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Abstract

In this paper, we prove some ordered-theoretic fixed point results for a Geraghty-weak contraction
on an ordered extended rectangular b−metric spaces. Our results generalize several core results of the
existing literature especially involving Geraghty-weak contractions and the results proved in extended
rectangular b−metric space. Some examples are also furnished to exhibits the utility of our main results.
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1 Introduction
In 1992, Banach [10] introduced the classical fixed point theorem which is known as Banach contraction
principle. The concept of generalized metric space has been increased by adding new generalized metrics one
after another. The class of b−metric spaces [12] is generalized by the classes of extended b−metric spaces
[21] as well as rectangular b−metric spaces [15] and so on. Now days, it is not only the metric spaces that are
generalized by time to time but mappings are also. For example contraction mapping is generalized by weak
contractions Geraghty contractions [14] and many others. The importance of fixed theory is also increasing
day by day. In 2008, George et al. [15] introduced rectangular b−metric with the combination of rectangular
and b−metric. In 2019, Asim et al. [4] introduced extended rectangular b−metric space and prove some fixed
points. Recently in 2021, sharma and Tiwari [31] established some fixed-point theorems for three functions
on contraction and expansive mappings in rectangular b−metric spaces. Also, very recently in 2022, Joshi
[22] established some common fixed-point theorems for generalized multi-valued contraction in b−metric and
dislocated b−metric spaces. Now, we apply the concept of ordered on extended rectangular b−metric space
by using the mapping Geraghty-weak contraction. We recall the Definition of extended rectangular b−metric
space as follow:

2 Preliminaries
Definition 2.1. ([4]). Let U be non-empty set. Also θ : U×U → [1,∞). Let a mapping rθ : U×U → R+ will
be extended rectangular b−metric on U if it satisfy following properties (∀ u, v ∈ U and a, b ∈ U \{a, b}, a 6=
b):

(a) rθ(u, v) = 0⇐⇒ u = v,
(b) rθ(u, v) = rθ(v, u),
(c) rθ(u, v) ≤ θ(u, v)[rθ(u, a) + rθ(a, b) + rθ(b, v)].

The pair (U, rθ) is said to be extended rectangular b−metric space.

Example 2.1. ([4]). Let U = {1, 2, 3, 4, 5}. A mapping θ : U × U → [1,∞) such that θ(u, v) = u + v +
1 ∀ u, v ∈ U . Also rθ : U × U → R+. Now, we can see that ‘rθ’ is an extended b−metric space.

Definition 2.2. ([4]). Let (U, rθ) be an extended rectangular b−metric space and consider a sequence {un}
of U . We say that

(a) {un} is said to be Cauchy if for each ε > 0 there exists a natural number N such that rθ(un, um) <
ε ∀ n > m > N .

(b) {un} is said to be convergent if for each ε > 0 there exists a natural number N such that rθ(un, u) <
ε ∀ n > N .
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(c) (U, rθ) is said to be complete if every Cauchy sequence is convergent in (U, rθ).

Remark 2.1 ([4]). If we replace the function ‘θ’ with a variable s ≥ 1 then it will result in rectangular
b−metric space. We can conclude that extended rectangular b−metric space =⇒ rectangular b−metric space.
Before chalking out our main result, we give the following definitions, notations and results for the setting
of ordered relation in the framework of extended rectangular b−metric spaces. So, lets move to the some
definition which is needed in our forthcoming discussion.

Definition 2.3. Let (U,�) be an ordered set and (U, rθ) an extended rectangular b−metric space. Then a
triplet (U, rθ,�) is called an ordered extended rectangular b−metric space.

Definition 2.4. Let (U, rθ,�) be an ordered extended rectangular b−metric space. Let T be a self-mapping.
Then

(a) (U, rθ,�) is said to follow the property increasing-convergence-comparable (in short ICC-property) if
each terms of {unk}, any subsequence of increasing convergent sequence {un} in U is comparable with
the limit of {un}. In other words,
un ↑ u, there exists {unk} a subsequence of {un} also un ≺� u ∀ k ∈ N.

(b) (U, rθ,�) is said to follow the property of decreasing-convergence-comparable (in short DCC-property)
if each terms of {unk}, any subsequence of decreasing convergent sequence {un} in U is comparable with
the limit of {un}. In other words, un ↓ u, there exists {unk} a subsequence of {un} also un ≺� u ∀ k ∈
N.

