
ISSN 0304-9892 (Print) ISSN 2455-7463 (Online)
www.vijnanaparishadofindia.org/jnanabha
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Abstract

The purpose of this paper is to study a new subclass of close-to-convex functions associated with
generalized Janowski’s function. Various properties such as coefficient estimates, inclusion relationship,
distortion property, argument property and radius of convexity, are established for this class. The results
mentioned here, generalize some earlier known results.
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1 Introduction
By A, we denote the class of functions f of the form f(z) = z +

∑∞
n=2 anz

n, which are analytic in the open
unit disc E = {z :| z |< 1}. Further, the class of functions f ∈ A and which are univalent in E, is denoted
by S. A function w is said to be a Schwarz function if it has expansion of the form w(z) =

∑∞
n=1 cnz

n and
satisfy the conditions w(0) = 0 and |w(z)| ≤ 1. The class of Schwarz functions is denoted by U .

For two analytic functions f and g in E, f is said to be subordinate to g, if there exists a Schwarz
function w ∈ U such that f(z) = g(w(z)). If f is subordinate to g, then it is denoted by f ≺ g. Further, if
g is univalent in E, then f ≺ g is equivalent to f(0) = g(0) and f(E) ⊂ g(E).

By S∗ and K, we denote the classes of starlike functions and of convex functions respectively, which are
defined as follows:

S∗ =

{
f : f ∈ A, Re

(
zf ′(z)

f(z)

)
> 0, z ∈ E

}
and

K =

{
f : f ∈ A, Re

(
(zf ′(z))′

f ′(z)

)
> 0, z ∈ E

}
.

A function f ∈ A is said to be close-to-convex function if there exists a function g ∈ S∗ such that

Re

(
zf ′(z)

g(z)

)
> 0(z ∈ E).

The class of close-to-convex functions is denoted by C and was given by Kaplan [6]. Several subclasses
of close-to-convex functions were studied by various authors and recently by Singh and Singh [14], but here
we mention those which are relevant to our study.

Gao and Zhou [3] studied the class KS defined as

Ks =

{
f : f ∈ A, Re

(
−z2f ′(z)

g(z)g(−z)

)
> 0, g ∈ S∗

(
1

2

)
, z ∈ E

}
.

Further, Kowalczyk and Les-Bomba [7] extended the class KS by introducing the class KS(γ), (0 ≤ γ < 1),
which is mentioned below:

Ks(γ) =

{
f : f ∈ A, Re

(
−z2f ′(z)

g(z)g(−z)

)
> γ, g ∈ S∗

(
1

2

)
, z ∈ E

}
.

For γ = 0, the class KS(γ) reduces to the class KS .
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Later on, Seker [12] established the class K(k)
s (γ) (0 ≤ γ < 1) of close-to-convex analytic functions f ∈ A

which satisfy the condition

Re

(
zkf ′(z)

gk(z)

)
> γ,

where

(1.1) gk(z) = Πk−1
ν=0ε

−νg(ενz)(εk = 1; k ≥ 1),

and g ∈ S∗
(
k−1
k

)
.

As a generalization, Seker and Cho [13] introduced the class K(k)
s (γ; δ; η) of the functions f ∈ A which

satisfy the condition
zkf ′(z)

gk(z)
≺ 1 + η[1− (1 + δ)γ]z

1− ηδz
where gk is defined in (1.1) and 0 ≤ γ < 1, 0 ≤ δ ≤ 1 and 0 < η ≤ 1.

Raina et al. [10] established the class of strongly close-to-convex functions of order β, as below:

C′β =

{
f : f ∈ A,

∣∣∣∣arg{zf ′(z)g(z)

}∣∣∣∣ < βπ

2
, g ∈ K, 0 < β ≤ 1, z ∈ E

}
,

which can also be expressed as

C′β =

{
f : f ∈ A, zf

′(z)

g(z)
≺
(

1 + z

1− z

)β
, g ∈ K, 0 < β ≤ 1, z ∈ E

}
.

For −1 ≤ B < A ≤ 1, Janowski [5] introduced the class of functions in A which are of the form
p(z) = 1 +

∑∞
n=1 pnz

n and satisfying the condition p(z) ≺ 1+Az
1+Bz . This class plays an important role in the

study of various subclasses of analytic-univalent functions. As a generalization of Janowski’s class, Polatoglu
et al. [9] established the class P(A,B;α) (0 ≤ α < 1), the subclass of A which consists of functions of the

form p(z) = 1 +
∑∞
n=1 pnz

n such that p(z) ≺ 1+[B+(A−B)(1−α)]z
1+Bz . Also for α = 0, the class P(A,B;α) agrees

with the class defined by Janowski [5].
Inspired by the above mentioned classes, now we define the following generalized class which is to study

in this paper.

