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Abstract

Multiple Regression analysis is one of the most critical and widely used statistical techniques in
medical and applied research. It is defined as a multivariate technique for determining the correlation
between a response variable and some combination of two or more predictor variables. Moreover, it is well-
known in medical sciences that the obesity, high blood pressure and high cholesterol are major risk factors
for cardiovascular health issues. The body mass index is a measure of body size, and combines a person’s
weight with their height, and therefore can affect their obesity, high blood pressure, high cholesterol and
type 2 diabetes mellitus significantly, which are major risk factors for cardiovascular health issues in
adults. Motivated by these facts, in this paper, a multiple linear regression model is developed to analyze
the obesity in adults, based on a sample data of adult’s age, height, weight, waist, diastolic blood pressure,
systolic blood pressure, pulse, cholesterol, and the body mass index measurements. The use of multiple
linear regression is illustrated in the prediction study of adult’s obesity based on their body mass index.
It is observed that in the presence of adult’s age, weight, waist, diastolic blood pressure, systolic blood
pressure, pulse, and cholesterol levels, height is a good predictor of the body mass index. Moreover, in
the presence of age, height, waist, diastolic blood pressure, systolic blood pressure, pulse, and cholesterol
levels, weight is a good predictor of the body mass index. Some concluding remarks are given in the end.
2020 Mathematical Sciences Classification: 65F359, 15A12, 15A04, 62J05.
Keywords and Phrases: Cardiovascular, high cholesterol levels, high blood pressure, multiple
regression, obesity.

1 Introduction
Multiple linear regression is one of the most widely used statistical techniques in medical and other applied
research. It is defined as a multivariate technique for determining the correlation between a response variable
Y and some combination of two or more predictor variables, X. For example, it can be used to analyze
data from causal-comparative, correlational, or experimental research. It can handle interval, ordinal, or
categorical data. In addition, multiple regression provides estimates both of the magnitude and statistical
significance of relationships between variables. For details on regression analysis and its applications, the
interested readers are referred to Neter et al. [19], Draper and Smith [5], Tamhane and Dunlop [25],
Mendenhall and Sincich [16], Chatterjee and Hadi [2], Montgomery [17], Surez et al. [23], Cleophas and
Zwinderman [3], Guzman and Kibria [7], Johnson and Wichern [9], among others. For recent developments
on linear and non-linear regression models, we refer to Kibria [12].

The purpose of the present study is to contribute to the body of knowledge pertaining to the use of
multiple linear regression in medical and applied research, and, in particular, in identifying some risk factors
affecting the cardiovascular health issues in adults. It appears from the literature that not much attention
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has been paid to this kind of studies in the multiple regression analysis of the cardiovascular health issues and
problems in adults. Motivated by these facts, in this paper, a multiple linear regression model is developed
to analyze the obesity in adults, based on their body mass index (BMI) by taking a sample data of adult’s
age, height, weight, waist, diastolic blood pressure, systolic blood pressure, pulse, cholesterol, and BMI
measurements. The use of multiple linear regression is illustrated in the prediction study of adult’s obesity
based on their body mass index, along with these risk indicators.
1.1 Body Mass Index (BMI)
In what follows, we first present some basic ideas about the body mass index (BMI), and the review of the
literature relevant to the cardiovascular health issues.

Definition 1.1. The body mass index (BMI) is defined as a measure of body size and for weight-related
health risk. It combines a person’s weight with their height. It can be calculated using the following formulas:

(1.1) BMI = Weight(kg)/[height(m)]2,

(1.2) BMI = Weight(lb)/[height(in)]2 × 703.

Thus, the results of a BMI measurement can give an idea about whether a person’s weight is
correct with respect to their height. Moreover, the BMI of a person can indicate whether they
are underweight or if they have a healthy weight, or excess weight, or obesity. If a person’s BMI
is outside of the healthy range, their health risks may increase significantly. According to the US
Centers for Disease Control and Prevention and the World Health Organization, “BMI represents the
relationship between weight and height to estimate the amount of fat in the body” (Global Health
Observatory. from http://www.who.int/gho/ncd/risk factors/bmi text/en/). Moreover, as observed by
Young et al. [29], Nguyen et al. [20], and Keum et al. [13], “A higher percentage of body fat is
proven to be associated with increased risk for developing certain diseases such as heart disease, high
blood pressure, type 2 diabetes, breathing problems, certain cancers, and death”. Furthermore, as reported
by https://www.weightwatchers.com/us/science-center/bmi-calculator, there appears to be an exponential
relationship between BMI and mortality rate which is illustrated in the following Figure 1.1.

