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Abstract

The Duffing oscillator provides a basis for studying nonlinear dynamics as its phase space trajectory
is fairly complex and depends on the parameter of the system viz., initial amplitude, phase, frequency,
linear damping coefficient and non-linearity parameter. In order to understand the complexity of the
system, three variable effective expansions have been introduced in the usual homotopy perturbation
framework to obtain the solution of damped Duffing system which finds application in several areas
in engineering sciences such as vibration of bars, plates and electronic circuits, etc. The necessity of
the extended homotopy frame work has been further discussed for non-conservative system. Simulation
results for different parameters of the systems, such as, linear damping coefficient (µ), amplitude (α) and
nonlinearity parameter (ε) are compared with the corresponding results based on perturbative homotopy
analysis up to third order by changing (i) the magnitude of linear damping coefficient (µ), (ii) the
magnitude of the nonlinearity of the system (ε). Even though the simulated result matches satisfactorily
with the perturbative solution over the entire evolutionary time scale, noticeable divergence and phase
shift are observed only lately for increased value µ and ε, respectively.
2020 Mathematical Sciences Classification: 34D10: 34A34: 37M05: 70K60.
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1 Introduction
Many engineering applications, such as large amplitude magneto-elastic system, centrifugal governor,
vibration of bars and plates involve the Duffing oscillator as basic nonlinear oscillator [10,14]. The Duffing
oscillator has been used to explain many observed phenomena in science, engineering, biological systems in
particular nano-tubes, microtubules and hence, dynamical analysis of this oscillator attracted many workers
[1,3,10,13,15]. Numerous researchers contributed to both analytical and numerical solutions of the Duffing
oscillator with and without damping [4,16,17,18]. In a similar way the problem related to synchronization
of chaotic Duffing system has also been taken up in recent years in [1,15]. Duffing equation without a
damping term represents a conservative system. In view of the nonlinear characteristic of the basic Duffing
oscillator, several authors have developed different analytical methods to obtain approximate analytical
solution so as to understand the complexity of the involved dynamics [10,15,18]. Interestingly, the solution
of Duffing oscillator, in case of non-conservative system, involves intricacies that led to several methods for the
situation when damping coefficient is large [10,12]. Among the various perturbative methods, the homotopy
perturbation method (HPM) has been extensively used, in general, for finding analytical solution of nonlinear
oscillators [2,5,6,7,8,9,12,19]. In this work, we revisited the HPM to investigate in detail the complexity of
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dynamics of duffing system in the presence of large damping coefficient. For this, a revised framework of the
HPM involving three parameter expansion method has been used to elucidate the convergence of obtained
solution with the numerically simulated solution for different values of parameters defining the system.

This paper is organized as follows: in section 2, overview of the scheme involved in Homotopy perturbation
method (HPM) given by He [6] is revisited and three parameter expansion formalism due to He and El-Dib
[4,7] is explained. Analytical and numerical solutions for non-conservative Duffing oscillator are obtained.
In sections 3, we provide the results of numerical simulation for various control parameters of the system
and compare them with those obtained using HPM.

2 Homotopy Perturbation Method to Solve Non-conservative Duffing system
In the following, we describe briefly HPM for solving nonlinear differential equation and in particular the
one that governs the dynamics of a damped Duffing oscillator. Further, the methodology used provides a
basis for using three parameter expansion.
2.1 Homotopy perturbation scheme
For a general nonlinear ordinary differential equation, we may write it as [5,12],

(2.1) A(Q)− f(r) = 0, r ∈ Ω,

with boundary conditions

(2.2) B

(
Q,

∂Q

∂n

)
= 0, r ∈ Γ,

where A, B refer to general differential operator and boundary operator respectively and further f(r), a
known analytic function with Γ referring to boundary of the domain Ω. We may divide the operator A into
linear (L) and nonlinear part (N) resulting in the following form.

(2.3) L(Q) +N(Q)− f(r) = 0.

Homotopy method formulated earlier in [5] involves constructing a homotopy q(r, p) : Ω × [0, 1] → R
satisfying

H(q, p) = (1− p) [L(q)− L(Q0)] + p [A(q)− f(r)] = 0, p ∈ [0, 1], r ∈ Ω

or

H(q, p) = L(q)− L(Q0) + pL(Q0) + p [N(q)− f(r)] = 0,(2.4)

where p ∈ [0, 1] defines an embedding parameter and Q0 refers to an initial approximate solution of equation
(2.1) satisfying the boundary conditions. From equation (2.4), we observe that

H(q, 0) = L(q)− L(Q0) = 0,

H(q, 1) = A(q)− f(r) = 0.(2.5)

This implies that as p changes from 0→ 1, the homotopy q goes from Q0 → Q. If we write the solution
of equation (2.4) as a power series in p as

