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Abstract

This paper is based on extension of some basic results on coupled fixed point using extended
Kuratowski measure. In the first part of the paper we have extended coupled fixed point results on
product Banach space by measure of non compactness defined in the paper of Banas (1980). The second
part of the paper contains the results on existence of coupled fixed point based on generalized Theorem
3.2 of Samih et.al. (2016) to get coupled fixed point of set valued co set contraction map on complete
metric type of space.
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1 Introduction
In nonlinear functional analysis many operator equation has the expression T (x, y) = (f(x, y), f(y, x)), where
f is a map from X ×X to X and T is map from X ×X to X ×X and X is a Banach space.In such cases
the fixed the point of T is nothing but coupled fixed point of f . That is f(x, y) = x, f(y, x) = y. Bhaskar
and Lakshmikantham [6] introduced the concept of coupled fixed point of function of several variable. He
gave results on fixed point of each partial function of several variables in product space. He also generalized
Banach contraction principle for such maps. It plays an important role in nonlinear functional analysis.
Latter some authors [1,17] proved some results on fixed point and coupled fixed point on closed bounded
convex set of Banach space of different nonlinear maps.
Every continuous map on a closed ball of R has a fixed point. Tarski [19] and Kanster [12] extended this
result to complete lattice, that every monotone function on complete lattice has a fixed point. Brouwer
[5] extended it to Rn to get fixed point and further Schauder [18] extended this result to topological vector
space. He proved that every continuous map on compact set has a fixed point.The main drawback of Schuader
fixed point result is that, it is not applicable when a set losses compactness and the loss of compactness
always occurs on boundary. There are several problems related to this area like Integral equation with
singular kernel, differential equation over unbounded domain, embedding theorem between Sobolev spaces.
Therefore, three important measures of non compactness were developed
(i) Housdorff measure of non compactness,
(ii) Kuratowski measure of non compactness,
(iii) Istratescu measure of non compactness.
Darbo [8] gave a nice result on compact convex bounded subset of Banach space, known as Darbo fixed point
theorem.
Banach gave fixed point results on metric space but some space like lp, for 0 < p < 1 is not a metric space.
Some author gave fixed point results on those space using some weaker topological condition. In 1989 Baktin
[4] has first introduced a new topological space called b-metric space almost similar to metric space in order
to generalize Banach contraction principle. Some more fixed point results are added in distance space by
Kirk [13].In this work we give some results on coupled fixed point of KKM type map on b-metric space.

Mathematical Preliminaries.
Definition 1.1 ([6]). Let F be a map on X, then x is called fixed point of F , if F (x) = x.
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Definition 1.2 ([6]). Let F be a map from X ×X to X, then (x,y) is called coupled fixed point, if F (x, y)
= x and F (y, x) = y.

Definition 1.3 ([17]). Let F be a map from X to 2X , then f is called set valued map, where 2X is power set
of X.

Definition 1.4 ([17]). Let F be a set valued map from X to 2X , then x is called fixed point of F if x ∈ F(x).

Definition 1.5 ([1]). Let F be a set map from X ×X to 2X , then (x,y) is called coupled fixed point of F if
x ∈ F (x, y) and y ∈ F (y, x).

Definition 1.6 ([20]). Let X and Y be two topological space and T be a set valued map from X to 2Y , then
T is called :
(i) closed if graph GT = {(x, y) : y ∈ T (x)} is closed,
(ii) compact if closure of T (X) =

⋃
x∈X T (x) is compact,

(iii) lower semi continuous if for every open subset B of Y , the set T−1(B) = {x ∈ X : T (x)
⋂
B 6= φ} is

open.

Definition 1.7 ([14]). Let S be a bounded subset of metric space X, then
δ(S) = inf{ε > 0 : A can be covered by finitely many sets of diameter less than or equal to ε}, where
diameter of S = sup{d(x, y) : x, y ∈ S}, is called measure of noncompactness in X.

Definition 1.8 ([9]). Let (X, ‖ . ‖) be a Banach space and β be the family of bounded subset of X. The
function δ from β to R+ defined for every B ∈ β by
δ(B) = inf{ε > 0 : B can be covered by finitely many sets of diameter less than or equal to ε}, where
diameter of S = sup{‖x− y : x, y ∈ S‖}, is called measure of noncompactness in X.

2 Some Basic definitions and results
In this section we give some definitions and results on coupled fixed point by contraction with Kuratowski
measure on Banach space.