(c) (U, rθ,�) is said to the property of follow monotone-convergence-comparable (in short MCC-property)
if each terms of {unk}, any subsequence of monotone convergent sequence {un} in U is comparable
with the limit of {un}. In other words, un ↑↓ u, there exists {unk} a subsequence of {un} also
un ≺� u ∀ k ∈ N.

Definition 2.5. Let (U, rθ,�) be an ordered extended rectangular b−metric space and T be a self-mapping
on U . Then T is called O − rθ-continuous (resp. O − rθ-continuous, O − rθ-continuous) at point u ∈ U if

T (un)
rθ−→ T (u) un ↑ u (resp. un ↓ u, un ↑↓ u) for any sequence {un} ⊂ U . Also, T is said to be O − rθ-

continuous (resp. O− rθ-continuous, O− rθ-continuous) if T is O− rθ-continuous (resp. O− rθ-continuous,
O − rθ-continuous) at each point of U .

Remark 2.2. In (U, rθ,�), continuity =⇒ O − rθ-continuity =⇒ O − rθ-continuity also O − rθ-continuity.

Definition 2.6. Let {un} be a sequence in (U, rθ,�). Then {un} will be O − rθ-Cauchy (resp. O − rθ-
Cauchy, O − rθ-Cauchy) at point u ∈ U if {un} is an increasing sequence (resp. decreasing and monotone)
and rθ-Cauchy. Moreover, {un} is called O− rθ-convergent (resp. O− rθ-convergent, O− rθ-convergent) at
point u ∈ U if {un} is an increasing (resp. decreasing and monotone) rθ-convergent sequence, abbreviated
by un ↑ u (resp. un ↓ u, un ↑↓ u).

Definition 2.7. Let {un} be any sequence in (U, rθ,�). Then {un} is said to be O − rθ-complete (resp.
O − rθ-complete, O − rθ-complete) at point u ∈ U if each O − rθ-Cauchy (resp. O − rθ-Cauchy, O − rθ-
Cauchy) sequence in U if it converges to any point u ∈ U.

Remark 2.3. In ordered extended rectangular b−metric space, completeness =⇒ O − rθ-completeness =⇒
O − rθ-completeness also O − rθ-completeness.
Now, we have all the definition regarding the topic in our minds. The first classic fixed point theory was
given by S. Banach [10] known as Banach contraction principle. But as few decades passed away, it has
been generalized number of ways one of them is Geraghty-weak contraction. Geraghty principle came into
existence in 1973 when Geraghty generalized the Banach contraction principle. Later, in 2016 Roshan et
al. by using Geraghty-weak contraction proved fixed point results in the b-metric space. Also in 2021, fixed
point results in ordered partial rectangular b−metric space was proved by Asim et al. [5] with Geraghty-weak
contraction theory. Now a day, many researchers are utilizing of this mapping in their research. In this
chapter we are using Geraghty-weak contraction principle to prove fixed point results for ordered extended
rectangular b−metric space by employing suitable conditions.
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3 Main Results

Definition 3.1. Let λ : [0,∞)→ [0, 1
θ ) (θ : U×U → [1,∞)) which satisfy the given condition for un ∈ [0,∞),

any sequence:

lim
n→∞

supλ(un) =
1

θ
=⇒ lim

n→∞
(un) = 0.

The collection of such functions of λ is denoted by Λ.

Definition 3.2. Suppose (U, rθ,�) is an ordered extended rectangular b−metric space. Let T be a self-
mapping, is called Geraghty-weak contraction if ∃ λ ∈ Λ we have u � v ∀ u, v ∈ U) such that

(3.1) rθ(T (u, T (v))) ≤ λ(rθ(u, v))M(rθ(u, v)),

and

M(rθ(u, v)) = max

{
(rθ(u, v)),

rθ(u, T (u))rθ(v, T (v))

1 + rθ(T (u), T (v))
,
rθ(u, T (u))rθ(v, T (v))

1 + rθ(u, v)
,

rθ(u, T (u))rθ(u, T (v))

1 + rθ(u, T (v)) + rθ(v, T (u))

}
.

Theorem 3.1. Let (U, rθ,�) be an ordered extended rectangular b-metric space and T : U → U an increasing
mapping. Suppose these conditions holds:

(i) there exists an u0 ∈ U such that u0 � T (u0),
(ii) T is Geraghty-weak contraction,

(iii) (U, rθ,�) is O − rθ-complete,
(iv) either

(a) T is O − rθ-continuous or
(b) (U, rθ,�) have the ICC-property.

Then we assure that T has a fixed point.

Proof. Let u0 ∈ U such that u0 � T (u0). As we know the mapping T is an increasing hence, we can construct
an increasing sequence {un}, then we have for all n ∈ N0

u1 = T (u0), u2 = T (u1), u3 = T (u2), · · · , un+1 = T (un).

