
ISSN 0304-9892 (Print) ISSN 2455-7463 (Online)
www.vijnanaparishadofindia.org/jnanabha
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Abstract

If β = 〈βn〉n∈Z is a sequence of positive numbers with β0 = 1, then a slant weighted Toeplitz operator
Aφ is an operator on L2(β) defined as Aφ = WMφ where Mφ is the multiplication operator on L2(β)

given by Mφek(z) =
1

βk

∞∑
n=−∞

anβn+ken+k(z). In this paper we investigate the closure of the set of these

operators. We also discuss the C∗-algebra generated by a particular class of slant weighted Toeplitz
operators and obtain the spectral radius for this class.
2020 Mathematical Sciences Classification: 47B37; 47B35.
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1 Introduction and preliminaries
Toeplitz operators were introduced by Toeplitz [22] in the year 1911. Subsequently many mathematicians
came up with different generalizations of the Toeplitz operators. In 1995, Ho [9] introduced the class of
slant Toeplitz operators having the property that the matrices with respect to the standard orthonormal
basis could be obtained by eliminating every alternate row of the matrices of the corresponding Toeplitz
operators. These operators arise in plenty of applications like prediction theory [3], wavelet analysis [4],
signal processing [17, 18, 19], and solution of differential equations [5]. However, these studies were made in
the context of the usual Hardy spaces H2 and Hp and the Lorentz spaces L2 and Lp. Meanwhile the notion
of the weighted sequence spaces H2(β) and L2(β) came up. A systematic study of the shift operator and the
multiplication operator on L2(β) was made by Shields [20]. Lauric [13] studied particular cases of Toeplitz
operators on H2(β).

Motivated by the increasing popularity of the spaces L2(β) and H2(β) and the diverse applications of the
slant Toeplitz operators, we introduced and studied the notion of a weighted Toeplitz operator [1] and a slant
weighted Toeplitz operator [2]. We also explored the properties of the k-th order slant weighted Toeplitz
operator [3] and those of its compression on H2(β) [4]. Subsequently, others have studied the commutativity
[5] and hyponormality [10] of these operators. Several approximations of related signals functions have also
been explored [15] and [16] in Banach spaces and fuzzy normed spaces [14]. The essentially slant weighted
Toeplitz operators and their generalisations have been studied by Gupta and Singh [7]. Amongst the recent
advances in this direction is the study of a slant weighted Toeplitz operator in Calkin Algebra by Datt and
Ohri [6]. The minimal reducing subspaces of the compression of a slant weighted Toeplitz operator have been
explored by Hazarika [11]. The study of weighted Toeplitz operators and that of slant weighted Toeplitz
operators is of interest to physicists, probalists and computer scientists. In this paper we study a particular
class of the slant weighted Toeplitz operator and determine the spectral radius for it. We begin with the

following preliminaries. Let β = {βn}n∈Z be a sequence of positive numbers with β0 = 1 and 0 <
βn
βn+1

≤ 1

for every n ≥ 0, 0 <
βn
βn−1

≤ 1 for every n ≤ 0. We also assume that
β2n

βn
≤ M < ∞. Consider the spaces

[20]

L2(β) =

{
f(z) =

∞∑
n=−∞

anz
n

∣∣∣∣ an ∈ C, ‖f‖2β =

∞∑
n=−∞

|an|2β2
n <∞

}
,
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and [13]

H2(β) =

{
f(z) =

∞∑
n=0

anz
n

∣∣∣∣ an ∈ C, ‖f‖2β =

∞∑
n=0

|an|2β2
n <∞

}
.

Then (L2(β), ‖ · ‖β) is a Hilbert space [13] with an orthonormal basis given by

{
ek(z) =

zk

βk

}
k∈Z

and with

an inner product defined by 〈 ∞∑
n=−∞

anz
n,

∞∑
n=−∞

bnz
n

〉
=

∞∑
n=−∞

anb̄nβ
2
n .

Further, H2(β) is a subspace of L2(β). Now, let

L∞(β) = {φ(z) =
∑∞
n=−∞ anz

n

∣∣∣∣φL2(β) ⊆ L2(β) and ∃ c ∈ R such that ‖φf‖β ≤ c‖f‖β for all f ∈ L2(β)}.

