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Abstract

In this paper we introduce a new α− Laplace transform which is a generalization of nabla version
of Laplace transform on time scales. In particular for 0 < α < 1 this transform will serve as fractional
Laplace transform on time scales. Existence theorem and some important properties such as linearity,
initial and final value theorem, transform of integral, shifting theorem, transform of derivative are proved.
Additionally convolution theorem and formulae for fractional integral, Riemann-Liouville fractional
derivative, Liouville-Caputo fractional derivative, Mittag Leffler function are given. At last for a suitable
value of α a fractional dynamic equation with given initial condition is solved.
2020 Mathematical Sciences Classification: 26E70, 44A35, 26A33
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1 Introduction and Motivation
Integral transforms are mathematical techniques that play a crucial role in various fields of Science

and Engineering. The important significance of integral transform is their ability to simplify mathematical
equations often involving derivatives and integrals, into algebraic equations or simpler differential equations.
The theory of the Laplace transform has a great theoretical interest as it is one of the former integral
transforms invented by Pierre-Simon Laplace. Furthermore many researchers have introduced several integral
transforms such as Laplace-Carson, Sumudu, Elzaki, Natural and Shehu transforms [7, 10, 11, 12, 27], all
of which represent a family of Laplace transforms. Subsequently an ample development regarding classical
integral transforms in form of generalization in distribution spaces, formulation of multidimensional and
fractional transform has been done due to [5, 16, 18, 23, 26]. Recently H.M.Srivastava [24] has explored
recent developments in the Laplace and Hankel transforms and their extensions and variations. Using
Srivastava’s generalized Whittaker transform [17], Hardy’s generalized Hankel transform [9] and Srivastava’s
ε− generalized Hankel transform [16], the properties, characteristics and relationships among integral
transforms representing the family of Laplace transform are studied. Further eminent results regarding
integral transforms and fractional calculus have been studied in [19, 20, 21, 22].

Time scale calculus is an unification tool that encompasses both continuous (e.g. R) and discrete (e.g. Z)
domains. Integral transforms on time scales a mathematical framework that extends the concepts of classical
integral transforms into functions defined on time scale domains. Thus far Laplace, Fourier, Sumudu and
Shehu transforms have been introduced on time scales and have served as a powerful tool for modeling and
solving problems that bridge the gap between continuous and discrete dynamic systems [1, 2, 3, 4, 6, 8,
15, 25, 28]. In 2016 Medina Gustavo et al.[13] introduced a new α−integral Laplace transform which is a
generalization of Laplace transform when α→ 1. Subsequently, in 2007, a the fractional Laplace transform
was formulated and is applied to solve fractional differential equations [14]. In our work we develop a new
α− Laplace transform on time scales and discuss its fundamental properties. Using this transform, we solve
the fractional dynamic equation on time scales with given initial conditions.

The next section is concerned with precursory concepts needed for comprehension of our work.

2 Preliminaries
Note that the discussion in this section follows from [2, 3, 4, 6, 15, 25]. Here we will assume that a time

scale T is unbounded above and t0 ∈ T is fixed. For t ∈ T, the forward jump operator σ(t) : T→ T is given as
σ(t) := inf{s ∈ T : s > t}. And the backward jump operator ρ : T→ T is given as ρ(t) := sup{s ∈ T : s < t}.
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If σ(t) > t, t is said to be right-scattered, while if ρ(t) < t then t is left-scattered. Also, if t < supT and
σ(t) = t,then t is called right-dense, and if t > infT and ρ(t) = t, then t is left-dense.

For t ∈ T the forward graininess function µ : T→ [0,∞) is µ(t) = σ(t)− t. And the backward graininess
function ν : T→ [0,∞) is ν(t) = t− ρ(t).

Definition 2.1. A function h : T → C is said to be ld-continuous if it is continuous at every left-dense
point, and the right sided limit exists at every right-dense point. It is expressed as h(t) ∈ Cld(T,C).

Note that if time scale T has a right scattered miminum m, the Tk = T− {m}, otherwise Tk = T

Definition 2.2. An ld-continuous function h : T→ C is called complex ν − regressive if 1− νh 6= 0 for all
t ∈ Tk. It is denoted as Rνc (T,C).

