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Abstract

In this article, we represent a recurrence relation of the arithmetic function connected with an
ascending factorial function, Lah and Stirling numbers. We then obtain a relation of harmonic numbers
and again extend the coefficients of these arithmetic functions involving Bell polynomials through
introducing the sequence of Hankel type integrals. On the other hand, making some of the extensions of
these arithmetic functions, we derive some more results and the summation formulae in terms of Riemann
Zeta function.
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1 Introduction
In this representation, we consider the following recurrence relation recently studied by Pathan et al. [17] as

(1.1) fk(n) =
k

n

n∑
j=1

gjfk(n− j), fk(0) = 1, n, k ≥ 1,

which is satisfied by interesting arithmetic functions [2, 11]. From (1.1), it is clear that fk(n) is a polynomial
of degree n in k

(1.2) fk(n) = a(n, 1)k + a(n, 2)k2 + · · ·+ a(n, n− 1)kn−1 + a(n, n)kn, n ≥ 1,

where the coefficients a(n,m) are in terms of the quantities gj , in fact due to [17], we have

(1.3) a(n, n) =
1

n!
(g1)

n
, n ≥ 1.

Here in (1.2) the coefficients are

(1.4) a(n,m) =
1

m!(n−m)!

n−m∑
j=1

(g1)
m−j

(
m
j

)
j!Bn−m,j

(
1!

2
g2,

2!

3
g3, . . . ,

(n−m− j + 1)!

n−m− j + 2
gn−m−j+2

)
∀n ≥ m+ 1,

that involving the incomplete exponential Bell polynomials [9, 16, 17, 18].
The relations (1.3) and (1.4) are in harmony with the expressions of Jakimczuk [12, Eqns. (8)-(11)].
Further, we also show that due to Stirling numbers the relations (1.2) and (1.4) imply an important

property as given by [17]

(1.5) a(n, 1) =
1

n
gn = −

n∑
k=1

(−1)k

k

(
n
k

)
fk(n), n ≥ 1,

and we realize that applications of the results (1.1)-(1.5) for the cases gj = 1 and gr = r. We discuss these
conditions in the next section on an application of Stirling numbers [6, 8], Lah numbers [1, 14] and then
describe the harmonic numbers [26] and again derive the Truesdell’s polynomials [3-5] and their discussions
on generalizations.
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2 Various properties of (1.5) and applications
In this section, we derive various results due to the formula (1.5) through following theorem:

Theorem 2.1. Due to Stirling numbers, the results (1.2) and (1.4) imply the property given by

(2.1) a(n, 1) =
1

n
gn = −

n∑
k=1

(−1)k

k

(
n
k

)
fk(n), n ≥ 1.

Proof. Considering the results (1.2) and (1.4) we find that
n∑
k=1

(−1)k

k

(
n
k

)
fk(n)=

n∑
k=1

(−1)k

k

(
n
k

) n∑
j=1

a(n, j)kj ,(2.2)

=

n∑
j=1

a(n, j)

n∑
k=1

(−1)k
(
n
k

)
kj−1,

= a(n, 1)

n∑
k=1

(−1)k
(
n
k

)
+

n−1∑
t=1

a(n, t+ 1)

n∑
k=1

(−1)k
(
n
k

)
kt,

= −a(n, 1) + (−1)nn!

n−1∑
t=1

a(n, t+ 1)S
[n]
t ,

but (1.4) gives a(n, 1) = 1
ngn, and for the Stirling numbers of the second kind [1,10,15,21,23], we have that

S
[n]
t = 0, because t < n, therefore (2.2) implies (2.1) q.e.d.

Corollary 2.1. Applying the results (1.1) and (1.5) in the Theorem 2.1 and choosing gj = j ≥ 1, following
relation holds true

(2.3) fk(n) =

n∑
l=1

1

l!

(
n− 1
l − 1

)
kl, n ≥ 1.

Proof. In (1.1), choosing gj = j ≥ 1, we have

fk(n) =
k

n

n∑
j=1

jfk(n− j), fk(0) = 1,(2.4)

a(n,m) =
1

m!

n−m∑
j=1

(
m
j

)(
n−m− 1
j − 1

)
[17]
=

1

m!

(
n− 1
m− 1

)
,(2.5)

where in (2.5), we applied the following relation in terms of the Lah numbers [1, 14, 15, 23] as

(2.6) Bn−m,j(1!, 2!, . . . , (n−m− j + 1)!) = L
[j]
n−m =

(n−m)!

j!

(
n−m− 1
j − 1

)
.

Hence making an appeal to the results (2.4)-(2.6), we find the relation

(2.7) fk(n) =

n∑
l=1

1

l!

(
n− 1
l − 1

)
kl, n ≥ 1,

which verifies the relation (2.3).

