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Abstract

The concept of the asymptotic cone is very useful in various branches of pure and applied mathematics,
especially in optimization and variational inequalities. In recent years, many authors and researchers have
studied asymptotic directions and asymptotically convergent algorithms for unbounded solution sets. In
this paper, we consider the asymptotic cone of the solution set Ω of a linear optimization problem and
investigate various results on its asymptotic cone, asymptotic regularity, the dual and polar cones of the
asymptotic cone, the support function of the solution set, etc. Finally, we present a dual characterization
of the asymptotic cone Ω∞ for the solution set of a linear optimization problem.
2020 Mathematical Sciences Classification: 90C05, 90C60, 46B06, 40A05.
Keywords and Phrases: Linear optimization, Asymptotic cones, Asymptotic regularity, Normalized
set, Positive hull, Polar cone, Dual cone, Support function.

1 Introduction
The concept of an asymptotic cone appeared in the literature first time in 1913 in Steintiz [35] to deal with
the unboundedness of sets, particularly unbounded convex sets. For further details on asymptotic cones
for convex sets we refer to Auslender and Teboulle [8], Luc and Penot [26], and Petrovai [29] and various
relevant references cited in each of them. For the notion of asymptotic cone for nonconvex sets we refer to
Luc [23,24,25,26], Penot [28], and Stoker[36].

The purpose of this paper is to investigate various asymptotic properties of the solution set for a linear
optimization problem and utilize them to provide a dual characterization of the asymptotic cone of the
solution set.

Throughout the paper, an n-dimensional Euclidean space will be denoted by Rn. For a point or vector

x = (x1, x2, . . . , xn) ∈ Rn, the Euclidean norm of x is given as ‖x‖ =
(∑n

i=1 xi
2
) 1

2 . A sequence in Rn

is written as {xk} or sometimes {xk}k∈N , where N is the set of natural numbers. A subsequence of this
sequence is denoted by {xk}k∈K , and K ⊂ N . A sequence {xk}k∈N is said to converge to x ∈ Rn, if
‖xk − x‖ → 0, as k →∞.

It is indicated by the notation limk→∞ xk = x or xk → x.
This is called a strong form of convergence. A sequence {xk}k∈N in Rn may converge to x ∈ Rn, linearly,

quadratically, or super linearly. For further details on the order of convergence, we refer to Petrovai [29].
The Bolzano-Weierstrass theorem, which is a fundamental result of the convergence in a finitedimensional

Euclidean space Rn, states that each bounded sequence in Rn has a convergent subsequence. A point x ∈ Rn
is called a cluster point of the sequence {xk}k∈N , in Rn, if there exists a subsequence {xk}k∈K that converges
to x. Also, the sequence {xk}k∈N , in Rn converges to a point x ∈ Rn if and only if it is bounded and x is its
unique cluster point. We will make use of the Bolzano-Weierstrass theorem to prove some results associated
with the asymptotic cone, asymptotic regularity, etc. of the solution set of the linear optimization problem.

Further details for dealing with the asymptotic behavior of sets and functions can be referred to
[1, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 16, 20, 21, 22, 26, 27, 31, 35, 36] and the relevant references cited in these papers.
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1.1 Linear Optimization Problem
A linear optimization problem in standard form can be stated as

(1.1) Maximize f(x) = cTx = c1x1 + c2x2 + · · ·+ cnxn,

such that

a11x1 + a12x2 + · · ·+ a1nxn = b1,

a21x1 + a22x2 + · · ·+ a2nxn = b2

...
...

...
am1x1 + am2x2 + · · ·+ amnxn = bm

xi ≥ 0, i = 1, 2, . . . , n

where A = [aij ] ∈ Rm×n, b = (b1, b2, . . . , bm)
T ∈ Rm, c = (c1, c2, . . . , cn)

T ∈ Rn, and x =

(x1, x2, . . . , xn)
T ∈ Rn.

Here f : Rn → R is a linear map defined by f(x) = cTx and, A : Rn → Rm, is also a linear map defined
by AX = b.

If we define m hyperplanes

(1.2) Hi = {x ∈ Rn : a11x1 + a11x1 + · · ·+ a11x1 = bi} , i = 1, 2, · · · ,m.
Then

(1.3) x ∈ {x ∈ Rn : Ax = b} if and only if x ∈
m⋂
i=1

Hi.

