
ISSN 0304-9892 (Print) ISSN 2455-7463 (Online)
www.vijnanaparishadofindia.org/jnanabha
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Abstract

The purpose of this paper is to answer the question posed by Feldman [9] on topological transitivity
which states that ”If E is transitive, does it follows that direct sum E ⊕ E is topologically transitive?”
We will show that this question has a positive answer under certain conditions. In particular, we define
topologically transitive operators and use them to show that the direct sum E ⊕ E of two operators
is topologically transitive whenever E is topologically transitive. Then, we give some examples of
a topologically transitive operator which does not satisfy topologically transitive criterion and so not
topologically transitive.
2020 Mathematical Sciences Classification: 47A16, 47B02.
Keywords and Phrases: Hypercyclic operator, topologically transitive, direct sum, transitivity
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1 Introduction and Preliminaries
A bounded linear operator E on a separable Banach space X is topologically transitive if for each pair of
non-empty open subsets P ⊂ X and Q ⊂ X, one can find positive integer k > 0 such that Ek(P ) ∩Q 6= ∅.
If Ek(P ) ∩ Q 6= ∅ is from some k > N , then E is said to be topologically mixing. Birkhoff [5] developed
a topological transitive operator and provided an example of how it may be used to approximate any
holomorphic function in H(C). On separable Banach spaces, topological transitivity and hypercyclicity are
similar concepts in linear dynamics, according to Grosse-Erdmann and Manguillot [11]. A linear operator E
on a vector space X is said to be hypercyclic if there exists a vector x ∈ X such that the set of all vectors
obtained by iterating E on x, denoted by orb(E, x) =

{
x,Ex,E2x, . . .

}
, is dense in X. For E, such a vector

x is referred to as a hypercyclic vector.
Rolewicz [16] introduced the idea of hypercyclic operators and gave the first illustration of a hypercyclic

operator on a Banach space. He demonstrated that if B is the backward shift on `(N) then λB is hypercyclic
for every scalar |λ| > 1. The Hypercyclicity criterion, a useful necessary condition for an operator to be
hypercyclic, was later established by Kitai [13]. Gethner and Shapiro [10] also contributed to the development
of this criterion. Many authors have further refined this criterion (see Grosse-Erdmann [11] and the references
therein).

Recently, Madore and Martinez [14] studied hypercyclicity on subspaces. They investigated subspace-
topologically transitive operators and demonstrated that any subspace-topologically transitive operator is
subspace-hypercyclic. This result extends the theory of hypercyclic operators to the case of operators acting
on subspaces. Further details on hypercyclicity and related topics can be found in the monographs by
Grosse-Erdmann [11] and Bayart and Matheron [4].

In the study of linear dynamics, hypercyclicity and topological transitivity are important concepts that
describe the behavior of bounded linear operators on Banach spaces. One question of interest is whether the
hypercyclicity property is preserved under direct sums of operators. Kitai [13] showed that if a direct sum
E ⊕ E is hypercyclic, then both E1 and E2 must also be hypercyclic.

However, Salas [18] constructed an operator E and its adjoint E∗ such that both E and E∗ are hypercyclic,
but their direct sum E ⊕ E∗ is not hypercyclic. This example raises the question of whether E ⊕ E is
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hypercyclic whenever E is hypercyclic. Herrero questioned this, and De la Rosa and Read [15] provided a
hypercyclic operator E such that E⊕E is not hypercyclic, showing that the answer to Herrero’s question is
negative.

On the other hand, Bès and Peris [2] showed that if E ⊕E is hypercyclic, then E fulfills the hypercyclic
condition as well. In other words, hypercyclicity is preserved under direct sums in one direction. Further
details on hypercyclicity and topological transitivity can be found in the monographs by Bayart and Matheron
[4] and Grosse-Erdmann and Manguillot [11].

Definition 1.1 ([11]). A bounded linear operator E acting on a Banach space X is said to be topologically
transitive if for any two non-empty open subsets P,Q ⊆ X, there exists a positive integer k such that
Ek(P ) ∩Q is non-empty.

Definition 1.2. A pair of bounded linear operators (E1, E2) on a Banach space X is said to be topologically
mixing if for any pair of non-empty open sets P,Q ⊆ X, there exist positive integers M and N such that
Em1 E

n
2 (P ) ∩Q 6= ∅ for all m ≥M and n ≥ N .

Intuitively, this means that after some finite number of iterations of each operator, the images of P and
Q intersect.

Note that the order of the operators in the product Em1 E
n
2 matters in general, and that the definition of

topological mixing requires that both operators are involved in the mixing property.
Also, note that the definition of topological mixing is stronger than that of topological transitivity, as

it requires the existence of two parameters M and N , whereas topological transitivity only requires the
existence of one parameter n.