(2.6) Q = Q0 + pq1 + p2q2 + p3q3 + · · · .
then the solution of equation (2.1) would be

Q = lim
p→1

Q = Q0 + q1 + q2 + q3 + · · · .(2.7)

It may be noted that use of standard HPM results in inconsistency, as described briefly in Box: 2.1.
2.2 Three parameter expansion formalism
In view of the description in Box: 2.1, a need for modification of the HPM method arises. In the context
of Damped Duffing equation (DDE), we note that the solution comprising of three variables i.e., homotopy
function, oscillation amplitude (A), and frequency ω. Following He and El. Dib [6] and He [7] Homotopy
Perturbation Method (HPM), we write the homotopy equation corresponding to DDE as,

(2.8) Q̈(t) + ω2
0Q(t) + p

{
µQ̇(t) + εQ3(t)

}
= 0, p ∈ [0, 1].

where ω0, µ, ε refers to the natural frequency, linear damping coefficient and magnitude of nonlinearity of
the system.

The Homotopy Q is now expressed as a power series in p, given as

(2.9) Q = q0(t) + p1q1(t) + p2q2(t) + p3q3(t) + · · · .
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Substitution of equation (2.9) in (2.8) and equating coefficients of p0 to zero gives us

p0 : q̈0 + ω2
0q0 = 0,(2.10)

whose exact solution would be

(2.11) q0(t) = A cos (ω0t+ φ),

where A and φ are real constants. To solve the non-conservative nonlinear equation a further expansion of
linear frequency ω0 and the time dependent amplitude A in powers of p is suggested [4,6]. Expanding ω0

and A(t) as follows

ω2
0 = ω2 − pω1 − p2ω2 − p3om3 − · · · .(2.12)

A(t) = α(1 + pc1 + p2c2 + p3c3 + · · · ),(2.13)

which implies that

(2.14) q0(t) = α{1 + pc1 + p2c2 + p3c3 + · · · } cos(ωt+ φ).

Box: 2.1

Considering the following DDE where fundamental frequency is taken as 1, i.e., ω0 = 1

Q̈+ µQ̇+Q+ εQ3 = 0. (B.1)

Observe that
A(Q) = L(Q) +N(Q), (B.2)

where
L(Q) = Q̈(t) +Q(t); L(q0) = q̈0(t) + q0; N(Q) = µQ̇(t) + εQ3.

Following the standard HPM framework, we may write equation (B.1) as,

p0 : q̈0(t) + q0(t)− Q̈0(t)−Q0(t) = 0, (B.3)

p1 : q̈1(t) + q1 + Q̈0(t) +Q0(t) + µQ̇0(t) + εQ3
0 = 0, (B.4)

For p→ 0, Q0 → q0, we may write equation (B.4) as

q̈1(t) + q1 + q̈0(t) + q0(t) + µq̇0(t) + εq3
0 = 0. (B.5)

Considering the initial approximate solution as Q0 = q0 = A cosωt, where A is the
amplitude and ω is the frequency of the output, which when substituted back in last
equation, results in

q̈1 + q1+ = A

{
ω2 − 1− 3

4
A2ε

}
cosωt− µωA sinωt− 1

4
εA3 cos 3ωt, (B.6)

where we have two secular terms. One of them gives us frequency ω of the output, as

ω =

√
1 +

3

4
εA2. (B.7)

which is the frequency obtained up to first order for conservative Duffing system and
the other indicates that µ = 0, i.e., no damping. It is to be noted that even a second
expansion, i.e., expansion of amplitude A does not work [4,7]. Keeping these facts, to
deal with damped Duffing oscillator, the modified HPM, explained in section 2.2, is
considered.

Making an application of equations (2.11)-(2.14) in equation (2.8) and equating coefficients of pi, i =
1, 2, 3, · · · , we obtain following equations for q1, q2, q3, · · · as

q̈1(t) + ω2q1(t) =αω {2ċ1 + µ} sin(ωt+ φ) + α

{
ω1 − c̈1 −

3

4
εα2

}
cos(ωt+ φ)+(2.15)

−1

4
εα3 cos 3(ωt+ φ),

q̈2(t) + ω2q2(t) =ω1q1 − µq̇1 + αω(2ċ2 + µc1) sin(ωt+ φ)− 3

4
εα3c1 cos 3(ωt+ φ)+(2.16)

−3

2
εα2q1(1 + cos 2(ωt+ φ)) + α

{
ω2 − c̈2 + ω1c1 − µċ1 −

9

4
εα2c1

}
cos(ωt+ φ),
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q̈3(t) + ω2q3(t) =ω1q2 + ω2q1 − µq̇2 − 3εq0q1(q0 + q1) + αω(2ċ3 + µc2) sin(ωt+ φ)(2.17)

+α

{
ω2c1 + ω3 + ω1c2 − µċ2 − c̈3 −

9

4
εα3(c21 + c2)− 3

64

ε2α5

ω2
c1

}
cos(ωt+ φ)

−
{

3

4
εα3(c21 + c2) +

3

32

ε2α5

ω2
c1

}
cos 3(ωt+ φ)− 3

64

ε2α5

ω2
c1 cos 5(ωt+ φ).

