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Professor G.C. Sharma is well recognized leading mathematician well associated with VIJÑĀNA
PARISHAD OF INDIA since 1990. He was honored by DISTINGUISHED SERVICE AWARD of VPI
in 1996 during 6th Annual Conference of VPI held at Bundelkhand Institute of Engineering and Technology,
Jhansi, Uttar Pradesh, India [December 26-28, 1996]. Professor G.C. Sharma has credit to grace the chair of
President of VPI [April 2008- March 2011]. He was elected as Honorary Fellow of VPI (FVPI) in 2007 during
12th Annual Conference of VPI held at J.N.V. University, Jodhpur, Rajasthan, India [October 25-27,2007].
Professor Sharma was also honored by Highest Prestigius VPI Award “LIFE-LONG ACHIEVEMENT
AWARD” during 20th Annual Conference of VPI held at Manipal University, Jaipur, Rajasthan, India
[November 24-26, 2017]. Professor Sharma was recently honored by “VPI GOLDEN JUBILEE AWARD”
during 5th International Conference and Goden Jubilee Celebrations of VPI held at J. N. U., New Delhi,
India [June 16-18,2022]. Professor G. C. Sharma is also active member on Editorial Board of JÑĀNĀBHA .

All members of JÑĀNĀBHA family feel immense pleasure with heartiest congratulations and best wishes
to publish current issue of Jñānābha , Vol.53(1) (June 2023)

(Dedicated to Professor G. C. Sharma on His 85thBirth Anniversary Celebrations).

Professor G. C. Sharma: A Bibliographic Skatch
Professor G. C. Sharma was born on July 15, 1938 at Chindauli, District Mathura. His father Late Bhavani
Shankar Sharma was a freedom fighter. Professor Sharma completed his graduation from K. R. College,
Mathura and Post-Graduation in Mathematics from Agra College, Agra, Uttar Pradesh. As a student
he had a brilliant record and secured throughout Ist division. He started his teaching career as Lecturer in
Mathematics from St John’s College, Agra in 1961 and after one year joined Agra College, Agra. He received
doctorate degree in 1972 from Agra University, Agra. He was selected in 1981 as Reader in the Department
of Mathematics, Institute of Basic Sciences, Agra University, Agra and became Professor in 1985.

Professor Sharma held the following academic posts (i) Ex Pro- Vice Chancellor, Dr. B. R. Ambedkar
University, Agra (ii) Former Professor and Head, Department of Mathematics and Computer Science,
Institute of Basic Science, Agra (iii) Ex Principal, Agra College, Agra, and (iv) Ex Director of-

o Institute of Basic Science o Institute of Management
o Institute of Vocational Education o Institute of Engineering and Technology

at one time of the Institutes of Khandari Campus, Dr B.R. Ambedkar University, Agra, Uttar Pradesh,
India.

In addition to teaching experience of 38 years in Degree, P.G. and M.Phil., Professor Sharma is an active
researcher and is on the frontline of Bio-mathematicians and Applied OR Specialists in India and abroad.
Research Experience: more than 50 years

• Guided 72 candidates for Ph.D. degree in Mathematics, Computer Science and Management.
• Published more than 220 research papers
• Conducted 7 Research Projects of CSIR and UGC
• Author of 24 Textbooks (from High school to P.G. classes) and two reference texts
• Organized 7 National/ International Conferences and 3 workshops
• Professor G. C. Sharma popularized blood flow models and their applications in medical sciences,

queueing models of complex machining systems, and other topics by imparting plenary lectures and
keynote addresses in more than 150 National/International Conferences/Seminars/symposium. His
scientific contributions in the following areas are worth-noting:
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– Development of fluid dynamic models in different frameworks and their applications.
– Study of blood concentration affecting erythrocyte sedimentation.
– Mathematical modeling of conjugate and its localization in cancer chemotherapy.
– Studies on population dynamic of infectious diseases and population genetics.
– Development of diffusion approximations models for manufacturing systems.
– Traffic models with customers’ behavior and service interruption.
– Inventory system having stock dependent demand rates under an inflationary environment.

• Life Member of following Societies
– Indian Science Congress
– Indian Mathematical Society
– OR Society of India (Ex Vice President)
– Ramanujan Mathematical Society
– Vijñāna Parishad of India (Ex President)
– Bharat Ganita Parishad (Ex Vice President)
– Global Society of Mathematical & Allied Sciences (Ex. President)
– National Academy of Sciences, India
– Indian Society of Biomechanics
– Indian Society for Industrial and Applicable Mathematics (Founder member)

• He is on the Editorial Board of various National and International Journals and served as Reviewer of
Research papers of various National & International Journals and research projects of CSIR and DST.

• Professor Sharma has visited many countries as Visiting Faculty and delivered Invited, plenary and
Keynote Lectures in the conferences/seminars. He chaired many technical sessions and delivered
lectures in educational Institute of repute in U.S.A. (Visiting faculty in Maryland University), Canada,
Germany, U.K., Netherlands, France, Belgium, Taiwan, Italy, Mauritius, Thailand, etc.

• He was member of various Committees in the University namely, Research Degree Committees,
Selection Committees, Advisory Boards and Inspection Committees.

• Administrative Experience
– Attended more than a dozen, Summers and Winter Schools.
– Faculty Member in Summer School held at Agra College, Agra.
– Member of Mathematical Section, Indian Science Congress.
– Expert in U.G.C. for various projects (Minor) in 1984-85.
– External expert for selection committees.
– External member for faculty of science in various University.
– Member of panel for affiliation in various University.
– Member of Court in the University.
– Member of Academic Council.
– Member of Executive Council (1991-92, 92-93, 96-98)
– Member of Research Degree Committee.
– Member of committees in the University and a special invitee to college development council.
– Dean, Faculty of Science (1991-94).
– Member, Academic Advisory Committee Academic Staff College, AMU Aligarh.
– Director, Coaching Schemes of U. G. C., Govt. of India and Agra Universities.
– Organiser, Model Parliament which stood II at National Level.
– Organising Chairman, Literary Events North Zone, Universities Youth Festival 1996.
– Organising Chairman, Universities Youth Festival 1987.
– Co-ordinating Director Job Oriented Courses, Agra University.
– Director, Computer Centre; Director, University Science Instrumentation Centre (upto 1996).