 
Figure 1.1

(Source: https://www.weightwatchers.com/us/science-center/bmi-calculator)

According to Narkiewicz [22], “Obesity and in particular central obesity have been consistently associated
with hypertension and increased cardiovascular risk. Based on population studies, risk estimates indicate
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that at least two-thirds of the prevalence of hypertension can be directly attributed to obesity”. Further, as
pointed out by Hall et al. [18], “Major consequences of being overweight or obese include higher prevalence of
hypertension and a cascade of associated cardiorenal and metabolic disorders. Studies in diverse populations
throughout the world have shown that the relationship between BMI and systolic and diastolic blood
pressure (BP ) is nearly linear. Risk estimates from the Framingham Heart Study, for example, suggest
that 78% of primary (essential) hypertension in men and 65% in women can be ascribed to excess weight
gain. Clinical studies indicate that maintenance of a BMI <25 kg/m2 is effective in primary prevention of
hypertension and that weight loss reduces BP in most hypertensive subjects”. Also, according to Jiang
et al. [10], “Obesity can result in serious health issues that are potentially life-threatening, including
hypertension, type II diabetes mellitus, increased risk for coronary disease, increased unexplained heart
failure, hyperlipidemia, infertility, higher prevalence of colon, prostate, endometrial, and breast cancer.
Although the relationship between obesity and hypertension is well established in children and adults, the
mechanism by which obesity directly causes hypertension is under investigation”.

“Having obesity puts a strain on our heart and can lead to serious health cardiovascular problems, namely,
arthritis in our knees and hips, heart disease, high blood pressure, sleep apnea, type 2 diabetes, and varicose
veins” (https://medlineplus.gov/ency/article/007196.htm). Moreover, a person’s BMI can be categorized
(Table 1.1), along with the three classes of obesity (Table 1.2), as given below:

Table 1.1

(https://medlineplus.gov/ency/article/007196.htm)
BMI CATEGORY

Below 18.5 Underweight
18.5 to 24.9 Healthy
25.0 to 29.9 Overweight
30.0 to 39.9 Obese

Over 40 Extreme of high-risk obesity

Table 1.2

(https://medlineplus.gov/ency/article/007196.htm)
CLASS OBESITY

1 BMI of 30 to less thank 35
1 BMI of 35 to less than 40
3 BMI of 40 or higher.

Class 3 is considered “severe obesity”.

Thus, it is obvious from the Tables 1.1 and 1.2 that a person’s obesity can be significantly affected by
their body mass index (BMI ), high blood pressure and high cholesterol, which are all major risk factors for
cardiovascular health issues. For further details on cardiovascular diseases and related issues, the interested
readers are referred to Mertens and Van Gaal [18], Akil and Ahmad [1], Klop et al. [14], Vach [27], Leggio
et al. [15], Seravalle and Grassi [24], Feng et al. [6], Jabeen et al. [11], Rajeshwari and Laishram [22], and
references therein.

The organization of this paper is as follows. In Section 2, the proposed multiple linear regression model,
and the problem and objective of this study are presented. Section 3 provides the data analysis, justification
and adequacy of the multiple regression model developed. Some concluding remarks are given in Section 4.

2 Multiple Linear Regression Model
2.1 A Multiple Linear Regression Model based on a Number of Predictors
Consider following multiple linear regression model

(2.1) Y = Xβ + ε,

where Y is an n × 1 vector of response variable (observations), β is a k × 1 vector of unknown regression
coefficients, X is an n × k(n > k) observed matrix of the regression, and ε is an n × 1 vector of random
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errors, which is distributed as multivariate normal with mean 0 and covariance matrix σ2In, and In is an
identity matrix of order n. The OLS estimator of β is obtained as β̂ = (X ′X)−1X ′y, and covariance matrix

of β̂ is obtained as Cov (β̂) = σ2(X ′X)
−1

.
2.2 Problem and Objective of Study
It is well-known in medical sciences that the obesity, high blood pressure and high cholesterol are major
risk factors for cardiovascular health issues. For example, high cholesterol can affect anyone, regardless of
their weight. Moreover, high blood pressure, also called hypertension, is a major risk factor for heart disease,
kidney disease, stroke, and heart failure. Having excess body weight can lead to increased high blood pressure
and cholesterol levels. The body mass index is a measure of body size, and combines a person’s weight with
their height, the results of a body mass index measurement can indicate whether a person has excess weight,
and thus can affect their obesity, high blood pressure and high cholesterol significantly, which are all risk
factors for cardiovascular health issues.

