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Abstract

In this paper, we have studied the concept of anti-norm and anti-inner product function on anti-fuzzy
linear space over anti-fuzzy field, we have also given fuzzy continuous linear operator from an anti-normed
anti-fuzzy linear space to another anti-normed anti-fuzzy linear space and also introduced three types
(strong, weak and sequential) of fuzzy bounded linear operators.
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1 Introduction
During the last few years there is a growing interest in the extension of fuzzy set theory which is a useful tool
to describe the situation in which data are imprecise or vague or uncertain. Fuzzy set theory handles the
situation, by attributing a degree of membership to which a certain object belongs to a set. The fundamental
concept of fuzzy set theory was introduced by Zadeh [23] in 1965 and thereafter, the concept of fuzzy set
theory applied on different branches of pure and applied mathematics in different ways. The fuzzy topology
was introduced by Chang [4] in 1968, while the concept of fuzzy norm was introduced by Katsaras [9] in
1984. Thereafter Wu and Fang [20] introduced a fuzzy normed space. In 1991, Biswas [1] defined fuzzy norm
and fuzzy inner product function on a linear space. In 1992, Felbin [8] introduced fuzzy norm on a linear
space by assigning a fuzzy real number to each element of the linear space. Another important approach
of fuzzy norm on a linear space was introduced in 1994 by Cheng and Morderson [5], on a parallel line as
the corresponding fuzzy metric due to Kramosil and Michelek [11] type. Krishna and Sarma [10], Xiao and
Zhu [22] discussed fuzzy norms on linear spaces at different points of view. In 2005, Bag and Samanta [2],
introduced an idea of fuzzy norm of a linear operator from a fuzzy normed linear space to another fuzzy
normed linear space and defined various notions of continuities and boundedness of linear operators over
fuzzy normed linear spaces such as fuzzy continuity, sequential fuzzy continuity, weakly fuzzy continuity,
strongly fuzzy continuity, weakly and strongly fuzzy boundedness. All these Researchers have done their
work in the area of crisp linear space. Wenxiang and Tu [21] were the first to introduce the concept of fuzzy
fields and fuzzy linear spaces over fuzzy fields. In 2011, Santosh and Ramakrishnan [18] introduced norm and
inner product on fuzzy linear spaces over fuzzy field. In 2012, Srinivas, Swamy and Nagaiah [19] introduced
anti-fuzzy near-algebras over anti-fuzzy fields. In 2022, Barge and Yadav [3] defined (λ, µ)-anti-fuzzy linear
spaces. In 2022, Chandra, Srivastava, and Sinha [6]; Srivastava, Sinha and Chandra [17] introduced 2-norm
and 2-inner product on fuzzy linear spaces over fuzzy field. For more recent work of the area under study, we
refer to [7,12,13,14,15,16]. In the present paper we introduce the idea of anti-norm and anti-inner product
function on anti-fuzzy linear space over anti-fuzzy field and also given fuzzy continuous and fuzzy bounded
linear operators on anti-fuzzy linear space over anti-fuzzy field.

2 Preliminaries
This section contains some definitions and preliminary results which are used in the paper.

Definition 2.1 ([21]). Let X be a field and F a fuzzy set in X with the following conditions:
(i) F (x+ y) ≥ min{F (x), F (y)}, x, y ∈ X,

(ii) F (−x) ≥ F (x), x ∈ X,
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(iii) F (xy) ≥ min{F (x), F (y)}, x, y ∈ X,
(iv) F

(
x−1

)
≥ F (x), x(6= 0) ∈ X.

Then we call F a fuzzy field in X and denoted by (F,X) and it is also called a fuzzy field of X.

Theorem 2.1 ([21]). If (F,X) is a fuzzy field of X, then
(i) F (0) ≥ F (x), x ∈ X.

(ii) F (1) ≥ F (x), x(6= 0) ∈ X.
(iii) F (0) ≥ F (1).

Theorem 2.2 ([21]). Let X and Y be field and f a homomorphism of X into Y suppose that (F,X) is a
fuzzy field of X and (G, Y ) is a fuzzy field of Y . Then

(i) (f(F ), Y ) is a fuzzy field of Y .
(ii)

(
f−1(G), X

)
is a fuzzy field of X.