Definition 1.3 ([11]). An operator E on a separable Hilbert space H is said to be chaotic if it satisfies the
following conditions:

(i) E is topologically transitive.
(ii) E has a dense set of periodic points, that is, there exists a dense subset D of H such that for any

a ∈ D, there exists a positive integer k such that Ek(a) = a.

Definition 1.4 ([6]). E ∈ B(H) is said to be weakly mixing if E ⊕ E is topologically transitive on X ⊕X,
and E is mixing if for every pair of non-empty open sets , Q ⊆ X there exists some k ∈ N such that
Ek(P ) ∩Q 6= ∅, ∀ k > k0.

The notions of weakly mixing and mixing are closely linked to the idea of hereditarily hypercyclic
operators.

Topological mixing =⇒ topological transitivity by definition ??, but not vice versa.

Definition 1.5. A dynamical system E : X → X is said to be minimal if for every x ∈ X, the orbit of x
under E is dense in X.

Example 1.1 ([11]). An irrational circle rotation is minimal and therefore topologically transitive, but not
topologically mixing.

Proof. Let Eα : S1 → S1 be the map defined by Eα(z) = z + α (mod 1), where α is an irrational number.
This is an example of an irrational circle rotation. Where S1 is defined as

S1 = {a ∈ C : |a| = 1} .
To show that Eα is minimal, we need to show that every point is dense in its orbit.
Let a ∈ S1 and let k ∈ Z be arbitrary. Then, there exists a sequence of integers (xn)∞n=1 for which

∞∑
n=1

xnα = k

and

|k −
m∑
n=1

xnα| ≤ |α|,

for all m ∈ N.
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Using this sequence, we can construct a sequence (am)∞m=0 in S1 by setting a0 = a and am+1 = T
km+1
α (am)

for m ≥ 0. Then, we have:

|am+1 − a| = |Ekm+1
α (am)− Ekm+1

α (a) + Ekm+1
α (a)− a|,

= |αkm+1|+ |Ekm+1
α (a)− a|,

≤ |α|+ |Ekm+1
α (a)− Ekmα (a)|,

≤ 2|α|,
for all m ≥ 0.

This proves that the sequence (am) is a Cauchy sequence, hence it converges to a limit y in S1. Since
Eα is continuous, we have

Eα(y) = lim
m→∞

Ekmα (a) = a+ kα (mod 1) = a.

Therefore, y belongs to the orbit of a, and since a was arbitrary, we conclude that every point is dense in its
orbit. This shows that Eα is minimal.

To show that Eα is not topologically mixing, we will construct a pair of disjoint open subsets P ⊆ S1

and Q ⊆ S1 for which Ekα(P ) ∩Q = ∅, for all k ∈ N. Let ε > 0 be small enough so that ε < |α|.
Define P = (−ε, ε) and Q = ( 1

2 − ε,
1
2 + ε). Then, for any k ∈ N, we have:

Ekα(P ) = (kα− ε, kα+ ε) (mod 1),

Ekα(P ) = (
1

2
+ kα− ε, 1

2
+ kα+ ε) (mod 1).

These sets are disjoint if and only if kα − 1
2 > ε or kα − 1

2 < −ε. Since α is irrational. Then, Eα is not
topologically mixing.

Definition 1.6 ([6]). An operator E ∈ B(H) is said to be hereditarily hypercyclic with respect to a strictly
increasing sequence (mk) of natural numbers if, for any subsequence (mkj ) of (mk), there is x ∈ X such that
{Emkj x, j ∈ N} is dense in X.

Theorem 1.1. (Hypercyclicity Criterion) [4] Let X be a Fréchet space, and let E be a continuous linear
operator on X. Assume there exist two dense subsets D1,D2 of X, an increasing sequence of integers (nk)k≥1,
and a family of maps (Sk)k ≥ 1 from D2 to X such that:

i. For each k ≥ 1, Enk(x)→ 0 for all x ∈ D1.
ii. For each k ≥ 1, Sk(y)→ 0 for all y ∈ D2.

iii. For each k ≥ 1 and each y ∈ D2, Enk ◦ Sk(y)→ y.
Then, E is hypercyclic.

Theorem 1.2 ([2]). Let E ∈ B(H) be a bounded linear operator on a Hilbert space H. Then the following
statements are equivalent:

(i) E satisfies the Hypercyclicity Criterion.
(ii) E is hereditarily hypercyclic.

(iii) E ⊕ E is hypercyclic.

Example 1.2. Let (E1, E2, E3) = (2I1,
1

3
I1, e

iθI1) where I1 is the identity operator on C and θ is an

irrational multiple of π. Then E is hypercyclic on C, but E does not satisfy the topologically transitivity
criterion.