If we have rθ(un, un+1) = 0 for some n ∈ N0, then we can say that {un} is a fixed point of T and we
get our required result. Now, we have to suppose that rθ(un, un+1) > 0 for all n ∈ N0. We assert that
lim
n→∞

rθ(un, un+1) = 0. By placing u = un−1 with v = un in (3.1), we have result

rθ(un, un+1) = rθ(T (un−1), T (un))(3.2)

≤ λ(rθ(un−1, un))M(rθ(un−1, un))

<
1

θ
M(rθ(un−1, un)) ≤M(rθ(un−1, un))

and

M(rθ(un−1, un)) = max

{
rθ(un−1, un),

rθ(un−1, T (un−1))rθ(un, T (un))

1 + rθ(T (un−1), T (un))
,

rθ(un−1, T (un−1))rθ(un, T (un))

1 + rθ(un−1, un)
,

rθ(un−1, T (un−1))rθ(un−1, T (un))

1 + rθ(un−1, T (un)) + rθ(un, T (un−1))

}

= max

{
rθ(un−1, un),

rθ(un−1, un)rθ(un, un+1)

1 + rθ(un, un+1)
,

rθ(un−1, un)rθ(un, un+1)

1 + rθ(un−1, un)
,

rθ(un−1, un)rθ(un−1, un+1)

1 + rθ(un−1, un+1) + rθ(un, un)

}
≤ max{rθ(un−1, un), rθ(un−1, un), rθ(un, un+1), rθ(un−1, un)}
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= max{rθ(un−1, un), rθ(un, un+1)}.
Now suppose that, max{rθ(un−1, un), rθ(un, un+1)} = rθ(un, un+1), by using (3.2) we get,

rθ(un, un+1) <
1

θ
M(rθ(un−1, un)) ≤ rθ(un, un+1).

which is a contradiction. Hence, max{rθ(un, un+1, rθ(un, un+1)} = rθ(un−1, un). Therefore, by using (3.2)
we have,

(3.3) rθ(un, un+1) < rθ(un−1, un).

Thus {rθ(un, un+1)} is the decreasing sequence of non-negative real numbers. Hence, there must exists b ≥ 0
such that

lim
n→∞

rθ(un, un+1) = b.

Assume that b > 0. Then from (3.2), we get

lim
n→∞

rθ(un, un+1) ≤ lim
n→∞

[λ(rθ(un−1, un))M(rθ(un−1, un)].

By the definition of λ we get b < 1
θ b, a contraction. Thus,

(3.4) lim
n→∞

rθ(un, un+1) = 0.

Now, by taking u = un−1 with that we take v = un+1 in (3.1), we get

rθ(un, un+2) = rθ(T (un−1), T (un+1)) ≤ λ(rθ(un−1, un+1)M(rθ(un−1, un+1))(3.5)

<
1

θ
M(rθ(un−1, un+1)) ≤M(rθ(un−1, un+1)),

where,

M(rθ(un−1, un+1)) = max

{
rθ(un−1, un+1),

rθ(un−1, T (un−1))rθ(un+1, T (un+1))

1 + rθ(T (un−1), T (un+1))
,

rθ(un−1, T (un−1))rθ(un+1, T (un+1))

1 + rθ(un−1, un+1)
,

rθ(un−1, T (un−1))rθ(un−1, T (un+1))

1 + rθ(un−1, T (un+1)) + rθ(un+1, T (un−1))

}

= max

{
rθ(un−1, un+1),

rθ(un−1, un)rθ(un+1, un+2)

1 + rθ(un, un+2)
,

rθ(un−1, un)rθ(un+1, un+2)

1 + rθ(un−1, un+1)
,

rθ(un−1, un)rθ(un−1, un+2)

1 + rθ(un−1, un+2) + rθ(un+1, un)

}
≤ max

{
rθ(un−1, un+1), [rθ(un−1, un)rθ(un+1, un+2)]

[rθ(un−1, un)rθ(un+1, un+2)], rθ(un−1, un)
}
.

Using (3.3) we get,

M(rθ(un−1, un+1)) ≤ max{rθ(un−1, un+1), rθ(un−1, un), [rθ(un−1, un)]2}.
First of all, let us suppose that

max{rθ(un−1, un+1), rθ(un−1, un), [rθ(un−1, un)]2} = rθ(un−1, un)or[rθ(un−1, un)]2.