Corollary 2.2. Applying the results (1.1) and (1.5) in the Theorem 2.1, for all j, gj = 1, following relations
hold true

(2.8) fk(n) =
(−1)n

n!

n∑
j=0

(−1)jS(j)
n kj =

1

n!
(k)n, n ≥ 1,

where S
(j)
n are the Stirling numbers ∀j = 1, 2, 3, . . . , n.
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Proof. In the results (1.1) and (1.4), setting gj = 1 ∀j, we have

(2.9) fk(n) =
k

n

n∑
j=1

fk(n− j), fk(0) = 1

and

(2.10) a(n,m) =
(−1)n

m!

n−m∑
l=1

(−1)ll!

(n−m+ l)!
S

(l)
n−m+lδlm =

(−1)n−m

n!
S(m)
n ,

where the following identity [20] in terms of the Stirling numbers of the first kind [1, 20, 21, 23] was employed
as

(2.11) Bn−m,j

(
1!

2
,

2!

3
, . . . ,

(n−m− j + 1)!

n−m− j + 2

)
= (−1)n−m−j(n−m)!

j∑
l=0

(−1)l

(j − l)!(n−m+ l)!
S

(l)
n−m+l.

Hence, by the results (2.9)-(2.11), we obtain following identities

(2.12) fk(n) =
(−1)n

n!

n∑
j=0

(−1)jS(j)
n kj

[21]
=

1

n!
(k)n, n ≥ 1,

such that (k)n = k(k + 1) · · · (k + n− 1).
Finally, the identities in (2.12) give us the relations (2.8).

Thus the Corollary 2.2 implies an interesting recurrence relation for the ascending factorial function

(2.13) (k)n = (n− 1)!k

n∑
j=1

1

(n− j)!
(k)n−j , n, k ≥ 1.

If we remember that (n)n = Γ(2n)
Γ(n) = 22n−1

√
π

Γ
(
n+ 1

2

)
, here given that Γ(n+ 1) = n!, n ≥ 1.

Then due to the formula (2.13), we find the results

(2.14)

n∑
j=1

1

(n− j)!
(n)n−j =

1

2

(2n)!

(n!)2
=

1

2

(
2n
n

)
, n ≥ 1.

Furthermore, if we accept that in (2.8) the symbol k is a continuous variable, then we apply d
dk to (2.13)

and then we make k = 1 to deduce the following identity [26] involving harmonic numbers [1, 10, 21, 23]

(2.15)

n∑
j=1

Hj = (n+ 1)Hn − n, n ≥ 1,

where in (2.15), we applied the expression

(2.16)

[
d

dx
(x)m

]
x=1

= m!Hm.

Remark 2.1. If F is the generating function of fk(n), then following convolution holds true

∞∑
n=0

fk3
(n)qn = F k3 = F k1+k2 = F k1F k2 =

 ∞∑
j=0

fk1
(j)qj

( ∞∑
l=0

fk2
(l)ql

)
,

that is there exists

(2.17) fk3(n) =

n∑
j=0

fk1(j)fk2(n− j), k3 = k1 + k2, k1, k2 ≥ 1,

which means that fk3
is the Cauchy convolution of fk1

with fk2
.
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3 Identities due to the formula (2.14)
The formula (2.14) has a great importance when we multiply it by a Beta function. Then we evaluate some
of its identities and relations by employing the Beta function given by

(3.1) B(m,n) =
Γ(m)Γ(n)

Γ(m+ n)
∀m,n > 0,

and the gamma function defined by [25, p.19]

(3.2) Γ(m) =

∫ ∞
0

e−ttm−1dt ∀m > 0,

Theorem 3.1. ∀n ≥ 1, by the formula (2.14) following identities hold

(3.3)

√
πΓ(n+ 1)

Γ
(
n+ 3

2

) n∑
j=1

1

(n− j)!
(n)n−j =

4n

(2n+ 1)
= B

(
1

2
, n+ 1

) n∑
j=1

1

(n− j)!
(n)n−j

and

(3.4)

√
πn!

22n+1
(
n+ 1

2

)
!

n∑
j=1

1

(n− j)!
(n)n−j =

1

2(2n+ 1)
=


n∑
j=1

1

(n− j)!
(n)n−j


∫ 1

0

xn(1− x)ndx.

Proof. Considering the formula (2.14) we find that

(3.5)


n∑
j=1

1

(n− j)!
(n)n−j


∫ 1

0

xn(1− x)ndx =
1

2

(2n)!

(n!)2

Γ(n+ 1)Γ(n+ 1)

(2n+ 1)Γ(2n+ 1)
=

1

2(2n+ 1)
.

Now, on making an appeal to well known Legendre duplication formula in the middle of the Eqn. (3.5),
we obtain the identity (3.4).

Finally, by the Eqns. (3.1) and (3.4), we derive the identities in the Eqn. (3.3).