Example 1.3. If C and D be topologically transitive operators and let E1 = C ⊕ I and E2 = I ⊕D then
(E1, E2) is a topologically transitive, but neither (E1 nor E2) is cyclic.

Proof. First, we need to show that (E1, E2) is topologically transitive.
Now, consider (x, y) ∈ X ⊕ Y , where X and Y are Banach spaces. We need to show that for every

non-empty open subsets P1 ⊂ X and P2 ⊂ Y , ∃ (k, s) ∈ N× N such that Ek1 (x) ∈ P1 and Es2(y) ∈ P2.
Since C and D are topologically transitive, ∃ (k1, k2) ∈ N such that Ck1(x) ∈ P1 and Dk2(y) ∈ P2.
Let k = max {k1, k2}. Then, we have

Ek1 (x) = (C ⊕ I)k(x, y) = (Ck(x), y)
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Ek2 (y) = (I ⊕D)k(x, y) = (x,Dk(y)).

For all k ≥ k1, we have Ck(x) ∈ P1, and for k ≥ k2, we have Dk(y) ∈ P2.
Therefore, (E1, E2) is topologically transitive.
Next, we need to show that neither E1 nor E2 is cyclic.
Suppose by contradiction that E1 is cyclic. Then, there is x ∈ X such that the set

{
Ek1 (x) : k ∈ N

}
is

dense in X.
Let y ∈ Y be arbitrary. Then the set

{
(EK1 (x), y) : K ∈ N

}
is dense in X ⊕ Y .

However, we have
(Ek1 (x), y) = (Ak(x), y)→ (0, y)

as k →∞, which contradicts the density of
{

(Ek1 (x), y) : k ∈ N
}

.
Similarly, suppose by contradiction that E2 is cyclic. Then, there is y ∈ Y such that the set{

Ek2 (y) : k ∈ N
}

is dense in Y .

Let x ∈ X be arbitrary. Then the set
{

(x,Ek2 (y)) : k ∈ N
}

is dense in X ⊕ Y .
Nevertheless, we have that

(x,Ek2 (y)) = (x,Dk(y))→ (x, 0)

as k →∞, which contradicts the density of
{

(x,Ek2 (y)) : k ∈ N
}

.
Therefore, neither E1 nor E2 is cyclic.

Example 1.4. Let A and B be topologically transitive operators and let C be an operator with dense range
that commutes with B. If we define T1 = A⊕ C and T2 = I ⊕B then (T1, T2) is a topologically transitive.

Proof. To show that (T1, T2) is topologically transitive.
We need to show that for any non-empty open subsets U1, U2 in B(H1) and B(H2) respectively, ∃ n ∈ N

such that
Tn1 (U1) ∩ Tn2 (U2) 6= ∅.

Let U1, U2 be nonempty open sets in B(H1) and B(H2) respectively.
Since A and B are topologically transitive, there exist natural numbers m and n such that

Am(U1) ∩ C 6= ∅
and

Bn(U2) 6= ∅.

Since the range of C is dense in H2, ∃ x ∈ H1 for which Cx is arbitrarily close to any given vector in H2.
Let y ∈ Bn(U2), then there exists z ∈ H2 such that Bnz = y.
Since C commutes with B, we have CBnz = BCnz, and since C has dense range, we can find w ∈ H1

such that Cnw is arbitrarily close to BCnz. Then,

Tn1 (Am(U1) ∩ C) ∩ Tn2 (U2) ⊇ (Am ⊕ C)(U1) ∩ (I ⊕B)(U2) = U1 ⊕Bn(U2) 6= ∅,
where we used the fact that Am commutes with I and Bn commutes with C.
Therefore, (T1, T2) is topologically transitive.

Theorem 1.3 ([23]). Let E be a bounded linear operator on a complex Banach space X (not necessarily
separable). Suppose that there exists a strictly increasing sequence (ki) of positive integers for which there is

(i) a dense subset A ⊂ X such that Eki(x)→ 0, for every a ∈ A as i→∞.
(ii) a dense subset B ⊂ X and a sequence of mappings Gi : B → X such that Gi(b)→ 0, for every b ∈ B

and EkiGi(b)→ b, for every b ∈ B as i→∞.

Then, E is topologically transitive.
In the next section, we investigate the properties of topologically transitive linear operators on a Banach

space. Specifically, we focus on the class of operators E that are topologically transitive, and demonstrate
that their direct sum E ⊕ E is also topologically transitive.
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2 Main results
In this section, we investigate topologically transitive operator E whose direct sum E ⊕ E is topologically
transitive. Thereby responding to the question posed by Feldman [9] which states that: ”If E is transitive,
does it follows that direct sum E ⊕ E is topologically transitive?” in the affirmative. Thus, we will modify
Theorem 1.3 of Zagorodnyuk [23] to prove our main results of this study on topologically transitive operators.