Then, L2(β) is a Banach space with respect to the norm defined by

‖φ‖∞ = inf
{
c
∣∣ ‖φf‖β ≤ c‖f‖β for all f ∈ L2(β)

}
.

Let P : L2(β) → H2(β) be the orthogonal projection of L2(β) onto H2(β). Let φ ∈ L∞(β), then the
weighted multiplication operator [20] with symbol φ, that is Mφ : L2(β) → L2(β) is given by Mφek(z) =
1

βk

∞∑
n=−∞

anβn+ken+k(z).

If we put φ1(z) = z, then Mφ1 = Mz is the operator defined as Mzek(z) = wkek+1(z), where wk =
βk+1

βk
for all k ∈ Z, and is known as a weighted shift [20].

Further, the weighted Toeplitz operator Tφ [13] on H2(β) is defined as Tφ(f) = P (φf).
This mapping is well defined, for, if f ∈ H2(β) ⊂ L2(β), then by definition, φf ∈ L2(β) and hence

P (φf) ∈ H2(β).
The matrix of Tφ is: 

a0
β0

β0
a−1

β0

β1
a−2

β0

β2
. . .

a1
β1

β0
a0
β1

β1
a−1

β1

β2
. . .

a2
β2

β0
a1
β2

β1
a0
β2

β2
. . .

. . . . . . . . . . . .


.

Hence the effect of Tφ on the orthonormal basis can be described by

Tφek(z) =
1

βk

∞∑
n=0

an−kβnen(z).

2 Slant Weighted Toeplitz Operator
Let φ ∈ L∞(β).

Definition 2.1 ([2]). The slant weighted operator Aφ is an operator on L2(β) defined as Aφ : L2(β)→ L2(β)
such that

Aφek(z) =
1

βk

∞∑
n=−∞

a2n−kβnen(z).

If W : L2(β)→ L2(β) such that

We2n(z) =
βn
β2n

en(z),

and

We2n−1(z) = 0 for all n ∈ Z,
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then an alternate definition of Aφ is given by

Aφ(f) = WMφ(f) = W (φf) for all f ∈ L2(β).

Clearly, W = A1. In [2] we have shown that

MzW = WMz2(2.1)

Mφ(z)W = Aφ(z2) = WMφ(z2)(2.2)

〈Aφej+2, ei+1〉 =
wi

wjwj+1
〈Aφej , ei〉.(2.3)

Now, let S denote the shift operator on L2(β) given by Sej =
1

wj
ej+1.

Then S∗ej =
1

wj−1
ej−1. Also, S is bounded as 〈wn〉 is positive and bounded.

Lemma 2.1. S∗ = M−1
z .

Proof.

S∗Mzej = S∗wjej+1

=
wj
wj

ej = ej , j = 0,±1,±2 . . . .

We now use Lemma 2.1 and equation (2.3) to prove the following:

Theorem 2.1. A bounded operator A on L2(β) is a slant weighted Toeplitz operator on L2(β) if and only if
A = M−1

z AMz2 where Mz and Mz2 are the weighted multiplication operators an L2(β) induced by z and z2

respectively.

Proof. Let A be a slant weighted Toeplilz operator on L2(β). Then from equation (2.3) we get that

〈Aej , ei〉 =
wjwj+1

wi
〈Aej+2, ei+1〉

= 〈AMz2ej , Sei〉
= 〈S∗AMz2ej , ei〉
= 〈M−1

z AMz2ej , ei〉 i, j = 0,±1,±2, . . . .

Hence A = M−1
z AMz2 .

Conversely, let A be a bounded operator on L2(β) such that A = M−1
z AMz2 . Then, for all i, j =

0,±1,±2, . . . we have

〈Aej , ei〉 = 〈M−1
z AMz2ej , ei〉

= 〈S∗AMz2ejei〉
= 〈AMz2ej , Sei〉

=
wjwj+1

wi
〈Aej+2, ei〉.