In addition to his academic bright career, Professor Sharma is very popular among his students, colleagues
and fellow workers for his cordial support and personnel generosity. As a man, Professor Sharma is a great
human being, excellent teacher, an eminent researcher, perfectionist and a disciplined man.
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Abstract

Numerical investigations are performed to analyze heat and mass transfer in MHD (magnetohydro-
dynamic) nanofluid flow over a shrinking sheet in the presence of thermal radiation and chemical reaction
with Soret effect. The transport equations involve the effect of Brownian motion,Thermophoresis, viscous
dissipation, suction/injection, partial slip velocity and thermal slip. Using self suitable transformations,
the governing equations are reduced to ordinary differential equations, further these equations are solved
numerically using Runge-Kutta fourth order method with shooting technique. This study reveals that the
governing parameters, namely, magnetic field parameter, thermal radiation parameter, chemical reaction
parameter, velocity slip parameter etc., have major effects on velocity, temperature, concentration, skin
friction coefficient and Nusselt number. The study admits that concentration rises with an increase in
the Soret number. Numerical results are discussed with the assistance of graphs. The present problem
has multiple applications in polymer, chemical and metallurgical industries such as formation of metallic
and glass sheets.
2020 Mathematical Sciences Classification : 76D05 ,76D10, 76S05, 76W05, 80A21, 80A32.

Keywords: Nanofluid; MHD flow; Thermal radiation; Viscous dissipation; Chemical reaction; Slip and
Convective boundary conditions; Soret effect.

1 Introduction
Nanofluid is mix suspension of nanometer sized solid particle (Cu, Al, Ag, etc) in base fluid such as

water, oil and ethylene glycol, which is first introduced by Choi [6]. Nanofluids have different properties
that make them potentially useful for many applications in heat transfer including microelectronics, fuel
cells, cancer therapy, domestic refrigerator, pharmaceutical processes and hybrid-power engines. Nanofluids
also have some biomedical applications, like in antibacterial and drug delivery. It also has biotechnological
applications like nano fibers, nanoparticles, nanowires and nanostructures. Crane [5] initially examined fluid
flow past a stretching sheet. An investigation is carried out by Makinde and Aziz [17] on ”boundary layer flow
of a nanofluid past a stretching sheet with a convective boundary condition”. Electric field effect on nanofluid
in an enclosure with sinusoidal wall under convective heat transfer was investigated by Sheikholeslami et
al. [33]. Various researchers [3, 9, 15, 16, 24, 28] have presented the study of fluid moving over a nonlinear
stretching sheet. A non-homogeneous model was presented by Buongiorno [4] to understand the convective
transport phenomena in nanofluid. Brownian motion and thermophoresis are found most important in these
studied. To analyze the natural convection boundary-layer flow of a nanofluid past a vertical plate, a revised
model was presented by Kuznetsov and Nield [14].

The study of magnetic field effect has various impotrant applications in engineering and industry, for
instance streamlined expulsion of plastic sheet, glass blowing, metal turning and condensation process of
metallic plate in a cooling bath. Magnetic field plays an important role in geophysics, for example controlling
heat transfer of different nanofluids and paper production also. Exact solution for MHD flow equation of
fluid over a shrinking sheet was given by Fang and Zhang [11]. Prasad et al. [20] studied the influence of
temperature-dependent fluid properties on the hydro-magnetic flow and heat transfer over a stretching sheet.
Free convection flow of magnetohydrodynamics (MHD) nanofluid over an infinite flat plate was studied by
Hamad et al. [13]. The MHD slip flow of Maxwell nanofluid over an exponentially stretching plane was
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analyzed by Reddy et al. [26]. Sheikholeslami and Rashidi [32], Sheikholeslami and Ganji [31] studied
magnetic field effect on Ferro fluids flow and heat transfer. Daniel et al. [8] carried out an investigation on
the electrical MHD nanofluid flow over a nonlinear stretching/shrinking sheet. ”Finite element simulation of
unsteady MHD transport phenomena on a stretching sheet in a rotating nanofluid” was discussed by Rana
et al. [27]. At present, much attention has been paid to working in the presence of magnetic field effect.

When high temperature are encountered, the study of radiation heat transfer plays an important role
in the field of equipment designing [30]. At extremely high-temperature levels, thermal radiation plays
an important role in operating the devices in the space technology. Hady et al. [12] and Pal et al. [19]
investigated viscous flow of a radiative nanofluid and heat transfer over a nonlinearly stretching/shrinking
sheet. In-compressible water based nanofluid flow in the presence of transverse magnetic field with thermal
radiation and buoyancy effect was investigated by Rashidi et al. [25]. In recent years, combined heat and
mass transfer problem with chemical reaction received significant attention in many processes of interst in
Engineering like as drying, evaporation at the surface of a water body, flow in a desert cooler and energy
transfer in a wet cooling tower. Sandeep and Sulochana [34] investigated MHD flow of nanofluid over
a permeable stretching/shrinking sheet with suction/injection. Combined effect of chemical reaction and
magnetic field over non-linear stretching sheet was investigated by Awang [2] using Adomain decomposition
method (ADM ). Anwar et al. [1] studied heat generation/absorption effect on MHD flow of a nanofluid over
porous stretching sheet with chemical reaction. Effect of chemical reaction and thermal radiation on MHD
nanofluid flow over non-linear stretching sheet was discussed by Ramya et al. [22].

