ISSN 0304-9892 (Print)

ON THE CHARACTERISTIC POLYNOMIAL OF CHEBYSHEV MATRICES

M. A. Pathan ${ }^{1}$, Hemant Kumar ${ }^{2}$, Taekyun Kim ${ }^{3}$ and J. López-Bonilla ${ }^{4}$,
${ }^{1}$ Centre for Mathematical and Statistical Sciences, Peechi Campus, Peechi, Kerala, India-680653
${ }^{1}$ Department of Mathematics, Aligarh Muslim University, Aligarh, Uttar Pradesh, India-202002
${ }^{2}$ Department of Mathematics, D. A-V. Postgraduate College Kanpur, Uttar Pradesh, India-208001
${ }^{3}$ Department of Mathematics, College of Natural Science, Kwangwoon University, Seoul, Republic of Korea-139701
${ }^{4}$ ESIME-Zacatenco, Instituto Politécnico Nacional, Edif. 4, 1er. Piso, Col. Lindavista CP, CDMX, México-07738
Email: mapathan@gmail.com, palhemant2007@rediffmail.com, mailto:tkkim@kw.ac.kr, jlopezb@ipn.mx
(Received: August 04, 2023; In format: September 03, 2023; Revised: September 27, 2023;
Accepted: November 14, 2023)

DOI: https://doi.org/10.58250/jnanabha.2023.53217

Abstract

We exhibit that the coefficients of the characteristic polynomial of any matrix $\mathbf{A}_{n x n}$ can be written in terms of the complete Bell polynomials, and this result is applied to Chebyshev matrices which generates the concept of Associated Polynomials of Chebyshev.

Keywords and Phrases: Bell and Chebyshev polynomials, Characteristic polynomial, Chebyshev matrices, Gauss hypergeometric function.

1 Introduction

For an arbitrary matrix $\mathbf{A}_{\mathrm{nxn}}=\left(A^{i}{ }_{j}\right)$ its characteristic polynomial $[9,10,19]$

$$
\begin{equation*}
P_{n}(\lambda)=\lambda^{n}+a_{1} \lambda^{n-1}+\ldots+a_{n-1} \lambda+a_{n} \tag{1.1}
\end{equation*}
$$

can be obtained, through several procedures [11, 19, 25, 33, 34], directly from the condition

$$
P_{n}(\lambda)=\operatorname{det}\left(\lambda \delta_{j}^{i}-A_{j}^{i}\right) .
$$

The approach of Leverrier-Takeno $[2,8,15,20,21,32,33,35]$ is a simple and interesting technique to construct (1.1) based in the traces of the powers $A^{r}, r=1, \ldots, n$. In fact, if we define the quantities

$$
\begin{equation*}
a_{0}=1, s_{k}=\operatorname{tr} \mathbf{A}^{k}, k=1,2, \ldots, n, \tag{1.2}
\end{equation*}
$$

then by (1.2) the process of Leverrier-Takeno implies (1.1) wherein the a_{i} are determined with the recurrence relation

$$
\begin{equation*}
\text { r } a_{r}+s_{1} a_{r-1}+s_{2} a_{r-2}+\ldots+s_{r-1} \mathrm{a}_{1}+s_{r}=0, r=1,2, \ldots, n, \tag{1.3}
\end{equation*}
$$

therefore

$$
\begin{gather*}
a_{1}=-s_{1}, 2!a_{2}=\left(s_{1}\right)^{2}-s_{2}, 3!a_{3}=-\left(s_{1}\right)^{3}+3 s_{1} \mathrm{~s}_{2}-2 s_{3} \tag{1.4}\\
4!a_{4}=\left(s_{1}\right)^{4}-6\left(s_{1}\right)^{2} s_{2}+8 s_{1} \mathrm{~s}_{3}+3\left(s_{2}\right)^{2}-6 s_{4} \\
5!a_{5}=-\left(s_{1}\right)^{5}+10\left(s_{1}\right)^{3} \mathrm{~s}_{2}-20\left(s_{1}\right)^{2} \mathrm{~s}_{3}-15 s_{1}\left(s_{2}\right)^{2}+30 \mathrm{~s}_{1} \mathrm{~s}_{4}+20 s_{2} s_{3}-24 s_{5}, \ldots
\end{gather*}
$$

in particular, $\operatorname{det} A=(-1)^{n} a_{n}$, that is, the determinant of any matrix only depends on the traces s_{r}, which means that A and its transpose have the same determinant.

