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Abstract

The famous Fibonacci and Lucas polynomials possess various astonishing properties and identities.
The Fibonacci polynomial has been generalized in many ways by preserving the recurrence relation and
others by preserving the initial condition. In this paper, we define generalized Fibonacci and Lucas
polynomials and proved some famous identities in our settings.
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1 Introduction
Belgian mathematician Eugene Charles Catalan and the German Mathematician E. Jacobsthal [7] were first
studied Fibonacci polynomials in 1883. Fibonacci polynomials are of great importance in Mathematics. The
Fibonacci and Lucas polynomials are extensively explored by many mathematicians like, Basin [2] , Horadam
and Mahon [6], and Lucas [11] (for details see Koshy [7]) and connected to various branches of mathematics.
Recently, many new identities of Generalized Fibonacci and Lucas polynomials are studied by Agrawal et
al. [1].

A set of Fibonacci polynomials generated by the Q matrix, satisfying the following recurrence relation,
was proved by Basin [2].

(1.1) fn(x) = xfn−1(x) + fn−2(x), n ≥ 2 with f0(x) = 0, f1(x) = 1.

The initial terms of the Fibonacci polynomials are

(1.2) f2(x) = x, f3(x) = x2 + 1, f4(x) = x3 + 2x, f5(x) = x4 + 3x2 + 1 and so on .

Jacobsthal polynomials are given by (for more details see Koshy [7])

(1.3) Jn(x) = Jn−1(x) + xJn−2(x), n ≥ 3 with J1(x) = 1 = J2(x).

Pell polynomials due to Horadam and Mahon [6] are defined by

(1.4) Pn(x) = 2xPn−1(x) + Pn−2(x), n ≥ 2 with P0(x) = 0, P1(x) = 1.

The generating function of Fibonacci and Lucas polynomials due to Doman and Williams [4] is given by

(1.5)

∞∑
n=0

fn(x)tn = t(1 − xt − t2)−1,

∞∑
n=0

Ln(x)tn = (2 − xt)(1 − xt − t2)−1.

For Fibonacci and Lucas polynomials, the explicit sum formula due to Horadam and Mahon [6] and
Koshy [7] is given by

(1.6) fn(x) =

[
n−1

2

]∑
n=0

(
n− k − 1

k

)
xn−1−2k, Ln(x) =

[
n
2

]∑
n=0

n

n− k

(
n− k
k

)
xn−2k.

where

(
n− k
k

)
is a binomial coefficient and [x] is defined as the greatest integer less than or equal to

x.
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Many more interesting properties for Fibonacci and Lucas polynomials have been studied by Doman and
Williams [4], Koshy [7], and Lucas [11].

Many famous identities which we have proved for our polynomial have been studied for generalized
Fibonacci sequence in [9].

In this paper, we derive famous identities such as Catalan’s, d’Ocagne’s, and many other for our
generalized Lucas polynomials which is derived for the generalized Fibonacci polynomials by Rathore et al.
[8]. Also, we proved some identities for our generalized Fibonacci polynomials with the help of generating
function and Binet’s formula.

2 Preliminaries
In this section, we give some basic definitions which are useful throughout the paper.

Definition 2.1. Fibonacci Polynomials: A polynomial sequence that can be considered as a generalization
of Fibonacci numbers are Fibonacci polynomials (for more details see Lucas [11]). The Fibonacci polynomial
due to Koshy [7] is defined by the following recurrence relation,

fn(x) = xfn−1(x) + fn−2(x), n ≥ 3 with f1(x) = 1, f2(x) = x.

Definition 2.2. Lucas Polynomials: The Lucas Polynomials due to Bicknell [3] and Lucas [8] are defined
by the recurrence relation,

Ln(x) = xLn−1(x) + Ln−2(x), n ≥ 2 with L0(x) = 2, L1(x) = x.

Definition 2.3. Generalized Fibonacci Polynomials: The generalized Fibonacci polynomials are defined
by

(2.1) fn(x) =

 s, if n = 0;
sx, if n = 1;
xfn−1(x) + fn−2(x), if n ≥ 2.