Let P+ = {x ∈ Rn : x ≥ 0} denotes the positive orthant of Rn and

(1.4) Ω = [∩mi=1Hi] ∩ P+.

Then the above linear optimization problem (1.1) can be stated as

(1.5) Maximize f(x) = cTx, such that x ∈ Ω.

Further, we assume that
a) A ∈ Rmm×n, that is A is an m× n matrix of rank m.
b) [A, b] ∈ Rmm×(n+1), that is, the augmented matrix [A, b] is of order m× (n+ 1), and rank m.
Thus, we have, rank[A, b] = rank(A) = m.
The solution set Ω is a nonempty closed subset of Rn. It is easy to see that it is also a convex subset of

Rn.

2 Definitions and Notations
In this section, we explicate some definitions and related notations that will be used throughout this paper.

Let xk ∈ Ω ⊂ Rn, and ‖xk‖ → ∞, as k → ∞. Then there exists a real sequence {αk}k∈K , defined as
αk := ‖xk‖ , k ∈ K,K ⊂ N such that limk∈K αk = +∞, and limk∈K

xk
αk

= β.

Definition 2.1. (Nonnegative orthant). The nonnegative orthant of an n-dimensional Euclidean space is
denoted by Rn+ and is given by

Rn+ = {x ∈ Rn | xi ≥ 0, i = 1, 2, 3, . . . , n}.

Definition 2.2. (Cone or nonnegative homogeneous). A set K is called a cone if ∀x ∈ K, and µ ≥ 0, µx ∈ K.

Definition 2.3. (Convex hull of a set). The convex hull of a set K is denoted by conv K, is the set of all
convex combinations of the points in K :

convK =

{
k∑
i=1

µixi : xi ∈ K,µi ≥ 0,∀i,
k∑
i=1

µi = 1

}
Definition 2.4. The sequence {xk}k∈N ⊂ Ω ⊂ Rn is said to converge to a direction βk ∈ Rn, If there exists
a real sequence {αk}, with αk → +∞ such that limk∈K

xk
αk

= β. The vector β ∈ Rn is called the direction of
convergence.
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Definition 2.5. (Asymptotic Cone of the Solution set Ω ). The asymptotic cone of the solution set Ω,
denoted by Ω∞ is the collection of the vector β ∈ Rn that are limits in the direction of the sequence {xk}k∈N
contained in the solution set S. i.e.,

(2.1) Ω∞ =

{
β ∈ Rn : ∃αk → +∞,∃xk ∈ Ω, with lim

k→∞

xk
αk

= β

}
Definition 2.6. Let the solution set Ω of the linear optimization problem (1.1) be nonempty and define a
set denoted by Ω1

∞ as follows:

(2.2) Ω1
∞ =

{
β ∈ Rn : ∀αk → +∞,∃xk ∈ Ω, with lim

k→∞

xk
αk

= β

}
Definition 2.7. The solution set Ω of the linear optimization problem (1.1) is called asymptotically regular,
if
(2.3) Ω∞ = Ω1

∞

Definition 2.8. The normalized set of Ω ). Let the Solution set Ω of the linear optimization problem (1.1)
be nonempty, then the normalized set of Ω is denoted as ΩN , and is defined as

(2.4) ΩN =

{
β ∈ Rn : ∃ {xk} ∈ Ω, ‖xk‖ → +∞, with β = lim

k→∞

xk
‖xk‖

}
.

Definition 2.9. (Support Function of Ω ). Let the solution set Ω of the linear optimization problem (1.1)
be a nonempty, closed convex set in Rn then the support function of Ω is a map σΩ(x) : Rn → R defined by
(2.5) σΩ(x) = sup

{
xT y : y ∈ Ω

}
.

If A and B are two convex sets in Rn. Then σA(x) = σB(x)⇔ A = B.

Definition 2.10. (The Housdorff distance). The Houdorff distance between two nonempty compact convex
sets A and B can be expressed in terms of support functions as follows:
(2.6) dH(A,B) = ‖σA − σB‖∞ , where ‖.‖ denotes the uniform norm.