2 Complete Bell polynomials in terms of the determinant

In this section we make an appeal to recurrence relations (1.3) and (1.4) and thus due to [1, 5, 22] find the general expression

$$
a_{m}=\frac{(-1)^{m}}{m!}\left|\begin{array}{cccccc}
s_{1} & s_{2} & s_{3} & \cdots & s_{m-1} & s_{m} \tag{2.1}\\
m-1 & s_{1} & s_{2} & \cdots & s_{m-2} & s_{m-1} \\
0 & m-2 & s_{1} & \cdots & s_{m-3} & s_{m-2} \\
\vdots & \vdots & \vdots & \ddots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & 1 & s_{1}
\end{array}\right|, m=1, \ldots, n
$$

which allows reproduce the expressions (1.4). The formula (2.1) permits relate the coefficients of the characteristic polynomial (1.1) with the complete Bell polynomials [3, 4, 29, 30, 36]. In [12, 23] we find the following expression for the Bell polynomials

Therefore

$$
\begin{gather*}
B_{0}=1, B_{1}=x_{1}, B_{2}=x_{1}^{2}+x_{2}, B_{3}=x_{1}^{3}+3 x_{1} x_{2}+x_{3}, B_{4}=x_{1}^{4}+6 \mathrm{x}_{1}^{2} \mathrm{x}_{2}+4 \mathrm{x}_{1} x_{3}+3 \mathrm{x}_{2}^{2}+x_{4} \tag{2.3}\\
B_{5}=x_{1}^{5}+10 \mathrm{x}_{1}^{3} \mathrm{x}_{2}+10 \mathrm{x}_{1}^{2} \mathrm{x}_{3}+15 x_{1} \mathrm{x}_{2}^{2}+5 \mathrm{x}_{1} x_{4}+10 x_{2} x_{3}+x_{5}, \ldots
\end{gather*}
$$

We see that with (2.3) we can deduce (1.4) if we employ $x_{1}=-s_{1}, x_{2}=-s_{2}, x_{3}=-2 s_{3}, x_{4}=-6 s_{4}, x_{5}=$ $-24 s_{5}, \ldots$, that is

$$
\begin{equation*}
a_{m}=\frac{1}{m!} B_{m}\left(-0!s_{1},-1!s_{2},-2!s_{3},-3!s_{4}, \ldots,-(m-2)!s_{m-1},-(m-1)!s_{m}\right) \tag{2.4}
\end{equation*}
$$

In fact, it is simple to prove that (2.2) with $x_{k}=-(k-1)!s_{k}$ implies (2.1), thus the coefficients of the characteristic polynomial (1.1) are generated by the complete Bell polynomials [3, 4, 12, 23, 29, 30, 36].

3 Chebyshev matrices

The first-kind Chebyshev polynomials $T_{n}(x),|x| \leq 1$, verify the differential equation $[6,17,18,19,26,28]$

$$
\begin{equation*}
\left(1-x^{2}\right) \frac{d^{2}}{d x^{2}} T_{n}-x \frac{d}{d x} T_{n}+n^{2} T_{n}=0, n=0,1,2, \ldots \tag{3.1}
\end{equation*}
$$

which is equivalent to the following expression in terms of the Gauss hypergeometric function [7, 24, 31]

$$
\begin{equation*}
T_{n}(x)={ }_{2} F_{1}\left(-n, n ; \frac{1}{2} ; \frac{1-x}{2}\right) \tag{3.2}
\end{equation*}
$$

thus

$$
\begin{equation*}
T_{0}=1, T_{1}=x, T_{2}=2 x^{2}-1, T_{3}=4 x^{3}-3 x, T_{4}=8 x^{4}-8 x^{2}+1, \ldots \tag{3.3}
\end{equation*}
$$