Theorem 2.1 ([18]). (Schauder fixed point theorem) Everey continuous and compact map on closed bounded
convex set has fixed point.

Theorem 2.2 ([8]). (Darbo fixed point theorem) Let E be closed bounded convex subset of a Banach space
X and F : E → E be continuous such that µ(F (E)) ≤ kµ(E), where k ∈ (0, 1) and µ is the Kuratowski
measure of non-compactness in X, then F has fixed point in E.

Definition 2.1 ([21]). Let X be a real Banach space, Y be the set of all bounded subsets of X and let
µ : Y → R be a map satisfying:
(i) Kerµ (zero set of µ ) is a non empty subset of Y ,
(ii) A ⊂ B ⇒ µ(A) ≤ µ(B),
(iii) µ(C) = µ(C),
(iv) µ(C) = µ(coC),
(v) µ(rA+ (1− r)(B)) ≤ rµ(A) + (1− r)µ(B)), for all A,B ∈ Y , for all r ∈ (0, 1),
(vi) If (An) be a sequence of sets in Y with An+1 ⊂ An and limn→∞µ(An) = 0, then

⋂
An is non empty, µ

is called Kuratowski measure of non-compactness.
Now we give our first result on coupled fixed point based on Kuratowski measure on product space.

Theorem 2.3. Suppose X be a real Banach space. Let µ1, µ2 be two Kuratowski measures of noncompactness
on X. Let the measures µ and µ

′
be defined on the product space X ×X by

(i) µ(Y ) = µ1(Y1) + µ2(Y2),
(ii) µ

′
(Y ) = max(µ1(Y1), µ2(Y2)), where

Y1 and Y2 are natural projections of Y on X and Y be a arbitrary subset of X ×X.
Let f be a continuous map from X ×X to X such that for every bounded closed convex subset C of X ×X
satisfies the following set valued contraction:
(1) µ1(f(C)) ≤ aµ(C) and µ2(f

′
(C)) ≤ bµ(C), for a+ b ∈ (0, 1),

(2) µ1(f(C)) ≤ µ′(C) and µ2(f
′
(C)) ≤ µ′(C),

where f
′

: X ×X → X and f
′
(x, y) = f(y, x),

then f has a coupled fixed point on X ×X.
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Proof . From [21] we can conclude µ and µ′ are Kuratowski measure. Since X is a real Banach space, then
X ×X is also a real Banach space. In product space X ×X we define
T (x, y) = (f(x, y), f

′
(x, y)), where f

′
(x, y) = f(y, x). Hence T is a map from X ×X to X ×X.

Let C be a arbitrary subset of X ×X. Now we claim that

T (C) ⊂ f(C)× f
′
(C).

Let (z, w) ∈ T (C)⇒ there exist (x, y) ∈ C such that T (x, y) = (z, w). Then it follows that (z, w) = T (x, y) =
(f(x, y), f

′
(x, y)), then z = f(x, y) and w = f(y, x)

⇒ (z, w) ∈ f(C)× f ′(C)
⇒ T (C) ⊂ f(C)× f ′(C).
Now
µ(T (C)) ≤ µ(f(C)× f ′(C))
= (µ1(f(C) + µ2(f

′
(C)))

≤ aµ(C) + bµ(C)
= (a+ b)µ(C). Therefore, T has a fixed point in X ×X.

By Darbos theorem there exist a point (x, y) ∈ X ×X such that T (x, y) = (x, y)
⇒ f(x, y) = x and f(y, x) = y. So f has a coupled fixed point.
Further using condition (2), we get

µ
′
(T (C)) ≤ µ

′
(f(C)× f

′
(C)) = max(µ1(f(C), µ2(f

′
(C))) ≤ µ

′
(C).

Proceding similarly as done under condition (1), we get f has a coupled fixed point in X.
Remark 2.1. Theorem2.3 generalizes Darbo fixed point theorem on product space by Kuratowski measures
µ and µ′.

3 b-metric space
Definition 3.1 ([20]). Let X be a non empty set equipped with a map d from X ×X to R is called b-metric
space or metric type space, if it satisfies the following conditions:
(i) d(x, y) ≥ 0 and d(x, y) = 0 iff x = y,
(ii) d(x, y) = d(y, x),
(iii) d(x, y) ≤ k (d(x, z) + d(z, y)), for all k > 1, for all x, y, z ∈ X.