As lim
n→∞

rθ(un−1, un) = 0, by using (3.5), we get

lim
n→∞

rθ(un, un+2) = 0.

If the equation max{rθ(un−1, un+1), rθ(un−1, un), [rθ(un−1, un)]2} = rθ(un−1, un+1) is true, by using (3.5),
we get

rθ(un, un+2) < rθ(un−1, un+1).

Thus {rθ(un, un+2)} is a decreasing sequence of non-negative real numbers. Hence, there must exists b ≥ 0
such that

lim
n→∞

rθ(un, un+2) = b.
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Let us assume that b > 0. Then from (3.5), we get

lim
n→∞

rθ(un, un+2) ≤ lim
n→∞

λ(rθ(un−1, un+1))M(rθ(un−1, un+1)).

By using the definition of λ we get b < 1
θ b, a contradiction. Thus, we obtain

(3.6) lim
n→∞

rθ(un, un+2) = 0.

Now, we have to show that un 6= um for each n = m. On contrary we suppose that, un = um for some
n > m, then we get un+1 = T (un) = T (um) = xm+1. Then, from (3.2) we have

rθ(um, um+1) = rθ(un, un+1) = rθ(T (un−1, T (un)))

≤ λ(rθ(un−1, un))M(rθ(un−1, un))

<
1

θ
M(rθ(un−1, un)) ≤M(rθ(un−1, un))

≤ max{rθ(un−1, un)rθ(un, un+1)}.
Therefore, we get

max{rθ(un−1, un), rθ(un, un+1)} = rθ(un, un+1),

so that
rθ(um, um+1) < rθ(un, un+1),

which is a contradiction. Suppose

max{rθ(un−1, un), rθ(un, un+1)} = rθ(un−1, un),

we have

rθ(um, um+1) = rθ(un, un+1) < rθ(un−1, un) < rθ(un−2, un−1) < · · · < rθ(um, um+1)),

which is a contradiction. So, we can take un 6= um ∀ n 6= m. Now its turn to prove that {un} is O − rθ-
Cauchy sequence in (U, rθ,�). On contrary suppose that, {un} is not O − rθ-Cauchy sequence. So there
must exist ε > 0 and also two subsequences {nk} and {mk} such that {nk} is the index which is smallest for
that

(3.7) {nk} > {mk} > k and rθ(umk , unk) ≥ ε

2
,

which implies that

(3.8) rθ(umk , unk−1
) <

ε

2
.

Now, on using rectangular inequality, we have

(3.9)
ε

2
≤ rθ(umk , unk) ≤ θ(rθ(umk , unk−1

) + θ(rθ(unk−1
, unk+1

)) + θ(rθ(unk+1
, unk).

Now, using (3.4) (3.6) (3.8) and also taking limit as k →∞, we have

(3.10)
ε

2
≤ lim
k→∞

sup rθ(umk , unk) ≤ θ
( ε

2

)
.

On using (3.1) and definition of rθ, we have

lim
k→∞

rθ(umk , unk) ≤ lim
k→∞

θ(rθ(xmk+1
, umk)) + lim

k→∞
θ(rθ(xmk+1

, unk+1
)(3.11)

+ lim
k→∞

θ(rθ(unk+1
, unk),

≤ θ lim
k→∞

λ(rθ(umk , unk))M(rθ(umk , unk)),

where,

M(rθ(umk , unk)) = max

{
rθ(umk , unk),

rθ(umk , T (umk))rθ(unk , T (unk))

1 + rθ(T (umk), T (unk))
,(3.12)

rθ(umk , T (umk))rθ(unk , T (unk))

1 + rθ(umk , unk)
,

rθ(umk , T (umk))rθ(umk , T (unk))

1 + rθ(umk , T (unk)) + rθ(unk , T (umk))

}
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= max

{
rθ(umk , unk),

rθ(umk , umk+1
)rθ(unk , unk+1

)

1 + rθ(xmk+1
, unk+1

)
,

rθ(umk , umk+1
)rθ(unk , unk+1

)

1 + rθ(umk , unk)
,

rθ(umk , umk+1
)rθ(umk , unk+1

)

1 + rθ(umk , unk+1
) + rθ(unk , umk+1

)

}
.

Taking the limit k →∞ and using (3.12), we have

lim
n→∞

supM(rθ(umk , unk)) = lim
n,m→∞

sup(rθ(umk , unk)).

By using (3.11), we get

lim
n→∞

sup rθ(umk , unk) ≤ θ lim
n,m→∞

supλ(rθ(umk , unk)) lim
n,m→∞

sup(rθ(umk , unk)).