In [2] we have proved that the necessary and sufficient condition for a bounded operator A on L2(β) to be
a slant weighted Toeplitz operator is that its matrix entries satisfy equation (2.3). Hence we may conclude
that A is a slant weighted Toeplitz operator.

Corollary 2.1. A bounded operator A on L2(β)is a slant weighted Toeplitz operator on L2(β) if and only if
A = S∗AMz2

3 C∗-Algebra of Slant Weighted Toeplitz Operators
Let L2(β) be a given space. Let A denote the set of all slant weighted Toeplitz operators on L2(β).

Theorem 3.1. A is weakly closed and hence strongly closed.
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Proof. Let An be a sequence of slant weighted Toeplitz operators such that 〈Anf, g〉 → 〈Af, g〉 for all
f, g ∈ L2(β). Then An = M−1

z AnMz2 for all n.
Therefore, as n→∞, we have

〈Anf, g〉 = 〈M−1
z AnMz2f, g〉

= 〈S∗AnMz2f, g〉
= 〈AnMz2f, Sg〉
→ 〈AMz2f, Sg〉
= 〈S∗AMz2f, g〉
= 〈M−1

z AMz2f, g〉.
Thus M−1

z AnMz2 → M−1
z AMz2 weakly. Hence A = M−1

z AMz2 . Hence from Theorem 2.1, A is a slant
weighted Toeplitz operator.

Next, to study the C∗-algebra generated by slant weighted Toeplitz operators and to obtain the spectral
radius of Aφ, we impose a restriction on the sequence 〈βn〉. Hence forth we consider only those sequences
〈βn〉n∈Z such that

βn = αn when n ≥ 0,

βn = α−n when n < 0.

}
for 1 < α <∞.

Then the weight sequence

〈
wn =

βn+1

βn

〉
is of the form

wn = α for n > 0,

wn =
1

α
for n ≤ 0.

In that case, the matrix of Mφ becomes

. . . . . . . . . . . . . . . . . . . . .

. . . a0 a−1α a−2α
2 a−3α a−4 . . .

. . .
a1

α
a0 a−1α a−2

a−3

α
. . .

. . .
a2

α2

a1

α
a0

a−1

α

a−2

α2
. . .

. . .
a3

α
a2 a1α a0

a−1

α
. . .

. . . . . . . . . . . . . . . . . . . . .


.

Hence the matrix of M∗φ is given by

. . . . . . . . . . . . . . . . . .

. . . ā0
ā1

α

ā2

α2

ā3

α
. . .

. . . ā−1α ā0
ā1

α
ā2 . . .

. . . ā−2α
2 ā−1α ā0 ā1α . . .

. . . ā−3α ā−2
ā−1

α
ā0 . . .

. . . ā−4
ā−3

α

ā−2

α2

ā−1

α
. . .

. . . . . . . . . . . . . . . . . .



.

It is observed that the matrix entries 〈λij〉 of M∗φ satisfy the relation

λi+1,j+1 =
wi
wj
λi,j .(3.1)

We have proved in [1] that equation (3.1) is the necessary and sufficient condition for the corresponding
operator to be a weighted multiplication operator.
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Hence M∗φ is also a weighted multiplication operator. Further, the product of two weighted multiplication
operators is also a weighted multiplication operator [1]. Hence we get that

MφM
∗
φ = Mψ for some ψ ∈ L∞(β).(3.2)

We suppose that ψ =
∞∑

n=−∞
bnz

n.

Theorem 3.2. AψW
∗ is a weighted multiplication operator.

Proof. For each k ∈ Z, consider

AψW
∗ek(z) =

βk
β2k

Aψe2k(z)

=
βk
β2k

1

β2k

∞∑
n=−∞

b2n−2kβnen(z)

=
1

βk

∞∑
n=−∞

b2(n−k)
β2
k

β2
2k

βnen(z)

= Mθkek(z),

where

θk(z) =

∞∑
n=−∞

(
b2n

β2
k

β2
2k

)
zn is in L∞(β).

We therefore conclude that

AψW
∗ = Mθk .(3.3)

Hence the theorem.

Corollary 3.1. AφA
∗
φ = Mθk .