For h > 0, we have Ch = {z ∈ C : z 6= 1
h} and Zh = {z ∈ C : −πh < Im(z) ≤ π

h} with C0 = Z0 = C.
Further the Hilger real part and imaginary part of a complex numbers are given by Reh(z) = 1

h (1−|1−hz|)
and Imh(z) = 1

hArg(1− hz) respectively, where Arg denotes principal argument of a complex number. In
particular we have, Re0(z) = Re(z) and Im0(z) = Im(z).

Definition 2.3. If f ∈ Rνc (T,C), then the nabla exponential function is given by, êf (t, t0) := exp
[ ∫ t
t0
ξ̂ν(s)(f(s)) ∇s

]
for t, t0 ∈ T where, the ν−cylinder transformation ξ̂h : Ch → Zh is ξ̂h(z) = −1

h Log(1− zh).

Theorem 2.1. Let the first-order linear dynamic equation x∇ = f(t)x is ν−regressive and t0 ∈ T is fixed.
Then êf (·, t0) is the solution of the initial value problem x∇ = f(t)x, x(t0) = 1 on T.

Lemma 2.1. If f ∈ Rνc (T,C) then, êρ	f (t, t0) =
ê	f (t,t0)
1−ν(t)f .

Definition 2.4. A function h belongs to the space of functions A(T) if

(1) h is piecewise ld-continuous in every interval [t0, τ ] ∩ T.
(2) h is of exponential order k ( k ∈ R+ν

c ([t0,∞)) on [t0,∞), that is there exists constant M > 0 such that
|f(t)| ≤Mek(t, t0) for all t ∈ [t0,∞).

The minimal-graininess function ν∗ : T→ R+
0 is given as ν∗(t0) = inf ν(t) for t ∈ [t0,∞)T.

Theorem 2.2 (Decay of the nabla-exponential function). For sup T = ∞, let t0 ∈ T and λ ∈
R+ν
c ([t0,∞)T,R). Then for any z ∈ Cν∗(t0)(λ), we have the following properties,

(1) |êλ	z(t, t0)| ≤ êλ	Reν∗(t0)(z)(t, t0) for all t ∈ [t0,∞)T.

(2) lim
t→∞

êλ	Reν∗(t0)(z)(t, t0) = 0.

(3) lim
t→∞

êλ	z(t, t0) = 0.

Definition 2.5. Let t0, t ∈ T and λ1, λ2 > −1. The time scale power functions ĥλ1
(t, t0) are defined as a

family of non-negative functions satisfying,

(1)
∫ t
t0
ĥλ1

(t, ρ(s))ĥλ2
(s, t0)∇s = ĥλ1+λ2+1(t, t0) for t ≥ t0.

(2) ĥ0(t, t0) = 1 for t ≥ t0.
(3) ĥλ1(t, t) = 0 for λ1 ∈ (0, 1).

Definition 2.6. Let t0, t
′ ∈ T and a ≥ 0, β, λ > 0, then for h ∈ Cld([t0, t′]T,C) one defines,

(1) The Riemann-Liouville fractional integral of order a > 0 with the lower limit t0 as

t0(∇−ah)(t) :=

∫ t

t0

ĥa−1(t, ρ(τ))h(τ)∇ τ

and for a = 0 one have (t0∇0h)(t) = h(t).
(2) The Riemann-Liouville fractional derivative of order β > 0 with lower limit t0 as

(t0∇βh)(t) := [t0∇−(n−β)h]∇
n

t ∈ [σ(t0), t′]T,

where n = [β] + 1.
(3) The Caputo fractional derivative Ct0∇

λh(t) on [σ(t), t′]T is defined via the Riemann-Liouville fractional
derivative by,

C
t0∇

λh(t) := (t0∇−(n−λ)h∇
n

)(t),

where n = [λ] + 1.
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3 Main Results
In this section we define α−Laplace transform and give some of its salient properties.

Definition 3.1. Let h : T → C is an ld-continuous function and α is a real number, then we define the
α−Laplace transform L α{h(t)} = HT(z) of h(t) of order α as

HT(z) = L α{h(t)} =

∫ ∞
t0

êρ	zα(t, t0)h(t) ∇t for all t ∈ Dν ,

where Dν ⊂ C consists of all complex numbers z ∈ Rc(T,C) for which the improper integral converges.

Next we define fractional Laplace transform on time scales using above definition as.

Definition 3.2. Let h : T→ C is an ld-continuous function then for a real number 0 < α < 1 ,L α{h(t)} =
HT(z) will be the fractional Laplace transform of h(t).