Alternatively, we can employ the Chebyshev matrices [27]

$$
A_{n x n}(x)=\left(\begin{array}{ccccccc}
x & 1 & 0 & 0 & \cdots & 0 & 0 \tag{3.4}\\
1 & 2 x & 1 & 0 & \cdots & 0 & 0 \\
0 & 1 & 2 x & 1 & \cdots & 0 & 0 \\
0 & 0 & 1 & 2 x & \cdots & 0 & 0 \\
0 & 0 & 0 & 1 & \ddots & 1 & \vdots \\
\vdots & \vdots & \vdots & \vdots & \ddots & \ddots & 1 \\
0 & 0 & 0 & 0 & \ldots & 1 & 2 x
\end{array}\right)
$$

whose determinant generates the Chebyshev polynomials

$$
\begin{equation*}
T_{n}(x)=\operatorname{det} A_{n x n}(x) \tag{3.5}
\end{equation*}
$$

That is

$$
T_{1}=\operatorname{det}(x), T_{2}=\operatorname{det}\left(\begin{array}{cc}
x & 1 \tag{3.6}\\
1 & 2 x
\end{array}\right), T_{3}=\operatorname{det}\left(\begin{array}{ccc}
x & 1 & 0 \\
1 & 2 x & 1 \\
0 & 1 & 2 x
\end{array}\right), T_{4}=\operatorname{det}\left(\begin{array}{cccc}
x & 1 & 0 & 0 \\
1 & 2 x & 1 & 0 \\
0 & 1 & 2 x & 1 \\
0 & 0 & 1 & 2 x
\end{array}\right), \ldots
$$

Therefore from (1.4), (2.4) and (3.5)

$$
\begin{equation*}
T_{n}(x)=\frac{(-1)^{n}}{n!} B_{n}\left(-0!\mathrm{s}_{1},-1!s_{2},-2!s_{3},-3!s_{4}, \ldots,-(n-2)!s_{n-1},-(n-1)!\mathrm{s}_{n}\right) \tag{3.7}
\end{equation*}
$$

where s_{j} are the traces of the powers of the matrix (3.4); hence the complete Bell polynomials allow construct the Chebyshev polynomials of the first kind.

It is natural to investigate the characteristic polynomial of (3.4) for several values of n, thus

$$
\begin{aligned}
P_{1}= & \lambda- \\
P_{4}= & T_{1}, P_{2}=\lambda^{2}-3 x \lambda+T_{2}, P_{3}=\lambda^{3}-5 x \lambda^{2}+\left(18 x^{2}-3\right) \lambda^{2}-\left(20 x^{3}-10 x\right) \lambda+T_{4}, \\
P_{5}= & \lambda^{5}- \\
P_{6}= & \lambda^{6}- \\
& 11 x \lambda^{4}+\left(32 x^{5}+\left(50 x^{2}-5\right) \lambda^{3}-\left(56 x^{3}-21 x\right) \lambda^{4}-\left(120 x^{3}-36 x\right) \lambda^{3}+\left(160 x^{4}-96 x^{2}+6\right) \lambda^{2}-\right. \\
& \quad-\left(112 x^{5}-112 x^{3}+21 x\right) \lambda+T_{6}, \\
P_{7}= & \lambda^{7}- \\
& \quad 13 x \lambda^{6}+\left(72 x^{2}-6\right) \lambda^{5}-\left(220 x^{3}-55 x\right) \lambda^{4}+\left(400 x^{4}-200 x^{2}+10\right) \lambda^{3}- \\
& \quad\left(432 x^{5}-360 x^{3}+54 x\right) \lambda^{2}+\left(256 x^{6}-320 x^{4}+96 x^{2}-4\right) \lambda-T_{7}, \\
P_{8}= & \lambda^{8}- \\
& \quad 15 x \lambda^{7}+\left(98 x^{2}-7\right) \lambda^{6}-\left(364 x^{3}-78 x\right) \lambda^{5}+\left(840 x^{4}-360 x^{2}+15\right) \lambda^{4}- \\
& \quad-\left(1232 x^{5}-880 x^{3}+110 x\right) \lambda^{3}+\left(1120 x^{6}-1200 x^{4}+300 x^{2}-10\right) \lambda^{2}- \\
& \quad\left(576 x^{7}-864 x^{5}+360 x^{3}-36\right) \lambda+T_{8}, \ldots .
\end{aligned}
$$