Definition 2.11. (The Domain of the support function of Ω ). The domain of the support function of the
solution set Ω is given as

(2.7) DomσΩ =

{
x : sup

y∈Ω
xT y <∞

}
Definition 2.12. (The Dual cone of Ω∞ ). The Dual cone of Ω∞ is the set
(2.8) Ω∗∞ =

{
y : yTx ≥ 0,∀x ∈ Ω∞

}
Definition 2.13. (The Polar cone of Ω∞ ). The polar cone of Ω∞ is the set
(2.9) Ωp∞ ==

{
y : yTx ≤ 0,∀x ∈ Ω∞

}
Remark 2.1. The polar cone Ωp∞ is just the negative of the polar cone Ω∗∞.

3 Main Results
In this section, we will prove some theorems related to the asymptotic cone, asymptotic regularity, and the
normalized set of the solution set Ω. Finally, we present a dual characterization of the asymptotic cone
Ω∞ of the solution set for the linear optimization problem (1.1) in terms of the polar cone and the support
function.

Theorem 3.1. The necessary and sufficient condition for the solution set Ω of the linear optimization
problem (1.1) is bounded is that the asymptotic cone of Ω does not contain any nonzero vector. i. e., if
Ω∞ = {0}.
Proof. It is obvious that if the solution set Ω of the linear optimization problem (1.1) is bounded then there
does not exist a direction β ∈ Ω∞ with β 6= 0.

Conversely, suppose, if possible, Ω is unbounded, and Ω∞ = {0}. As Ω is unbounded so, ∃ a sequence
{xk} contained in the solution set Ω, such that xk 6= 0, and ∀k ∈ N αk := ‖xk‖ → ∞.

Now we have, βk := αk
−1xk.

So, ‖βk‖ =
∥∥α−1

k xk
∥∥ =

∥∥α−1
k

∥∥ ‖xk‖ =
∥∥∥‖xk‖‖xk‖

∥∥∥ = 1, so the sequence {βk}k∈N is bounded. Now using the

Bolzano-Weierstrass theorem we can pull a subsequence {βk}k∈K ,K ⊂ N , out of this sequence such that
limk∈K βk = β,K ⊂ N , and ‖β‖ = 1. Thus ∃ a nonzero direction β ∈ Ω∞, which contradicts the fact that
Ω∞ = {0}.
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Theorem 3.2. If the solution set Ω 6= ∅, and convex then Ω is asymptotically regular.

Proof. It is easy to verify that Ω is a convex set. If x1, x2 ∈ Ω then both vectors will satisfy the equation
AX = b and therefore Ax1 = b, and Ax2 = b, x1, x2 ≥ 0. Now we consider a convex combination of x1

and x2, as µx1,+(1 − µ)x2, with 0 ≤ µ ≤ 1. Clearly µx1,+(1 − µ)x2 ≥ 0. and A [µx1,+(1− µ)x2] =
µAx1 + (1− µ)Ax2 = µb+ (1− µ)b = b. So Ω is a convex set.

Now it follows from the definitions of Ω∞ and Ω1
∞ that

(3.1) Ω1
∞ ⊆ Ω∞.

Our next goal is to show that Ω∞ ⊆ Ω1
∞.

Let β ∈ Ω. Then it follows from the definition of Ω∞ that there exists a sequence {xk}k∈N ∈ Ω, and ∃ a
sequence of real numbers {pk}k∈N such that pk →∞, and

(3.2) β = lim
k→∞

p−1
k xk.

For, x ∈ Ω, we define a sequence of directions {βk}k∈N ∈ Rn as

(3.3) βk = p−1
k (xk − x) .

Now βk = p−1
k (xk − x) ⇒ pkβk = xk − x ⇒ xk = x + pkβk, As xk ∈ Ω, so, x + pkβk ∈ Ω, and

β = limk→∞ βk.
Let {δk}k∈N be a sequence of real numbers such that limk→∞ δk = +∞.
Now for a fixed natural number m, there exists k(m) with

(3.4) lim
m→∞

k(m) = +∞, such that δm ≤ pk(m).

As Ω is convex, we have x∗m = x+ δmpk(m) ∈ Ω, therefore

(3.5) β = lim
m→∞

δmβk(m).

This implies that β ∈ Ω, so we have

(3.6) Ω∞ ⊆ Ω1
∞.

Hence, it follows from (3.1) and (3.6) that
Ω∞ = Ω1

∞.
Thus, the solution set Ω, of the linear optimization problem (1.1) is asymptotically regular.

