
ISSN 0304-9892 (Print) ISSN 2455-7463 (Online)
www.vijnanaparishadofindia.org/jnanabha
Jñānābha, Vol. 53(2) (2023), 236-241
(Dedicated to Professor V. P. Saxena on His 80th Birth Anniversary Celebrations)

ACCEPTABLE STRINGS IN AN AUTOMATON
Mridul Dutta1 and Padma Bhushan Borah2

1Department of Mathematics, Dudhnoi College,Goalpara, Assam, India-783124
2Department of Mathematics, Cotton University, Assam, India-781001
Email: mridulduttamc@gmail.com, padmabhushanborah@gmail.com

(Received: September 30, 2022; In format: October 08, 2022; Revised: August 15, 2023;
Accepted: November 26, 2023)

DOI: https://doi.org/10.58250/jnanabha.2023.53228

Abstract

This paper is a presentation and discussion of two proofs of a theorem. The theorem is a statement
about a specific type of sequence of inputs where all multiples of fixed denominations are accepted
as inputs of an automaton. The theorem has interesting implications for accepted strings in a finite
automaton in general setting. Here, we have examined different methods for proving the theorem. We
present one analytic proof by using automata theory with graph theoretic concepts and another proof by
utilizing the ordered partition of number theory. We also illustrate the results with the help of examples.
2020 Mathematical Sciences Classification: 03D05, 11B85, 68R15.
Keywords and Phrases: Finite Automata, Acceptable Strings, Ordered Partition.

1 Introduction
An automaton (in plural Automata) is an abstract self-operating machine which follows a predetermined
sequence of operation automatically gives an output from input. Here input may be energy, information,
materials, etc. The system works without the intervention of man. Automata theory plays a major role in
huge applied areas. The most significant areas include communication, transportation, health care, electronic
banking, etc. Mainly finite automata are significant in many different areas, including Electrical Engineering,
Linguistics, Computer Science, Philosophy, Biology, Mathematics, etc. In Computer science, automata
widely used in text processing, Compilers, Software and hardware design, network protocol, etc. [6]. Many
authors have done their work on the string of automaton for a long time. Yu et al. [5] presented symbolic
string verification: An automata-based approach. Aydin et al. [1] had done their work on Automata-based
model counting for string constraints. Most recently, Yue et al. [8] developed the language acceptability
of finite automata based on theory of semi-tensor product of matrices. Dobronravov et al. [3] introduced
the length of the shortest strings accepted by two-way finite automata. As a result of the techniques used
in the aforementioned works, we are continuing our research on acceptable strings in an automaton. The
originality of the paper is that we primarily provide many proofs utilizing entirely distinct methodologies.

2 Preliminaries
A finite state automaton consists of a finite set of states and a set of transitions from state to state that
occurs on input symbols from a set of alphabets. An alphabet is a finite, non-empty set of symbols denoted
by A, e.g. A = {0, 1}, the set of binary alphabet. A string (or word) is a finite sequence of symbols chosen
from the set A, e.g. 01101, 01, 1, 0 are some strings over the set alphabet A = {0, 1}. A Deterministic
Finite Automata can be formally defined as a 5-tuple

∑
= (Q,A, δ, q∗0 , F) where Q (6= φ) is a finite set of

states, A is a finite non-empty set of inputs, δ : Q×A→ Q is defined by δ (q∗0 , a) = q1; q∗0 , q1 ∈ Q, a ∈ A, q∗0 ,
is the initial state, F is the set of final states and F ⊆ Q. A string x is accepted by finite state automata∑

= (Q,A, δ, q∗0 , F) if δ (q∗0 , x) = p for some p ∈ F. A final state is also called an accepting state. The initial
state is denoted by an arrow mark and the final state is denoted by a double circle. The input is accepted
when all input is read and match by transitions and the automaton is in a final state [6].