The solutions for q1(t), q2(t) and q3(t) could easily be obtained by removing the secular terms in the
respective equations. Removal of secular terms from equation (2.15) results in following conditions on c1
and ω1,

(2.18) ċ1 = −1

2
µ =⇒ c1 = −1

2
µt, c̈1 = 0, and ω1 =

3

4
εα2,

which further leads to

(2.19) q1(t) =
1

32

εα3

ω2
cos 3(ωt+ φ).

Removing secular terms from equation (2.16), we get

(2.20) ċ2 =
1

4
µ2t =⇒ c̈2 =

1

4
µ2, c2 =

1

8
µ2t2 and ω2 = −1

4
µ2 − 3

4
εα2µt+

3

128

ε2α4

ω2
,

and the solution for q2 could be written as,

q2(t) =
3

64

εα3

ω2

[{
1

16

εα2

ω2
− µt

}
cos 3(ωt+ φ) +

1

2
µ sin 3(ωt+ φ)(2.21)

+
1

16

εα2

ω4
cos 5(ωt+ φ)

]
.

Similarly removal of secular terms in equation (2.17), results in following conditions on c3 and ω3 as,

ċ3 = −1

2
µc2 +

9

1024

ε2α4

ω5
, µ = − 1

16
µ3t2 +

9

1024

ε2α4

ω4
µ(2.22)

=⇒ c̈3 = −1

8
µ3t & c3 = − 1

48
µ3t3 +

9

1024

ε2α4

ω4
µ,

and ω3 =
3

8
εα2µt

{
1

16
εα2 + µt

}
− 3

4096

ε3α6

ω4
,

and solution for q3(t) may be written as,

q3(t) = − 1

8ω2

{
(X1 +X2t)−

7

16ω2
(X2 + 2X3) + (X4 +X5t)

}
cos 3(ωt+ φ)(2.23)

+
1

8ω2

{
3

4ω
(X2 +X5 + 2X3t)

}
sin 3(ωt+ φ)− 1

24ω2
{(X6 +X7t+X8)} cos 5(ωt+ φ)

+
5

288ω3
X7 sin 5(ωt+ φ)− 1

48ω2
X9 cos 7(ωt+ φ).

Therefore, from equation (2.9), the solution of non-conservative duffing oscillator up to third order would
be

q(t) = lim
p→1

Q = q0 + q1 + q2 + q3(2.24)

=α

{
1− 1

2
µt+

1

8
µ2t2 − 1

48
µ3t3 +X13 t

}
cos(ωt+ φ) +

[
X14

{
1− 3

2
µt+

9

8
µ2t2

}
− 1

8ω2

{
(X1 +X2t)−

7

16ω2
(X2 + 2X3) +X4 +X10 +X5 t

}]
cos 3(ωt+ φ)

+
3

32ω2
{X2 +X5 + 2X3 t+X11} sin 3(ωt+ φ)− 1

24ω2
{X6 +X7 t+X8 +X13} cos 5(ωt+ φ)

+
5

288ω3
X7 sin 5(ωt+ φ)− 1

48ω2
X9 cos 7(ωt+ φ),

where

X1 = −
{
εα3

32ω2
µ2 +

9ε3α7

4096ω4

}
, X2 =

15ε2α5

256ω2
µ, X3 = − 9

32
εα3 µ2, X4 = − 9ε2α5

1024ω3
,
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X5 = −9εα3

64ω
µ2, X6 = − 15ε3α7

4096ω4
, X7 =

15ε2α5

1024ω2
µ, X8 = − 13ε2α5

1024ω3
µ, X9 = − 3ε3α7

4096ω4
,

X10 = − 3ε2α5

128ω4
, X11 =

εα3

4
µ, X12 =

3ε2α5

128ω2
, X13 =

9ε2α4

1024ω4
µ, X14 =

εα3

32ω2
.