Note:We have used the word d-topology as synonym of b-metric.

Definition 3.2 ([20]). Let (X, d) be a b-metric space, then we define
(i) a sequence(xn) in X converges to x, if limn→∞d(xn, x) = 0,
(ii) a sequence(xn) in X is called Cauchy, if limn→∞limm→∞d(xn, xm) = 0,
(iii) The space (X, d) is complete, if every Cauchy sequence is convergent.

Definition 3.3 ([20]). Let (X, d) be a b-metric space and A ⊂ X, then we define
(i) Ā = Intersection of all closed set containing A.
(ii) co(A)= Intersection of all closed ball containing A.

Theorem 3.1 ([20]). Let (X, d) be a b-metric space, then following results hold:
(i) A ⊂ X is closed ⇔ every sequence (xn) ∈ A converges to x, then x ∈ A,
(ii) For x ∈ A, we have B(x, r)

⋂
A 6= φ,

for every r > 0, where A is the intersection of all closed sets containing A,
(iii) A is called totally bounded, if for every r > 0 there exist x1, x2, ...., xn ∈ A such that,

A ⊂ B(x1, r)
⋃
B(x2, r)

⋃
...
⋃
B(xn, r),

(iv) Every compact set is sequentially compact but the converse is not true.

Definition 3.4 ([20]). Let (X, d) be a b-metric space. Let A ⊂ X is called admissible if co(A) = A and it is
called sub admissible, if for every finite subset B of A, co(B) ⊂ A.

Definition 3.5 ([20]). Let (X, d) be a b-metric space A ⊂ X is called nearly sub-admissible, if for each
compact subset B of A and each r ≥ 0, there exists a function f : B → A such that x ∈ B(f(x), r), for each
x ∈ B and co(f(B)) ⊂ A.
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Definition 3.6 ([20]). Let(X, d) be a b-metric space. A set valued map T : A→ 2X is called KKM map, if
for every finite subset B of A the co(B) ⊂ T (B) =

⋃
x∈B T (x).

Theorem 3.2 ([20]). Let (X, d) be a b-metric space and A be a nonempty subset of X. Suppose Y be a
topological space, then the following properties of KKM map hold:
(i) if T ∈ KKM(A, Y ) and F ∈ C(Y,X), then FoT ∈ KKM(A,X),
(ii) if B is a nonempty subset of A, then T |B ∈ KKM(B, Y ).

Definition 3.7 ([20]). Let (X, d) be a b−metricspace.
A ⊂ X, then diam(A) = sup{d(x, y) : x, y ∈ A}.

In 2016, Samih et al. [17] extended Kuratowski measure on b-metric space. He proved results on
existence of fixed point on b-metric space using generalized Kuratowski measure. We are looking extension
of generalized Kuratowski measure on product of b-metric space to get coupled fixed point of KKM type
function of double variable map.

Definition 3.8 ([20]). Let (X, d) be a b-metric space with coefficient k and A be a subset of X, then
Kuratowski measure of A denoted as α(A), is given by
α(A) = inf{ε > 0 : A can be covered by finitely many sets of diameter less than or equal to ε}.

Then the following properties hold:
(i) α(A) = 0⇔ A is totally bounded,
(ii) A ⊂ B ⇒ α(A) ≤ α(B),
(iii) If B is finite subset of X, then α(A

⋃
B) = α(A),

(iv) α(A) ≤ α(A) ≤ k2α(A),

Definition 3.9 ([20]). Let (X, d) be a b-metric space. Let A ⊂ X and f be a map on A, is said to be co
contraction on A, if for every bounded subset B ⊂ A with f(B) bounded, then α(f(coB)) ≤ kα(B)), for
0 < k < 1 .

Theorem 3.3 ([20]). Let (X, d) be a complete b-metric space. Let A be a nonempty bounded nearly sub-
admissible subset of X and F be a map from A to 2A with closed, co set contraction and KKM on A and
F (A) ⊂ A, then F has a fixed point on A.

4 Main results
Theorem 4.1. Let (X, d) be a b-metric space. Let D be a map from X ′ ×X ′ to [0,∞) defined by
D((x1, y1), (x2, y2)) = max{d((x1, x2), (y1, y2)}, then (X ′, D) is a b-metric space, where X ′ = X ×X.