That is

$$
\begin{equation*}
P_{n}(\lambda)=\sum_{m=0}^{n} T_{n}^{m}(x) \lambda^{n-m}, T_{n}^{0}=1, T_{n}^{n}=(-1)^{n} T_{n} \tag{3.9}
\end{equation*}
$$

Then it is clear that $T_{n}^{m}(x), m=0,1, \ldots, n$ is a polynomial in x of degree m, and they may be named as Associated Polynomials of Chebyshev.

We know that if the operator $\frac{d^{N}}{\mathrm{dx}^{N}}$ is applied to the Legendre polynomials we obtain their associated polynomials, then now we shall show that this process can be employed for the first-kind Chebyshev polynomials $T_{n}(x)$ to construct the new polynomials $T_{n}^{m}(x)$ in terms of the Gauss hypergeometric function. In fact, we know the property

$$
\begin{equation*}
\frac{d^{N}}{d x^{N}}{ }_{2} F_{1}(a, b ; c ; z) \propto{ }_{2} F_{1}(a+N, b+N ; c+N ; z), \tag{3.10}
\end{equation*}
$$

then we apply the operator $\frac{d^{n-m}}{\mathrm{dx}^{n-m}}$ to (3.2) and we use (3.10) with an adequate factor of proportionality to obtain the expression

$$
\begin{align*}
T_{n}^{m}(x) & =(-1)^{m}\binom{2 n-m}{m}{ }_{2} F_{1}\left(-m, 2 n-m ; n-m+\frac{1}{2} ; \frac{1-x}{2}\right) \\
& =2^{m-1} \frac{(n-1)!(2 n-m)}{m!(n-m)!} \sum_{k=0}^{m}(-1)^{k-m}\binom{m}{k}{ }_{2} F_{1}(k-m,-1-2 m ;-2 m ; 1) x^{k} \tag{3.11}
\end{align*}
$$

$m=0,1, \ldots, n$, verifying the differential equation

$$
\begin{equation*}
\left(1-x^{2}\right) \frac{d^{2}}{d x^{2}} T_{n}^{m}-(2 n-2 m+1) x \frac{d}{d x} T_{n}^{m}+m(2 n-m) T_{n}^{m}=0 \tag{3.12}
\end{equation*}
$$

with (3.11) it is simple to calculate these associated polynomials of Chebyshev, for example

$$
T_{3}^{1}=-5 x, T_{3}^{2}=8 x^{2}-2, T_{5}^{2}=32 x^{2}-4, T_{5}^{3}=-56 x^{3}+21 x, T_{5}^{4}=48 x^{4}-36 x^{2}+3, \text { etc. }
$$

in accordance with (3.8). The relations (3.11) and (3.12) reproduce (3.1) and (3.2) for the case $m=n$.
Finally, it is easy to show that the associated polynomials (3.11) can generate the other types of Chebyshev polynomials $[13,14,16,26,27]$

$$
\begin{equation*}
U_{n}(x)=\frac{2(-1)^{n}}{2+n} T_{n+1}^{n}(x), V_{n}(x)=\frac{(-1)^{n}}{n+1} T_{2 n+1}^{2 n}\left(\sqrt{\frac{1-x}{2}}\right), W_{n}(x)=\frac{1}{n+1} T_{2 n+1}^{2 n}\left(\sqrt{\frac{1+x}{2}}\right) \tag{3.13}
\end{equation*}
$$

4 An Abel type integral equation representation involving Chebyshev determinants (3.5)
In this section, on using orthogonal property of the Chebyshev polynomials [26, 27], we obtain orthogonal property of product of two Chebyshev determinants (3.5). Then we derive an Abel type integral equation representation involving these Chebyshev determinants.