Theorem 3.1 (Existence Theorem). Let h : T → C is a function of class A(T) of exponential order k,
then the α-Laplace transform L α{h(t)} of h(t) exists for all z ∈ C(ν∗(t0))1/α with Re(ν∗(t0))1/α(z) > k and
converges absolutely.

Proof. We have

|L α{h(t)}| =
∣∣∣∣ ∫ ∞
t0

êρ	zα(t0, t)h(t) ∇t
∣∣∣∣

≤
∫ ∞
t0

|êρ	zα(t0, t)h(t) ∇t|

≤M
∫ ∞
t0

êρ	zα(t0, t)êk(t, t0) ∇t

= M

∫ ∞
t0

ê	zα(t0, t)êk(t, t0)

1− ν(t)zα
∇t

= M

∫ ∞
t0

êk	zα(t, t0)

1− ν(t)zα
∇t

=
M

k − zα

∫ ∞
t0

k − zα

(1− ν(t)zα)
êk	zα(t, t0) ∇t

=
M

k − zα

∫ ∞
t0

(k 	 zα)êk	zα(t, t0) ∇t

=
M

k − zα

∫ ∞
t0

ê∇k	zα(t, t0)∇t

=
M

zα − k
.

Last step follows from Theorem 2.2.

Theorem 3.2 (Linearity). Let ah1(t) and bh2(t) are functions of class A(T) for constants a, b ∈ R then,

L α{ah1(t) + bh2(t)} = aL α{h1(t)}+ bL α{h2(t)}.

Proof. Let ah1(t) and bh2(t) are functions of class A(T) with exponential order k1 and k2 respectively, then
L α{ah1(t)} exists for all z ∈ C(ν∗(t0))1/α(k1) with Re(ν∗(t0))1/α)(z) > k1 and L α{bh2(t)} exists for all
z ∈ C(ν∗(t0)1/α)(k2) with Re(ν∗(t0))1/α(z) > k2. Then L α{ah1(t) + bh2(t)} exists for all z ∈ C(ν∗(t0))1/α with
Re(ν∗(t0))1/α(z) > max{k1, k2}. Thus,

L α{ah1(t) + bh2(t)}

=

∫ ∞
t0

êρ	zα(t, t0)[ah1(t) + bh2(t)] ∇t

= a

∫ ∞
t0

êρ	zα(t, t0)h1(t) ∇t+ b

∫ ∞
t0

êρ	zα(t, t0)h2(t) ∇t

= aL α{h1(t)}+ bL α{h2(t)}.
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We apply definition 3.1 to find transform of some elementary functions which are given in the table below

h(t) 1 êa(t, t0) sina(t, t0) cosa(t, t0)

L α{h(t)} 1
zα

a
zα−a

a
z2α+a2

zα

z2α+a2

h(t) sinha(t, t0) cosha(t, t0) hk(t, t0) ĥλ(t, t0)

L α{h(t)} a
z2α−a2

zα

z2α−a2
1

z(k+1)α
1

z(λ+1)α

.

Here ĥλ(t, t0) is the time scale power function defined in definition 2.5 and it’s transform was found using
Convolution theorem which we are going to prove further.

Theorem 3.3. Assume that h(t) is regulated function such that H(t) =
∫ t
t0
h(s)∇s for t, t0 ∈ T is of class

A(T) then L α{H(t)} = 1
zαL α{h(t)}.

Proof.

L α{H(t)} =

∫ ∞
t0

H(t)êρ	zα(t, t0) ∇t

= −
∫ ∞
t0

H(t)
	zα

zα
ê	zα(t, t0) ∇t

=
−1

zα

∫ ∞
t0

H(t)	 zαê	zα(t, t0) ∇t

=
−1

zα

∫ ∞
t0

H(t)ê∇	zα(t, t0) ∇t

Using integration by parts

L α{H(t)} =
−1

zα

[[
H(t)ê	zα(t, t0)

]t→∞
t=t0

−
∫ ∞
t0

H∇(t)ê	zα(t, t0) ∇t
]

=
−1

zα

[
−H(t0)−

∫ ∞
t0

h(t)ê	zα(t, t0) ∇t
]

=
1

zα

∫ ∞
t0

h(t)ê	zα(t, t0) ∇t

=
1

zα
L α{h(t)},

provided lim
t→∞

H(t)ê	zα(t, t0) = 0.