Definition 2.2 ([21]). Let X be a field and (F,X) be a fuzzy field of X. Let Y be a linear space over X and
V a fuzzy set of Y . Suppose the following condition hold:

(i) V (x+ y) ≥ min{V (x), V (y)}, x, y ∈ Y ,
(ii) V (λx) ≥ min{F (λ), V (x)}, λ ∈ X,x ∈ Y ,

(iii) V (−x) ≥ V (x), x ∈ Y ,
(iv) F (1) ≥ V (0).

Then (V, Y ) is called a fuzzy linear space over (F,X).

Theorem 2.3 ([21]). If (V, Y ) is a fuzzy linear space over fuzzy field (F,X), then
(i) F (0) ≥ V (0).

(ii) V (0) ≥ V (x), x ∈ Y .
(iii) F (0) ≥ V (x), x ∈ Y .

Theorem 2.4 ([21]). Let (F,X) be a fuzzy field of X and Y a linear space over X. Let V be a fuzzy set of
Y . Then (V, Y ) is a fuzzy linear space over (F,X) if and only if

(i) V (λx+ µy) ≥ min{F (λ), F (µ), V (x), V (y)}, λ, µ ∈ X and x, y ∈ Y .
(ii) F (1) ≥ V (x), x ∈ Y .

Definition 2.3 ([18]). Let ( F,K) be a fuzzy field of K ( K denotes either R or C ), X be a linear space
over K and (V,X) be a fuzzy linear space over (F,K). A norm on (V,X) is a function || || : X → [0,∞)
such that

(i) F (‖x‖) ≥ V (x) for all x ∈ X,
(ii) ‖x‖ ≥ 0 ∀ x ∈ X and ‖x‖ = 0 if and only if x = 0,

(iii) ‖x+ y‖ ≤ ‖x‖+ ‖y‖ for all x, y ∈ X,
(iv) ‖kx‖ = |k|‖x‖ for all k ∈ K and for all x ∈ X.

Then (V,X, ‖‖) is called a normed anti-fuzzy linear space (NFLS) over fuzzy field.

Definition 2.4 ([18]). An inner product on a fuzzy linear space (V,X) over a fuzzy field (F,K) is a function
〈, 〉 :, X ×X → K such that for all x, y, z ∈ X and k ∈ K,

(i) F (〈x, y〉) ≥ V × V (x, y),
(ii) 〈x, x〉 ≥ 0 and 〈x, x〉 = 0 if and only if x = 0,

(iii) 〈x+ y, z〉 = 〈x, z〉+ 〈y, z〉 and 〈kx, y〉 = k〈x, y〉,
(iv) 〈y, x〉 = 〈x, y〉.

Thus, (V,X, 〈, 〉) is called an inner product on fuzzy linear space over fuzzy field.

Definition 2.5 ([19]). Let X be a field and F a fuzzy set in X with the following conditions:
(i) F (x+ y) ≤ max{F (x), F (y)}, x, y ∈ X,

(ii) F (−x) ≤ F (x), x ∈ X,
(iii) F (xy) ≤ max{F (x), F (y)}, x, y ∈ X,
(iv) F

(
x−1

)
≤ F (x), x(6= 0) ∈ X.

An anti-fuzzy field F of X is denoted by (F,X).

Theorem 2.5 ([19]). If (F,X) is an anti-fuzzy field of X, then
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(i) F (0) ≤ F (x), for any x ∈ X.
(ii) F (1) ≤ F (x), for any x(6= 0) ∈ X.

(iii) F (0) ≤ F (1).

Definition 2.6 ([19]). Let X be a field and (F,X) be an anti-fuzzy field of X. Let Y be a linear space over
X and V a fuzzy set of Y . Suppose the following condition hold:

(i) V (x+ y) ≤ max{V (x), V (y)}, x, y ∈ Y
(ii) V (λx) ≤ max{F (λ), V (x)}, λ ∈ X,x ∈ Y ,

(iii) V (−x) ≤ V (x), x ∈ Y ,
(iv) F (1) ≤ V (0).