4 Some of the extensions of the arithmetic function (1.1), their results and relations
In this section we introduce some extensions of the arithmetic function (1.1) and the identity (3.5). Then
make their applications to derive some more other results connected to Bell polynomials [16, 17, 18] and the
Riemann Zeta functions [13, 19, 24].

For the gj∀j ≥ 1, given in (1.5), one of the extensions of (1.1) is taken by

(4.1) fk(n, t) =
k

n

n∑
j=1

egjtfk(n− j), fk(0) = 1, n, k ≥ 1.

Clearly, from (4.1) we have a relation with (1.1) as found by

(4.2)
d

dt
fk(n, t)

∣∣∣∣
t=0

= fk(n), fk(0) = 1, n, k ≥ 1.

Theorem 4.1. Due to the extension (4.1), a formula exists as

(4.3)
dn

dtn
fk(n, t)

∣∣∣∣
t=0

=
k

n

n∑
j=1

a(j, 1)fk(n− j)jn, fk(0) = 1, n, k ≥ 1.

Proof. Operate (4.1) by the operator dn

dtn to find that

(4.4)
dn

dtn
fk(n, t) =

k

n

n∑
j=1

egjt
(
gj
j

)n
fk(n− j)jn, provided that fk(0) = 1, n, k ≥ 1.

Then in (4.4) apply the formula (1.5), to find that

(4.5)
dn

dtn
fk(n, t) =

k

n

n∑
j=1

egjta(j, 1)fk(n− j)jn, provided that fk(0) = 1, n, k ≥ 1.

Finally, making an appeal to the result (4.5), we derive the result of (4.3).
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Theorem 4.2. Due to the Theorem 4.1, there also exists another generating function

(4.6) fk(n, t) =
k

n

n∑
j=1

a(j, 1)fk(n− j) (jt)n

n!
, fk(0) = 1, n, k ≥ 1.

Proof. Consider the Maclaurin series

(4.7) f(t) =

∞∑
n=0

tn

n!
f (n)(0), f (n)(0) =

dn

dtn
f(t)

∣∣∣∣
t=0

,

where f(t) possesses continuous derivative of all orders in the interval [0, t]. Then make an appeal to the
formula (4.3) of the Theorem 4.1 to find the function (4.7).

Theorem 4.3. For the generalized Riemann Zeta function defined and studied by [13, 19, 24]

(4.8) ζ(a, s) =

∞∑
n=0

1

(n+ a)s
,∀a.s ∈ C and <(a) > 0,<(s) > 1,

and

(4.9) ζ(a, s) =
1

Γ(s)

∫ ∞
0

ts−1 e−at

(1− e−t)
dt∀a.s ∈ C and <(a) > 0,<(s) > 0,

there exists following summation formulae
∞∑
n=0

√
πn!

(
n− 1

2

)
!

22n−1
{(
n+ 1

2

)
!
} n∑
j=1

1

(n− j)!
(n)n−j =

∞∑
n=0

1(
n+ 1

2

)2 = ζ

(
1

2
, 2

)
,(4.10)

∞∑
n=0

√
πn!

(
n− 1

2

)
!

22n−1
{(
n+ 1

2

)
!
}2

n∑
j=1

1

(n− j)!
(n)n−j =

∫ ∞
0

(
t

1− e−t

)
e−

1
2 tdt.(4.11)

Proof. Considering the results (3.3) and (3.4) and Making an appeal to the formulae of generalized Riemann
Zeta function (4.8) and (4.9), we derive the formulae (4.10) and (4.11), respectively.

5 Extensions in the coefficients a(n,m) defined in (2.10) via sequence of Hankel type integral
operators, to find different polynomials

The Hankel’s contour integral is defined by [25, p. 219]

(5.1)
1

Γ(z)
=

1

2πi

∫ σ+i∞

σ−i∞
euu−zdu, σ > 0,<(z) > 0, i =

√
(−1).

Therefore to make extensions in the coefficients a(n,m) given in the Eqn. (2.10), we introduce a sequence
of Hankel type integral operators due to (5.1) and again apply the formula of the generating function for the
Stirling numbers due to Riordan [22] (see also in ( Chandel [6], Chandel and Yadava [8]) of first kind which
is given by

(5.2) S(k)
n =

(−1)k

k!

k∑
j=0

(−1)j
(
k
j

)
jn.

Now from (2.10) considering the coefficients a(n,m)∀n,m ∈ N ∪ {0} as a(n,m) = (−1)n−m

n! S
(m)
n and in it

applying (5.2), we find the formula of a(n,m) consisting of sequence of Hankel’s type contour integrals (5.1)
in the form
(5.3)

a(n,m) =
(−1)n

m!

m∑
j=0

(−1)j
(
m
j

)
jn

n!
=

(−1)n

m!

m∑
j=0

(−1)j
(
m
j

){
1

2πi

∫ σ+i∞

σ−i∞
ejuu−(n+1)du

}
, σ > 0.