A finite-state automaton is a machine that constructs computing by reading a one-way read-only tape.
The input is produced up of words written on the tape. The written words use a describe alphabet which
is called the input alphabet and the words create a string. The Finite automata will be produced up of the
input-output relations at every state and also the modifications of the states that will appear in receiving
the input at a particular state. At the end of the process, it becomes visible whether the input is accepted

236

or rejected by the automaton machine. Also, Deterministic refers to the distinctiveness of the computation.
The finite automata are called deterministic finite automata if the machine reads an input string one symbol
at a time [6, 8]. Tree automata are state machines. They deal with tree structures rather than the strings
of the more traditional state machine [4].

In Combinatorics and Number theory, a partition of a positive integer n, also called an integer partition,
is a way of writing n as a sum of natural numbers. If order matters, the sum becomes a composition or
ordered partition. Thus, a composition or an ordered partition of an integer n is a way of writing n as the
sum of a sequence of positive integers [2].

3 Main Results
In this section, we present our result with different proofs. Also we discuss some examples.

Theorem 3.1. In a finite automata, if q0 is the initial state, qm is the final state with m = nk, where
m,n, k ∈ N, and automata accept inputs of denomination ln, where 1 ≤ l ≤ k then the number of acceptable
strings in the automata is 2(k−1).

Proof. Let lsn, s ∈ {1, 2, ..., r}, 1 ≤ r ≤ k is a sequence of automaton acceptable inputs. Then, we have
nk = (l1 + l2 + ... + lr)n. i.e. k = l1 + l2 + ... + lr. So, without loss of generality, let n = 1 be the lowest
possible denomination accepted by the automaton. Hence m = k. Now, Consider the finite tree automata
with states {q0, q1, ...qk} with a direct transition function from state qi to state qj if and only if i < j. ql has
stored value l, 0 ≤ l ≤ k. We get the final state when we reach the value m = k, i.e., when we reach state qk.
Now, going from state qi to state qj , i < j, takes us from value i to value j; i.e. input (j − i) is added to the
present value i.

Figure 3.1. A state diagram of a finite Tree automata

A path (transition sequence) from state q0 to state qk will be define an automaton acceptable strings. Eg.
When k = 3 in the tree automaton below, we have (q0, q1, q2, q3), (q0, q1, q3), (q0, q3), (q0, q2, q3) are acceptable
strings.

Since q0 is always the starting states and qk the final states, we have each subset of S = {q1, q2, ..., qk−1}
correspond to a unique (path) transition function from q0 to qk and vice-versa. Therefore, there are a total
of 2|S| = 2k−1 transition functions or paths from q0 to qk and therefore, there is 2k−1 acceptable strings of
the finite automaton.

Alternate proof. If lsn, s ∈ {1, 2, ..., r}, 1 ≤ r ≤ k is an accepted sequence of inputs, then, we have
nk = (l1 + l2 + ...+ lr)n. i.e. k = l1 + l2 + ...+ lr.
So, without loss of generality, let n = 1 be the lowest possible denomination accepted by the automaton.
Hence we get m = k. Now k = l1 + l2 + ...+ lr. means {l1, l2, ..., lr} forms a partition of k.

237

Figure 3.2. A state diagram of a Tree automata with 3 states

Let N = No. of acceptable strings of the automaton.
We Claim that N = 2k−1.

Clearly, any acceptable strings, or sequence of inputs form an ordered partition of m and vice-
versa.Therefore, there are as many acceptable strings as there are ordered partition of m. Now m =
1 + 1 + ...+ 1(k-times of 1) = k, there are (k− 1)‘+′ signs between the ‘k′1s. We define an operationdeleting
a + sign as replacing the ‘1′s joined by the + signs to be deleted with their sum, keeping the remaining
+ signs undisturbed. With this interpretation, each set of choice for ‘+′ signs to be deleted corresponds
to a unique ordered partition of ‘m and vice-versa. Eg. m = 3, 3 = 1 + 1 + 1, Choosing the 2nd ‘+′ sign
correspond to the ordered partition 1 + (1 + 1) i.e. 1 + 2,and the ordered partition 2 + 1 i.e. (1 + 1) + 1
corresponds to choosing and deleting the 1st ‘+′ sign. Similarly choosing both the ‘+′ sign correspond to
(1 + 1 + 1) = 3 and not choosing any of the + sign corresponds to the partition 1 + 1 + 1 of 3 etc. Since
there are 2 choices for each + sign, viz. to delete or not to delete, and there are a total of (k− 1)+ signs, so
there are 2k−1 such choices in total and as such there are 2k−1 ordered partition of m. Hence, N = 2k−1.