Then (V, Y ) is called an anti-fuzzy linear space over (F,X).

3 Anti-norm and anti-inner product function on anti-fuzzy linear space over anti-fuzzy field
In this section, we define anti-norm and anti-inner product function on anti-fuzzy linear space over anti-fuzzy
field and also establish relationship between them.

Here, K denotes either R (set of real numbers) or C (set of complex numbers).

Definition 3.1. Let (F,K) be an anti-fuzzy field of K,X be a linear space over K and (V,X) be an anti-fuzzy
linear space over (F,K). An anti-norm on (V,X) is function ||.|| : X → [0,∞) such that:

(i) F (‖x‖) ≤ V(x) for all x ∈ X,
(ii) ‖x‖ ≥ 0 ∀ x ∈ X and ‖x‖ = 0 if and only if x = 0,

(iii) ‖x+ y‖ ≤ ‖x‖+ ‖y‖,
(iv) ‖kx‖ ≤ |k|‖x, for all k ∈ K and for all x ∈ X.

Then (V,X, ‖.‖) is called anti-normed anti-fuzzy linear space (ANAFLS).

Theorem 3.1. Let (V,X) be an anti-fuzzy linear space over an anti-fuzzy field (F,K), Y be a linear space
over K and T be an isomorphism of X onto Y . (V,X) is an anti-normed anti-fuzzy linear space over (F,K)
if and only if (T (V ), Y ) is an anti-normed anti-fuzzy linear space over (F,K).

Proof. Let ‖ · ‖X be an anti-norm on (V,X). Let x ∈ X so, T(x) ∈ Y. Take T(x) = y. Now consider the
anti-norm ‖ · ‖Y on Y defined ‖y‖Y = ‖x‖X . Then F (‖y‖Y ) = F (‖x‖X) ≤ V (x) = T (V )T (x) = T (V )(y).
Therefore ‖ · ‖Y is an anti-norm on (T (V ), Y ).

Conversely, assume that ‖ · ‖Y is an anti-norm on (T (V ), Y ). Consider the anti-norm ‖ · ‖X on X as
‖x‖X = ‖Tx‖Y

Then F (‖x‖X) = F (‖Tx‖Y ) ≤ T (V )(T (x)) = V (x).
Therefore, ‖ · ‖X is an anti-norm on (V,X).

Theorem 3.2. Let X be a linear space over K, (W,Y ) an anti-fuzzy linear space over an anti-fuzzy field
(F,K) and T : X → Y be an injective linear transformation. If (W,Y ) is an anti-normed anti-fuzzy linear
space over (F,K). Then

(
T−1(W ), X

)
is an anti-normed anti-fuzzy linear space over (F,K).

Proof. Let ‖.‖Y be an anti-norm on (W,Y ). Consider the anti-norm ‖.‖X on X as

‖x‖X = ‖Tx‖Y Then

F (‖x‖X) = F (‖Tx‖Y ) ≤W
(
T (x) = T−1W (x).

Hence ‖ · ‖X is an anti-norm on
(
T−1(W ), X

)
.

Theorem 3.3. Let (V,X) be an anti-normed anti-fuzzy linear space over an anti-fuzzy field (F,K) and
T : X → X be an injective linear transformation. Then

(
T−1(V ), X

)
is an anti-normed anti-fuzzy linear

space over (F,K). Proof. Obvious by Theorem 3.2.

Definition 3.2. An anti-inner product on an anti-fuzzy linear space (V,X) over an anti-fuzzy field (F,K)
is a function 〈, 〉 : X ×X → K such that for all x, y, z ∈ X and k ∈ K,

(i) F (〈x, y〉) ≤ V × V (x, y)
(ii) 〈x, x〉 ≥ 0 and 〈x, x〉 = 0 if and only if x = 0

(iii) 〈x+ y, z〉 = 〈x, z〉+ 〈y, z〉 and 〈kx, y〉 = k〈x, y〉
(iv) 〈y, x〉 = 〈x, y〉.
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Thus, (V,X, 〈, 〉) is called an anti-inner product on anti-fuzzy linear space over anti-fuzzy field.