Due to (5.3), for exploring new ideas in the field of arithmetic functions and further extensions in these
results, we define a sequence of Hankel type integral operators (5.1) in the form

(5.4) K(j, n;σ) {f} =
Γ(n+ 1)

jn
1

2πi

∫ σ+i∞

σ−i∞
ejuu−(n+1)f(u)du, σ > 0, f(0) = 1.
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It is clear that when f(u) ≡ 1, then for σ > 0 the formulae (5.3) and (5.4) give us the relations with
Bell coefficients

(5.5)
(−1)n

m!

m∑
j=0

(−1)j
(
m
j

)
jn

n!
{K(j, n;σ) {1}} = a(n, m) = a(n, m, 1), (let) .

Therefore in the formula (5.4) when we set fα,r(u) = e(α+(r−1)j)u and σ > 0, we find

(5.6) K(j, n, α;σ) {fα,r} =
Γ(n+ 1)

jn
1

2πi

∫ σ+i∞

σ−i∞
u−(n+1)e(α+rj)udu =

{(α+ rj)}n+1

jn+1
.

Further for σ > 0, making an application of the formulae (5.4) and (5.6), we get the coefficients of Bell
polynomials in following generalized form

a (n, m, fα,r) =
(−1)n

m!

m∑
j=0

(−1)j
(
m
j

)
jn

n!
{jK(j, n, α;σ) {fα,r}}(5.7)

=
(−1)n

n!

1

m!

m∑
j=0

(−1)j
(
m
j

)
{α+ rj}n+1

=
(−1)n−m

n!
Sα(n+ 1,m, r),

where fα,r(u) = e(α+(r−1)j)u.
Here in (5.7), the generalized Stirling formula is given by Chandel and Yadava [8]

(5.8) Sα(n,m, r) =
(−1)m

m!

m∑
j=0

(−1)j
(
m
j

)
{(α+ rj)}n .

Now making an appeal to (5.7), we obtain a generating function equivalent to the generating function
due to Chandel and Yadava [8 , Eqn. (2.6)] as given by

(−1)m
∞∑
n=0

(−t)na (n− 1, m, fα,r) =
(−1)m

m!

m∑
j=0

(−1)j
(
m
j

) ∞∑
n=0

tn

n!
(α+ rj)n(5.9)

= eαt
(−1)m

m!

m∑
j=0

(−m)j
(ert)

j

j!
= eαt

(−1)m

m! 1
F0

(
−m;−; ert

)
.

Again considering the formula (5.7) we get Truesdell polynomials due to Chandel [3, 4, 5]

(−1)m+nn!

n∑
m=0

(−1)ma (n− 1, m, fα,r) prxrm(5.10)

=

n∑
m=0

(−1)m

m!

m∑
j=0

(−1)j
(
m
j

)
(α+ rj)nprxrm = Tαn (x, r,−p).

6 Concluding remarks
In this article, a recurrence relation of the arithmetic function is considered to obtain the coefficients
of Bell polynomials. Then we derive various results and relations connected with an ascending factorial
function, Lah and Stirling numbers and to find a relation of harmonic numbers. To exploring of this work
in multidisciplinary aspect, we make some of the extensions of the coefficients of Bell polynomials in terms
of sequence of the Hankel type integral operators to derive generalized Stirling numbers and Truesdell’s
polynomials. We also derive the summation formulae in terms of Riemann Zeta function.

On the other hand, making an appeal to [7] in (5.7), we may introduce the coefficients of Bell polynomials
into multivariable Truesdell’s polynomials and then we may apply the techniques due to [7] to derive various
results and generating functions.
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[2] G. E. Andrews, S. Kumar Jha, J. López-Bonilla, Sums of squares, triangular numbers and divisor sums,

J. of Integer Sequences, 26 (2023), Article 23.2.5
[3] R. C. Singh Chandel, A new class of polynomials, Indian J. Math., 15 (1) (1973), 41-49.

222



[4] R. C. Singh Chandel, A further note on the polynomials T
(α,k)
n (x, r, p), Indian J. Math., 16 (1) (1974),

39-48.
[5] R. C. Singh Chandel, A further generalization of the class of polynomials T

(α,k)
n (x, r, p), Kyungpook

Math. J., 14 (1) (1974), 45 - 54.
[6] R. C. Singh Chandel, Generalized Stirling numbers and polynomials, Publ. Inst. Math. (Beograd) (N.

S.), 22 (36) (1977), 43-48.
[7] R. C. Singh Chandel and K. P. Tiwari, Multivariable analogues of generalized Truesdell polynomials,
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