Definition 2.4. Generalized Lucas Polynomials: The generalized Lucas polynomials are defined by

(2.2) ln(x) =

 2s, if n = 0;
sx, if n = 1;
xln−1(x) + ln−2(x), if n ≥ 2.

Definition 2.5. Generating Function: Let a0, a1, a2, be a sequence of real numbers. Then the function
(2.5) g(x) = a0 + a1x + a2x

2 + · · · + anx
n + · · · is called a generating function for the sequence {an}.

Generating functions provides a powerful tool for solving linear homogeneous recurrence relations with
constant coefficients (for more details see Lucas [11]).

3 Generalized Fibonacci Polynomials
The generalization of Fibonacci polynomials can be done in many ways by changing the initial condition and
others by changing the recurrence relation. Rathore et al. [9] defined the generalized Fibonacci polynomials
wn(x) by recurrence relation wn = xwn−1 + wn−2, n ≥ 2, with w0(x) = 2b, w1(x) = a+ b where a and b are
integer. Sikhwal et al. [9] defined the generalized Fibonacci polynomials un(x) by recurrence relation with
un = xun−1 + un−2, n ≥ 2, with u0(x) = a, u1(x) = 2a + 1 where a is an integer. In this paper, we define
generalized Fibonacci polynomials gn(x) by the recurrence relation

(3.1) g(x)
n = xg

(x)
n−1 + g

(x)
n−2, n ≥ 2 with g0(x) = a+ b, g1(x) = 2a+ 1

where a and b are integers.
The starting few terms of a generalized Fibonacci polynomials are given by

g0(x) = a+ b, g1(x) = 2a+ 1, g2(x) = x(2a+ 1) + a+ b, g3(x) = x2(2a+ 1) + x(a+ b) + 2a+ 1.

For x = 1, a = 0, b = 0, we obtain the classical Fibonacci sequence.
Binet’s Formula for generalized Fibonacci polynomial is given by gn(x) = (Aαn +Bβn), where

A =
(2a+ 1)− (a+ b)β

α− β
,B =

(a+ b)α− (2a+ 1)

α− β
.

Also, Note that αβ = −1, α + β = x, α + β =
√

4 + x2 where α and β = are the roots of the quadratic
multline given by λ2 − xλ− 1 = 0 (Koshy [7]).
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Lemma 3.1. The generating function for generalized Fibonacci polynomials defined in equation (3.1) is given
by

∞∑
n=0

gn(x)tn =
(a+ b)(1− xt) + (2a+ 1)t

1− xt− t2
.

Proof. Replace n by n+ 1 in (3.1), we have

(3.2) gn+1(x) = xgn(x) + gn−1(x);n ≥ 1.

Let

(3.3) F (t) =

∞∑
n=0

gn(x)tn.

From equation (3.2), we have

(3.4)
∑
n≥1

gn+1(x)tn = x
∑
n≥1

gn(x)tn +
∑
n≥1

gn−1(x)tn.

Now,

(3.5)
∑
n≥1

gn(x)tn =
∑
n≥1

gn(x)tn + g0(x)− g0(x) = F (t)− (a+ b).

and

(3.6)
∑
n≥1

gn−1(x)tn = tF (t).

Therefore, R.H.S of (3.4) becomes

(3.7)
∑
n≥1

gn+1(x)tn = x[F (t)− (a+ b)] + tF (t).

Now,

(3.8)
∑
n≥1

gn+1(x)tn =
∑
n≥1

gn(x)tn + g0(x)− g0(x) + g1(x)− g1(x) =
1

t
[F (t)− (a+ b)− t(2a+ 1)]

Therefore, (3.7) becomes

1

t
[F (t)− (a+ b)− t(2a+ 1)] = x[F (t)− (a+ b)] + tF (t)

i.e.
F (t)(1− xt− t2) = [(a+ b)(1− xt) + (2a+ 1)t].

Thus,

(3.9)

∞∑
n=0

gn(x)tn =
(a+ b)(1− xt) + (2a+ 1)t

1− xt− t2
.