Thus, in view of the above facts, the objective of our present investigation would be to develop an
appropriate multiple linear regression model to relate the adult’s obesity, based on their body mass index
(BMI ) (considered as the dependent or response variable Y ) to the adult’s age, height, weight, waist,
diastolic blood pressure, systolic blood pressure, pulse, cholesterol, BMI measurements (considered as the
independent or predictor variables X). It will be examined how well the adult’s age, height, weight, waist,
pulse, diastolic blood pressure, systolic blood pressure, cholesterol, and BMI measurements could be used
to predict the adult’s body mass index (BMI ), as it affects a person’s obesity, high blood pressure and high
cholesterol significantly, which are all risk factors for cardiovascular health issues in adults.

To pursue our studies, the data were collected from Triola [26] on the adult’s age, height, weight, waist,
pulse, diastolic blood pressure, systolic blood pressure, cholesterol, and BMI measurements, for a sample
of 40 adults, (which we have provided in Appendix 1 for the sake of completeness). Using these variables
and the Equation (2.1), the following eight-predictor multiple linear regression model (or the least squares
prediction equation) was developed:

(2.2) Y = β0 + β1X1 + β2X2 + β3X3 + β4X4 + β5X5 + β6X6 + β7X7 + β8X8 + ε,

where β′ s denote the population regression coefficients, ε is a random error, the response variable is the
adult’s BMI (Y ), and the respective eight predictors are the adult’s age (X1), height (X2), weight (X3),
waist (X4), pulse (X5), diastolic blood pressure (X6), systolic blood pressure (X7), and cholesterol (X8).

3 Data Analysis
The Minitab Version 17.0 regression computer programs were used to determine the regression coefficients
and analyze the data. The adequacy of the multiple linear regression model for predicting the adult’s body
mass index (BMI ) was conducted using the F -test for the significance of regression.

The Minitab regression computer program outputs are given below. The paragraphs that follow explain
the computer program outputs.
3.1 Minitab Regression Computer Program Output: Analysis of Variance
3.1.1 Regression Analysis: BMI versus Age, Ht, . . .
The regression equation is:

BMI = 52.1 + 0.00134 Age − 0.772Ht+ 0.147 Wt + 0.0125 Waist + 0.00710 Pulse

− 0.00229 Systolic − 0.00195 Diastolic + 0.000211 Cholesterol .

Table 3.1

Predictor Coef SE Coef T P VIF
Constant 52.1200000 1.8800000 27.72 0.000
Age 0.0013420 0.0049270 0.27 0.787 2.0
Ht -0.7721100 0.0248400 -31.08 0.000 2.4
Wt 0.1465580 0.0063350 23.13 0.000 11.7
Waist 0.0125100 0.0167500 0.75 0.461 11.5
Pulse 0.0070950 0.0047400 1.50 0.145 1.2
Systolic -0.0022870 0.0059550 -0.38 0.704 1.6
Diastolic -0.0019480 0.0075320 -0.26 0.798 2.0
Cholesterol 0.0002106 0.0001749 1.20 0.238 1.1
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Table 3.2

S = 0.304262 R− Sq = 99.4% R− Sq( adj ) = 99.2%
PRESS = 5.60841 R-Sq(pred ) = 98.78%

Durbin-Watson statistic = 2.80903

Table 3.3

Analysis of Variance
Source DF SS MS F P

Regression 8 456.160 57.020 615.93 0.000
Residual Error 2.870 0.093

Total 39 459.030

Table 3.4

Unusual Observations
Obs Age BMI Fit SE Fit Residual St Resid

17 41.0 33.2000 32.3881 0.1767 0.8119 3.28R
36 34.0 20.7000 21.4631 0.1542 -0.7631 −2.91R

Note: Here, in Table 4.4, R denotes an observation with a large standardized residual.

3.1.2 Interpreting the Results
I. From the Analysis of Variance Table 3.3, we observe that the p-value is (0.000). This implies that that

the model estimated by the regression procedure is significant at an α-level of 0.05 . Thus at least one
of the regression coefficients is different from zero.