It is assumed that the velocity of the fluid particles reltive to the solid boundary is zero but the
characteristics are different in case of micro and nano-scale fluid flow. Navier [18] first discussed the
importance of slip boundary condition, which state that fluid velocity is proportional to shear stress at
boundary. MHD nanofluid boundary layer slip flow over vertical stretching sheet with non-uniform heat
generation/absorption was investigated by Das et al. [7]. MHD viscous nanofluid flow and heat transfer over
a non-linearly slippery stretching sheet with heat generation/absorption and suction/injection was studied
by Ramya et al. [23].

In a system with flowing fluid , dissimilar particles react in different ways to alter temperature, then
this thermodynamics trend/phenomena is called the Soret effect. The mass flux can be generated both by
the temperature and concentration gradients. Mass fluxes generated by temperature gradients are called the
Soret effect. This effect is very important in the operation of solar ponds, the transportation across biological
membranes induced by small thermal gradients in living creatures and micro-structure of seas and oceans.
This effect is also useful in design and operation of dryers. The Soret effect related to the parting of isotopes
and in the combination of gases with small molecular weight (H2,He) and the average molecular weight (N2,
air) was highlighted by Eckert and Drake [10]. The impact of the Soret effect on stagnation-point flow past
a sheet in a nanofluid with non-Darcy porous medium was studied by Reddy et al. [29]. Suneetha et al. [35]
presented the Navier slip condition on time-dependent radiating nanofluid with the Soret effect.

In view of above literature survey and development of research in nanofluids, it is revealed that MHD
slip flow of radiating nanofluids through a porous media with thermal slip in the presence of chemical reaction
and Soret effect has not been studied yet, therefore our main aim in the present work is to investigate this
aforesaid problem. The governing boundary layer equations are transformed as ordinary differential equations
(ODE’s) using similarity variables which are then solved numerically using fourth order Runge-Kutta method
with shooting technique. The influence of various parameters on heat transfer characteristics and the flow
field are explored and depicted through graphs or tables.
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Nomenclature
A Unsteadiness parameter T Temperature of the nanofluid (K)
B Magnetic field strength Tw Wall temperature(K)
C Concentration of the nanofluid T∞ Ambient temperature (K)
Cfx Local skin friction coefficient Tm Mean nanofluid temperature (K)
Cr∗ Chemical reaction parameter u, v Velocity components (m/s)
C∞ Ambient Concentration v0 Suction velocity (m/s)
Cp Specific heat at constant pressure x, y Cartesian coordinates (m)
DB Brownian diffusion coefficient (kg/ms)
Dm Mass diffusivity
DT Thermophoretic diffusion coefficient (kg/msK) Greek symbols
Ec Eckert number ρ Density (kg/m3)
f Dimensionless stream function α Thermal diffusivity (m2/s)
Ha2 Magnetic field parameter κ Thermal conductivity (m2/s)

K∗ Permeability parameter µ Dynamic viscosity (kg/ms)
KT Thermal diffusion ratio φ Dimentionless concentration
K0 Permeability of the porous medium (m2) δ Thermal slip parameter
N1 Thermal slip factor (m) λ∗ Velocity slip parameter
Le Lewis number χ Shrinking parameter
L1 Velocity slip factor (m) ν Kinematic viscosity (m2/s)
Nb Brownian motion parameter σ Electric conductivity(Kg−1m−3t3A2)
Nt Thermophoresis parameter ψ Stream function
Nux Local Nusselt number η Similarity variable
Pr prandlt number θ Dimentionless temperature
Q0 Heat generation coefficient (W/m2K)
Q∗ Heat generation parameter
R Radiation parameter Subscript
S Suction parameter f Base fluid
Sr Soret number np Nanoparticle
t Time (s) ∞ Condition at infinity

2 Mathematical Formulation
We consider an unsteady, laminar, incompressible, two-dimensional boundary layer flow of an electrically

conducting nanofluid. The flow behavior is examined along nonlinear shrinking sheet under the influence
of magnetic field, nonlinear thermal radiation, chemical reaction, Soret effect and thermal slip boundary
conditions. Fig. 2.1 shows the flow configuration in which x-axis is taken along the sheet and y-axis
perpendicular to the sheet.

The sheet expands/contracts in the x-direction with a velocity uw (x, t) = axm

1−λt , where a and λ are

constants, m(≥ 1) is a power index and velocity across the wall is vw (x, t) = v0√
(1−λt)

x
(m−1)

2 . The time

dependent magnetic field of variable intensity B (x, t) is assumed to be applied upright to the sheet. Initially
the wall temperature Tw is assumed constant at the shrinking sheet. The ambiant fluid temperature T∞ is
considered less than to sheet’s temperature Tw.

Bases on the boundary layer approximation, the governing equations of momentum, thermal energy
and concentration [21] can be written as

∂u

∂x
+
∂v

∂y
= 0, (2.1)

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
= νf

∂2u

∂y2
− σ

ρf
B2u− µf

ρfK
u, (2.2)

∂T

∂t
+ u

∂T

∂x
+ v

∂T

∂y
= αf

∂2T

∂y2
− ∂qr
∂y

+ τ

[
DB

(
∂C
∂y

)(
∂T
∂y

)
+
(
DT
T∞

)(
∂T
∂y

)2
]

+
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Figure 2.1: Physical model and the coordinate system.