As we have supposed that lim
k→∞

sup rθ(umk , unk) 6= 0, then from above inequality, we have

1

θ
≤ lim
k→∞

supλrθ(umk , unk).

Since λ ∈ Λ, so that lim
n,m→∞

rθ(umk , unk) = 0, which is in general a contradiction. Hence, we assure that

{un} is O − rθ-Cauchy sequence in (U, rθ,�). As (U, rθ,�) is O − rθ-complete so there must exist u ∈ U
such that un ↑ u and also,

lim
n,m→∞

rθ(un, um) = 0.

Now coming to last condition, first of all suppose that T is O− rθ- continuous then we will show that x is a
fixed point of T .

x = lim
n→∞

un+1 = lim
n→∞

T (un) = T ( lim
n→∞

un) = T (u).

Now, we take second condition, i.e., (U, rθ,�) follows ICC-property. So there must exist a subsequence of
{un} which is {unk} such that {unk} ≺� u ∀ k ∈ N. First we take {unk � x ∀ k ∈ N (proof for both case
are alike). So by using (3.1), we get

lim
k→∞

rθ(unk+1
, T (u)) = lim

k→∞
rθ(T (unk), T (u))

≤ lim
k→∞

λ(rθ((unk), u)) lim
k→∞

M(rθ((unk), u)

where

lim
k→∞

M(rθ((unk), u) = lim
k→∞

(
max

{
rθ((unk), u),

rθ(unk , T (unk)), rθ(u, T (u))

1 + rθ(T (unk), T (u))
,

rθ(unk , T (unk)), rθ(u, T (u))

1 + rθ(unk , u)
,

rθ(unk , T (unk)), rθ(unk , T (u))

1 + rθ(unk , T (u)) + rθ(u, T (unk))

})

= lim
k→∞

(
max

{
rθ((unk), u),

rθ(unk , unk+1
), rθ(u, T (u))

1 + rθ(unk+1
, T (u))

,

rθ(unk , unk+1
), rθ(u, T (u))

1 + rθ(unk , u)
,

rθ(unk , unk+1
), rθ(unk , T (u))

1 + rθ(unk , T (u)) + rθ(u, unk+1
)

})
= lim

k→∞
rθ((unk), u).

Therefore
lim
k→∞

rθ((unk), u.) = lim
k→∞

rθ(unk+1
, T (u)) = 0.
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We assert that the terms unk and unk+1
∀ k ∈ N are distinct from u and T (u) both. By definition ,we have

(3.13) rθ(u, T (u)) ≤ θ[rθ(u, unk) + rθ(unk , unk+1
) + rθ(unk+1

, T (u))].

By taking k → ∞ and using (3.4) and (3.13), we have rθ(u, T (u)) = 0. Hence we can say that T (u) = u.
So, u is a fixed point of T .

Example 3.1. Consider U = (−1, 0]. Define rθ : U × U → R+ by (for all u, v ∈ U):

rθ(u, v) = |u− v|2.
Notice that, every increasing Cauchy sequence is convergent in U . Therefore, (U, rθ,�) is an O-complete
rθ−metric space with coefficient θ(u, v) = 2 for all u, v ∈ U .

Now, we define an ordered relation on U as under:

u, v ∈ U, u � v ⇔ u = v or

(
u, v ∈ {0} ∪

{
−1

n
: n = 2, 3, · · ·

}
and u ≤ v

)
,

where ≤ is the usual order. Define the mappings T : U → U as follows:

Tu =


0, if u = 0
−1
2n , if u = −1/n, n = 2, 3, · · ·
−0.5, otherwise

.

Observe that, T is increasing and U has the ICC-property. We distinguish two cases:
Case 1. Taking u = −1/n, (wherein n = 3, 4, · · · ) and v = 0. Then, from (3.1), we have

(3.14) rθ(Tu, Tv) =

∣∣∣∣−1

2n
− 0

∣∣∣∣2 =
1

4

∣∣∣∣−1

n
− 0

∣∣∣∣2 =
1

4
rθ(u, v).

Case 2. Taking u = −1/n, v = −1/m m > n ≥ 3. Then, we have

(3.15) rθ(Tu, Tv) =

∣∣∣∣−1

2n
− −1

2m

∣∣∣∣2 =
1

4

∣∣∣∣−1

n
− −1

m

∣∣∣∣2 =
1

4
rθ(u, v).

If u = v, then condition (3.1) holds trivially. Thus, all the conditions of Theorems 3.1 are satisfied and the
mapping T has a unique fixed point (namely u = 0).