Example 3.1. In a finite automata, if q0 is the initial states, qm is the final state with n = 1,m = k = 4,
Allowed denomination i.e inputs are S = 1, 2, 3, 4. There are 24−1 = 8 accepted sequences of inputs by the

Figure 3.3. A state diagram of a Tree automata with 4 states

finite automata. They are (1,2,3,4), (1,2,4), (1,3,4), (2,3,4), (2,4), (3,4), (1,4), and (4). These are obtained
by traversing all the transition functions from the state q0 to state q4.

Alternatively, For 4 = 1 + 1 + 1 + 1, there are four ‘1s and 3‘ + signs. We define a function f3 on all
binary strings of length 3 to the ordered partition of 4. Now,
f3(000) = 1 + 1 + 1 + 1,
f3(001) = 1 + 1 + (1 + 1) = 1 + 1 + 2,
f3(010) = 1 + (1 + 1) + 1 = 1 + 2 + 1,
f3(011) = 1 + (1 + 1 + 1) = 1 + 3,
f3(100) = (1 + 1) + 1 + 1 = 2 + 1 + 1,

238

f3(101) = (1 + 1) + (1 + 1) = 2 + 2,
f3(110) = (1 + 1 + 1) + 1 = 3 + 1,
f3(111) = (1 + 1 + 1 + 1) = 4.
Corresponding to each binary string of length 3 we get an ordered partition of 4 which in turn corresponds
to an acceptable sequence of inputs viz. (1, 2, 3, 4), (1, 2, 4), (1, 3, 4), (1, 4), (2, 3, 4), (2, 4), (3, 4), (4)
respectively and these are precisely 8 in numbers.

Example 3.2. In a finite automata, if q0 is the initial states, qm is the final state with n = 5,m = 5k = 20,
Allowed denomination are multiple of 5 i.e inputs are S = 5, 10, 15, 20. There are 24−1 = 8 accepted

Figure 3.4. A state diagram of a Tree automata with 4 states

sequences of inputs by the finite automata. They are (5,10,15,20), (5,10,20), (5,15,20), (5,20), (10,15,20),
(10,20), (15,20), and (20). These are obtained by traversing all the transition functions from the state q0 to
state q20.

Alternately, For 20 = 5 + 5 + 5 + 5, there are four 5s and 3 + signs. We define a function g3 on all binary
strings of length 3 to the ordered partition of 20.
Now,
g3(000) = 5 + 5 + 5 + 5,
g3(001) = 5 + 5 + (5 + 5) = 5 + 5 + 10,
g3(010) = 5 + (5 + 5) + 5 = 5 + 10 + 5,
g3(011) = 5 + (5 + 5 + 5) = 5 + 15,
g3(100) = (5 + 5) + 5 + 5 = 10 + 5 + 5,
g3(101) = (5 + 5) + (5 + 5) = 10 + 10,
g3(110) = (5 + 5 + 5) + 5 = 15 + 5,
g3(111) = (5 + 5 + 5 + 5) = 20.
Corresponding to each binary string of length 3 we get an ordered partition of 20 which in turn corresponds
to an acceptable sequence of inputs (5,10,15,20), (5,10,20), (5,15,20), (5,20), (10,15,20), (10,20), (15,20), and
(20) respectively and these are precisely 8 in numbers.
We note that in both the examples there are exactly 8 accepted sequence of inputs. This was bound to
happen since we have 5k = 5l1 + 5l2+ ... +5lr ⇔ k = l1 + l2+ ... +lr.

We conclude with a final example.

Example 3.3. In a finite automata, if q0 is the initial states, qm is the final state with n = 1,m = k = 5,
Allowed denomination i.e inputs are S = 1, 2, 3, 4, 5 There are 25−1 = 16 accepted sequences of inputs by the
finite automata. They are (1,2,3,4,5), (1,2,3,5), (1,2,4,5), (1,3,4,5), (2,3,4,5), (1,2,5), (1,4,5), (3,4,5), (1,5),
(4,5), (2,5), (3,5), (2,4,5), (1,3,5), (2,3,5),and (5). These are obtained by using transition functions from the
state q0 to state q5.