Example 3.1. Let F be an anti-fuzzy field of R. The anti-inner product 〈, 〉 on Rn defined by 〈x, y〉 =∑n
i=1 xiyi is an anti-inner product on an anti-fuzzy linear space (F × F × . . .× F︸ ︷︷ ︸

n times

, Rn).

Proof. Let V = (F × F × . . .× F︸ ︷︷ ︸
n times

, Rn)

F (〈x, y〉) = F (x1y1 + x2y2 + · · ·+ xnyn)

≤ max {F (x1y1) , F (x2y2) , . . . , F (xnyn)}
≤ max {max {F (x1) , F (y1)} , . . . ,max {F (xn) , F (yn)}}
= max {max {F (x1) , . . . , F (xn)} ,max {F (y1) , . . . , F (yn)}
= max{V (x), V (y)}
= V × V (x, y).

So, 〈, 〉 is an anti-inner product on (F × F × . . .× F︸ ︷︷ ︸
n times

, Rn).

Theorem 3.4. If 〈, 〉 is an anti-inner product on the anti-fuzzy linear space (V,X) over the anti-fuzzy field
(F,K), then for all x, y, z ∈ X and k ∈ K.

(i) F 〈x+ y, z〉 ≤ V × V (x+ y, z)
(ii) F (〈x, y〉) ≤ V × V (y, x)

(iii) F (λ〈x, y〉) ≤ V × V (λx, y).

Proof.
(i) F 〈x+ y, z〉 = F{〈x, z〉+ 〈y, z〉}

= F 〈x, z〉+ F 〈y, z〉
≤ V × V (x, z) + V × V (y, z)

≤ V × V (x+ y, z).

(ii) F (〈x, y〉) = F (〈y, x〉)
≤ V × V (y, x).

(iii) F (λ〈x, y〉) = F (〈λx, y〉).
≤ V × V (λx, y).

Theorem 3.5. If 〈, 〉 is an anti-inner product on the anti-fuzzy linear space (V,X) over the anti-fuzzy field
(F,K), then

(i) F (〈x+ y, z〉) ≤ max{V (x), V (y), V (z)},
(ii) F (〈kx, y〉) ≤ max{F (k), V (x), V (y)}.

Proof. (i) F (〈x+ y, z〉) ≤ V × V (x+ y, z)
= max{V (x+ y), V (z)}
≤ max{max{V (x), V (y), V (z)}
= max{V (x), V (y), V (z)}.

(ii) F (〈kx, y〉) ≤ V × V (kx, y)
= max{V (kx), V (y)}
≥ max{max{F (k), V (x), V (y)}
= max{F (k), V (x), V (y)}.

Theorem 3.6. Let (V,X) be an anti-fuzzy linear space over an anti-fuzzy field (F,K), Y a linear space over
K and T is an isomorphism of X onto Y . Then there exists an anti-inner product on (V , X) if and only if
there exists an anti-inner product on (T (V ), Y ).
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Proof. (⇒) Let 〈, 〉X be an anti-inner product on (V,X). Consider the anti-inner product 〈, 〉Y on Y defined
by 〈y1, y2〉Y = 〈x1, x2〉X where y1 = Tx1 and y2 = Tx2.
F (〈y1, y2〉Y ) = F (〈x1, x2〉X) ≤ V × V (x1, x2) = T (V )× T (V )(Tx1, Tx2) = T (V )× T (V )(y1, y2).

So 〈, 〉Y is an anti-inner product on (T (V ), Y ).
(⇐) Assume that 〈, 〉Y is an anti-inner product on (T (V ), Y ). Consider, the anti-inner product 〈, 〉X on

X defined by 〈x1, x2〉X = 〈Tx1, Tx2〉Y .

F (〈x1, x2〉X) = F (〈Tx1, Tx2〉Y ≤ T (V )× T (V ) (Tx1, Tx2) = V × V (x1, x2) .