II. From the Table 3.1, we observe that the p-values for the estimated coefficients of height (X2) and
weight (X3) are respectively 0.000 and 0.000 , indicating that they are significantly related to the
response variable is BMI (Y ) at an α-level of 0.05. From the Table 3.1, we also observe that the p-
values for the adult’s age (X1), waist (X4), pulse (X5), diastolic blood pressure (X6), systolic blood
pressure (X7), and cholesterol (X8), are relatively high, indicating that these are probably not related
to the response variable BMI (Y ) at an α-level of 0.05 .

III. The R2 and Adjusted R2 Statistic: There are several useful criteria for measuring the goodness
of fit of the multiple regression model. One such criterion is to determine the square of the multiple
correlation coefficient R2 (also called the coefficient of multiple determination), (see, for example,
Draper and Smith [5], and Mendenhall and Sincich [16], among others). The R2 value in the regression
output (Table 3.2) indicates that 99.4% of the total variation of the response variable BMI(Y ) values
about their mean can be explained by the predictor variables used in the model. The adjusted R2 value
(or Ra

2 ) indicates that 99.2% of the total variation of the response variable BMI(Y ) values about
their mean can be explained by the predictor variables used in the model. As the values of R2 and R2

a

are not very different, it appears that at least one of the predictor variables contributes information
for the prediction of Y . Thus, both values indicate that the model fits the data well.

IV. Predicted R2 Statistic: Further from Table 3.2, we observe that the predicted R2 value is 98.78%.
Because the predicted R2 value is close to the R2 and adjusted R2 values, the model does not appear
to be overfit and has adequate predictive ability.

V. Estimate of Variance: The variance about the regression σ2 of the Y values for any given set of
the independent variables X1, X2, . . . , Xk is estimated by the residual mean square s2, which is equal
to SS (residual) divided by an appropriate number of degrees of freedom, and the standard error s is
given by

s =
√

residual meansquare s2.

For our problem, we have
s2 = 0.093 and s = 0.30496
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Examination of this statistic indicates that the smaller it is the better, that is, the more precise will be
the predictions. A useful way of looking at the decrease in S is to consider it in relation to response, (see,
for example, Draper and Smith (1998), among others, for details). In our example, s as a percentage
of mean Ȳ (of the response variable BMI, Y ), that is, the coefficient of variation (CV ), is given by

CV =
0.30496

25.9975
× 100% = 1.17303%.

This means that the standard deviation of the adult’s BMI (Y ), is only 1.17303% of their mean,
which means considerably less variation.

VI. Unusual Observations: We also note from the Table 3.4 that the observations 17 and 36 (see
Appendix 1) are identified as unusual because the absolute value of the standardized residuals is
greater than 2 . This may indicate they are outliers.

VII. Multicollinearity: By multicollinearity, we mean that some predictor variables are correlated with
other predictors. Various techniques have been developed to identify predictor variables that are highly
collinear, and for possible solutions to the problem of multicollinearity, (see, for example, Draper
and Smith [5], Tamhane and Dunlop [25], Mendenhall and Sincich [16], Chatterjee and Hadi [2],
Montgomery et al. [17], Chatterjee and Simonoff [4], and Vittinghoff et al. [28], among others, for
details). For example, we can examine the variance inflation factors (VIF ), which measure how much
the variance of an estimated regression coefficient increases if the predictor variables are correlated.
Following Montgomery et al. [17], if the VIF is 5 - 10, the regression coefficients are poorly estimated.
However, it has been observed by many researchers that for a large sample size, multicollinearity is not
a big problem when compared to a small sample size. Since the variance inflation factors (VIF) for
each of the estimated regression coefficient in our calculations are less than 5 for the adult’s age (X1),
height (X2), pulse (X5), diastolic blood pressure (X6), systolic blood pressure (X7), and cholesterol
(X8), there does not seem to be multicollinearity for these predictors in our model. However, we
observe that the VIF are fairly large for the predictor weight (X3) and waist (X4), implying that these
are highly correlated with at least one of the other predictors in the model. In order to deal with
the said multicollinearity is to remove some of the violating predictors from the model, that is, for
assessing the predictive ability of a multiple linear regression model, is to examine the associated Cp-
statistic. The best subsets regression method is used to choose a subset of predictor variables so that
the corresponding fitted regression model optimizes the Cp-statistic, which is described in Sub-Section
3.2 below.