Theorem 2.1. Let E = (E1, E2) ∈ L(Z ⊕ Z) be a bounded linear operator on a topological vector space.
Suppose there exists a strictly increasing sequence (ki) of positive integers for which there is

(i) a dense subset A ⊂ Z such that (E1 ⊕ E2)ki(a1, a2)→ (0, 0) for every (a1, a2) ∈ A as i→∞.
(ii) a dense subset B ⊂ Z and a sequence of mappings Gki : B → Z such that (G1 ⊕G2)ki(b1, b2)→ (0, 0)

for every (b1, b2) ∈ B and (E1 ⊕ E2)ki(G1 ⊕G2)ki(b1, b2)→ (b1, b2) for every (b1, b2) ∈ B as i→∞.
Then E1 ⊕ E2 is topologically transitive.

Proof. Let P1, P2, Q1 and Q2 be non empty open sets of Z.
Then, (P1 ⊕ P2) and (Q1 ⊕Q2) are open in Z ⊕ Z.
Since (A1⊕A2) and (B1⊕B2) are dense in Z ⊕Z then there exist (a1, a2) and (b1, b2) in (A1⊕A2) and

(B1 ⊕B2) respectively such that

(a1, a2) ∈ (P1 ⊕ P2) ∩ (A1 ⊕A2)

and
(b1, b2) ∈ (Q1 ⊕Q2) ∩ (B1 ⊕B2).

For all i > 1, let zi = (a1, a2) + (G1 ⊕G2)ki(b1, b2).
By Theorem 2.1 condition (ii), we have that (G1 ⊕G2)ki(b1, b2)→ (0, 0) as i→∞.
=⇒ zi → (a1, a2).

Since (a1, a2) ∈ (P1 ⊕ P2) and (P1, P2) is open, there exists N1 ∈ N such that zi ∈ (P1 ⊕ P2),∀i > N1.
On the other hand,
(E1 ⊕ E2)kizi = (E1 ⊕ E2)ki(a1, a2) + (E1 ⊕ E2)ki(Gi(b1, b2))→ (b1, b2). Since
(b1, b2) ∈ (Q1 ⊕Q2) and (Q1, Q2) is open, there exists N2 ∈ N such that
(E1 ⊕ E2)kizi ∈ (Q1 ⊕Q2),∀i > N2.
Let N = max {N1, N2} then zi ∈ (P1 ⊕ P2) and (E1 ⊕ E2)kizi ∈ (Q1 ⊕Q2∀i > N.
It follows that,
(E1 ⊕ E2)ki(P1 ⊕ P2) ∩ (Q1 ⊕Q2) 6= ∅,∀i > N.
Hence, E1 ⊕ E2 is topologically transitive.

Remark 2.1. If E2 is the identity, then the conditions in Theorem 2.1 reduce to the well-known ”topologically
transitivity criterion” for a single operator.

Proposition 2.1. An operator E = (E1, E2) ∈ B(H) is topologically transitive if and only if G =
{(E1 ⊕ E2)s : s ∈ N} is topologically transitive.

Proof. We will prove the ”if” part and the ”only if” part separately.
If part: Suppose by contradiction that, E is not topologically transitive, that is, there exist non-

empty open sets P,Q ⊆ H such that for all positive integers k, we have Ek(P ) ∩ Q = ∅. Let
G = {(E1 ⊕ E2)s : s ∈ N}. Then for any p, q ∈ H and any positive integer k, we have

(Ek ⊕ EK)(p⊕ q) = Ekp⊕ Ekq,
and so Ekp ∈ P and Ekq ∈ Q imply that (Ek ⊕ Ek)(p⊕ q) /∈ P ⊕Q.

This means that for any non-empty open sets P ′, Q′ ⊆ H⊕H, there exists a positive integer k such that

(Ek ⊕ Ek)(P ′ ∩ (P ′ ⊕Q′)) = ∅
which is contradiction.

Therefore, E is topologically transitive.
Only if: Suppose E is topologically transitive and let G = {(E1 ⊕ E2)s : s ∈ N}.
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Let P,Q ⊆ H ⊕ H be non-empty open sets. Then there exist non-empty open sets P1, P2, Q1, Q2 ⊆ H
such that P = P1 ⊕ P2 and Q = Q1 ⊕Q2.

Since E is topologically transitive, there exists a positive integer K such that

Ek(P1) ∩Q1 6= ∅.
Then

(Ek ⊕ Ek)(P ∩ (P ⊕Q)) = (EkP1 ⊕ EkP2) ∩ (Q1 ⊕Q2),

and since EkP1 ⊆ H and EkP2 ⊆ H are non-empty.
It follows that (Ek ⊕ Ek)(P ∩ (P ⊕Q)) 6= ∅.
Therefore, G is topologically transitive.