Making an use of the Eqn. (3.5) and the orthogonal property of the Chebyshev polynomials [26, 27] given by

$$
\int_{-1}^{1} \frac{1}{\sqrt{1-x^{2}}} T_{n}(x) T_{m}(x) \mathrm{dx}=\left\{\begin{array}{c}
0, m \neq n \tag{4.1}\\
\frac{\pi}{2}, m=n \neq 0 \\
\pi, m=n=0
\end{array}\right.
$$

due to (4.1), we get an interesting orthogonal property in terms of product of two Chebyshev determinants as

$$
\int_{-1}^{1} \frac{1}{\sqrt{1-x^{2}}}\left\{\operatorname{det} A_{n x n}(x) \operatorname{det} A_{m x m}(x)\right\} \mathrm{dx}=\left\{\begin{array}{c}
0, m \neq n \tag{4.2}\\
\frac{\pi}{2}, m=n \neq 0 \\
\pi, m=n=0
\end{array}\right.
$$

Theorem 4.1. For $x>0$, if $|x t| \leq 1$, and any function $f:(x, t) \rightarrow \mathbb{R}$, is defined by

$$
\begin{equation*}
f(x, t)=\sum_{n=1}^{\infty} C_{n}\left\{\operatorname{det} A_{n x n}(x t)\right\}, C_{n} \text { an arbitrary constant, } \tag{4.3}
\end{equation*}
$$

may be represented as an integral equation

$$
\begin{equation*}
f(x, t)=\frac{2}{\pi} \sum_{n=1}^{\infty}\left\{\operatorname{det} A_{n x n}(x t)\right\} \int_{-1}^{1} \frac{f\left(x, u x^{-1}\right)}{\sqrt{1-u^{2}}} \operatorname{det} A_{n x n}(u) d u \tag{4.4}
\end{equation*}
$$

Proof. Consider a function in terms of the series of Chebyshev determinants (3.5) as

$$
\begin{equation*}
f(x, t)=\sum_{n=1}^{\infty} C_{n}\left\{\operatorname{det} A_{n x n}(\mathrm{xt})\right\} \tag{4.5}
\end{equation*}
$$

Then in both sides of Eqn. (4.5) multiply by $\frac{\operatorname{det} A_{m x m}(\mathrm{xt})}{\sqrt{1-(\mathrm{xt})^{2}}}$ and thus integrate that sides with respect to t from $t=-\frac{1}{x}$ to $t=\frac{1}{x}, \forall x>0$, we obtain

$$
\begin{equation*}
\int_{-\frac{1}{x}}^{\frac{1}{x}} \frac{f(x, t)}{\sqrt{1-(x t)^{2}}} \operatorname{det} A_{m x m}(x t) d t=\sum_{n=1}^{\infty} C_{n} \int_{-\frac{1}{x}}^{\frac{1}{x}} \frac{1}{\sqrt{1-(x t)^{2}}} \operatorname{det} A_{n x n}(x t) \operatorname{det} A_{m x m}(x t) d t \tag{4.6}
\end{equation*}
$$

After some manipulations in (4.6), we find that

$$
\begin{equation*}
\int_{-1}^{1} \frac{f\left(x, u x^{-1}\right)}{\sqrt{1-u^{2}}} \operatorname{det} A_{m x m}(u) d u=\sum_{n=1}^{\infty} C_{n} \int_{-1}^{1} \frac{1}{\sqrt{1-u^{2}}} \operatorname{det} A_{n x n}(u) \operatorname{det} A_{m x m}(u) d u \tag{4.7}
\end{equation*}
$$