Proof . Let p1 = (x1, y1), p2 = (x2, y2), p3 = (x3, y3), where pi ∈ X ′, i = 1, 2, 3, then we have
(i) D(p1, p2) = D(p2, p1) is obvious,
(ii) Symmetric property is obvious,
(iii) we wish to show k-triangular property.
From definition

d(x1, x2) ≤ k[d(x1, x3) + d(x3, x2)]

and
d(y1, y2) ≤ k[d(y1, y3) + d(y3, y2)].

Now

D(p1, p2) = max [d((x1, x2), d(y1, y2)]

≤ k([d(x1, x3) + d(x3, x2)] + [d(y1, y3) + d(y3, y2)])

≤ k([d(x1, x3) + d(y1, y3)] + [d(x2, x3) + d(y2, y3)])

≤ 2k max[d(x1, x3), d(y1, y3)] + 2k max[d(x2, x3), d(y2, y3)]

= 2k[D(p1, p3) +D(p3, p2)].

Taking K = 2k, we get the result.
Note: Since both X and X

′
are b-metric space, therefore, we have taken the notation d-topology for X and

D-topology for product space X
′

in this section.
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Theorem 4.2. Let (X, d) be a b-metric space, then the following results hold:
(i) If A and B be two closed subsets of X with respect to d-topology, then A × B is closed in X × X with
respect to D-topology,
(ii) If A and B are two subsets of X, then A×B ⊂ A×B,
(iii) Bd(a, r)×Bd(b, r) = BD((a, b), r), for every a, b ∈ X and every r > 0,
(iv) if X is complete w.r.t d-topology, then X ×X is complete w.r.t D-topology.

Proof . (i) Let A and B be two closed subset of X with respect to d-topology we wish to show A × B is
closed with respect to D-topology. Let (zn) = (xn, yn) converge to some (a, b) with respect to D-topology.
Now

limn→∞D(((xn, yn), (a, b)) = 0

⇒ limn→∞ max[d(xn, a), d(yn, b)] = 0,

⇒ limn→∞d(xn, a) = 0 and limn→∞d(yn, b) = 0

⇒ (xn) converges to a and (yn) converges to b.
Since A and B are closed in X, then a ∈ A and b ∈ B ⇒ (a, b) ∈ A×B ⇒ A×B is closed in X ×X.
(ii) Let A and B be two subsets of X, then

A ⊂ A and B ⊂ B ⇒ A×B ⊂ A×B.
Since A × B is closed in X

′
with respect to D-topology and A×B is smallest closed set in X × X, then

A×B ⊂ A ×B.
(iii) Let

(x, y) ∈ BD((a, b), r)

⇒ D((a, b), (x, y)) ≤ r
⇒ max[d(a, x), d(b, y)] ≤ r
⇒ d(a, x) ≤ r and d(b, y) ≤ r
⇒ x ∈ Bd(a, r) and y ∈ Bd(b, r)
⇒ (x, y) ∈ Bd(a, r)×Bd(b, r)
⇒ BD((a, b), r) ⊂ Bd(a, r)×Bd(b, r).

(iv) Proof is easy so we omit it.
For reverse inclusion the proof is similar.
Hence, BD((a, b), r) = Bd(a, r)×Bd(b, r).

Theorem 4.3. Let (X, d) be metric a type of space, which induces D-topology on X ×X. Suppose α and β
are Kurtoswki measures on X and X ×X respectively, then following conclusion hold:
(i) for a subset A of X and x ∈ X,β(A× {x}) = α(A),
(ii) β(A1 ×A2) ≤ max[α(A1), α(A2)], for all A1, A2 subsets of X,
(iii) β(A) = β(A

′
), where A

′
= {(x, y) : (y, x) ∈ A}.

P roof . (i) Let ε > 0, then there exist
⋃
Ai (i = 1, 2, ..., n), such that

A ⊂
⋃
Ai and α(A) ≤ diam(Ai) ≤ α(A) + ε.

Now

Ai × {x} covers A× {x}, for i = 1, 2, .., n.

diam[Ai × {x}] = sup{D[(a1, x), (a2, x)] : a1, a2 ∈ Ai}
= sup{d(a1, a2) : a1, a2 ∈ Ai}
= diamAi ≤ α(A) + ε

⇒ β(A× {x}) ≤ α(A) + ε.

Since ε is arbitary, so we get β(A× {x}) ≤ α(A).

Now we the show reverse inequality.
Take ε (> 0). Then there exist

⋃
Ci ⊂ X ×X, i = 1, 2, ..., n such that A× {x} ⊂

⋃
Ci and

β(A× {x}) ≤ diam(Ci), i = 1, 2, ..., n
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≤ β(A× {x}) + ε.