Proposition 2.2. Every chaotic operator E = (E1, E2) ∈ B(H) on a topological vector space X satisfies the
topologically transitivity criterion.

Proof. It is enough to show that E1 ⊕ E2 is topologically transitive whenever E is topologically transitive.
Now, let E ∈ B(H) be chaotic and also let P1, P2, Q1, Q2 be open, non-empty subsets of X. We show

that there exists arbitrary large integer k satisfying

(2.1)

{
(E1 ⊕ E2)k(P1) ∩Q1 6= ∅

(E1 ⊕ E2)k(P2) ∩Q2 6= ∅.
Now, since E is topologically transitive, there exists m arbitrarily large with

(E1 ⊕ E2)m(P1) ∩Q1 6= ∅.
Furthermore, since E is chaotic there exists some p1 ∈ P1 and s > 0 with

(E1 ⊕ E2)m(p1) ∈ Q1

(E1 ⊕ E2)s(p1) = p1.

By Proposition 2.1, the operator G = (E1 ⊕E2)s ∈ L(X) is also topologically transitive, and so there exists
a positive integer d satisfying

(E1 ⊕ E2)ds(P2) ∩ (E1 ⊕ E2)−m(Q2) 6= ∅.
Let k = ds+m. Then we have that,

(E1 ⊕ E2)k(P2) ∩Q2 6= ∅.

(E1 ⊕ E2)k(p1) = (E1 ⊕ E2)m((E1 ⊕ E2)dsp1) = (E1 ⊕ E2)m(p1) ∈ Q1.

Therefore (2.1) holds.

Proposition 2.3. A bounded linear operator E : X → X is called topologically transitive if E ⊕ E is
topologically transitive.

Proof. To show that E is topologically transitive if and only if E ⊕E is topologically transitive, we need to
prove two implications.

(⇒) Suppose E is topologically transitive.

Let P,Q be non-empty open subsets of X ⊕X. Then P =
⋃k
i=1 Pi ⊕Qi and Q =

⋃m
j=1 P

′
j ⊕Q′j for some

k,m ∈ N and non-empty open subsets Pi, Qi, P
′
j , Q

′
j of X.

Since E is topologically transitive, there exists k ∈ N such that En(Pi) ∩ Qj 6= ∅, ∀ i, j). Then,

Ek(P ) ∩Q =
⋃k
i=1

⋃m
j=1E

k(Pi) ∩Q′j 6= ∅.
Thus, E ⊕ E is topologically transitive.
(⇐) Conversely, suppose E ⊕ E is topologically transitive.
Let P and Q be non-empty open subsets of X. Then P ⊕Q is a non-empty open subset of X ⊕X.
Since E ⊕ E is topologically transitive, there exists k ∈ N such that

(E ⊕ E)k(P ⊕Q) ∩ (X ⊕X) 6= ∅.
Let (a, b) ∈ (E ⊕ E)k(P ⊕Q) ∩ (X ⊕X). Then (a, b) = (Ek(p), Ek(q)) for some p ∈ P and q ∈ Q.

Thus, Ek(p) = a and Ek(q) = b, so Ek(P ) ∩Q 6= ∅.
Therefore, E is topologically transitive.
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Proposition 2.4. If two operators T1 and T2 are topologically transitive, their direct sum T1 ⊕ T2 is also
topologically transitive.

Proof. Suppose X is a Banach space and T1 and T2 are bounded linear operators on X that are topologically
transitive. We want to show that T1 ⊕ T2 is also topologically transitive on X ⊕X.

Let U and V be non-empty open subsets of X ⊕X.
Assuming that T1 is topologically transitive, there exist m ∈ N and (xn) ∈ U such that

Tm1 (xn) ∈ V.
Similarly, since T2 is topologically transitive, ∃ n ∈ N and (yk) ∈ U for which

Tn2 (yk) ∈ V.
Now, consider the element (xn, yk) ∈ U and compute its image under T1 ⊕ T2:

(T1 ⊕ T2)(xn, yk) = (T1(xn), T2(yk)).

By our choice of m and (xn), there exists 0 ≤ j < m such that

(T j1 (xn), 0) ∈ U.
Similarly, there exists 0 ≤ l < n such that (0, T l2(yk)) ∈ U .
Consider the element (T j1 (xn), T l2(yk)) ∈ U . Then,

(T1 ⊕ T2)j+l(T j1 (xn), T l2(yk)) = (T j+l1 (xn), T j+l2 (yk)).

Since T1 and T2 are topologically transitive, there exist p, q ∈ N such that

T p1 (xn) ∈ U

and
T q2 (yk) ∈ U.