Following [4,6], we may rewrite equation (2.24) in a compact form as

q(t) =α
[
e−µt/2 +X13 t

]
cos(ωt+ φ)(2.25)

+

[
X14 e

−3µt/2 − 1

8ω2

{
(X1 +X2 t)−

7

16ω2
(X2 + 2X3) +X4 +X10 +X5 t

}]
cos 3(ωt+ φ)

+
3

32ω2
{X2 +X5 + 2X3 t+X11} sin 3(ωt+ φ)

− 1

24ω2
{X6 +X7 t+X8 +X13} cos 5(ωt+ φ)

+
5

288ω3
X7 sin 5(ωt+ φ)− 1

48ω2
X9 cos 7(ωt+ φ).

where X ′s are defined as mentioned above.
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Figure 2.1: (a) Comparison of simulated result (shown in red color) and the homotopy based solution (shown in
black color) of Duffing oscillator up to third order. (b) the evolution of absolute error.
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Figure 2.2: (a) Comparison of simulated result (shown in red color) and the homotopy based solution (shown in
black color) of Duffing oscillator up to third order. (b) the evolution of absolute error.
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Figure 2.3: (a) Comparison of simulated result (shown in red color) and the homotopy based solution (shown in
black color) of Duffing oscillator up to third order. (b) the evolution of absolute error.

2.3 Amplitude, Frequency and Stability condition with µ > 0
Applying conditions (2.18), (2.20) and (2.22), in equations (2.12) and (2.13), the frequency ω and the
amplitude A are obtained in terms of damping coefficient µ and nonlinearity parameter ε, respectively, as

ω2 =ω2
0 +

3

4
εα2 − 1

4
µ2 − 3

4
εα2µt+

3

128

ε2α4

ω2
+

3

8
εα2µt

{
1

16
εα2 + µt

}
− 3

4096

ε3α6

ω4
.(2.26)

=⇒ ω2 =ω2
0 −

1

4
µ2 +

3

4
εα2

{
1− µ t+

1

2
µ2t2

}
+

3

128

ε2α4

ω2
+

3

128
ε2α4µt− 3

4096

ε3α6

ω4
.
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(2.27) A(t) = α

{
1− 1

2
µ t

1

8
µ2 t2 − 1

48
µ3 t3 +

9

1024

ε2α4

ω4
µ t

}
.

Following [5], equation (2.26) and (2.27) may be written as

ω2 = ω2
0 −

1

4
µ2 +

3

4
εα2 e−µ t +

3

128
ε2α4µt+

3

128

ε2α4

ω2
0

− 3

128

ε2α4

ω4
0

ω1 −
3

4096

ε3α6

ω4
0

,(2.28)

A(t) = α

{
e−

1
2µ t +

9

1024

ε2α4

ω4
µ t

}
.(2.29)
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Figure 2.4: (a) Comparison of simulated result (shown in red color) and the homotopy based solution (shown in
black color) of Duffing oscillator up to third order. (b) the evolution of absolute error.
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Figure 2.5: (a) Comparison of simulated result (shown in red color) and the homotopy based solution (shown in
black color) of Duffing oscillator up to third order. (b) the evolution of absolute error.

197



0 5 10 15

time

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

N
u
m

e
r
-
/
 
P

e
r
t
 
S

o
l

x(:,1)

Pert0
 = 2;  = 0.5;  = 1;  = 1.5

(a)

0 5 10 15

time

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1

A
b

s
(
D

if
f
)

0
 = 2;  = 0.5;  = 1;  = 1.5

(b)

Figure 2.6: (a) Comparison of simulated result (shown in red color) and the homotopy based solution (shown in
black color) of Duffing oscillator up to third order. (b) the evolution of absolute error.

For the values of parameters considered for numerical simulation, it is observed that the third term on
the right hand side decreases at a faster rate than the corresponding rise in the fourth term and thereby
resulting in a constant value of the frequency on larger time scale, say, ωf > 0, which may be considered
also as a stability condition for the system.

3 Conclusion
In the present work, numerical simulation of the linearly damped Duffing system has been carried out
by fixing the values of the initial amplitude, α = 1 and the frequency, ω0 = 2.0, keeping the damping
parameter (i) µ = 0.25 and (ii) µ = 0.5 while varying the nonlinearity parameter, ε. The modified version
of the homotopy based perturbative solution, as obtained in equation (2.25), for various parameters are
subsequently compared with the direct numerical simulation results. It is observed that the HPM based
solutions compares well with those obtained numerically (Figs.2.1a-2.6a). The magnitude of errors between
simulated and HPM based solution are observed to be nominal for ε < 1.0. However, it is also observed that
for lower values of damping parameter µ, noticeable changes in phase relationship between the numerical
and HPM based solution occurs for moderately higher values of the nonlinearity parameter i.e., ε ∼ 1.5.
(Figs. 2.1b-2.6b) further illustrate the time variation of small deviation between the HPM and simulated
solutions for various control parameters.
The foregoing HPM method allows one to obtain solution of the non-conservative Duffing system with
larger damping coefficient (µ) and nonlinearity parameter (ε). We plan to use it subsequently to analyze
the complex response of micro-nanosystems i.e., , resonator used for mass detection, vibration of carbon
nanotube, micro tubules, etc., which play important role in biological system [3].
Acknowledgement. Authors are thankful to the referees and editor(s) for very useful comment that led
to the present version of the manuscript.
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