Example 3.2. Let U = {1, 2, 3, 4, 5} be equipped with the order relation � given by

�= {(1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (4, 1), (4, 2), (4, 3), (4, 5), (1, 3), (2, 3), (5, 3)}
and let rθ : U × U → R+ is defined by:

rθ(u, u) = 0, for all u ∈ U ;

rθ(u, v) = rθ(v, u), for all u, v ∈ U ;

rθ(1, 3) = rθ(1, 5) = rθ(2, 3) = rθ(3, 5) = 3t;

rθ(1, 4) = rθ(2, 4) = rθ(2, 5) = rθ(3, 4) = rθ(4, 5) = 4t;

rθ(1, 2) = 5t;

where 0 < t < − ln(3/4), that is, e−t > 3/4. Therefore, (U, rθ,�) is an O-complete rθ−metric space with
coefficient θ(u, v) = 3 for all u, v ∈ U . Consider a mapping T : U → U defined by:

T =

(
1 2 3 4 5
3 3 3 1 3

)
.

It is easy to check that all the conditions of Theorem 3.1 are fulfilled with λ(u) = e−u for each u > 0 and
λ(0) ∈ [0, 1/3). In particular, by choosing u, v ∈ {1, 2, 3, 5} such that u � v, then Tu = Tv = 3 implies the
condition (3.1) is trivially holds. Now, if we take u = 4 and v ∈ {1, 2, 3, 5}, such that u � v, we obtain
Tu = 1 and Tv = 3. Then by (3.1), we have

rθ(Tu, Tv) = rθ(1, 3) = 3t =
3

4
4t < e−t.4t

= λ(t)d(x, y) ≤ λ
(
rθ(x, y)

)
M(x, y).

It follows that T has a unique fixed point (which is x = 3).
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If we replace O-completeness of U and O-continuity of T in Theorem 3.1, then it remains a new version
as given follows:

Corollary 3.1. Let (U, rθ,�) be an ordered extended rectangular b−metric space and T : U → U be an
increasing mapping. Suppose these conditions holds:

1. T follow Geraghty-weak contraction,
2. (U, rθ,�) is complete,
3. T is continuous.

Then we assure that T has a fixed point.

If we replace Geraghty-weak-contraction by contraction condition in Theorem 3.1, then it remains a new
version of the Theorem 3.1 due to Asim et al. [4].

Corollary 3.2. Let (U, rθ,�) be an ordered extended rectangular b−metric space and T : U → U be an
increasing mapping. Suppose these conditions holds:

1. there exists an u0 ∈ U such that u0 � T (u0),
2. If u � v ∀u, v ∈ U, then we get

rθ(T (u), T (v)) ≤ LM(rθ(u, v)),

where, L ∈ [0,∞).
3. (U, rθ,�) is O − rθ-complete,
4. either

(a) T is O − rθ-continuous or follow
(b) (U, rθ,�) have the ICC-property.

Then we assure that T has a fixed point.

Corollary 3.3. Let (U, rθ) be a complete extended rectangular b−metric space and T be a continuous and
self-mapping. Also suppose T follows the property of Geraghty-weak contraction. Then we assure that T has
a fixed point.

Proposition 3.1. ([5]). Let (U, rθ,�) be an ordered extended rectangular b−metric space and T : U → U is
a Geraghty-weak contraction. If u ≺� v then u = v ∀ u, v ∈ Fix(f).

Definition 3.3. ([20]). Suppose (U,�) is an ordered set and let T be an self-mapping. Then we define

UT = {u ∈ U : u ≺� T (u)}.
Then (U,�) is said to be T− directed if there exists a ∈ UT such that u ≺� a ≺� v ∀u, v ∈ U.

Theorem 3.2. If with all the conditions of Theorem 3.1 we add that (U,�) is T−directed. Then we assure
that T has a unique fixed point.

Proof. Let us suppose that u and v be two different points of T. Also as (U,�) is T−directed then there
must exists a ∈ UT such that u ≺� a ≺� v. If we take a = u or a = v then by above preposition we have
u = v, which is a contradiction. Hence, we have to suppose that u 6= a, v 6= a. As we know a ∈ UT then we
get a ≺� T (a). By putting a = a0 where a0 � T (a0) we define a sequence {an} as follow

an+1 = T (an), n ∈ N0.

As we know that T is an increasing mapping and u ≺� a ≺� v, we get

u ≺� an ≺� v, n ∈ N0.