Definition 1.1. Let K(k)
s (A,B;α;β) denote the class of functions f ∈ A which satisfy the conditions,

zkf ′(z)

gk(z)
≺
(

1 + [B + (A−B)(1− α)]z

1 +Bz

)β
,−1 ≤ B < A ≤ 1, z ∈ E,

where g(z) = z +
∑∞
n=2 bnz

n ∈ S∗
(
k−1
k

)
, 0 ≤ α < 1, 0 < β ≤ 1,−1 ≤ B < A ≤ 1 and gk(z) is defined in

(1.1).
The following observations are obvious:

(i) K(k)
s (η[1− (1 + δ)γ],−ηδ; 0; 1) ≡ Ks(γ, δ, η), the class established by Seker and Cho [13].

(ii) K(k)
s (1− 2γ,−1; 0; 1) ≡ K(k)

s (γ), the class studied by Seker [12].

(iii) K(2)
s (1,−1; 0; 1) ≡ Ks, the class introduced by Gao and Zhou [3].

(iv) K(2)
s (1− 2γ,−1; 0; 1) ≡ Ks(γ), the class established by Kowalczyk and Les Bomba [7].

As f ∈ Ks(k)(A,B;α;β), by definition of subordination, it follows that

(1.2)
zkf ′(z)

gk(z)
=

(
1 + [B + (A−B)(1− α)]w(z)

1 +Bw(z)

)β
, w ∈ U .

We study various properties such as coefficient estimates, inclusion relationship, distortion theorem,

argument theorem and radius of convexity for the functions in the class K(k)
s (A,B;α;β). The results proved

by various authors follow as special cases.
Throughout this paper, we assume that −1 ≤ B < A ≤ 1, 0 ≤ α < 1, 0 < β ≤ 1, 0 ≤ γ < 1, 0 < η ≤ 1, 0 ≤

δ ≤ 1, k ≥ 1, z ∈ E.
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2 Preliminary Results
For the derivation of our main results, we must require the following lemmas:

Lemma 2.1 ([2, 11]). Let,

(2.1)

(
1 + [B + (A−B)(1− α)]w(z)

1 +Bw(z)

)β
= (P (z))β = 1 +

∞∑
n=1

pnz
n,

then
|pn| ≤ β(1− α)(A−B), n ≥ 1.

Lemma 2.2 ([10]). Let −1 ≤ B2 ≤ B1 < A1 ≤ A2 ≤ 1, then(
1 +A1z

1 +B1z

)β
≺
(

1 +A2z

1 +B2z

)β
.

Lemma 2.3 ([8]). If g ∈ S∗, then for |z| = r, 0 < r < 1, we have
r

(1 + r)2
≤ |g(z)| ≤ r

(1− r)2
.

Lemma 2.4 ([15]). For g(z) = z +
∑∞
n=2 bnz

n ∈ S∗
(
k−1
k

)
, then

Gk(z) =
gk(z)

zk−1
= z +

∞∑
n=2

dnz
n ∈ S∗.

Lemma 2.5 ([1, 2]). If P (z) = 1+[B+(A−B)(1−α)]w(z)
1+Bw(z) ,−1 ≤ B < A ≤ 1, w ∈ U , then for |z| = r < 1, we

have

Re
zP ′(z)

P (z)
≥


− (A−B)(1−α)r

(1−[B+(A−B)(1−α)]r)(1−Br) , if R1 ≤ R2,

2

√
(1−B)(1−[B+(A−B)(1−α)])(1+[B+(A−B)(1−α)]r2)(1+Br2)

(A−B)(1−α)(1−r2)

− (1−[B+(A−B)(1−α)]Br2)
(A−B)(1−α)(1−r2) + (A+B)−α(A−B)

(A−B)(1−α) , if R1 ≥ R2,

where R1 =
√

(1−[B+(A−B)(1−α)])(1+[B+(A−B)(1−α)]r2)
(1−B)(1+Br2) and R2 = 1−[B+(A−B)(1−α)]r

1−Br .

3 Main Results

Theorem 3.1. If f(z) = z +
∑∞
n=2 anz

n ∈ K(k)
s (A,B;α;β), then

(3.1) |an| ≤ 1 +
β(1− α)(n− 1)(A−B)

2
.

Proof. As f ∈ K(k)
s (A,B;α;β), therefore (1.2) can be written as

zkf ′(z)

gk(z)
= (P (z))β ,

which can be further expressed as

(3.2)
zf ′(z)

Gk(z)
= (P (z))β ,

where

(3.3) Gk(z) =
gk(z)

zk−1
= z +

∞∑
n=2

dnz
n.