Alternatively, For 5 = 1 + 1 + 1 + 1 + 1, there are five 1s and 4 + signs. We define a function h4 on all
binary strings of length 4 to the ordered partition of 5. Now,

239

Figure 3.5. A state diagram of a Tree automata with 5 states

h4(0000) = 1 + 1 + 1 + 1 + 1,
h4(0001) = 1 + 1 + 1 + (1 + 1) = 1 + 1 + 1 + 2,
h4(0010) = 1 + 1 + (1 + 1) + 1 = 1 + 1 + 2 + 1,
h4(0011) = 1 + (1 + 1) + 1 + 1 = 1 + 2 + 1 + 1,
h4(0100) = (1 + 1) + 1 + 1 + 1 = 2 + 1 + 1 + 1,
h4(0101) = 1 + 1 + (1 + 1 + 1) = 1 + 1 + 3,
h4(0110) = 1 + (1 + 1 + 1) + 1 = 1 + 3 + 1,
h4(0111) = (1 + 1 + 1) + 1 + 1 = 3 + 1 + 1,
h4(1000) = 1 + (1 + 1 + 1 + 1) = 1 + 4,
h4(1001) = (1 + 1 + 1 + 1) + 1 = 4 + 1,
h4(1010) = (1 + 1) + (1 + 1 + 1) = 2 + 3,
h4(1011) = (1 + 1 + 1) + (1 + 1) = 3 + 2,
h4(1100) = (1 + 1) + (1 + 1) + 1 = 2 + 2 + 1,
h4(1101) = 1 + (1 + 1) + (1 + 1) = 1 + 2 + 2,
h4(1110) = (1 + 1) + 1 + (1 + 1) = 2 + 1 + 2,
h4(1111) = (1 + 1 + 1 + 1 + 1) = 5.
Corresponding to each binary string of length 4 we get an ordered partition of 5 which in turn corresponds
to an acceptable sequence of inputs viz. (1,2,3,4,5), (1,2,3,5), (1,2,4,5), (1,3,4,5), (2,3,4,5), (1,2,5), (1,4,5),
(3,4,5), (1,5), (4,5), (2,5), (3,5), (2,4,5), (1,3,5), (2,3,5), and (5) respectively and these are precisely 16 in
numbers.

4 Conclusion
We have presented two different proofs of a theorem in automata, each being different in its approach. We
looked at an Graph theoretic proof using the concept of a tree, and our second proof used another very
interesting concept of ordered partition or composition of numbers from Combinatorics and Number theory.
Finally, we examplified the theorem with both the approaches.

References
[1] A. Aydin, L. Bang and T. Bultan, Automata-based model counting for string constraints, In International

Conference on Computer Aided Verification, Cham: Springer International Publishing, (2015), 255-272.
[2] D. M. Burton, Elementary number theory, McGraw-Hill Education, New York, USA, 2007.
[3] E. Dobronravov, N. Dobronravov and A. Okhotin, On the length of shortest strings accepted by two-way

finite automata, Fundamenta Informaticae, 180(4) (2021), 315-331.
[4] F. Harary, Graph Theory, Narosa Publishing House, India, Reprint, 2013.
[5] F. Yu, T. Bultan, M. Cova and O. H. Ibarra, Symbolic string verification: An automata-based approach,

International SPIN Workshop on Model Checking of Software, Berlin, Heidelberg: Springer Berlin
Heidelberg, 2008.

240

[6] J. E. Hopcroft, R. Motwani and V. Ullman, Introduction to Automata Theory, Language and
Computations, Addison Wesley, USA, 2001.

[7] K. L. P. Mishra and M. Chandrasekarn, Theory of computer science; Automata, Languages and
computation, Third edition, Prentice-Hall of India, 2007.

[8] J. Yue, Y. Yan and Z. Chen, Language acceptability of finite automata based on theory of semi-tensor
product of matrices, Asian journal of control, 21(6) (2019), 2634-2643.

241