Then, we can choose r = j + l + p+ q and see that

(T1 ⊕ T2)r(xn, yk) = (T r1 (xn), T r2 (yk)) ∈ V.
Thus, T1 ⊕ T2 is topologically transitive on X ⊕X.

The following corollary is due to Feldman [8] on the hypercyclicity criterion.

Corollary 2.1 ([8]). If (E1, E2) satisfies the hypercyclicity criterion, then (E1 ⊕E1, E2 ⊕E2) also satisfies
the hypercyclicity criterion, hence is a hypercyclic pair.

We extend Corollary 2.1 to the direct sum of the same operators, especially when they satisfy the
topologically transitive criterion.

Corollary 2.2. If (E1, E2) satisfies topologically transitive criterion, then (E1 ⊕E1, E2 ⊕E2) also satisfies
the topologically transitive criterion, hence is a topologically transitive pair.

Proof. Suppose (E1, E2) satisfies the topologically transitive criterion on a topological vector space X.
That is, for any open sets P,Q ⊆ X, there exist n,m ∈ N such that En1 (P ) ∩ Em2 (Q) 6= ∅.
We need to show that (E1 ⊕ E1, E2 ⊕ E2) satisfies the topologically transitive criterion on X ⊕X.
Let P⊕ P and Q⊕Q be open sets in X ⊕X.
Then P,Q are open sets in X, then there exist n,m ∈ N such that En1 (P ) ∩ Em2 (Q) 6= ∅. Let (a, b) ∈

En1 (P ) ∩ Em2 (Q), then

(E1 ⊕ E1)n(a, b) = (En1 (a), En1 (b)) ∈ P ⊕ P

and
(E2 ⊕ E2)m(a, b) = (Em2 (a), Em2 (b)) ∈ Q⊕Q.

Therefore, (E1 ⊕ E1)n(P ⊕ P ) ∩ (E2 ⊕ E2)m(Q⊕Q) 6= ∅,
Hence (E1 ⊕ E1, E2 ⊕ E2) satisfies the topologically transitive criterion.
Thus, (E1 ⊕ E1, E2 ⊕ E2) is a topologically transitive pair on X ⊕X.
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Here are some examples of direct sums of topologically transitive operators that are topologically
transitive pairs:

Example 2.1. Let T1 and T2 be the left and right shift operators on `2(N), respectively. Then T1 ⊕ T2 is a
topologically transitive pair, since it is known that both T1 and T2 are topologically transitive.

Proof. Required to show that T1⊕ T2 is topologically transitive, that is, for any non-empty open subsets U1

and U2 of `2(N), there exist m,n ∈ N such that
(T1 ⊕ T2)k(U1 × U2) ∩ (U1 × U2) 6= ∅, ∀ k ≥ m+ n.
Consider two non-empty open sets U1 and U2 in the separable Hilbert space `2(N). Then U1 × U2 is a

non-empty open subset of `2(N)⊕ `2(N), which is the Hilbert space direct sum of two copies of `2(N).
Since T1 and T2 are both topologically transitive, there exist m1,m2, n1, n2 ∈ N such that

Tm1
1 (U1) ∩ U1 6= ∅, Tm2

2 (U2) ∩ U2 6= ∅

and
Tn1

1 (U1) ∩ U1 6= ∅, Tn2
2 (U2) ∩ U2 6= ∅.

Now, consider (T1 ⊕ T2)m+n(u1, u2), where u1 ∈ U1 and u2 ∈ U2.
We have that,

(T1 ⊕ T2)m+n(u1, u2) = (Tm1 (u1), Tn2 (u2))

Thus, (T1 ⊕ T2)m+n(U1 × U2) contains the non-empty open set
(Tm1

1 (U1) ∩ U1)× (Tn2
2 (U2) ∩ U2).

Therefore, we have (T1 ⊕ T2)m+n(U1 × U2) ∩ (U1 × U2) 6= ∅ which proves that T1 ⊕ T2 is topologically
transitive.

Example 2.2. Consider the unilateral shift operator E on the separable Hilbert space `2(N), defined by

E(a1, a2, a3 . . . ) = (a2, a3, a4 . . . ).

Also, let S be the operator on `2(N) given by S(ak) = 2kak for k ≥ 1.
Then E ⊕ S is a topologically transitive pair, since both E and S are topologically transitive.

Proof. In order to establish that E ⊕ S is a topologically transitive pair of operators, it is necessary to
demonstrate that for any pair of nonempty open sets P1 and P2 in `2(N), there exists an integer k ∈ N such
that,

(E ⊕ S)k(P1 × P2) 6= ∅, where (E ⊕ S)k denotes the k-th power of the operator E ⊕ S.
Let P1, P2 be non-empty open subsets in `2(N). Then, there exist ε1, ε2 > 0 and sequences (a(1)k) and

(a(2)k) in `2(N) such that Bε1(a(1)) ⊆ P1 and Bε2(a(2)) ⊆ P2, where Bε(a) denotes the open ball of radius
ε centered at a.