VIII. Predicted Values for New Observations: Using the model developed, some values are provided
in Table 3.5 .

3.2 Best Subsets Regression:
Another important criterion function for assessing the predictive ability of a multiple linear regression model
is to examine the associated Mallows’ Cp-statistic, including R-Sq

(
R2
)
, the percentage of variation in the

response that is explained by the model, Adjusted R2 (that is, R Sq(adj), the percentage of the variation
in the response that is explained by t for the number of predictors in the model relative to the number
of observations), and s, the standard error of the estimate. The best subsets regression method is used
to choose a subset of predictor variables so that the corresponding fitted regression model optimizes the
Mallows’ Cp-statistic, which may be interpreted as follows:

(1) A Mallows’ Cp value that is close to the number of predictors plus the constant model produces
relatively precise and unbiased estimates.

(2) A Mallows’ Cp value that is greater than the number of predictors plus the constant model is biased
and does not fit the data well.

The model with all the predictor variables should have the highest adjusted R2, a low Mallows’ Cp value,
and the lowest s value. Based on these criteria, the following (Table 3.6) are the possible predictor models
(X2, X3) or (X1, X2) with respective highest adjusted R2, a low Mallows Cp value, and the lowest S value.

Note that three other predictor models, namely, [Height (X2), Weight (X3), Waist (X4), Cholesterol
(X8)], or [Age (X1), Height (X2), Weight (X3), Pulse (X5) ], or [Height (X2), Weight (X3), Cholesterol
(X8)] also exist here with respective highest adjusted R2, a low Mallows Cp value, and the lowest S value
(see the output above).
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Table 3.5: Predicted Values for New Observations

New
Obs Fit SE Fit 95% CI 95% PI
1 23.6038 0.1107 (23.3781,23.8296) (22.9435,24.2641)
2 23.2779 0.1253 (23.0224,23.5333) (22.6068,23.9490)
3 24.6224 0.1587 (24.2988,24.9460) (23.9225,25.3223)
4 26.1172 0.1024 (25.9083, 26.3261) (25.4624, 26.7720)
5 23.5401 0.1086 (23.3186,23.7616) (22.8812,24.1990)
6 24.5249 0.1388 (24.2418,24.8081) (23.8428,25.2070)
7 21.7545 0.1078 (21.5346,21.9744) (21.0961,22.4128)
8 31.4276 0.1646 (31.0918,31.7634) (30.7220,32.1331)
9 26.2895 0.1641 (25.9548,26.6243) (25.5845,26.9946)
10 23.103 70.1407 (22.8168,23.3906) (22.4200,23.7873)
11 27.813 60.1749 (27.4568,28.1703) (27.0978,28.5294)
12 28.170 50.1981 (27.7665,28.5745) (27.4301,28.9110)
13 24.948 40.1353 (24.6724,25.2244) (24.2693,25.6276)
14 23.159 30.1732 (22.8060,23.5126) (22.4452,23.8733)
15 31.729 90.1432 (31.4378,32.0220) (31.0440,32.4157)
16 33.509 50.1753 (33.1521,33.8670) (32.7934,34.2257)
17 32.388 10.1767 (32.0278,32.7485) (31.6705,33.1057)
18 27.1068 80.1573 (26.7860,27.4276) (26.4083,27.8054)
19 26.623 30.1234 (26.3715,26.8750) (25.9536,27.2930)
20 19.7208 80.2088 (19.2950,20.1467) (18.9682,20.4734)
21 27.055 10.1043 (26.8422,27.2679) (26.3990,27.7111)
22 23.012 40.1609 (22.6842,23.3406) (22.3104,23.7144)
23 27.202 40.1591 (26.8780,27.5268) (26.5022,27.9026)
24 21.510 60.0911 (21.3248,21.6963) (20.8628,22.1583)
25 30.904 70.1416 (30.6159,31.1936) (30.2202,31.5892)
26 28.344 60.1159 (28.1083,28.5809) (27.6806,29.0086)
27 25.344 10.1196 (25.1002,25.5881) (24.6774,26.0109)
28 24.662 60.1623 (24.3315,24.9937) (23.9593,25.3659)
29 23.4573 30.1171 (23.2184, 23.6961) (22.7923, 24.1222)
30 27.437 40.1302 (27.1718,27.7030) (26.7624,28.1124)
31 28.9268 80.1154 (28.6916,29.1621) (28.2632,29.5905)
32 26.281 60.1592 (25.9570,26.6063) (25.5813,26.9820)
33 26.752 50.1992 (26.3463,27.1587) (26.0108,27.4942)
34 31.937 ! 50.1318 (31.6688,32.2063) (31.2613,32.6138)
35 19.088 30.1539 (18.7745,19.4022) (18.3930,19.7837)
36 21.463 10.1542 (21.1486,21.7776) (20.7674,22.1588)
37 26.280 20.1130 (26.0498,26.5106) (25.6183,26.9421)
38 26.819 10.1417 (26.5300,27.1081) (26.1345,27.5036)
39 25.744 20.0920 (25.5566,25.9318) (25.0959,26.3925)
40 24.243 60.0960 (24.0478,24.4395) (23.5929,24.8943)
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Table 3.6