So, 〈, 〉X is an anti-inner product on (V,X).

Theorem 3.7. Let X be a linear space over K, (W,Y ) be an anti-fuzzy linear space over an anti-fuzzy field
(F,X) and T : X → Y be an injective linear transformation. If there exists an anti-inner product on (W,Y ),
then there exists an anti-inner product on

(
T−1(W ), X

)
.

Proof. Let 〈, 〉Y be an anti-inner product on (W,Y ). Consider the anti-inner product 〈, 〉X on X defined by
〈x1, x2〉X = 〈Tx1, Tx2〉Y .

F (〈x1, x2〉X) = F (〈Tx1, Tx2〉Y ) ≤W ×W (Tx1, Tx2) = max {W (Tx1) ,W (Tx2)}
= max

{
T−1(w) (x1) , T−1(w) (x2)

}
= T−1(w)× T−1(w) (x1, x2) .

Therefore 〈, 〉X is an anti-inner product on
(
T−1(W ), X

)
.

Theorem 3.8. Let (V,X) be an anti-fuzzy linear space over (F,K) and T : X → X be an injective linear
transformation. If there exists an anti-inner product on (V,X) then there exists an anti-inner product on(
T−1(V ), X

)
.

Proof. Let 〈, 〉X be an anti-inner product on (V,X). Consider the anti-inner product 〈, 〉X on X defined by
〈x1, x2〉X = 〈Tx1, Tx2〉X .

F (〈x1, x2〉X) = F (〈Tx1, Tx2〉X) ≤ V × V (Tx1, Tx2) = max {V (Tx1) , V (Tx2)}
= max

{
T−1(v) (x1) , T−1(v) (x2)

}
= T−1(v)× T−1(v) (x1, x2) .

Therefore 〈, 〉X is an anti-inner product on
(
T−1(V ), X

)
.

Theorem 3.9. Let (V,X) be an anti-fuzzy linear space over (F,K). An anti-norm on (V,X) satisfying the
parallelogram law induces an anti-inner product on (V,X) if F (4), F (i) ≤ V (x) for all x ∈ X.

Proof. If ‖.‖ is an anti-norm on (V,X) satisfying the parallelogram law, then F(‖x‖) ≤ V (x) for all x ∈ X
and ‖.‖ induces an anti-inner product 〈, 〉 on X given by

〈x, y〉 =
1

4

(
‖x+ y‖2 − ‖x− y‖2 + i‖x+ iy‖2 − i‖x− iy‖2

)
F (〈x, y〉) = F

(
1

4

(
‖x+ y‖2 − ‖x− y‖2 + i‖x+ iy‖2 − i‖x− iy‖2

))
≤ max

{
F

(
1

4

)
, F
(
‖x+ y‖2

)
,F
(
−‖x− y‖2

)
,F(i),F

(
‖x+ iy‖2

)
,F
(
−‖x− iy‖2

)}
= max

{
F (4),F(i), F

(
‖x+ y‖2

)
,F
(
‖x− y‖2

)
,F
(
‖x+ iy‖2

)
,F
(
‖x− iy‖2

)}
≤ max{F (4),F(i), F (‖x+ y‖),F(‖x− y‖),F(‖x+ iy‖),F(‖x− iy‖)}
≤ max{F (4), F (i), V (x+ y), V (x− y), V (x+ iy), V (x− iy)}
≤ max{F (4), F (i), V (x), V (y)}
= max{V (x), V (y)} if F(4),F(i) ≤ V(x) for all x ∈ X
= V × V (x, y).

Hence anti-norm induces an anti-inner product on (V,X) if F (4), F (i) ≤ V (x) for all x ∈ X.
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4 Fuzzy continuous mapping and fuzzy bounded linear operators
In this section we define different types of continuity such as weak fuzzy continuity, strong fuzzy continuity
and sequential fuzzy continuity of an operator over anti-normed anti-fuzzy linear spaces. The notion of
weakly fuzzy boundedness and strongly fuzzy boundedness are defined for linear operators over anti-normed
anti-fuzzy linear spaces.