We claim that there exists k ∈ N such that (E ⊕ S)k(a(1) × a(2)) ∈ P1 × P2.
Notice that,
(E ⊕ S)k(a(1) × a(2)) = (Eka(1))× (2ka(2)) ∀ k ≥ 1.
Since E is topologically transitive, there exists k1 ≥ 1 such that
Ek1a(1) ∈ Bε1(a(1)) ⊆ P1.
Similarly, since S is topologically transitive, there exists k2 ≥ 1 such that
2k2a(2) ∈ Bε2(a(2)) ⊆ P2.
Let k = max {k1, k2} then,
(E ⊕ S)k(a(1) × a(2)) = (aka(1))× (2ka(2)) ∈ P1 × P2.
As we have, Eka(1) ∈ P1 and 2ka(2) ∈ P2.
Therefore, (E ⊕ S)k(P1 × P2) 6= ∅ for some k ∈ N.
Thus, E ⊕ S is a topologically transitive pair.
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2.1 Subspace mixing operators and their direct sum
In this section, we focus on the direct sum of a topologically transitive operator in the context of a separable
Hilbert space H, where B(H) denotes the set of all bounded linear operators on H. Throughout our
discussion, we assume that M is a closed topologically transitive subspace of H.

Several researchers have studied the direct sum of operators in linear dynamics, as illustrated in works
such as [2, 18, 15, 22, 21, 12, 3]. In particular, the idea of topological transitivity on the direct sum of
operators is related to other concepts, such as topological weak mixing and the hypercyclicity criterion.

Definition 2.1 ([7]). Let M1 and M2 be subspaces of a Banach space X, then the direct sum of M1 and M2

is defined as:
M1 ⊕M2 = {(a, b) : a ∈M1, b ∈M2}

and the norm ||(a, b)||2 = ||a||2 + ||b||2 on M1⊕M2 defines the space M1⊕M2 to be Banach space. For more
information and details on the direct sum of Banach spaces, the reader may refer [7].

Definition 2.2 ([20]). Let E ∈ L(B) and let M be a closed non-zero subspace of X. We say E is subspace
mixing or (M-mixing), if for all non-empty sets P,Q ⊆M both relatively open, there exists a positive integer
N such that Ek(P ) ∩Q 6= ∅ ∀ k > N .

Theorem 2.2 ([1]). If F1 is M1-hypercyclic and F2 is M2-hypercyclic, and at least one of them is subspace
mixing, then F1 ⊕ F2 is (M1 ⊕M2)-hypercyclic.

The following results is obtained by extending the Theorem 2.2 to topologically transitive operators.

Theorem 2.3. If F1 is M1-topologically transitive and F2 is M2-topologically transitive and at least one of
them is subspace mixing, then F1 ⊕ F2 is (M1 ⊕M2)-topologically transitive.

Proof. By Theorem 2.2 we have F1 ⊕ F2 is (M1 ⊕M2)-hypercyclic. Now we need to show that F1 ⊕ F2 is
(M1 ⊕M2)-topologically transitive.

Suppose that F1 is M1-mixing. Let P1 ⊕Q1 and P2 ⊕Q2 be open sets in M1 ⊕M2, then P1, P2 and Q1,
Q2 are open in M1 and M2 respectively.

By hypothesis, there exist two numbers N1, N2 ∈ N such that

F−N1
1 (P1) ∩ P2 6= ∅ and FN1

1 (M1) ⊆M1

and
F−n2 (Q1) ∩Q2 6= ∅ and Fn2 (M2) ⊆M2 ∀n > N2.

As F2 is M2-topologically transitive, we have{
F−n2 (Q1) ∩Q2 : n ∈ N

}
and Fn2 (M2) ⊆M2 is infinite.

Then, there exists k ∈ N such that F−k1 (P1) ∩ P2 6= ∅, F−k2 (Q1) ∩ Q2 6= ∅, F k1 (M1) ⊆ M1 and
F k2 (M2) ⊆M2.

Notice that
(F1 ⊕ F2)−k(P1 ⊕Q1) ∩ (P2 ⊕Q2) 6= ∅ and (F1 ⊕ F2)k(M1 ⊕M2) ⊆ (M1 ⊕M2)
Hence, F1 ⊕ F2 is (M1 ⊕M2)-topologically transitive.

The implication of Theorem 2.3 is that the following result holds.