Theorem 3.4 (Second Shifting Theorem). If h(t) ∈ A(T) and ua(t) =

{
1 if t ∈ T ∩ (−∞, a]

0 if t ∈ T ∪ (a,∞)
where

a ∈ T with a > 0, then L α{ua(t)h(t)} = ê	zα(a, t0)Lα{h(t)}.

Proof.

L α{ua(t)h(t)}

=

∫ ∞
t0

êρ	zα(t, t0)ua(t)h(t) ∇t

=

∫ ∞
a

êρ	zα(t, t0)h(t) ∇t

=

∫ ∞
a

êρ	zα(t, t0)

1− ν(t)zα
h(t) ∇t

=

∫ ∞
a

ê	zα(t, a)ê	zα(a, t0)

1− ν(t)zα
h(t) ∇t
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= ê	zα(a, t0)

∫ ∞
a

ê	zα(t, a)

1− ν(t)zα
h(t) ∇t

= ê	zα(a, t0)

∫ ∞
a

êρ	zα(t, a)h(t) ∇t

= ê	zα(a, t0)L α{h(t)}.

Theorem 3.5 ( Transform of derivative). Let h, h∇ ∈ A(T), then L α{h∇(t)} = zαL α{h(t)} − h(t0)
for those regressive z ∈ C satisfying lim

t→∞
{h(t)ê	zα(t, t0)} = 0

Proof.

L α{h∇(t)} =

∫ ∞
t0

êρ	zα(t, t0)h∇(t) ∇t

=

∫ ∞
t0

[
[h(t)ê	zα(t, t0)]∇ − h(t)ê∇	zα(t, t0)

]
∇t

= [h(t)ê	zα(t, t0)]t→∞t=t0 −
∫ ∞
t0

h(t)ê∇	zα(t, t0) ∇t

= −h(t0)−
∫ ∞
t0

h(t)	 z1/αê	zα(t, t0) ∇t

= −h(t0) + zα
∫ ∞
t0

h(t)
−	 zαê	zα(t, t0)

zα
∇t

= −h(t0) + zα
∫ ∞
t0

h(t)êρ	zα(t, t0) ∇t

= zαL α{h(t)} − h(t0),

provided, lim
t→∞

h(t)ê	zα(t, t0) = 0.

In a similar way for h, h∇, h∇∇ ∈ A(T) then

L α{h∇∇(t)} =

∫ ∞
t0

êρ	zα(t, t0)h∇∇(t) ∇t

=

∫ ∞
t0

[
[h∇(t)ê	zα(t, t0)]∇ − h∇(t)ê∇	zα(t, t0)

]
∇t

= [h∇(t)ê	zα(t, t0)]t→∞t=t0 −
∫ ∞
t0

h∇(t)ê∇	zα(t, t0) ∇t

= −h∇(t0) + zα
∫ ∞
t0

h∇(t)
	zαê	zα(t, t0)

−zα
∇t

= −h∇(t0) + zα
∫ ∞
t0

h∇êρ	zα(t, t0) ∇t

= −h∇(t0) + zαL α{h∇(t)}
= −h∇(t0) + zα[zαL α{h(t)} − h(t0)]

= z2αL α{h(t)} − zαh(t0)− h∇(t0).

More generally we get, L α{h∇n(t)} = znαL α{h(t)} −
∑n−1
k=0 z

(n−(k+1))αh∇
k

(t0).

Theorem 3.6 (Initial and Final Value Theorem). h, h′ ∈ A(T) with HT(z) = L α{h(t)} then h(t0) =
lim
z→∞

zαHT(z) and lim
t→∞

h(t) = lim
z→0

zαHT(z).

Proof. We have,

L α{h∇(t)}
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=

∫ ∞
t0

êρ	zα(t, t0)h∇(t) ∇t

=

∫ ∞
t0

[
(h(t)ê	zα(t, t0))∇ − h(t)ê∇	zα(t, t0)

]
∇t

=
[
h(t)e	zα(t, t0)

]∞
t=t0
−
∫ ∞
t0

h(t)ê∇	zα(t, t0) ∇t

= −h(t0)−
∫ ∞
t0

h(t)	 zαê	zα(t, t0) ∇t

= −h(t0) + zα
∫ ∞
t0

h(t)
	zα

−zα
ê	zα(t, t0) ∇t

= −h(t0) + zα
∫ ∞
t0

h(t)êρ	zα(t, t0) ∇t

= zαL α{h(t)} − h(t0).