Definition 4.1. A mapping T from (V1, X, ‖.‖1) to (V2, Y, ‖.‖2) is said to be weakly fuzzy continuous at
x0 ∈ X if for each ε > 0,∃ δ > 0 such that ∀ x ∈ X

‖T (x)− T (x0)‖2 < ε whenever ‖x− x0‖1 < δ,
and F ‖x0‖1 ≤ V1 (x0) and F ‖Tx0‖2 ≤ V2T (x0).

If T is weakly fuzzy continuous at each point of X then we say that T is weakly fuzzy continuous on X.

Example 4.1. Let T : (V1, X, ‖.‖1) → (V2, Y, ‖.‖2) be a mapping where (V1, X, ‖.‖1) and (V2, Y, ‖.‖2) are

anti-normed anti-fuzzy linear spaces where ‖x‖1 = |x| and ‖x‖2 = |x|
2 , and consider T (x) = x, here T is

weakly fuzzy continuous.

Definition 4.2. A mapping T from (V1, X, ‖.‖1) to (V2, Y, ‖.‖2) is said to be strongly fuzzy continuous at
x0 ∈ X if for each ε > 0,∃ δ > 0 such that ∀ x ∈ X

‖T (x)− T (x0)‖2 < ε whenever ‖x− x0‖1 < δ,
and max {F ‖x0‖1 , F ‖Tx0‖2} ≤ max {V1 (x0) , V2 (Tx0)}.

If T is strongly fuzzy continuous at each point of X then T is said to be strongly fuzzy continuous on X.

Example 4.2. Let (V,X, ‖.‖) be an anti-normed anti-fuzzy linear space where X = R and ‖x‖ = |x| ∀ x ∈ R.
Define two functions ‖.‖1&‖.‖2 : X ×R→ [0, 1] by ‖x‖1 = |x|, ‖x‖2 = 2|x|.

Then it can be easily verified that ‖x‖1 and ‖x‖2 are anti-norms on X and thus (V,X‖x‖1) and (V,X‖x‖2)
are anti-normed anti-fuzzy linear spaces.

Now we consider a function T (x) = 4x. Therefore

‖Tx− Tx0‖2 = ‖4x− 4x0‖2
= 2 |4x− 4x0|
= 8 |x− x0| < ε

= |x− x0| <
ε

8

‖x− x0‖1 = |x− x0| < δ, Take δ =
ε

8
.

F (‖x0‖1) = F (|x0|) ,
F (‖Tx0‖2 = F (‖4x0‖2) = F (8 |x0|) ,
V1 (x0) ≥ F (‖x0‖1) (by Def. 3.1(i) ).

V2 (Tx0) = V2 (4x0) ≥ F ‖Tx0‖2 = F (‖4x0‖2) = F (8x0) ,

V2 (4x0) ≥ F (8x0) .

max {F (‖x0‖1) , F (‖Tx0‖2)} ≤ max {V1 (x0) , V2T (x0)}
≤ max {V1 (x0) , V2 (Tx0)} .

Hence it is strongly fuzzy Continuous.

Definition 4.3. A mapping T from anti-normed anti-fuzzy linear space (V1, ‖.‖1, X) to anti-normed anti-
fuzzy linear space (V2, ‖.‖2, Y ) over (F,K) is said to be sequentially fuzzy continuous at x0 if for any sequence
{xn} with xn → x0 ⇒ T (xn)→ T (x0)

‖T (xn)− T (x0)‖2 → 0 Whenever ‖xn − x0‖1 → 0 and

F ‖xn − x0‖1 ≤ V1 (xn − x0) ,

F ‖T (xn)− T (x0)‖2 ≤ V2 (T (xn)− T (x0)) .

If T is sequentially fuzzy continuous at each point of X then T is said to be sequentially fuzzy Continuous
on X.
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Example 4.3. Let T : (V1, X, ‖.‖1) → (V2, Y, ‖.‖2) be a mapping where (V1, X, ‖.‖1) and (V2, Y ‖.‖2) are

anti-normed anti-fuzzy linear spaces and ‖x‖1 = |x| and ‖x‖2 = |x|
2 and consider the function T (x) = x

So whenever ‖xn − x‖1 → 0,⇒ |xn − x| → 0
Then ‖T (xn)− T (x)‖2 = ‖xn − x‖2 = 1

2 |xn − x0| → 0.
Also, F (‖xn − x0‖1) ≤ V1 (xn − x0) (by Def. 3.1. (i) ).