µf
(ρC)f

(
∂u
∂y

)2

+ Q(T−T∞)
(ρC)f

, (2.3)

∂C

∂t
+ u

∂C

∂x
+ v

∂C

∂y
= DB

∂2C

∂y2
+
DT

T∞

∂2T

∂y2
− Cr (C − C∞) +

DmKT

Tm

∂2T

∂y2
, (2.4)

Subject to the following boundary conditions:

t ≤ 0 : u = 0, v = 0, T = Tw; (2.5)

u and v are function of x and t

t > 0 : u = −χuw (x, t) + us, v = −vw (x, t) , T = Tw + Ts,DB
∂C

∂y
+
DT

T∞

∂T

∂y
= 0

at y = 0;

u→ 0, v → 0, T → T∞, C → C∞ as y →∞, (2.6)

here τ =
(ρCp)np
(ρCp)f

is ratio of nanoparticle heat capacity and the base fluid heat capacity, αf =
κf

(ρCp)f
is thermal

diffusivity of the fluid, K = K0

(
xm−1

1−λt

)−1

is permeability of the porous medium, Q = Q0

(
xm−1

1−λt

)
is heat

generation, Cr = Cr0
xm−1

1−λt is rate of chemical reaction. The variable magnetic field is B (x, t) = B0

(
xm−1

1−λt

) 1
2

,

where B0 is constant. us = L∂u∂y is slip velocity, where L (x, t) = L1

(
xm−1

1−λt

)− 1
2

is velocity slip factor and

Ts = N ∂T
∂y is thermal slip, where N (x, t) = N1

(
xm−1

1−λt

)− 1
2

is velocity slip factor.

By using Rosselands approximation, the radiative heat flux is

qr = −
(

4

3

σ∗

k∗

)
∂T 4

∂y
, (2.7)

where k∗ is the absorption coefficient, σ∗ is the Stefan-Boltzmann constant.The temperature difference is
assuming such that T 4 may be expended in a Taylor series about T∞ and neglecting higher order terms, we
get

T 4 = 4T 3
∞T − 3T∞

4. (2.8)
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Using eq.(2.8) in eq.(2.7), we get

qr = −
(

4

3

σ∗

k∗

)
∂

∂y

(
4T 3
∞T − 3T∞

4
)

= −16

3

σ∗T 3
∞

k∗
∂T

∂y

and hence
∂qr
∂y

= −16

3

σ∗T 3
∞

k∗
∂2T

∂y2
. (2.9)

In terms of the stream function the velocity components are:

u =
∂ψ

∂y
, v = −∂ψ

∂x
. (2.10)

Now, using the similarity transformations

η = y

√(
uw(x,t)
xνf

)
, ψ =

√
νfxuw (x, t)f (η) ,

θ (η) = T−T∞
Tw−T∞ , φ (η) = C−C∞

C∞
, (2.11)

equations (2.1) to (2.6) reduce to

f ′′′ +

(
m+ 1

2

)
ff ′′ −mf ′2 −A

(
f ′ +

η

2
f ′′
)
−
(
Ha2 +K∗

)
f ′ = 0, (2.12)

1

Preff
θ′′ +

(
m+ 1

2

)
fθ′ +Nbθ′φ′ +Ntθ′2 − A

2
ηθ′ + Ecf ′′2 +Q∗θ = 0, (2.13)

φ′′ +

(
m+ 1

2

)
Lefφ′ +

Nt

Nb
θ′′ − LeCr∗φ− η

2
LeAφ′ + LeSrθ′′ = 0, (2.14)

with the boundary conditions

η = 0 : f (η) = S, f ′ (η) = −χ+ λ∗f ′′ (η) , θ (η) = 1 + δθ′ (η) , Nbφ′ (η) +Ntθ′ (η) = 0;

η →∞ : f ′ (η)→ 0, θ (η)→ 0, φ (η)→ 0. (2.15)

The parameters used in equations (2.12) to (2.15) are as follows:

Preff =
Pr

(1 +R)
, P r =

νf
αf
, Le =

νf
DB

, Nb =
τDBC∞

νf
, R =

16

3

σ∗T 3
∞

κfk∗
, Nt =

τDT (Tw − T∞)

νfT∞
,

Ha2 =
σB2

0

ρfa
,K∗ =

νf
K0a

,Q∗ =
Q0αf
κfa

,Cr∗ =
Cr0

a
,A =

λ

axm−1
, Ec =

u2
w

(Cp)f (Tw − T∞)
,

Sr =
DmKT (Tw − T∞)

νfTmC∞
, λ∗ = L1

√
a

νf
, S =

2v0√
aνf (m+ 1)

, δ = N1

√
a

νf
.

Here Preff denote effective Prandlt number.
In this study, the important physical quantities are the skin friction coefficient and the local Nusselt number,
which are defined as

Cfx =
τw

ρfu2
w (x, t)

, Nux =
xqw

κf (Tw − T∞)
, (2.16)

where τw = µf

(
∂u

∂y

)

y=0

and qw = −
[(
κf +

16

3

σ∗T 3
∞

k∗

)
∂T

∂y

]

y=0

, (2.17)

are the wall shear stress and the wall heat flux, respectively.
Using equations (2.11) and (2.17) into equation (2.16), we have

CfxRe
1
2
x = f ′′ (0) and NuxRe

− 1
2

x = − (1 +R) θ′ (0) , (2.18)

where Rex = uwx
νf

is the local Reynolds number.
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3 Numerical Solution
In this study, similarity transformations are used to reduce the governing equations (2.1) - (2.4) into

a system of coupled non-linear ordinary differential equations (2.12)-(2.14) with boundary conditions. The
coupled non-linear ordinary differential equations (2.12)-(2.14) are third order in f and second order in both
θ and φ. These coupled equations are reduced to a system of seven simultaneous differential equations of first
order with seven unknowns. To solve this system of equations using the Runge-kutta fourth order method,
we need seven initial conditions. We already know two initial conditions in f and one initial condition in
each of θ and φ. Also, the value of f ′, θ and φ are known at η →∞. Thus, these three end conditions can
be utilize to produce three unknown initial conditions at η = 0 by using shooting technique. After knowing
all the seven initial conditions, we solve this system of equations using fourth order Runge-Kutta integration
scheme with the help of MATLAB software.
The equations (2.12)-(2.14) can be expressed as

f = f1,

f1

′
= f2,

f2

′
= f3,

f3

′
= −

(
m+ 1

2

)
f1f3 +mf2

2 +A
(
f2 +

η

2
f3

)
+
(
Ha2 +K∗

)
f2,

θ = f4,

f4

′
= f5,

f5

′
= −Preff

[(
m+ 1

2

)
f1f5 +Nbf5f7 +Ntf2

5 −
A

2
ηf5 + Ecf2

3 +Q∗f4

]
,

φ = f6,

f6

′
= f7,

f7

′
=

(
Nt

Nb
+ LeSr

)[
Preff

((
m+ 1

2

)
f1f5 +Nbf5f7 +Ntf2

5 −
A

2
ηf5 + Ecf2

3 +Q∗f4

)]