Vars R− Sq R− Sq(adj) C − p S Possible Predictor Models
(i) 4 99.4 99.3 2.2 0.29191 Height (X2), Weight (X3), Pulse (X5),

Cholesterol (X8)
(ii) 5 99.4 99.3 3.4 0.29222 Height (X2), Weight (X3), Waist (X4),

Pulse (X5), Cholesterol (X8)
(iii) 5 99.4 99.3 3.8 0.29440 Age (X1), Height (X2), Weight (X3),

Pulse (X5), Cholesterol (X8)
(iv) 4 99.3 99.3 2.8 0.29458 Height (X2), Weight (X3), Waist (X4),

Pulse (X5)
(iv) 3 99.3 99.3 2.2 0.29677 Height (X2), Weight (X3), Pulse (X5)

3.3 Residual Plots for BMI
The Minitab Version 17.0 regression computer program outputs for residual plots of are given in Figure 3.1
below. The paragraphs that follow examine the goodness of fit model based on residual plots.
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Figure 3.1

3.3.1 Interpreting the Graphs (Figure 3.1)
A. From the normal probability plot, we observe that there exists an approximately linear pattern. This

indicates the consistency of the data with a normal distribution. The outliers are indicated by the
points in the upper-right and left-bottom corners of the plot.

B. From the plot of residuals versus the fitted values, it is evident that the residuals get smaller, that is,
closer to the reference line, as the fitted values increase. This may indicate that the residuals have
non-constant variance, (see, for example, Draper and Smith [2], among others, for details).

C. The histogram of the residuals indicates that no outliers exist in the data.
D. The plot for residuals versus order is also provided in Figure 3.1. It is defined as a plot of all residuals
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in the order that the data was collected. It is used to find non-random errors, especially of time-related
effects. A clustering of residuals with the same sign indicates a positive correlation, whereas a negative
correlation is indicated by rapid changes in the signs of consecutive residuals.

3.4 Testing the Adequacy of Multiple Regression Model for Predicting the Adults Body Mass
Index (BMI)

This section discusses the usefulness and adequacy of the above-developed multiple regression model
developed for predicting the adults body mass index (BMI), Y .
3.4.1 Confidence Interval for the Parameters βi
If we assume that the variation of observations about the line is normal, that is, the error terms ε are all
from the same normal distribution, N(0, σ2), it can be shown that we can assign (1 − α)100% confidence
limits for βi by calculating

β̂i ± t(n− 2, 1− α

2
), se(β̂i),

where t(n−2, 1− α
2 )) is the (1−α)100% percentage point of a t- distribution, with (n−2) degrees of freedom

(the number of degrees of freedom on which the estimate s2 is based). Suppose α = 0.05. For t(38, 0.975),
we can use t(40, 0975) = 2.021, or interpolate in the t table. Thus, we have confidence limits for :

1. 95%; confidence limits for β1: (-0.00862, 0.011299)
2. 95%; confidence limits for β2: (-0.82231, -0.72191);
3. 95%; confidence limits for β3: (0.133755, 0.159361);
4. 95%; confidence limits for β4: (-0.02134, 0.046362);
5. 95%; confidence limits for β5: (-0.00248, 0.016675);
6. 95%; confidence limits for β6: (-0.01432, 0.009748);
7. 95%; confidence limits for β7: (-0.01717, 0.013274);
8. 95%; confidence limits for β8: (-0.00014, 0.000564).