Provided lim
t→∞

ê	zα(t, t0) = 0.

Taking lim
z→∞

on both sides,

lim
z→∞

∫ ∞
t0

êρ	zα(t, t0)h∇(t) = 0 = lim
z→∞

zαL αh(t)− lim
z→∞

h(t0)

lim
z→∞

zαHT(z) = h(t0).

Now taking lim
z→0

on both sides we get,

lim
z→0

∫ ∞
t0

êρ	zα(t, t0)h∇(t) = lim
z→0

zαL αh(t)− lim
z→0

h(t0)∫ ∞
t0

h∇(t)∇t = lim
z→0

zαL α{h(t)} − h(t0)

lim
t→∞

h(t)− h(t0) = lim
z→0

zαL α{h(t)} − h(t0)

lim
t→∞

h(t) = lim
z→0

zαHT(z).

Definition 3.3 ([28]). For given functions h1, h2 : T→ C their convolution h1 ∗ h2 is defined by,

(h1 ∗ h2)(t) =

∫ t

t0

h̃1(t, ρ(τ))h2(τ)∇τ t ∈ T

where h̃ is the shift of h : [t0,∞)T → C is the solution of the initial value problem

g∇t(t, ρ(s)) = −g∇s(t, s), t, s ∈ T, t ≤ s ≤ t0
g(t, t0) = h(t) t ∈ T, t ≥ t0.

Theorem 3.7 (Convolution theorem). If h1(t), h2(t) ∈ A(T) having α−Laplace transforms L α{h1(t)} and L α{h2(t)}
respectively, then

L α{h1(t) ∗ h2(t)} = L α{h1(t)} ·L α{h2(t)}.

Proof.

L α{h1(t) ∗ h2(t)}

=

∫ ∞
t0

êρ	zα(t, t0)[h1(t) ∗ h2(t)] ∇t

=

∫ ∞
t0

êρ	zα(t, t0)
[ ∫ t

t0

h1(t, ρ(τ))h2(τ)∇τ
]
∇t

=

∫ ∞
t0

h2(τ)
[ ∫ ∞

ρ(τ)

h1(t, ρ(τ))êρ	zα(t, t0) ∇t
]
∇τ
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=

∫ ∞
t0

[ ∫ ∞
t0

h1(t, ρ(τ))uρ(τ)(t)ê
ρ
	zα(t, t0)∇t

]
∇τ

=

∫ ∞
t0

h2(τ)L α{uρ(τ)(t)h1(t)}∇τ

=

∫ ∞
t0

h2(τ)ê	zα(ρ(t), t0) L α{h1(t)}∇τ

= L α{h1(t)}
∫ ∞
t0

h2(τ)êρ	zα(τ, t0)∇τ

= L α{h1(t)} ·L α{h2(t)}.

Theorem 3.8 ( α−Laplace transform of Riemann-Liouville Fractional Integral). For h ∈
Cld([t0, t′]T,C) and a > 0, the α− Laplace transform of Riemann-Liouville fractional integral (t0∇αf)(t)
is L α{t0∇−af}(t) and is given by L α{t0∇−af}(t) = z−aαL α{f(t)}.

Proof. From Definition 2.6, Riemann-Liouville fractional integral can be written in form of convolution as

(t0∇af)(t) = ĥa−1 ∗ h(t)

Thus, L α{(t0∇−ah)(t)} = L α{ĥa−1(t, t0) ∗ h(t)}

= L α{ĥa−1(t, t0)}L α{h(t)}

=
1

zaα
L α{h(t)}

= z−aαL α{h(t)}.

Theorem 3.9 (α−Laplace transform of Riemann-Liouville Fractional derivative). For h ∈
Cld([t0, t′]T,C) and β > 0, the α− Laplace transform of Riemann-Liouville fractional derivative (t0∇βh)(t)
is L α{(t0∇bh)(t)} and is given by

L α{(t0∇βf)(t)} = zβαL α{h(t)} −
m−1∑
k=0

z(m−k−1)α
[
t0
∇−(m−β)h

]∇k
(t0).