Now in the Eqn. (4.8) use the orthogonality formula (4.2) we derive the coefficients

$$
\begin{equation*}
C_{n}=\frac{2}{\pi} \int_{-1}^{1} \frac{f\left(x, u x^{-1}\right)}{\sqrt{1-u^{2}}} \operatorname{det} A_{n x n}(u) d u \forall n=1,2,3, \ldots \tag{4.8}
\end{equation*}
$$

Finally, with the aid of the formulae (4.5) and (4.9), we get an integral equation (4.4).
Specially, by Eqn. (4.4) for $n=1$ we find an Abel type integral equation

$$
\begin{equation*}
f(x, t)=\frac{2 x t}{\pi} \int_{-1}^{1} \frac{f\left(x, u x^{-1}\right)}{\sqrt{1-u^{2}}} u d u, \forall x>0 \tag{4.9}
\end{equation*}
$$

5 Conclusions

In the Section 2, complete Bell polynomials are expressed in terms of determinant. The Section 3 consists of Chebyshev matrices. In the Section 4, on using orthogonal property of the Chebyshev polynomials [26, 27], an orthogonal property of product of two Chebyshev determinants (3.5) is derived. Again an integral equation representation involving these Chebyshev determinants is also obtained. The results obtained in the Eqns. (3.13) and (4.9) are very applicable in computational work of various scientific problems consisting of Abel's type integrals and Chebyshev polynomials.