−
(
m+ 1

2

)
Lef1f7 + LeCr∗f6 +

η

2
LeAf7,

with reduced boundary conditions

η = 0 : f1 = S, f2 = −χ+ λ∗f3, f4 = 1 + δf5, f7 = −Nt
Nb

f5;

η →∞ : f2 → 0, f4 → 0, f6 → 0.

In this study, the boundary value problem is first converted into an initial value problem (IVP). Then, the
IVP is solved by appropriate guessing of the missing initial value by the shooting method for several sets of
parameters. The obtained results have been discussed and shown graphically and in tables.

4 Results and discussion
The non-dimensional equations (2.12)-(2.14) with boundary conditions (2.15) are solved numerically by
Runge-kutta fourth order method with shooting technique. For numerical computation, we consider the
non-dimensional parameter’s values as 0 ≤ K∗ ≤ 4.0, 0 ≤ Ha2 ≤ 1.5, 0.01 ≤ Nt ≤ 1.0, 0.1 ≤ Cr∗ ≤ 7.0,
0.5 ≤ Nb ≤ 10.0, 0.1 ≤ Ec ≤ 1.0, 4.0 ≤ Preff ≤ 15.0, 0.0 ≤ A ≤ 1.2, 3.0 ≤ S ≤ 5.0, 0.0 ≤ λ∗ ≤ 0.2,
5.0 ≤ Le ≤ 30.0, 1.0 ≤ m ≤ 3.0, 0.1 ≤ Q∗ ≤ 10.0, 0.0 ≤ R ≤ 1.04, 0.05 ≤ Sr ≤ 0.20, 0.1 ≤ δ ≤ 0.2,
and 1.0 ≤ χ ≤ 1.5. The numerical values of parameters are fixed as given below: K∗ = 1.0, Ha2 = 0.5,
Nt = Nb = 0.5, Ec = Cr∗ = 0.1, Pr = 8.16, Preff = 6.8, Q∗ = 0.1, A = 0.5, S = 3.0, Le = 10, Sr = 0.05,
δ = 0.1, χ = 1.0, R = 0.2 and λ∗ = 0.1, unless stated separately. In Figure 4.1, consequence of permeability
parameter (K∗) on velocity profile is sketched. It is comprehended that rise in the value of permeability
parameter increases the velocity profile. Figure 4.2 illustrates the effect of magnetic field parameter(Ha2) on
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the nanofluid velocity profile. It is observed that increase in magnetic field parameter increases the velocity
profile. Figures 4.3-4.4 and Figures 4.5-4.6 show the influence of the change of the thermophoresis parameter
(Nt) and Brownian motion parameter (Nb) on the temperature and concentration profiles, respectively. It
is noticed that, as the thermophoresis parameter and Brownian motion parameter increases, the thermal
boundary layer thickness increases. Here the thermal rise is reported since higher Brownian motion includes
the random acceleration of the fluid particles which generates extra energy. Nanofluid concentration increases
with an increase in thermophoresis parameter and decreases near the surface with an increase in Brownian
motion parameter. Figure 4.7 shows the effect of chemical reaction parameter (Cr∗) on the concentration
of the nanofluid. It is observed that concentration of the nanofluid is on decline for higher estimation of
Cr∗. Figure 4.8 and Figure 4.9 are graphed to comprehend the effect on temperature and concentration
profiles for various values of effective Prandtl number (Preff ). The numerical results show that the impact of
increasing values of effective Prandtl number leads to decrease in temperature and nanofluid concentration
profiles. An enhancement in Eckert number causes increase in temperature and nanofluid concentration
profiles. This effect is shown in Figure 4.10 and figure 4.11. Figure 4.12 shows the variation of velocity
profile in response to a change in the values of unsteadiness parameter (A). It is seen that, as unsteadiness
parameter increases, velocity increases. Figures 4.13-4.15 represent the effect of the suction parameter(S)
on velocity, temperature and nanofluid concentration profiles, respectively. These plots show that velocity
profile increases while temperature and nanofluid concentration profiles decrease with increasing value of
suction parameter. Figures 4.16-4.18 illustrate the effect of the velocity slip parameter (λ∗) on velocity,
temperature and concentration profiles, respectively. It is observed by Figure 4.16 that the velocity profile
increases with increasing value of λ∗ while Figure 4.17 and Figure 4.18 show that the velocity slip parameter
affects the temperature and nanofluid concentration in an opposite manner. Figure 4.19 and Figure 4.20
show the impact of Lewis number (Le) on temperature and concentration distribution. It is seen by Figure
4.19 that temperature profile increases near the surface and reverses far from the surface with the increasing
values of Le. From Figure 4.20, it is found that the nanoparticle concentration is a decreasing function
of Le. Thinner concentration boundary layer and weaker mass diffusivity are proportional to increase in
Le. Figures 4.21 and 4.22 show the effect of heat generation parameter (Q∗) on temperature and nanofluid
concentration profiles and declare that, the temperature and concentration profiles increase with increasing
value of heat generation parameter. Figure 4.23 and Figure 4.24 illustrate the effect of thermal slip parameter
(δ) on the nanofluid temperature and concentration profiles. It can be seen that both nanofluid temperature
and concentration profiles decrease with increasing values of thermal slip parameter. Figures 4.25-4.27 are
plotted to analyze the behavior of f