3.4.2 Tests of Significance for Individual Parameters
H0 : βi = 0 versus Hα : βi 6= 0

A test of hypothesis that a particular parameter, say, βi equals zero, can be conducted by using a t -

statistic given by t = β̂i−0

se(β̂i)
. The test can also be conducted by using the F -statistic since the square of a

t-statistic (with v degrees of freedom) is equal to an F -statistic with 1 degree of freedom in the numerator and
v degrees of freedom in the denominator. That is, t2 = F . Decision Rule: Reject H0 if |t| > t

(
n− 2, 1− α

2

)
.

Using the Minitab Version 17.0 multiple linear regression computer outputs, the analysis of t statistic values
for different βi ’s is given in Table 3.7 below

Table 3.7

Null Hypothesis t(38,0.975)∗ |t| Inference Conclusion
H0 : β1 = 0 2.021 0.27 Fail to reject H0 In the presence of X2, X3, X4, X5, X6,

X7, and X8, X1 is a poor predictor of Y .
H0 : β2 = 0 2.021 31.08 Reject H0 In the presence of X1, X3, X4, X5, X6,

X7, and X8, X2 is a good predictor of Y .
H0 : β3 = 0 2.021 23.13 Reject H0 In the presence of X1, X2, X4, X5, X6,

X7, X8, X3 is a good predictor of Y .
H0:β4 = 0 2.021 0.75 Fail to reject H0 In the presence of X1, X2, X3, X5, X6,

X7, X8, X4 is a poor predictor of Y .
H0:β5 = 0 2.021 1.50 Fail to reject H0 In the presence of X1, X2, X3, X4, X6,

X7, X8, X5 is a poor predictor of Y .
H0:β6 = 0 2.021 0.38 Fail to reject H0 In the presence of X1,X2,X3,X4, X5,

X7, X8, X6 is a poor predictor of Y .
H0:β7 = 0 2.021 0.26 Fail to reject H0 In the presence of X1, X2, X3, X4, X5,

X6, X8, X7 is a poor predictor of Y .
H0:β8 = 0 2.021 1.20 Fail to reject H0 In the presence of X1,X2, X3, X4, X5,

X6, X7, X8 is a poor predictor of Y .
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*For t(38,0.975), we can use t(40, 0.975) = 2.021 or interpolate in the t− table.
3.4.3 F -Test for Significance of Regression
For details on it, see, for example, Draper and Smith [5], Tamhane and Dunlop [25], and Mendenhall and
Sincich [16], Chatterjee and Hadi [2], Montgomery et al. [17], among others. For our proposed multiple
regression model, we have

Null Hypothesis: H0 : β1 = β2 = β3 = β4 = β5 = β6 = β7 = β8 = 0 (The regression is not significant)
versus

Alternate Hypothesis: Ha : at least one of βi
′s 6= 0 (The regression is significant).

Test Statistic: F =
MSreg

s2 .
Decision Rule: Reject H0 if F > Fα (v1 = k,v2 = n− (k + 1),1−α),
where n = number of values in the sample data = 40,
k = number of estimated β regression coefficients = 8,
k + 1 = 8 + 1 = 9 = number of estimated β parameter,
v1 = k = df in the numerator = 8,
and v2 = n− (k + 1) = df in the denominator = 31
In the decision rule, we compare the calculated F test statistic to a tabulated Fα value based on

v1 = kdf in the numerator and v2 = n− (k+1)df in the denominator for the considered value of α, using
F distribution.

Thus, for our proposed multiple regression model, the decision rule is given by
Decision Rule: Reject H0 if F > F 0.05 (v1 = 8,v2 = 31,0.95), for α = 0.05.
The value of F - statistic for testing the hypothesis is that at least one of the predictor variables

contributes significant information for the prediction of the adult’s body mass index (BMI), Y . In the
computer output 17 (Table 4.3), it is calculated as F = 615.93. Comparing this with the critical value
of F 0.05 (v1 = 8,v2 = 31,0.95) = 2.18 at α = 0.05, we reject the null hypothesis: H0 : β1 = β2 =
β3 = β4 = β5 = β6 = β7 = β8 = 0, that is, the regression is not significant. Thus, the overall regression is
statistically significant. In fact, F = 615.93 exceeds F 0.05 (v1 = 8,v2 = 31,0.95) = 2.18, and is significant
at a p-value (= 0.000) < 0.005. It appears that at least one of the predictor variables contributes information
for the prediction of Y .