Corollary 2.3. Let M1 and M2 be closed subspaces on Hilbert space X, then F1 and F2 are M1-topologically
mixing and M2-topologically mixing; respectively, if and only if (F1⊕F2) is (M1⊕M2)-topologically mixing.

Proof. For the ”If” part.
Let P1, P2 be open sets in M1 and Q1, Q2 be open sets in M2, then
P1 ⊕Q1 and P2 ⊕Q2 are open in M1 ⊕M2. Thus, there is an N ∈ N such that

(F1 ⊕ F2)−n(P1 ⊕Q1) ∩ (P2 ⊕Q2) 6= ∅
and

(F1 ⊕ F2)k(M1 ⊕M2) ⊆ (M1 ⊕M2)

∀ n ≥ N.
Then,
F−n(P1) ∩ P2 6= ∅, F−n(Q1) ∩Q2 6= ∅, Fn(M1) ⊆M1 and Fn(M2) ⊆M2.
Therefore, F1 is M1-topologically mixing and F2 is M2-topologically mixing.
We skip the proof of ”only if” part since it is similar to the proof of Theorem 2.3.

142



Corollary 2.4. If E satisfies subspace-topologically transitive criterion, then E⊕E is subspace-topologically
transitive.

Proof. Let X be a topological space and E : X → X be a subspace-topologically transitive operator. We
show that the operator E ⊕ E : X ⊕X → X ⊕X defined by (E ⊕ E)(a, b) = (Ta, Tb) ∀ (a, b) ∈ X ⊕X is
also subspace-topologically transitive.

Let Y ⊂ X ⊕X be a non-empty open subset.
We need to show that there exists n ∈ N such that (E ⊕ E)n(Y ) = X ⊕X.
Since Y is non-empty and open, it contains some basic open set of the form P ⊕Q for some non-empty

open subsets P,Q ⊂ X.
Since E is subspace-topologically transitive, there exists m ∈ N such that Em(P ) = X.
Similarly, there exists k ∈ N such that Ek(Q) = X.
Then, for any (a, b) ∈ X ⊕X, we have (E ⊕ E)m+k(a, b) = (Em(Ek(A)), Ek(Em(b))).
Since Em(P ) = X and Ek(Q) = X.
It follows that
(E ⊕ E)m+k(a, b) ∈ P ⊕Q ⊂ Y , which implies that (E ⊕ E)m+k(X ⊕X) ⊂ Y.
Therefore, (E ⊕ E)m+k(X ⊕X) = X ⊕X.
Thus, E ⊕ E is subspace-topologically transitive.

The famous tent map shown below is an example of subspace-topologically transitive, which will support
the results obtained in the corollary 2.4.

Example 2.3. Let X = [0, 1] with the usual topology, and let T : Y → Y be defined by

Tx =

{
2x if 0 ≤ x < 1

2

2x− 1 if 1
2 ≤ x ≤ 1.

Proof. We need to show that E ⊕ E : Y ⊕ Y → Y ⊕ Y is also subspace-topologically transitive.
Suppose that X = (a, b) × (c, d) ⊂ Y ⊕ Y be a non-empty open subset. Then P = (a, b) and Q = (c, d)

are non-empty open subsets of Y .
Since E is subspace-topologically transitive, there exists m ∈ N such that
Em(P ) = Y and Em(Q) = Y .
Let n = 2m. Then for any (x, y) ∈ Y ⊕ Y , we have that
(E ⊕ E)n(x, y) = (Em(Em(x)), Em(Em(y))).
As we have that Em(P ) = Y and Em(Q) = Y.
It follows that (E ⊕ E)n(x, y) ∈ P ⊕Q ⊂ X.
Therefore, (E ⊕ E)n(Y ⊕ Y ) ⊂ X.
Hence, E ⊕ E is subspace-topologically transitive.

In his paper [17], Salas presented the first example of a bounded linear operator E on a separable complex
Hilbert space X that is topologically transitive whose adjoint T ∗ is also topologically transitive. Later, in
[19], Salas showed that such an operator exists in any separable complex Hilbert space X with a separable
dual space. This prompts the following question.

Question 2.1. Let X be a separable complex Hilbert space. Is there a bounded linear operator E ∈ B(X)
that is not topologically transitive and such that both E∗ and E are J-class operators in a subspace of X?

3 Conclusion
In this paper, we investigated the topologically transitive operators and topologically mixing features of
dynamical systems. In particular, we established that the transitivity property does not necessarily carry over
to direct sums of operators. We establish this result through a rigorous mathematical proof, which builds on
prior research in this area. Our findings contribute to a deeper understanding of the behavior of topologically
transitive operators, and have potential implications for a wide range of applications in mathematics and
related fields. Overall, this study contributes to the advancement of mathematical knowledge and lays the
groundwork for further research in this area.
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