′
(η), θ (η) and φ (η) for various values of χ. It is observed by Figure 4.25

that velocity has decreasing tendency with decreasing value of χ. It can also be noted by Figure 4.26 and
Figure 4.27 that temperature and nanofluid concentration have increasing tendency with decreasing values
of χ. The effect of power-law index (m) on velocity, temperature and nanoparticle volume fraction is drawn
in Figures 4.28-4.30, respectively. It is observed that temperature and nanofluid concentration decrease
while velocity profile increases with the increasing values of m. This is due to the fact that increment in
power-law index (m) enhances the intensity of the cold fluid at the ambient towards the hot fluid near the
sheet. This decreases the fluid temperature near the shrinking sheet. Figure 4.31 and Figure 4.32 outline
the temperature and nanofluid concentration in the presence of the Soret number Sr. An increase in Sr
increases the temperature and concentration profiles within the boundary layer. Figure 4.33 and Figure 4.34
show the effect of radiation absorption parameter (R). Temperature and concentration profiles increse with
increase in radiation absorption parameter (R). The effect of various governing parameters on Skin friction
and Nusselt number are calculated numerically and also presented in Table 4.1,4.2 and 4.3. From Table 4.1,
it is clear that Skin friction increases for increasing value of parameters K∗, Ha2, A, S and m while it is a
decreasing function of parameters λ∗ and χ. Also from Table 4.2 and 4.3, it is noted that the Nusselt number
increases for increasing value of parameters Preff , Cr∗, S, m and λ∗ while it is a decreasing function of
parameters K∗, Ha2, Nt, Nb, Le, Ec, A, Sr, Q∗, χ, R and δ.
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Figure 4.1: Velocity behaviour for various values of K∗.
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Figure 4.2: Velocity behaviour for various values of
Ha2.
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Figure 4.3: Temperature behaviour for various values
of Nt.
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Figure 4.4: Concentration behaviour for various values
of Nt.
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Figure 4.5: Temperature behaviour for various values
of Nb.
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Figure 4.6: Concentration behaviour for various values
of Nb.
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Figure 4.7: Concentration behaviour for various values
of Cr∗.
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Figure 4.8: Temperature behaviour for various values
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Figure 4.9: Concentration behaviour for various values
of Preff .
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Figure 4.10: Temperature behaviour for various values
of Ec.
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Figure 4.11: Concentration behaviour for various values
of Ec.
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Figure 4.12: Velocity behaviour for various values of A.
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Figure 4.13: Velocity behaviour for various values of S.
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Figure 4.14: Temperature behaviour for various values
of S.
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Figure 4.15: Concentration behaviour for various values
of S.
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Figure 4.16: Velocity behaviour for various values of
λ∗.
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Figure 4.17: Temperature behaviour for various values
of λ∗.
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Figure 4.18: Concentration behaviour for various values
of λ∗.
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Figure 4.19: Temperature behaviour for various values
of Le.
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Figure 4.20: Concentration behaviour for various values
of Le.
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Figure 4.21: Temperature behaviour for various values
of Q∗.
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Figure 4.22: Concentration behaviour for various values
of Q∗.
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Figure 4.23: Temperature behaviour for various values
of δ.
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Figure 4.24: Concentration behaviour for various values
of δ.
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Figure 4.25: Velocity behaviour for various values of χ.
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Figure 4.26: Temperature behaviour for various values
of χ.
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Figure 4.27: Concentration behaviour for various values
of χ.
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Figure 4.28: Velocity behaviour for various values of
m.
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Figure 4.29: Temperature behaviour for various values
of m.
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Figure 4.30: Concentration behaviour for various values
of m.
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Figure 4.31: Temperature behaviour for various values
of Sr.
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Figure 4.32: Concentration behaviour for various values
of Sr.
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Table 4.1: Numerical values of CfxRe
1/2
x

K∗ Ha2 A S λ∗ m χ Cfx Re
1/2
x

0.00 0.50 0.50 3.00 0.10 3.00 1.00 3.676558
1.00 0.50 0.50 3.00 0.10 3.00 1.00 3.746045
2.00 3.810179
4.00 3.925633
1.00 0.00 0.50 3.00 0.10 3.00 1.00 3.729214

1.00 3.794596
1.50 3.869821

1.00 0.50 0.00 3.00 0.10 3.00 1.00 3.728988
1.20 3.769732

1.00 0.50 0.50 4.00 0.10 3.00 1.00 4.448826
5.00 5.006289

1.00 0.50 0.50 3.00 0.00 3.00 1.00 5.828953
0.20 2.739946

1.00 0.50 0.50 3.00 0.10 1.00 2.445871
2.00 3.135196

1.00 0.50 0.50 3.00 0.10 3.00 1.30 4.828288
1.50 5.537819
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Figure 4.33: Temperature behaviour for various values
of R.
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Figure 4.34: Concentration behaviour for various values
of R.

.