Theorem 3.3. Let the solution set Ω 6= ∅ and define a normalized set of Ω, as

ΩN := {β ∈ Rn : ∃ {xk} ∈ Ω, ‖xk‖ → +∞ , with β = limk→∞
xk
‖xk‖

}
.

Then, Ω∞ = pos ΩN , where pos ΩN = {λx : x ∈ Ω, λ ≥ 0} is the positive hull of Ω.

Proof. From the definitions of Ω∞ and ΩN it follows that

(3.7) ΩN ⊆ Ω∞.

To prove that Ω∞ ⊆ ΩN , let β ∈ Ω∞ and β 6= 0. Then from the definition of Ω∞ there exists a real
sequence
{αk}k∈N with limk→∞ αk = +∞. Now for xk ∈ Ω, we have

(3.8) β = lim
m→∞

[
α−1
k xk

]
= lim
m→∞

[
α−1
k ‖xk‖

xk
‖xk‖

]
.

Thus, the sequence
{
α−1
k ‖xk‖

}
k∈N is a nonnegative bounded sequence, so by Bolzano-Weierstrass

theorem ∃ a convergent subsequence
{
α−1
k ‖xk‖

}
k∈K ,K ⊂ N such that

(3.9) lim

[[
α−1
k ‖xk‖

]
k→∞

= λ ≥ 0

So, from (3.8) we have

(3.10) β = lim
m→∞

[
α−1
k ‖xk‖

xk
‖xk‖

]
= lim

[
α−1
k ‖xk‖

]
k→∞

lim
k→∞

xk
‖xk‖

= λβN .

With normalized direction βN and x ∈ Ω, so β ∈ pos Ω

(3.11) Ω∞ ⊆ ΩN
Therefore, it follows from (3.7) and (3.11) that

Ω∞ = pos ΩN .
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Theorem 3.4. (Dual Characterization Theorem). If the solution set Ω of the linear optimization problem
is nonempty and Ω∞ and ΩP∞ denote the asymptotic cone of Ω and the polar cone of Ω∞ respectively. Then
the following relations hold:

a) If σΩ denotes the support function for the solution set Ω of the linear optimization problem, dom
σΩ ⊂ ΩP∞.

b) If the interior of the polar cone ΩP∞ is nonempty, ΩP∞ ⊂ dom σΩ.

c) For the solution set Ω of the linear optimization problem, ( dom σΩ)
P

= Ω∞.

Proof.
a) From the definitions 2.11 and 2.13 of domσΩ and ΩP∞, it follows that domσΩ ∩ ΩP∞ 6= φ.

Let y /∈ ΩP∞. Then from the definition 2.13, ∃ ∈ Ω∞ such that yTβ > 0. As β ∈ Ω∞
It follows from the definition of Ω∞ that ∃ a sequence sequence {xk}k∈N ⊂ Ω in Rn and sequence

{αk}k∈N in R such that αk → +∞, with α−1
k xk → β, and satisfying, the inequality yTβ > 0. Hence

it follows that yTxk → +∞.
This implies that y /∈ domσΩ, so domσΩ ⊂ ΩP∞.

b) Let y /∈ dom σΩ. Then ∃β ∈ Ω∞ such that yTβ > 0 and β 6= 0. As β ∈ Ω∞
∃ a sequence sequence {xk}k∈N ⊂ in Ω with{

xTk y
}
k∈N → +∞

Considering subsequences, if necessary, without any loss of generality, we can assume that
xk
‖xk‖ −→ β, and β 6= 0, and β ∈ Ω∞. Hence it follows that

(3.12)

(
xk
‖xk‖

)T
y ≥ 0.

Hence for ε > 0, we have βT (y + εβ) ≥ ε‖β‖2
This implies that y + εβ /∈ ΩP∞.
That is, y /∈ int ΩP∞. Hence it follows that

ΩP∞ ⊂ domσΩ.

c) The set Ω is a closed convex set in Rn, so Ω∞ is a closed convex cone then it follows from the definition
of the polar cone that

(3.13)
(
ΩP∞
)P

= Ω∞.

Now from (a) we have

(3.14) domσΩ ⊂ ΩP∞.

