37-43.
[4] M. Fekete and G. Szegö, Eine Bemerkung über ungerade schlichte Funktionen, J. London Math. Soc., 8 (1933), 85-89.
[5] R. M. Goel and B.S. Mehrok, A subclass of univalent functions, Houston Journal of Mathematics, 8 (1982), 343-357.
[6] R. M. Goel and B.S. Mehrok, A coefficient inequality for a subclass of closeto-convex functions, Serdica Bul. Math. Pubs., 15 (1989), 327-335.
[7] W. Kaplan, Close-to-convex schlicht functions, Michigan Mathematical Journal, 1 (1952), 169-185.
[8] S. R. Keogh and E. R. Merkes, A Coefficient inequality for certain classes of analytic functions, Proc. Amer. Math. Society, 20 (1989), 8-12.
[9] B. O. Kunle, The fifth and sixth coefficients of α-close-to-convex functions, Kragujevac J. Math., 32 (2009), 5-12.
[10] K. Löwner, Uber monotone Matrixfunktionen, Math. Z., 38 (1934), 177-216.
[11] Z. Nehari, Conformal Mapping, McGraw-Hill, Comp., Inc., New York, 1975.
[12] G. Singh, H. M. Srivastava and G. Kaur, Estimates of fourth hankel determinant for a class of analytic functions with bounded turnings involving cardioid domains, Journal of Nonlinear and Convex Analysis 22(3) (2021), 511-526.
[13] G. Singh, Fekete-Szegö Inequality for a New Class and Its Certain Subclasses of Analytic Functions, General Mathematics Notes, 21(1) (2014), 86-96.
[14] G. Singh, G. Singh and G. Singh, Certain generalized subclasses of analytic functions,_Journal of Rajasthan Academy of Physical Sciences, 18(3-4) (2020), 215-232.
[15] G. Singh, G. Singh and G. Singh, Estimate of Fourth Hankel Determinant For A New Subclass Of Multivalent Functions, Journal of Rajasthan Academy of Physical Sciences, 20(3-4) (2021), 181-194.