Let

Ci
x = {c : (c, x) ∈ Ci}.⋃
Cxi covers A.

Therefore,

diamCxi

= sup{d(r, s) : r, s ∈ Cix}
≤ sup{D((r1, s1), (r2, s2)) : (r1, s1), (r2, s2) ∈ Ci}
≤ β(A× {x}) + ε

⇒ α(A) ≤ β(A× {x}) + ε,

since ε is arbitrary we get α(A) ≤ β(A× {x}). Hence α(A) = β(A× {x}).
(ii) Let ε > 0, then there exist

⋃
Pi and

⋃
Qj , i = 1, 2, ..., n and j = 1, 2, ...,m such that

A1 ⊂
⋃
Pi, A2 ⊂

⋃
Qj .

So we have

α(A1) ≤ diam(Pi) ≤ α(A1) + ε

and

α(A2) ≤ diam(Qj) ≤ α(A2) + ε.

Take Rij = Pi ×Qj clearly we can see

A1 ×A2 ⊂
⋃

(Pi ×Qj).

Now,

diam((Pi ×Qj)) = sup{D[(x1, y1), (x2, y2)] : x1, x2 ∈ Pi and y1, y2 ∈ Qj}
= sup{max(d(x1, x2), d(y1, y2)) : x1, x2 ∈ Pi and y1, y2 ∈ Qj}
≤ sup[diam(Pi), diam(Qj)]

≤ sup[α(A1) + ε, α(A2) + ε].

Since ε is arbitrary, we obtain

β(A1 ×A2) ≤ max[α(A1), α(A2)].

(iii) The proof is obvious, so we omit it.

Theorem 4.4. Let (X, d) be a complete b-metric space and A be a nonempty bounded subset of X such that
A × A is nearly sub admissible with respect to D-topology on X ×X and f be a map from A × A to 2A×A

satisfying:
(i) For every finite subset E of A×A, we have co(E) ⊂ f(A)× f ′(A),where f

′
(x, y) = f(y, x),

(ii)f(A×A) ⊂ A,
(iii) co(f(C)× f ′(C)) = co(f(C))× co(f ′(C)) and α(co(f(C))) ≤ kβ(C), for 0 < k < 1, for every bounded
subset C of A×A with f(C) bounded,
(iv) the graph f and graph f

′
are closed, wheref

′
(x, y) = f(y, x), then f has a coupled fixed point on A×A.

Proof . From Theorem 4.2(iv) X ×X is complete w.r.t D-topology.
Let T be a map from A×A to 2A×A defined by T (x, y) = f(x, y)× f(y, x).
Now we claim that for every subset C of A×A,
T (C) = f(C)× f ′(C).
Now

T (C) =
⋃

(x,y)∈C

T (x, y)

=
⋃

(x,y)∈C

f(x, y)× f
′
(x, y)
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=
⋃

(x,y)∈C

f(x, y)×
⋃

(x,y)∈C

f
′
(x, y).

Hence, T (C) = f(C)× f ′(C).
Form condition (i), we conclude that T is KKM on A×A.
From Theorem 3.3, we can conclude

T (A×A) = f(A×A)× f ′(A×A)

⊂ f(A×A)× f ′(A×A)

⊂ A×A
From condition-(iv), we can conclude T is closed.
Next we show that T has set valued co contraction on every bounded subset of A×A .
Let C be arbitrary bounded subset of A×A with f(C) bounded, then

β(coT (C) = β(co(f(C)× f
′
(C))) = β(co(f(C))× co(f

′
(C))).

and T (C) is bounded. From theorem 4.3 we can conclude that

β(coT (C))

= β(co(f(C)× f
′
(C)))

≤ max{α((co(f(C)), α(co(f
′
(C))}

⇒ β(coT (C) ≤ kβ(C),

Using Theorem 3.3 we obtain T has a fixed point in A×A .
So there exist (x, y) such that

(x, y) ∈ T (x, y)⇒ (x, y) ∈ f(x, y)× f(y, x)

⇒ x ∈ f(x, y) and y ∈ f(y, x).

Then f has a coupled fixed point on A×A.

5 Conclusion
Theorem 4.4 generalizes Theorem 3.3 of the results of Samih et.al on the product space of fixed point of set
valued map.
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