This implies that
(
ΩP∞
)P ⊂ (domσΩ)

P
. Using equation (3.13) we have

(3.15) Ω∞ ⊂ (domσΩ)
P
.

Now in order to prove that ( dom σΩ)
P ⊂ Ω∞, suppose that β ∈ (domσΩ)

P
, for a real number α > 0

and an arbitrary point x̄ in Ω, αβ ∈ (domσΩ)
P

, so for an arbitrary y ∈ domσΩ, we have

(x̄+ αβ)T y = x̄T y + (αβ)T y(3.16)

≤ x̄T y
≤ sup

{
xT y : x ∈ Ω

}
= σΩ(y)

Thus, for an arbitrary y /∈ domσΩ, we have

σΩ(y) = +∞.
The inequality (3.15) remains valid ∀y in Rn.
Therefore, ∀α > 0, x̄+ αβ ∈ Ω, where cl Ω denotes the closure of the solution set Ω.
We know that for any convex set Ω in Rn,Ω∞ is a closed convex cone and

(3.17) Ω∞ = D = {β ∈ Rn : x + αβ ∈ cl Ω,∀α > 0, and ∀x ∈ Ω} .

130



Thus, β ∈ Ω∞, and

(3.18) (domσΩ)
P ⊂ Ω∞.

Now it follows from (3.15) and (3.17) that

(domσΩ)
P

= Ω∞

Further details of the asymptotic properties of the sets and the functions can be referred to
[1,2,4,5,9,10,11,12,14,16,20,21,22,23,25,26,27,31,35,36].

4 Concluding Remarks
The concept of the asymptotic cone is enormously useful in the study of the behavior of both convex and
nonconvex sets. For example, in [26] Luc and Penot have investigated various properties of the asymptotic
directions of unbounded sets to examine the perturbation of the data. Petrovai [29] has investigated
the notion of asymptotic convergence which is extremely useful for the algorithms dealing with nonlinear
mathematical programming Problems. The fundamental problem of linear optimization is to arrive at the
best possible decision in any given set of circumstances when the functions to be optimized and the constraints
are both linear. These days linear optimization is one of the most frequently used decisionmaking tools in the
industry, administration, banking, finance, marketing, and various other spheres of life. A desirable property
of an algorithm for solving a linear optimization problem is that it generates a well-defined solution at each
iteration of the algorithm and its solution set remains bounded all the time. However, in several situations,
the sequence of iterates may not remain bounded, and consequently, we get an unbounded solution set. The
results obtained in this paper, together with the BolzanoWeierstrass theorem, and the notion of asymptotic
convergence will be useful to deal with the unbounded solution sets of mathematical optimization problems.
The results of this paper can be extended for the solution sets of the other conic optimization problems like
semidefinite programming (SDP) and second-order cone programming (SOCP). These results can help to
obtain some characterization results for the asymptotic cones of the solution sets for SDP and SOCP. The
notion of asymptotic, polar cones and asymptotic regularity plays a considerable role in various disciplines
of Mathematical Sciences.

The various applications of the asymptotic cones, polar cones, dual cones, and associated asymptotic func-
tions in various areas of mathematical sciences can be referred to [4,5,9,10,11, 12,14,16,20,21,22,23,27,31,35,36],
and the references cited in these papers.
Acknowledgement. We are very much grateful to the Editor and Reviewer for their valuable suggestions
for improving the paper in its present form.
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linear optimization, JÑĀNĀBHA , 51(2), (2021), 137-142.

[33] J. N. Singh, M. Shakil, and D. Singh, A Note on the Dual Characterization of the Asymptotic Cone of
the Solution Set in Linear Optimization, Paper Presented at American Mathematical Society Meeting,
April 1-2, 2023.

[34] V. Soltan, Asymptotic Planes and Closedness conditions for linear Images and Vector sum of Sets, J.
Convex Analysis, 25(4), (2018), 1183-1196.

[35] R. E. Steinitz, Bedingt Konvergente reihen und konvexe Systeme, I, II, III, J. Math. 143 (1913),
128-175; 144 (1914), 1-40; 146 (1916), 1-52.

132



[36] J. J. Stoker, Unbounded convex sets, American Journal of Mathematics, 62 (1940).
[37] R. J. Vanderbei, Linear Programming: Foundations and Extensions, International Series in Operations

Research and Management Science, Edition 2020.

133