Proof.

AφA
∗
φ = WMφM

∗
φW

∗

= WMψW
∗ using (3.2)

= AψW
∗

= Mθk using (3.3)

Finally AφA
∗
φ = Mθk .

We now prove the main result of this paper:
Let A denote the C∗-algebra generated by all slant weighted Toeplitz operators Aφ on L2(β) with the

sequence 〈βn〉 discussed in this section.
Also, letM denote the C∗-algebra generated by all weighted multiplication operators on L2(β). We have

proved in [2] that W does not commute with Mz. We now prove the following:

Lemma 3.1. W commutes with the multiplication operator Mψ if and only if ψ = constant.

Proof. Let ψ ∈ L∞(β) be a constant. Then MψW = α W for some constant α. Therefore

MψWe2n(z) = αWe2n(z)(3.4)

= α
βn
β2n

en(z)

= Wαe2n(z)

= WMψe2n(z).

Further

MψWe2n−1(z) = Mψ0

= 0 = WMψe2n−1(z).
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Thus

MψWen(z) = WMψen(z), n = 0,±1,±2 . . . .

Conversely, suppose that MψW = WMψ for some

ψ =

∞∑
i=−∞

biz
i ∈ L∞(β).

From equations (2.1) and (2.2) we infer that bi = 0 for all i 6= 0. So, ψ = b0 = constant. Hence the result.

Theorem 3.3. A′ = (I).

Proof. Consider the equation AφA
∗
φ = Mθk . This suggests that every weighted multiplication operator Mθk

can be written as the product of some slant weighted Toeplitz operator Aφ and its adjoint A∗φ. Hence
M⊆ A. We know thatM is maximal abelian [20]. Hence A′ ⊆M′ =M, where A′ denotes the commutant
of A. Hence for a given B ∈ A′ we get B ∈ M. That is B = Mψ for some ψ ∈ L∞(β). Also, W = A1.
Hence (W ) ⊆ A. Therefore A′ ⊆ (W ′).

This implies that B = Mψ commutes with W . From the above lemma we get that ψ = constant, and
this is true for an arbitrary operator B ∈ A′, Hence we get that A′ = (I).

As another consequence of Corollary 3.3, we now derive the spectral radius for a slant weighted Toeplitz
operator belonging to this class. For this, we use the spectral radius formula r(T ) = lim

n→∞
(‖Tn‖)1/n and

proceed as follows.

Theorem 3.4. r(Aφ) = lim
n→∞

(‖θn‖∞)1/2.

Proof. We know that AφAφ
∗ = Mθk . Taking norm on both sides we get

‖AφA∗φ‖ = ‖Mθk‖ = ‖θk‖∞.
So,

‖Aφ‖2 = ‖θk‖∞
‖Aφ‖ =

√
‖θk‖∞ = (‖θk‖∞)1/2.

Now

A2
φA
∗2
φ = WMφWMφM

∗
φW

∗M∗φW
∗

= WMφWMψW
∗M∗φW

∗

= WMφAψW
∗M∗φW

∗

= WMφMθkM
∗
φW

∗

= WMφ2
W ∗ where Mφ2

= MφMθkM
∗
φ

= Aφ2
W ∗

= Mθ2 (say).

Proceeding in this manner, we can show that for each n, AnφA
∗n
φ is a multiplication operator Mθn . Hence

‖Anφ‖2 = ‖AnφA∗nφ ‖ = ‖Mθn‖ = ‖θn‖∞.
Finally,

r(Aφ) = lim
n→∞

(‖Anφ‖)1/n

= lim
n→∞

(‖θn‖∞)1/2n.

4 Conclusion
In this paper we have proved that the set of all slant weighted Toeplitz operators on L2(β) is weakly closed
and hence strongly closed. By considering a sequence of the type 〈βn〉n∈Z such that βn = αn when n ≥ 0
and βn = α−n when n < 0 we have shown that MφM

∗
φ is also a weighted multiplication operator. Further,

for such a sequence, every weighted multiplication operator can be written as the product of some slant
weighted Toeplitz operator and its adjoint.
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