Proof. From Definition 2.6 the Riemann-Liouville fractional derivative can be written as,

(t0∇βh)(t) = (χ∇
m

)(t) where χ(t) = (t0∇−(m−β)h)(t),

L α{(t0∇βh)(t)} = L α{χ∇
m

(t)}

= zmαL α{χ(t)} −
m−1∑
k=0

z(m−(k+1))αχ∇
k

(t0)

= zmαz(β−m)αL α{h(t)} −
m−1∑
k=0

z(m−k−1)αχ∇
k

(t0)

= zβαL α{h(t)} −
m−1∑
k=0

z(m−k−1)α
[
t0
∇−(m−β)h

]∇k
(t0).

This is equivalent to

L α{(t0∇βh)(t)} = zβαL α{h(t)} −
l∑

j=1

z(j−1)α(t0∇β−jh)(t0) l − 1 < β < l.

Theorem 3.10 (α−Laplace transform of Liouville-Caputo fractional derivative). For h ∈
Cld([t0, t′]T,C) and λ > 0, the α− Laplace transform of Liouville-Caputo fractional derivative Ct0∇

λh(t)
is L α{Ct0∇

λh(t)} and is given by

L α{Ct0∇
λh(t)} = zλαL α{h(t)} −

m−1∑
k=0

z(λ−k−1)α h∇
k

(t0).
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Proof. From Definition 2.6 the Caputo fractional derivative can be written as,
C
t0∇

λh(t) = (t0∇−(m−λ)χ)(t) where χ(t) = h∇
m

(t),

L α{Ct0∇
λh(t)} = L α{t0∇−(m−λ)χ(t)}

= z−(m−λ)αL α{h∇
m

(t)}

= z−(m−λ)α
[
zmαL α{h(t)

m−1∑
k=0

z(m−k−1)αh∇
k

(t0)}
]

= zλαL α{h(t)} −
m−1∑
k=0

z(m−k−1)αh∇
k

(t0).

Definition 3.4 ([15]). For n > 0,m, λ ∈ R and t, t0 ∈ T. The time scale Mittag-Leffler function is defined
as

Eλn,m(t, t0) =

∞∑
k=0

λkĥnk+m−1(t, t0)

provided the right hand side series is convergent.

Theorem 3.11 (α− Laplace transform of Mittag-Leffler function). For n,m, λ ∈ T and t0, t ∈ T

L α{Eλn,m(t, t0)} =
z(m−n)α

zmα − λ
.

Proof.

L α
{
Eλn,m(t, t0)

}
= L α

{ ∞∑
k=0

λkĥnk+m−1(t, t0)
}

=

∞∑
k=0

λkL α{ĥnk+m−1(t, t0)}

=

∞∑
k=0

λk
1

z(mk+n)α

=
1

znα

∞∑
k=0

λk

zmkα

=
1

znα

[
1 +

λ

znα
+

λ2

z2mα
+ ...

]
=

1

znα

[ 1

1− λ
mα

]
provided

∣∣∣ λ

zmα

∣∣∣ < 1

=
1

znα

[ zmα

zmα − λ

]
=
z(m−n)α

zmα − λ
.

In this last section we will solve a fractional dynamic equation using our defined transform.

4 Application
Consider the following fractional dynamic equation with initial condition,

0∇1/2g(t) + ag(t) = 0, (0∇−1/2g)(0) = k.

Applying the α− Laplace transform with α = 1
2 , we obtain

L
1
2

{
0
∇ 1

2 g(t) + ag(t)
}

= 0,
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zL
1
2 {g(t)} − (0∇−

1
2 g)(0) + aL

1
2 {g(t)} = 0,

zL
1
2 {g(t)} − k + aL

1
2 {g(t)} = 0,

(z + a)L
1
2 {g(t)} = k,

L
1
2 {g(t)} =

k

(z + a)
.

Taking inverse required solution is,

g(t) = kE−a1
2 ,

1
2

(t, 0).

5 Conclusion
In this paper, we introduce a new α-Laplace transform on time scales. This transform for α = 1

coinsides with a nabla Laplace transform on time scales and for 0 < α < 1 will serve as a fractional Laplace
transform on time scales. Accompained by the existence theorem we have proved some of its important
properties, including the convolution theorem and found, transform of the Riemann-Liouville fractional
integral, Riemamm-Liouville fractional derivative, Liouville-Caputo derivative and Mittag Leffter function
on time scales. A fractional dynamic equation with a given initial condition is solved for a suitable value of
α showing efficiency of this integral transform.
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