4 Generalized Lucas Polynomials
We define generalized Lucas polynomials kn(x) by the recurrence relation

(4.1) kn(x) = xkn−1(x) + kn−2(x);n ≥ 2 with k0(x) = a, k1(x) = x,

where a is an integer. The first few terms of generalized Lucas polynomials are given by

k0(x) = a, k1(x) = x, k2(x) = ax+ a = a(x+ 1), k3(x) = x(a+ 1) + a.

For x = 1, a = 2, we obtain Lucas sequence.
Following the same idea as in proof of Lemma 3.1, we can derive a generating function for generalized

Lucas polynomials (defined as above), is given by
∞∑
n=0

kn(x)tn =
a(1− xt) + xt

1− xt− t2
.

Binet’s Formula for generalized Lucas polynomials is given by

kn(x) = A(αn + βn), where A =
a

2
(Koshy [7]) .
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5 Some Identities of generalized Fibonacci polynomials
In this section, we investigate some of the identities of our generalized Fibonacci polynomials with the help
of a generating function and Binet’s formula.

Theorem 5.1. If the nth term of a generalized Fibonacci polynomial is gn(x) and g′n(x) denotes the derivative
of gn(x) with respect to x, then

(5.1) g′n(x) = xg′n−1(x) + g′n−2(x) + gn−1(x), n ≥ 2.

Proof. The generating function of generalized Fibonacci polynomials is given by
∞∑
n=0

gn(x)tn = [(a+ b)(1− xt) + (2a+ 1)t](1− xt− t2)−1.

Differentiating both sides with respect to x, we get
∞∑
n=0

g′n(x)tn =[(a+ b)(1− xt) + (2a+ 1)t](−t)(−1)(1− xt− t2)−2

+[−t(a+ b)](1− xt− t2)−1.

Therefore,

(1− xt− t2)

∞∑
n=0

g′n(x)tn = t[(a+ b)(1− xt) + (2a+ 1)t](1− xt− t2)−1 − t(a+ b)

= t

∞∑
n=0

gn(x)tn − t(a+ b).

Thus,
∞∑
n=0

g′n(x)tn − x
∞∑
n=0

g′n(x)tn+1 −
∞∑
n=0

g′n(x)tn+2 =

∞∑
n=0

gn(x)tn+1 − t(a+ b).

Equating the coefficients of tn on both sides, we have

g′n(x) = xg′n−1(x) + g′n−2(x) + gn−1(x),

which proves the Theorem 5.1.
Replacing n by n+ 1, we also derive,

g′n+1(x) = xg′n(x) + g′n−1(x) + gn(x).

Theorem 5.2. Let gn(x) be the nth term of a generalized Fibonacci polynomial, then

(5.2) ngn(x)−x(n−1)gn−1(x)−(n−2)gn−2(x). = xgn(x)+(2−x2)gn−1(x)−3xgn−2(x)−2gn−3(x);n ≥ 3.

Proof. The generating function of a generalized Fibonacci polynomials is given by

(i)

∞∑
n=0

gn(x)tn = [(a+ b)(1− xt) + (2a+ 1)t](1− xt− t2)−1.

Differentiate it both sides partially with respect to t, we get

(ii)

∞∑
n=0

ngn(x)tn−1 = [(a+b)(1−xt)+(2a+1)t](x+2t)(1−xt− t2)−2 +[−x(a+b)+(2a+1)](1−xt− t2)−1.

Differentiating (i) both sides partially with respect to x, we have

(iii)

∞∑
n=0

g′n(x)tn = [(a+ b)(1− xt) + (2a+ 1)t](t)(1− xt− t2)−2 + [−t(a+ b)](1− xt− t2)−1.

On dividing both sides by t, we derive
∞∑
n=0

g′n(x)tn−1 = [(a+ b)(1− xt) + (2a+ 1)t](1− xt− t2)−2 + [−(a+ b)](1− xt− t2)−1.
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Hence,

(iv)

∞∑
n=0

g′n(x)t(n− 1) + (a+ b)(1− xt− t2)−1 = [(a+ b)(1− xt) + (2a+ 1)t](1− xt− t2)−2.