F (‖Txn − Tx0‖2) = F (‖xn − x0‖2) = F

(
|xn − x0|

2

)
≤ max

{
F
(
2−1
)
, F (xn − x0)

}
= max {F (2), F (xn − x0)} .

As n→∞ then F (xn − x0)→ F (0)
= max{F (2), F (0)} = F (2).
V2 (Txn − Tx0) = V2 (xn − x0).
But as n→∞ then V2 (xn − x0)→ V2(0),
While as V2(0) ≥ F (2)
V2 (Txn − Tx0) ≥ F (‖Txn − Tx0‖2) .
Hence sequentially fuzzy continuous.

Definition 4.4. Let us denote the set of all fuzzy bounded linear operators from anti- normed anti-fuzzy
linear space (V1, X, ‖x‖1) to (V2, Y, ‖x‖2) by B(X,Y).

‖Tx‖2 ≤ k‖x‖1, V1(x) ≥ F‖x‖1
and V2(T (x)) ≥ F‖x‖2.

Example 4.4. Let us take, ‖x‖1 = |x|, ‖x‖2 = 4|x|
Define, a linear map T (x) = x

2 ,
Now,

‖Tx‖2 =
∥∥∥x

2

∥∥∥
2

= 2|x|,

‖Tx‖2 ≤ k|x|, For k ≥ 2.

V1(x) ≥ F (‖x‖1) , (by Definition 4.4)

V2(x) ≥ F (‖x‖2) , (by Definition 4.4).

From above it is clear that, the set B(X,Y ) is bounded linear operator on anti-normed anti-fuzzy linear
space over anti-fuzzy field.

Theorem 4.1. Let (V1, X, ‖.‖1) and (V2, Y, ‖.‖2) be two anti-normed anti-fuzzy linear spaces and T is a
linear operator from X to Y then

T is weakly fuzzy continuous iff it is fuzzy bounded.

Proof. Let T be fuzzy bounded.

‖T (x− x0) ‖2 ≤ k‖x− x0‖1

‖Tx− Tx0‖2 ≤
ε

δ
‖x− x0‖1 · Take k =

ε

δ
.

‖Tx− Tx0‖2 ≤ ε, whenever ‖x− x0‖1 ≤ δ.
So, T is weakly fuzzy continuous.
Now, T take weakly fuzzy continuous
‖Tx− Tx0‖2 < ε, whenever ‖x− x0‖1 < δ.
Let y ∈ X, x1 = x0 + δ

2
y
‖y‖1 ,

x1 − x0 =
δ

2

y

‖y‖1

⇒ ‖x1 − x0‖1 =

∥∥∥∥δ2 y

‖y‖1

∥∥∥∥
1

=
δ

2
< δ

⇒ ‖Tx1 − Tx0‖2 < ε (given )
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⇒ ‖T (x1 − x0)‖2 =

∥∥∥∥T δ2 y

‖y‖1

∥∥∥∥
2

=
δ

2‖y‖1
‖Ty‖2 < ε

⇒ ‖Ty‖2 ≤
2ε

δ
‖y1‖

⇒ ‖Ty‖2 ≤ k‖y1‖ (Taking k =
2ε

δ
).

Therefore T is fuzzy bounded.

5 Conclusion
In this paper, we developed a theory of anti-norm, anti-inner product on anti-fuzzy linear space over anti-
fuzzy field and relation between them. We proved fuzzy continuity theory and their related examples. In
the future we will work on open mapping theorem and uniform boundedness principle over anti-fuzzy field.
Acknowledgement. The authors are grateful to the Editors for their Valuable suggestions. The authors
are also grateful to the Reviewers for their constructive suggestion in rewriting the paper in its present form.
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