4 Concluding Remarks
From the above analysis, it appears that our multiple regression model for predicting the adult’s body
mass index (BMI), Y , is useful and adequate. In the presence of X1,X3,X4,X5,X6,X7, and X8, X2

is a good predictor of Y . In the presence of X1,X2,X4,X5,X6,X7,X8, X3 is a good predictor of Y .
As the values of R2 and R2

a are not very different, it appears that at least one of the predictor variables
contributes information for the prediction of Y . The coefficient of variation CV = 1.17303% also tells us
that the standard deviation of the adult’s body mass index (BMI), Y , is only 1.17303% of their mean.
Also, since the test statistic value of F calculated from the data, F = 615.93, exceeds the critical value
of F 0.05 (v1 = 8,v2 = 31,0.95) = 2.18, at α = 0.05, we reject the null hypothesis: H0 : β1 = β2 =
β3 = β4 = β5 = β6 = β7 = β8 = 0, that is, the regression is not significant. Hence, our multiple regression
model for predicting the adult’s body mass index (BMI), Y , seems to be useful and adequate, and the
overall regression is statistically significant. The Cp-statistic criterion and residual plots of Y (Figure 3.1)
as discussed above also confirm the adequacy of our model. For future work, one can consider to develop
and study similar models for other issues and problems associated with the fields of medical, biological,
behavioral, and other applied sciences. One can also develop similar models by adding other variables,
for example, the gender, marital status, employment status, race and ethnicity of the adults, as well as
the squares, cubes, and, cross products of X1,X2, X3,X4,X5,X6,X7, and X8. In addition, one could
also study the effect of some data transformations. We believe that the present study would be useful for
researchers in the fields of medical and other applied sciences.
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APPENDIX 1
(Adult’s Body Mass Index (BMI) Data, n = 40 )

(Source: Triola [26])
Age Ht Wt Waist Pulse Systolic Diastolic Cholesterol BMI
58 70.8 169.1 90.6 68 125 78 522 23.8
22 66.2 144.2 78.1 64 107 54 127 23.2
32 71.7 179.3 96.5 88 126 81 740 24.6
31 68.7 175.8 87.7 72 110 68 49 26.2
28 67.6 152.6 87.1 64 110 66 230 23.5
46 69.2 166.8 92.4 72 107 83 316 24.5
41 66.5 135 78.8 60 113 71 590 21.5
56 67.2 201.5 103.3 88 126 72 466 31.4
20 68.3 175.2 89.1 76 137 85 121 26.4
54 65.6 139 82.5 60 110 71 578 22.7
17 63 156.3 86.7 96 109 65 78 27.8
73 68.3 186.6 103.3 72 153 87 265 28.1
52 73.1 191.1 91.8 56 112 77 250 25.2
25 67.6 151.3 75.6 64 119 81 265 23.3
29 68 209.4 105.5 60 113 82 273 31.9
17 71 237.1 108.7 64 125 76 272 33.1
41 61.3 176.7 104 84 131 80 972 33.2
52 76.2 220.6 103 76 121 75 75 26.7
32 66.3 166.1 91.3 84 132 81 138 26.6
20 69.7 137.4 75.2 88 112 44 139 19.9
20 65.4 164.2 87.7 72 121 65 638 27.1
29 70 162.4 77 56 116 64 613 23.4
18 62.9 151.8 85 68 95 58 762 27
26 68.5 144.1 79.6 64 110 70 303 21.6
33 68.3 204.6 103.8 60 110 66 690 30.9
55 69.4 193.8 103 68 125 82 31 28.3
53 69.2 172.9 97.1 60 124 79 189 25.5
28 68 161.9 86.9 60 131 69 957 24.6
28 71.9 174.8 88 56 109 64 339 23.8
37 66.1 169.8 91.5 84 112 79 416 27.4
40 72.4 213.3 102.9 72 127 72 120 28.7
33 73 198 93.1 84 132 74 702 26.2
26 68 173.3 98.9 88 116 81 1252 26.4
53 68.7 214.5 107.5 56 125 84 288 32.1
36 70.3 137.1 81.6 64 112 77 176 19.6
34 63.7 119.5 75.7 56 125 77 277 20.7
42 71.1 189.1 95 56 120 83 649 26.3
18 65.6 164.7 91.1 60 118 68 113 26.9
44 68.3 170.1 94.9 64 115 75 656 25.6
20 66.3 151 79.9 72 115 65 172 24.2
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