5 Conclusions
The numerical investigation has been carried out to analyze the Soret effect on MHD nanofluid flow past a
nonlinear shrinking sheet in the presence of thermal radiation, viscous dissipation and chemical reaction under
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Table 4.2: Numerical values of NuxRe
−1/2
x

K∗ Ha2 Nt Nb Ec Cr∗ Preff Le NuxRe
−1/2
x

0.00 0.50 0.50 0.50 0.10 0.10 6.80 10.0 8.776111
1.00 0.50 0.50 0.50 0.10 0.10 6.80 10.0 8.773807
2.00 8.772007
4.00 8.768707
1.00 0.00 0.50 0.50 0.10 0.10 6.80 10.0 8.774323

1.00 8.772523
1.50 8.770087

1.00 0.50 0.00 0.50 0.10 0.10 6.80 10.0 9.306258
1.00 7.895671

1.00 0.50 0.50 5.00 0.10 0.10 6.80 10.0 7.586038
10.00 6.785098

1.00 0.50 0.50 0.50 0.50 0.10 6.80 10.0 7.914547
1.00 6.778293

1.00 0.50 0.50 0.50 0.10 0.10 4.00 7.516687
15.00 10.216327

1.00 0.50 0.50 0.50 0.10 0.10 6.80 5.00 8.854783
30.0 8.696666

1.00 0.50 0.50 0.50 0.10 1.00 6.80 10.0 8.776197
7.00 8.788108

Table 4.3: Numerical values of NuxRe
−1/2
x

S λ∗ m Sr A R Q∗ δ χ NuxRe
−1/2
x

3.00 0.10 3.00 0.05 0.50 0.20 0.10 0.10 1.00 8.773807
4.00 0.10 3.00 0.05 0.50 0.20 0.10 0.10 1.00 9.558962
5.00 10.053549
3.00 0.00 3.00 0.05 0.50 0.20 0.10 0.10 1.00 8.445462

0.20 8.877429
3.00 0.10 1.00 0.05 0.50 0.20 0.10 0.10 1.00 6.230143

2.00 7.816951
3.00 0.10 3.00 0.10 0.50 0.20 0.10 0.10 1.00 8.617619

0.20 8.321183
3.00 0.10 3.00 0.05 0.50 0.20 5.00 0.10 1.00 8.662975

10.00 8.256715
3.00 0.10 3.00 0.05 0.50 0.20 0.10 0.00 1.00 17.873911

0.20 5.124427
3.00 0.10 3.00 0.05 0.50 0.20 0.10 0.10 1.30 8.623513

1.50 8.501317
3.00 0.10 3.00 0.05 0.00 0.20 0.10 1.10 1.00 8.778535

1.20 8.767389
3.00 0.10 3.00 0.05 0.50 0.00 0.10 0.10 1.00 7.629306

1.04 12.778368
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velocity and thermal slip conditions. The influence of the governing parameters on velocity, temperature
and concentration profiles has been numerically evaluated using Runge- Kutta fourth order method with
shooting technique in MATLAB software. Some of the important results are as follows:

• Velocity profiles increase for permeability parameter (K∗) and velocity slip parameter (λ∗) while
decrease for shrinking parameter (χ).

• The surface temperature increases with an increase in the values of the governing parameters, such as
Brownian motion parameter (Nb), thermophoresis parameter (Nt), heat generation parameter (Q∗),
shrinking parameter (χ) and Lewis number (Le).

• The enhancement in chemical reaction parameter (Cr∗) declines the nanofluid concentration profile
while the nanofluid concentration profile rises up with Soret number (Sr).

• An increase in suction parameter (S) increases both the Skin friction and local Nusselt number.
• Skin friction decreases whereas Nusselt number increases with increasing value of velocity slip parameter

(λ∗) whereas reverse effect obtained with the permeability parameter (K∗), unsteadiness parameter
(A), magnetic field parameter (Ha2) and shrinking parameter (χ).

• The Nusselt number decreases with an increase of Brownian motion parameter (Nb), thermophoresis
parameter (Nt), heat generation parameter (Q∗), thermal slip parameter (δ), Eckert number (Ec) and
Soret number (Sr).

Acknowledgement: Authors are very much grateful to the Editors and Reviewers for their fruitful
suggations to bring the paper in present form.
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Abstract

In the present investigation, we introduce a subclass of α-convex functions defined with subordination
and associated with Cardioid domain in the open unit disc E = {z ∈ C : |z| < 1}. We establish the
bounds for |a2|, |a3| and |a4|, Fekete-Szegö inequality and bound for the Zalcman functional for this class.
The results proved earlier will follow as special cases.
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1 Introduction

By A, we denote the class of analytic functions of the form f(z) = z +
∑∞
k=2 akz

k, defined in the open unit
disc E = {z ∈ C : |z| < 1} and normalized by the conditions f(0) = f ′(0)− 1 = 0. The subclass of A, which
consists of univalent functions in E, is denoted by S.

In the theory of univalent functions, a very noted result was Bieberbach’s conjecture which was established
by Bieberbach [2]. It states that, for f ∈ S, |an| ≤ n, n = 2, 3, ... and it remained as a challenge for the
mathematicians for a long time. Finally, L. De-Branges [4], proved this conjecture in 1985. During the
course of proving this conjecture, various results related to the coefficients were established and some new
subclasses of S were developed.

For two analytic functions f and g in E, f is said to be subordinate to g (symbolically f ≺ g) if there
exists a function w with w(0) = 0 and |w(z)| < 1 for z ∈ E such that f(z) = g(w(z)). Further, if g is
univalent in E, then f ≺ g is equivalent to f(0) = g(0) and f(E) ⊂ g(E).

Before defining our main classes, firstly we review some basic and relevant classes mentioned below:

S∗ =

{
f : f ∈ A, Re

(
zf ′(z)

f(z)

)
> 0, z ∈ E

}
, the class of starlike functions.

K =

{
f : f ∈ A, Re

(
(zf ′(z))′

f ′(z)

)
> 0, z ∈ E

}
, the class of convex functions.

Mocanu [11] introduced a unifying class M(α) as below:

M(α) =

{
f : f ∈ A, Re

(
(1− α)

zf ′(z)

f(z)
+ α

(zf ′(z))′

f ′(z)

)
> 0, z ∈ E

}
.

The functions in the class M(α) are known as alpha-convex functions. In particular, M(0) ≡ S∗ and
M(1) ≡ K.

For f ∈ A, the relation f ≺ 1 + 4
3z + 2

3z
2 means that f lies in the region bounded by the cardioid given

by
(9x2 + 9y2 − 18x+ 5)2 − 16(9x2 + 9y2 − 6x+ 1) = 0.