References

[1] L. S. Brown, Quantum field theory, Cambridge University Press, 1994.
[2] J. D. Bulnes, N. Islam, J. López-Bonilla, Leverrier-Takeno and Faddeev-Sominsky algorithms, Scientia Magna, 17(1) (2022), 77-84.
[3] X. Chen and W. Chu, The Gauss ${ }_{2} F_{1}(1)$-summation theorem and harmonic number identities, Integral Transforms and Special Functions, 20(12) (2009), 925-935.
[4] L. Comtet, Advanced combinatorics, D. Reidel Pub., Dordrecht, Holland, 1974.
[5] T. L. Curtright and D. B. Fairlie, A Galileon primer, arXiv: 1212.6972v1 [hep-th] 31 Dec., 2012.
[6] B. G. S. Doman, The classical orthogonal polynomials, World Scientific, Singapore, 2016.
[7] R. C. Forrey, Computing the hypergeometric function, J. Comput. Phys., 137 (1997), 79-100.
[8] I. Guerrero-Moreno, J. López-Bonilla and J. Rivera-Rebolledo, Leverrier-Takeno coefficients for the characteristic polynomial of a matrix, J. Inst. Eng. (Nepal), 8(1-2) (2011), 255-258.
[9] A. K. Hazra, Matrix: Algebra, Calculus and Generalized Inverse, Cambridge Int. Sci. Pub., 2006.
[10] L. Hogben, Handbook of Linear Algebra, Chapman and Hall / CRC Press, London, 2006.
[11] A. S. Householder and F. L. Bauer, On certain methods for expanding the characteristic polynomial, Numerische Math. 1 (1959), 29-37.
[12] W. P. Johnson, The curious history of Fa di Bruno's formula, The Math. Assoc. of America 109 (2002), 217-234.
[13] D. S. Kim, D. V. Dolgy and T. Kim, S. H. Rim, Identities involving Bernoulli and Euler polynomials arising from Chebyshev polynomials,
http://lps3.mathscinet.ams.org.libproxy.kw.ac.kr/mathscinet/search/journaldoc.html?id=5798 Proc. Jangjeon Math. Soc. http://lps3.mathscinet.ams.org.libproxy.kw.ac.kr/mathscinet/search/publications.html? pg1 $=\mathrm{ISSI} \& \mathrm{~s} 1=308007$ 15(4) (2012), 361-370.
[14] T. Kim, D. S. Kim, D. V. Dolgy and J. Kwon, Sums of finite products of Chebyshev polynomials of two different types, http://lps3.mathscinet.ams.org.libproxy.kw.ac.kr/mathscinet/search/journaldoc.html? $\mathrm{id}=8847$ AIMS Math. http://lps3.mathscinet.ams.org.libproxy.kw.ac.kr/mathscinet/search/ publications.html?pg1=ISSI\&s1=4526746 (11) (2021), 12528-12542.
[15] A. N. Krylov, On the numerical solution of the equation, that in technical problems, determines the small oscillation frequencies of material systems, Bull. de l'Acad. Sci., URSS 7(4) (1931), 491-539.
[16] P. Lam-Estrada, J. López-Bonilla and R. López-Vázquez, Baldoni et al method for homogeneous linear recurrence relations, Proc. Int. Conf. on Special Functions and Applications, Amity University, Noida, Uttar Pradesh, India, Sept. 10-12, 2015.
[17] C. Lanczos, Tables of Chebyshev polynomials, Nat. Bur. Std. Appl. Math. Series, 9 (1952).
[18] C. Lanczos, Legendre versus Chebyshev polynomials, in 'Topics in numerical analysis' (Proc. Roy. Irish Acad. Conf. on Numerical Analysis, Aug. 14-18, 1972), Academic Press, London, 1973, 191-201.
[19] C. Lanczos, Applied Analysis, Dover, New York, 1988.
[20] U. J. J. Leverrier, Sur les variations sculaires des lments elliptiques des sept plantes principales, J. de Math. Pures Appl., Srie 1, 5 (1840), 220-254.
[21] J. López-Bonilla, R. López-Vázquez and S. Vidal-Beltrán, Trace of the Laplace transform of exp (t $\mathrm{A}_{\mathrm{nxn}}$), Asia Mathematika 2(1) (2018), 1-4.
[22] J. López-Bonilla, R. López-Vázquez and S. Vidal-Beltrán, An alternative to Gower's inverse matrix, World Scientific News 102 (2018), 166-172.
[23] J. López-Bonilla, R. López-Vázquez and S. Vidal-Beltrán, Bell polynomials, Prespacetime 9(5) (2018), 451- 453.
[24] J. López-Bonilla, R. López-Vázquez and J. C. Prajapati, Some applications of ${ }_{2} \mathrm{~F}_{1}$ (a, b; c; z), Int. J. of Mathematical Engineering and Science, 3(1) (2014), 41-46.
[25] D. Lovelock and H. Rund, Tensors, Differential Forms, and Variational Principles, John Wiley and Sons, New York, 1975.
[26] J. C. Mason and D. Handscomb, Chebyshev polynomials, Chapman and Hall-CRC Press, London, 2002.
[27] P. L. Nash, Chebyshev polynomials and quadratic path integrals, J. Math. Phys., 27(12) (1986), 2963.
[28] R. Piessens, Applications of Chebyshev polynomials: From theoretical kinematics to practical computations, in 'The birth of numerical analysis', Eds. A. Bultheel, R. Cools; World Scientific, Singapore, 2010, 193-205.
[29] J. Quaintance, H. W. Gould, Combinatorial identities for Stirling numbers, World Scientific, Singapore, 2016.
[30] J. Riordan, Combinatorial identities, John Wiley and Sons, New York, 1968.
[31] J. B. Seaborn, Hypergeometric functions and their applications, Springer-Verlag, New York, 1991.
[32] H. Takeno, A theorem concerning the characteristic equation of the matrix of a tensor of the second order, Tensor NS, 3 (1954), 119-122.
[33] H. Wayland, Expansion of determinantal equations into polynomial form, Quart. Appl. Math., 2 (1945), 277-306.
[34] J. H. Wilkinson, The Algebraic Eigenvalue Problem, Clarendon Press, Oxford, 1965.
[35] E. B. Wilson, J. C. Decius and P. C. Cross, Molecular vibrations, Dover, New York, 1980, 216-217.
[36] D. A. Zave, A series expansion involving the harmonic numbers, Inform. Process. Lett., 5(3) (1976), 75-77.