By Lemma 2.4, we have Gk ∈ S∗.
Using (2.1) and (3.3) in (3.2), it yields

(3.4) 1 +

∞∑
n=2

nanz
n−1 =

(
1 +

∞∑
n=2

ndnz
n−1

)(
1 +

∞∑
n=1

pnz
n

)
.

As Gk(z) = z +
∑∞
n=2 dnz

n ∈ S∗, it is well known that |dn| ≤ n.
Comparing the coefficients of zn−1 in (3.4), we have

(3.5) nan = dn + dn−1p1 + dn−2p2 + ...+ d2pn−2 + pn−1.

Applying triangle inequality, using Lemma 2.1 and the inequality |dn| ≤ n in (3.5), it gives

(3.6) n|an| ≤ n+ β(1− α)(A−B)[(n− 1) + (n− 2) + ...+ 2 + 1],

which proves Theorem 3.1.
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For A = η[1− (1 + δ)γ], B = −ηδ, α = 0, β = 1, Theorem 3.1 gives the following result:

Corollary 3.1. If f ∈ K(k)
s (γ; δ; η), then

|an| ≤ 1 +
η(n− 1)(1 + δ)(1− γ)

2
.

Putting A = 1− 2γ, B = −1, α = 0 and β = 1 in Theorem 3.1, the following result is obvious:

Corollary 3.2. If f ∈ K(k)
s (γ), then

|an| ≤ n− (n− 1)γ.

Substituting for k = 2, A = 1 − 2γ, B = −1, α = 0 and β = 1 in Theorem 3.1, we can easily obtain the
following result:

Corollary 3.3. If f ∈ Ks(γ), then
|an| ≤ n− (n− 1)γ.

Taking k = 2, A = 1, B = −1, α = 0 and β = 1, Theorem 3.1 yields the following result:

Corollary 3.4. If f ∈ Ks, then
|an| ≤ n.

Theorem 3.2. If −1 ≤ B2 = B1 < A1 ≤ A2 ≤ 1 and 0 ≤ α2 ≤ α1 < 1, then
K(k)
s (A1, B1;α1;β) ⊂ K(k)

s (A2, B2;α2;β).

Proof. As f ∈ K(k)
s (A1, B1;α1;β), so

zkf ′(z)

gk(z)
≺
(

1 + [B1 + (A1 −B1)(1− α1)]z

1 +B1z

)β
.

As −1 ≤ B2 = B1 < A1 ≤ A2 ≤ 1 and 0 ≤ α2 ≤ α1 < 1, we have
−1 ≤ B1 + (1− α1)(A1 −B1) ≤ B2 + (1− α2)(A2 −B2) ≤ 1.

Thus by Lemma 2.2, it yields

zkf ′(z)

gk(z)
≺
(

1 + [B2 + (A2 −B2)(1− α2)]z

1 +B2z

)β
,

which implies f ∈ K(k)
s (A2, B2;α2;β).

Theorem 3.3. If f ∈ K(k)
s (A,B;α;β), then for |z| = r, 0 < r < 1, we have

(3.7)

(
1− [B + (A−B)(1− α)]r

1−Br

)β
.

1

(1 + r)2
≤ |f ′(z)| ≤

(
1 + [B + (A−B)(1− α)]r

1 +Br

)β
.

1

(1− r)2

and

(3.8)

r∫
0

(
1− [B + (A−B)(1− α)]t

1−Bt

)β
.

1

(1 + t)2
dt ≤ |f(z)|

≤
r∫

0

(
1 + [B + (A−B)(1− α)]t

1 +Bt

)β
.

1

(1− t)2
dt.

Proof. From (3.2), we have

(3.9) |f ′(z)| = |Gk(z)|
|z|

(P (z))β .

Aouf [2] proved that
1− [B + (A−B)(1− α)]r

1−Br
≤ |P (z)| ≤ 1 + [B + (A−B)(1− α)]r

1 +Br
,

which implies

(3.10)

(
1− [B + (A−B)(1− α)]r

1−Br

)β
≤ |P (z)|β ≤

(
1 + [B + (A−B)(1− α)]r

1 +Br

)β
.

Since Gk ∈ S∗, so by Lemma 2.3, we have

(3.11)
r

(1 + r)2
≤ |Gk(z)| ≤ r

(1− r)2
.

Relation (3.9) together with (3.10) and (3.11) yields (3.7). On integrating (3.7) from 0 to r, (3.8) follows.
For A = η[1− (1 + δ)γ], B = −ηδ, α = 0, β = 1, Theorem 3.3 gives the following result:
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Corollary 3.5. If f ∈ K(k)
s (γ; δ; η), then(

1−η[1−(1+δ)γ]r
1+ηδr

)
. 1
(1+r)2 ≤ |f ′(z)|

≤
(

1 + η[1− (1 + δ)γ]r

1− ηδr

)β
.