On substituting the value of R.H.S of equation (iv) in equation (ii), we have
∞∑
n=0

ngn(x)tn−1 = (x+ 2t)

∞∑
n=0

g′n(x)tn−1 + (a+ b)(1− xt− t2)−1

+[−x(a+ b) + (2a+ 1)](1− xt− t2)−1

=x

∞∑
n=0

g′n(x)tn−1 + 2

∞∑
n=0

g′n(x)tn−1 + (x+ 2t)(a+ b)(1− xt− t2)−1

+[−x(a+ b) + (2a+ 1)](1− xt− t2)−1

=x

∞∑
n=0

g′n(x)tn−1 + 2

∞∑
n=0

g′n(x)tn + (2t)(a+ b) + (2a+ 1)(1− xt− t2)−1.

Therefore,

(1− xt− t2)

∞∑
n=0

ngn(x)tn−1

= x(1− xt− t2)

∞∑
n=0

g′n(x)tn−1 + 2(1− xt− t2)

∞∑
n=0

g′n(x)tn + (2t)(a+ b) + (2a+ 1).

Hence
∞∑
n=0

ngn(x)tn−1 − x
∞∑
n=0

ngn(x)tn −
∞∑
n=0

ngn(x)tn+1

= x

∞∑
n=0

g′n(x)tn−1 − x2
∞∑
n=0

g′n(x)tn − x
∞∑
n=0

g′n(x)tn+1

+2

∞∑
n=0

g′n(x)tn − 2x

∞∑
n=0

g′n(x)tn+1 − 2

∞∑
n=0

g′n(x)tn+2 + (2t)(a+ b) + (2a+ 1).

By equating the coefficients of tn−1 on both the sides, we finally derive (5.2).

Theorem 5.3. For the generalized Fibonacci polynomials gn(x), we derive the following identities
(i) g′n+1(x)− g′n−1(x) = xg′n(x) + gn(x),

(ii) g′n+1(x)− (1− x2)g′n−1(x)
= (x+ 1)gn(x)− x(n− 1)gn−1(x)− (n− 2)gn−2(x) + 3xg′n−2(x) + 2g′n−3(x);n ≥ 3,

(iii) (2− x2)g′n−1(x)
= xgn(x)− x(n− 1)gn−1(x)− (n− 2)gn−2(x)− xg′n(x) + 3xg′n−2(x) + 2g′n−3(x);n ≥ 3,

(iv) (2− x2)g′n−1(x) = x(1− x2)g′n(x) + 3xg′n−2(x) + 2g′n−3(x) + (n+ 2− x2)gn(x)
− x(n− 1)gn−1(x)− (n− 2)gn−2(x);n ≥ 3.

Proof. Differentiating (3.2) both sides with respect to x, we obtain

(i) g′n+1(x)− g′n−1(x) = xg′n(x) + gn(x).

Using Theorem 5.2 in (i), we derive

(ii) g′n+1(x) + (1− x2)g′n−1(x) = (n+ 1)gn(x)− x(n− 1)gn−1(x)− (n− 2)gn−2(x) + 3xg′n−2(x) + 2g′n−3(x).

On subtracting (i) from (ii), we prove

(iii) (2− x2)g(n− 1)′(x) = ngn(x)− x(n− 1)gn−1(x)− (n− 2)gn−2(x)− xg′n(x) + 3xg′n−2(x) + 2g′n−3(x).

On multiplying (i) by (1− x2) and adding it to (ii), we establish

(iv) (2− x2)g′n+1(x) = x(1− x2)g′n(x) + 3xg′n−2(x) + 2g′n−3(x) + (n+ 2− x2)gn(x).
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Theorem 5.4. Let gn(x) be the nth term of a generalized Fibonacci polynomial, then

(5.3) ng′n+1(x)− (n+ 2− x2)g′n−1(x)− (n+ 1)xg′n(x) + 2g′n−3(x) + 3xg′n−2(x)

= x(n− 1)gn−1(x) + (n− 2)gn−2(x);n ≥ 3.