If we put an = an+1 for any n ∈ N0, then we have, an is the fixed point of T and by relation and above
preposition we get u = an = v, which is a contradiction. So, we can’t say an = an+1 for all n ∈ N0. Now, by
proceeding the proof of Theorem 3.1 we can prove that

(3.16) lim
n,m→∞

rθ(an, am) = 0.

Using (3.1), we get

rθ(u, an) = rθ(T (u), T (un+1)) ≤ λ(rθ(u, an−1))M(rθ(u, an−1))(3.17)

<
1

θ
M(rθ(u, an−1)) ≤ (rθ(u, an−1),
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and

M(rθ(u, an−1)) = max

{
(rθ(u, an−1)),

rθ(u, T (u))rθ(an−1, T (an−1))

1 + rθ(T (u), T (an−1))
,

rθ(u, T (u))rθ(an−1, T (an−1))

1 + rθ(u, an−1)
,

rθ(u, T (u))rθ(u, T (an−1))

1 + rθ(u, T (an−1)) + rθ(an−1, T (u))

}

= max

{
rθ(u, an−1),

rθ(an−1, (an))

1 + rθ(u, (an))
,

rθ(an−1, an)

1 + rθ(u, an−1)
,

rθ(u, an)

1 + rθ(u, an) + rθ(an−1, u)

}
= rθ(u, an−1).

As we know that {rθ(u, an)} is the decreasing sequence of positive real numbers. Then we choose b ≥ 0 such
that

lim
n→∞

rθ(u, an) = b.

Then suppose that b > 0. Then from (3.17), we get

lim
n→∞

rθ(u, an) ≤ lim
n→∞

λ(rθ(u, an−1)rθ(u, un−1).

By the definition of λ we get r < 1
θ r, which is a contradiction. Hence

(3.18) lim
n→∞

rθ(u, an) = 0.

Similarly, we can prove that

(3.19) lim
n→∞

rθ(v, an) = 0.

Now, using rectangle inequality, we have

rθ(u, v) ≤ θ[rθ(u, an) + rθ(an, an+1) + rθ(an+1, v)].

At n → ∞ and using (3.16) (3.18) (3.19), we get rθ(u, v) = 0 and we can say that u = v, which is a
contradiction. Hence, proof is complete.

The following example shows the importance of a T -directed condition in the Theorem 3.2 for the
uniqueness of a fixed point.

Example 3.3. In Example 3.2, we take �= {(1, 1), (2, 2), (3, 3), (4, 4), (5, 5)} and a mapping T : U → U
defined by:

T =

(
1 2 3 4 5
1 3 3 1 3

)
.

By choosing u, v ∈ U such that u � v and Tu = Tv = 1 or 3. Thus, the contraction condition (3.1) is trivially
hold. Therefore, all the conditions of Theorem 3.1 are satisfied except that (U,�) is not T−directed. Observe
that the mapping T has two fixed points namely u = 1 and u = 3.

Theorem 3.3. In Theorems 3.1 and 3.2, if we replace some conditions namely: increasing mapping
T to decreasing(or monotone) mapping, O−complete to O−complete(or O-complete), O−continuos to
O−continuous(or O-continuous) and ICC-property to DCC-property(or MCC-property) also replace u0 �
T (u0) by u0 � T (u0)(or u0 ≺� T (u0)). Then the result of both the remains true.
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4 Conclusion
We use geraghty-weak contraction in ordered extended rectangular b-metric space to get fixed point results,
with that we have given examples to exhibit the utility of the result.

Authors Contributions
Both author contributed equally to this work. The final draft was approved by both authors. Acknowl-
edgement.
We are very greatful to the referee for their valuable suggestions that helped bring the paper to its present
form.

References
[1] A. Alam, A. R. Khan and M. Imdad, Some coincidence theorems for generalized nonlinear contractions

in ordered metric spaces with applications, Fixed Point Theory Appl., 216 (2014), 1687-1812.
[2] A. Alam, Q. H. Khan and M. Imdad, Enriching the recent coincidence theorems for nonlinear

contractions in ordered metric spaces, Fixed Point Theory Appl., 141 (2015), 1-14.
[3] A. Alam and M. Imdad, Comparable linear contractions in ordered metric spaces, Fixed Point Theory,

18(2) (2017), 415-432.
[4] M. Asim, M. Imdad and S.Radenovic, Fixed point results in extended rectangular b−metric spaces with

an application, J. Math. Anal. Appl., 81(2) (2019), 43-50.
[5] M. Asim, M. Imdad and S. Shukla, Fixed point results for Geraghty- weak contractions in ordered

partial rectangular b−metric spaces, Afr. Mat., 32 (2021), 811-827.
[6] Q. H. Ansari, Metric Spaces Including Fixed Point Theory and Set-Valued Maps, Narosa Publication

House Pvt. Ltd, 2010.
[7] A. Branciari, A fixed point theorem of Banach-Caccioppoli type on a class of generalized metric spaces,

Publ. Math., 57 (2000), 31-37.
[8] D. W. Boyd and J. S. W. Wong, On nonlinear contractions, Proc. Am. Math. Soc., 20 (1969), 458-464.
[9] I. A. Bakhtin, The contraction mapping principle in almost metric spaces, Funct. Anal., Gos Ped. Inst.