1

(1− r)2

and
r∫
0

(
1−η[1−(1+δ)γ]t

1+ηδt

)
. 1
(1+t)2 dt ≤ |f(z)|

≤
r∫

0

(
1 + η[1− (1 + δ)γ]t

1− ηδt

)
.

1

(1− t)2
dt.

Putting A = 1− 2γ, B = −1, α = 0 and β = 1 in Theorem 3.3, the following result is obvious:

Corollary 3.6. If f ∈ K(k)
s (γ), then

2γr

(1 + r)3
≤ |f ′(z)| ≤ 2(1− γ)r

(1− r)3
.

and
r∫

0

(
2γt

(1 + t)3

)
dt ≤ |f(z)| ≤

r∫
0

(
2(1− γ)t

(1− t)3

)
dt.

Substituting for k = 2, A = 1 − 2γ, B = −1, α = 0 and β = 1 in Theorem 3.3, we can easily obtain the
following result:

Corollary 3.7. If f ∈ Ks(γ), then
1− (1− 2γ)r

(1 + r)3
≤ |f ′(z)| ≤ 1 + (1− 2γ)r

(1− r)3
.

and
r∫

0

(
1− (1− 2γ)t

(1 + t)3

)
dt ≤ |f(z)| ≤

r∫
0

(
1 + (1− 2γ)t

(1− t)3

)
dt.

Taking k = 2, A = 1, B = −1, α = 0 and β = 1, Theorem 3.3 yields the following result:

Corollary 3.8. If f ∈ Ks, then
1− r

(1 + r)3
≤ |f ′(z)| ≤ 1 + r

(1− r)3
.

and
r∫

0

(
1− t

(1 + t)3

)
dt ≤ |f(z)| ≤

r∫
0

(
1 + t

(1− t)3

)
dt.

Theorem 3.4. Let f ∈ K(k)
s (A,B;α;β), then

Re
(zf ′(z))′

f ′(z)
≥



1−r
1+r − β

(A−B)(1−α)r
(1−[B+(A−B)(1−α)]r)(1−Br) , if R1 ≤ R2,

1−r
1+r + (A+B)−α(A−B)

(A−B)(1−α)

+2

√
(1−B)(1−[B+(A−B)(1−α)])(1+[B+(A−B)(1−α)]r2)(1+Br2)

(A−B)(1−α)(1−r2)

−2 (1−[B+(A−B)(1−α)]Br2)
(A−B)(1−α)(1−r2) , if R1 ≥ R2,

where R1 and R2 are defined in Lemma 2.5.

Proof. Proof . As f ∈ K(k)
s (A,B;α;β), we have

zf ′(z) = Gk(z)(P (z))β .
Differentiating logarithmically, we get

(3.12)
(zf ′(z))′

f ′(z)
=
zG′k(z)

Gk(z)
+ β

zP ′(z)

P (z)
.

As Gk ∈ S∗, so by the result due to Mehrok [8], we have

(3.13) Re

(
zG′k(z)

Gk(z)

)
≥ 1− r

1 + r
.

Hence, using (3.13) and Lemma 2.5 in (3.12), the proof of Theorem 3.4 is obvious.
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Theorem 3.5. If f ∈ K(k)
s (A,B;α;β) and let F (z) = zf ′(z), then for |z| = r, 0 < r < 1, we have∣∣∣∣argF (z)

z

∣∣∣∣ ≤ βsin−1

(
(A−B)r

1−ABr2

)
+ 2sin−1r.

Proof. Proof . From (3.2), we have
zf ′(z)

Gk(z)
= (P (z))β ,

which can be expressed as
F (z) = Gk(z)(P (z))β .

Therefore, we have

(3.14)

∣∣∣∣argF (z)

z

∣∣∣∣ ≤ β|argP (z)|+
∣∣∣∣argGk(z)

z

∣∣∣∣ .
It is well known that

(3.15) |argP (z)| ≤ sin−1

(
(A−B)r

1−ABr2

)
.

It was proved by Goel and Mehrok [4] that, for Gk(z) ∈ S∗,

(3.16)

∣∣∣∣argGk(z)

z

∣∣∣∣ ≤ 2sin−1r.

Using (3.15) and (3.16) in (3.14), Theorem 3.5 is obvious.

4 Conclusion and Open Problems
Close-to-convex functions are of great importance in the study of univalent functions. In the present paper,
we introduce a new and generalized subclass of close-to-convex functions using subordination and established
various properties for this class. Many earlier known results follow as particular cases of our results. This
study will motivate the other researchers to investigate other such classes and to discuss their properties.
Acknowledgement. The authors are very greatful to the editor and referees for their valuable suggestions
to revise the paper.
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