Proof. From Theorem 5.3(i), we have

(I) g′n+1(x)− g′n−1(x)− xg′n(x) = gn(x).

and from Theorem 5.3(ii), we have

(II) g′n+1(x) + (1−x2)g′n−1(x) = (n+ 1)gn(x)−x(n− 1)gn−1(x)− (n− 2)gn−2(x) + 3xg′n−2(x) + 2g′n−3(x).

Substituting the value of gn(x) from (I) in (II), we finally derive
g′n+1(x) + (1− x2)g(n− 1)′(x)
= (n+ 1)g′n+1(x)− g′n−1(x)− xg′n(x)− x(n− 1)gn−1(x)− (n− 2)gn−2(x) + 3xg′n−2(x) + 2g′n−3(x),

which is (5.3).

Theorem 5.5 (Explicit Summation formula). For generalized Fibonacci polynomials

gn(x) = (a+ b)


[n/2]∑
k=0

(
n− k
k

)
xn−2k −

[n/2]∑
k=0

(
n− k − 1

k

)
xn−2k−1


+(2a+ 1)

[n/2]∑
k=0

(
n− k − 1

k

)
xn−2k−1.

Proof. The generating function for generalized Fibonacci polynomials is given by
∞∑
n=0

gn(x)tn = [(a+ b)(1− xt) + (2a+ 1)t](1− xt− t2)−1

= [(a+ b)(1− xt) + (2a+ 1)t]

∞∑
n=0

(x+ t)ntn

= [(a+ b)(1− xt) + (2a+ 1)t]

∞∑
n=0

tn
n∑
k=0

(
n
k

)
(nk)xn−ktk

= [(a+ b)(1− xt) + (2a+ 1)t]

∞∑
n=0

n∑
k=0

n!

k!(n− k)!
xn−ktn+k

= [(a+ b)(1− xt) + (2a+ 1)t]

∞∑
n=0

∞∑
k=0

(n+ k)!

k!(n)!
xntn+2k.

On equating the coefficients of tn on both sides, we prove

gn(x) = (a+ b)


[n/2]∑
k=0

(
n− k
k

)
xn−2k −

[n/2]∑
k=0

(
n− k − 1

k

)
xn−2k−1


+(2a+ 1)

[n/2]∑
k=0

(
n− k − 1

k

)
xn−2k−1.

Theorem 5.6. A Variant Property: For generalized Fibonacci polynomials

gn−2(x)gn+1(x)− gn−1(x)gn(x) = (−1)n−2x[(2a+ 1)(a+ b)x+ (2a+ 1)2 + (a+ b)2].

Proof. We know that the Binet’s formula for generalized Fibonacci polynomials is given by

gn(x) = (Aαn +Bβn).

Therefore,

gn−2(x)gn+1(x)− gn−1(x)gn(x)
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= (Aαn−2 +Bβn−2)(Aαn+1 +Bβn+1)− (Aαn−1 +Bβn−1)(Aαn +Bβn)

= (A2α2n−1 +ABαn−2βn+1 +ABαn+1βn−2 +B2β2n−1)

−(A2α2n−1 +ABαn−1βn +ABαnβn−1 +B2β2n−1)

= AB(αn−2βn+1 + αn+1βn−2 + αn−1βn + αnβn−1)

= AB(αβ)[(α+ β)(β2 − αβ + α2)− αβ(α+ β)]

= AB(αβ)n−2(α+ β)(α− β)2

= (−1)n−2x[(2a+ 1)(a+ b)x− (2a+ 1)2 + (a+ b)2].

For a = 0, b = 0, x = 1, the above identity reduces to the identity for classical Fibonacci sequence.

6 Some Identities of generalized Lucas polynomial
Next, we explore the Lucas counterparts of Catalan’s identity which have been stated for Fibonacci due to
Sikhwal et al. [9].

Theorem 6.1. Let kn(x) be the nth term of generalized Lucas polynomial, then

k2
n(x)− kn+r(x)kn−r(x) = (−1)n−r

[
a2(−1)r

2
− ak2r(x)

2

]
.

Proof. Binet’s formula for Lucas polynomial is given by

kn(x) = A(αn + βn).