Unianowsk., 30 (1989), 26-37.
[10] S. Banach, Sur les operations dans les ensembles abstraits et leur application aux equations integrals,

Fund. Math., 3 (1922), 133-181.
[11] L. Ćirić, N. Cakic, M. Rajovic and J. S. Ume, Monotone generalized nonlinear contractions in partially

ordered metric spaces, Fixed Point Theory Appl., 2008, 131294, (2008).
[12] S. Czerwik, Contraction mappings in b−metric spaces, Acta Mathematica et Informatica Universitatis

Ostraviensis, 1(1) (1993), 5-11.
[13] M. R. Frechet, Sur quelques points du calcul fonctionnel, Rendic. Circ. Mat. Palermo., 22 (1906), 1-74.
[14] M. Geraghty, On contractive mappings. Proc. Am. Math. Soc., 40 (1973), 604-608.
[15] R. George, S. Radeovic, K. P. Reshma and S. Shukla, Rectangular b−metric spaces and contraction

principles, J. Nonlinear Sci. Appl., 8 (2008), 1005-1013.
[16] G. Jungck, Commuting maps and fixed points, Am. Math. Mon., 83(4) (1976), 261-263.
[17] G. Jungck, Compatible mappings and common fixed points, Int. J. Math. Math. Sci., 9(4) (1986),

771-779.
[18] G. Jungck, Common fixed points for noncontinuous nonself maps on non-metric spaces, Far East J.

Math. Sci., 4 (1996), 199-215.
[19] N. Jotic, Some fixed point theorems in metric spaces, Indian J. Pure Appl. Math., 26 (1995), 947-952.
[20] M. Jleli, V.C. Rajic, B. Samet and C. Vetro, Fixed point theorems on ordered metric spaces and

applications to nonlinear elastic beam equations, J. Fixed Point Theory Appl., 12 (2012), 175192.
[21] T. Kamran, M. Samreen and Q. U. Ain, A Generalization of b-metric Space and Some Fixed Point

Theorems, Mathematics, 5(2) (2017), 19.
[22] K. Joshi, Common Fixed-point theorems for generalized multi-valued contractions in b−metric and

dislocated b−metric spaces, Jnanabha, 52(2) (2022), 48-57.
[23] S. Lipschutz, Schaum’s Outlines of Theory and Problems of Set Theory and Related Topics, McGraw-

Hill, New York, 1964.
[24] S. G. Matthews, Partial metric topology, Annals of the New York Academy of Science, 728 (1994),

183-197.

104



[25] D. O’Regan and A. Petrusel, Fixed point theorems for generalized contractions in ordered metric spaces,
J. Math. Anal. Appl., 341(2) (2008), 1241-1252.

[26] V. Parvaneh, F. Golkarmanesh and R. George, Fixed points of Wardowski-Ciric-Presic type contractive
mappings in a partial rectangular b-metric space, J. Math. Anal., 8(1) (2017), 183-201.

[27] K. P. R. Sastry and I. S. R. Murthy, Common fixed points of two partially commuting tangential
selfmaps on a metric space, J. Math. Anal. Appl., 250(2) (2000), 731-734.

[28] S. Sessa, On a week commutativity cindition of mappings in fixed point considerations, Publ. Inst.
Math.(Belgr.), 32 (1982), 149-153.

[29] S.Shukla, Partial b-metric Spaces and Fixed Point Theorems, Mediterr. J. Math, 11(2) (2014), 703-711.
[30] S. Shukla, Partial rectangular metric spaces and fixed point theorems, Sci. World J., 756298 (2014),

1-8.
[31] D. K. Sharma and J. Tiwari, Fixed point theorems for three functions on contractions and expansive

mapping in rectangular b−metric spaces, Jnanabha 21(2) (2021), 219-227.
[32] M. Turinici, Abstract comparison principles and multivariable Gronwall-Ballman inequalities, J. Math.

Anal. Appl., 117(1) (1986), 100-127.

105