Therefore,

k2
n(x)− kn+r(x)kn−r(x) = [A(αn + βn)]2 −A(αn+r + βn+r)A(αn−r + βn−r)

= [A(α2n+ β2n+ 2αnβn)]2 −A2(α2n+ α(n+ r)βn−r + αn−rβn+) + β2n)

= 2A2(αβ)n −A2(αβ)n−r(α2r + β2r)

= 2A2(−1)n −A(−1)n−rk2r(x)

= (−1)n2A2 −A(−1)−rk2r(x)

= (−1)n−r
{
a2(−1)r

2
− ak2r(x)

2

}
.

The following theorem gives the identity for Lucas polynomial which is already derived for generalized
Fibonacci polynomials known as d’Ocagne’s identity in Sikhwal et al. [10].

Theorem 6.2. If the nth term of generalized Lucas polynomial is kn(x), then

km(x)kn+1(x)− km+1(x)kn(x) =
a

2
{(−1)n+1km−n−1(x)− (−1)m+1kn−m−1(x)}.

Proof. Binet’s formula for Lucas polynomials is given by

kn(x) = A(αn + βn).

Therefore,

km(x)kn+1(x)− km+1(x)kn(x)

= A(αm + βm)A(αn+1 + βn+1)−A(αm+1 + βm+1)A(αn + βn)

= A2(αmβn+1 + αn+1βm − αm+1βn − αnβm+1)

= A2{(αβ)n+1(αm−n−1 + βm−n−1)− (αβ)m+1(αn−m−1 + βn−m−1)}
= A{(−1)n+1km−n−1(x)− (−1)m+1kn−m−1(x)}

=
a

2
{(−1)n+1km−n−1(x)− (−1)m+1kn−m−1(x)}.

The next theorem gives the relevant results to Theorems 6.1 and 6.2 for our Lucas polynomials.

Theorem 6.3. Let kn(x) be the nth term of generalized Lucas polynomial, then

206



(i) k2
n(x) + kn+r(x)kn−r(x) = ak2n(x) + a2

2 (−1)n + a
2 (−1)n−rk2r(x),

(ii) km(x)kn+1(x) + km+1(x)kn(x)
= a

2{2km+n+1(x) + (−1)n+1km−n−1(x) + (−1)m+1kn−m−1(x)}.

Proof. (i). With the help of Binet’s formula, we establish

k2
n(x) + kn+r(x)kn−r(x) = [A(αn + βn)]2 +A(αn+r + βn+r)A(αn−r + βn−r)

= [A(α2n + β2n + 2αnβn)]2 +A2(α2n + αn+rβn−r + αn−rβn+r + β2n)

= 2A2(α2n + β2n) + 2A2(αβ)n +A2(αβ)n−r(α2r + β2r)

= 2Ak2n(x) + 2A2(−1)n +A(−1)n−rk2r(x)

= ak2n(x) +
a2

2
(−1)n +

a

2
(−1)n−rk2r(x).

Proof (ii). With the help of Binet’s formula, we derive

km(x)kn+1(x) + km+1(x)kn(x)

= A(αm + βm)A(αn+1 + βn+1) +A(αm+1 + βm+1)A(αn + βn)

= A{2A(αm+n+1 + βm+n+1) + (αβ)n+1A(αm−n−1 + βm−n−1) + (αβ)m+1A(αn−m−1 + βn−m−1)}
= A{2km+n+1(x) + (−1)n+1km−n−1(x) + (−1)m+1kn−m−1(x)}

=
a

2
{2km+n+1(x) + (−1)n+1km−n−1(x) + (−1)m+1kn−m−1(x)}.

7 Conclusion
In this paper, we have defined generalized Fibonacci and generalized Lucas polynomials. We have stated and
derived many properties of our generalized Fibonacci polynomial and generalized Lucas polynomial through
generating function and Binet’s formula. Many other identities like Catalan’s identity and d’Ocagne’s identity
can be derived easily from our generalized Fibonacci polynomial. Similarly, identities proved in section 5 for
our generalized Fibonacci polynomial can also be proved for the generalized Lucas polynomial.
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