Sharma et al. [16] introduced the classes S∗car and Kcar defined as follow:

S∗car =

{
f : f ∈ A, zf

′(z)

f(z)
≺ 1 +

4

3
z +

2

3
z2, z ∈ E

}
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and

Kcar =

{
f : f ∈ A, (zf ′(z))′

f ′(z)
≺ 1 +

4

3
z +

2

3
z2, z ∈ E

}
.

Obviously, S∗car and Kcar are the subclasses of starlike and convex functions associated with cardioid
domain, respectively. Various subclasses of analytic functions were studied by subordinating to different
kind of functions. Malik et al. [9, 10], Sharma et al. [16], Zainab et al. [18], Shi et al. [17] and Raza et al. [15]
studied certain classes af analytic functions associated with cardioid domain.

Getting inspired from the above works, now we define the following subclass of α-convex functions by
subordinating to 1 + 4

3z + 2
3z

2.

Definition 1.1. A function f ∈ A is said to be in the class Mα
car if it satisfying the condition

(1− α)
zf ′(z)

f(z)
+ α

(zf ′(z))′

f ′(z)
≺ 1 +

4

3
z +

2

3
z2.

The class Mα
car is the unification of the classes S∗car and Kcar and for particular values of α, the results

for the these classes can be obtained. In particular, we have the following observations:
(i) M0

car ≡ S∗car.
(ii) M1

car ≡ Kcar.
Fekete and Szegö [5] established the estimate |a3 − µa2

2|, where µ is real and f ∈ S. Further, the upper
bound of |a3−µa2

2| for various classes of analytic functions were extensively studied by several authors. There
is another very useful functional Jn,m(f) = anam−am+n−1, n,m ∈ N−{1}, which was investigated by Ma [8]
and it is known as generalized Zalcman functional. The functional J2,3(f) = a2a3 − a4 is a specific case of
the generalized Zalcman functional. Various authors including Khan et al. [7], Mohamad and Wahid [12]
and Cho et al. [3], computed the upper bound for the functional J2,3(f) over different subclasses of analytic
functions as it plays very important role in finding the bounds for the third Hankel determinant.

In the present paper, we establish the upper bounds for the initial coefficients, Fekete-Szegö inequality and
bound for the Zalcman functional for the class Mα

car. Also various known results follow as particular cases.

2 Preliminary Results
By P, we denote the class of analytic functions p of the form

p(z) = 1 +

∞∑

k=1

pkz
k,

whose real parts are positive in E.
To prove our main results, we shall make use of the following lemmas:

Lemma 2.1. [2] ([14, 6]) If p ∈ P, then
|pk| ≤ 2, k ∈ N,

∣∣∣∣p2 −
p2

1

2

∣∣∣∣ ≤ 2− |p1|2
2

,

|pi+j − µpipj | ≤ 2, 0 ≤ µ ≤ 1,

and for complex number ρ, we have

|p2 − ρp2
1| ≤ 2 max{1, |2ρ− 1|}.

Lemma 2.2. ([1]). Let p ∈ P, then

|Jp3
1 −Kp1p2 + Lp3| ≤ 2|J |+ 2|K − 2J |+ 2|J −K + L|.

In particular, it is proved in [14] that
|p3

1 − 2p1p2 + p3| ≤ 2.
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3 Main Results
Theorem 3.1. If f ∈Mα

car, then

|a2| ≤
4

3(1 + α)
, (3.1)

|a3| ≤
3α2 + 30α+ 11

9(1 + 2α)(1 + α)2
, (3.2)

and

|a4| ≤
180α3 + 940α2 + 444α+ 68

81(1 + 2α)(1 + 3α)(1 + α)3
. (3.3)

The bounds are sharp.

Proof. As f ∈Mα
car, by the principle of subordination, we have

(1− α)
zf ′(z)

f(z)
+ α

(zf ′(z))′

f ′(z)
= 1 +

4

3
w(z) +

2

3
(w(z))2. (3.4)

Define p(z) =
1 + w(z)

1− w(z)
= 1 + p1z + p2z

2 + p3z
3 + ..., which implies w(z) =

p(z)− 1

p(z) + 1
.

On expanding, we have

(1− α) zf
′(z)

f(z) + α (zf ′(z))′

f ′(z) = 1 + (1 + α)a2z +
[
2(1 + 2α)a3 − (1 + 3α)a2

2

]
z2

+
[
3(1 + 3α)a4 − 3(1 + 5α)a2a3 + (1 + 7α)a3

2

]
z3 + ... (3.5)

Also

1 +
4

3
w(z) +

2

3
(w(z))2 = 1 +

2

3
p1z +

(
2

3
p2 −

p2
1

6

)
z2 +

(
2

3
p3 −

1

3
p1p2

)
z3 + ... (3.6)

Using (3.5) and (3.6), (3.4) yields
1 + (1 + α)a2z +

[
2(1 + 2α)a3 − (1 + 3α)a2

2

]
z2

+
[
3(1 + 3α)a4 − 3(1 + 5α)a2a3 + (1 + 7α)a3

2

]
z3 + ...

= 1 +
2

3
p1z +

(
2

3
p2 −

p2
1

6

)
z2 +

(
2

3
p3 −

1

3
p1p2

)
z3 + .... (3.7)

On equating the coefficients of z, z2 and z3 in (3.7) and on simplification, we obtain

a2 =
2

3(1 + α)
p1, (3.8)

a3 =
1

2(1 + 2α)

[
2

3
p2 +

(
5 + 18α− 3α2

18(1 + α)2

)
p2

1

]
, (3.9)

and

a4 =
1

9(1 + 3α)

[
2p3 +

1 + 7α− 2α2

(1 + α)(1 + 2α)
p1p2 +

−45α3 + 37α2 − 15α− 1

18(1 + 2α)(1 + α)3
p3

1

]
. (3.10)

Using first inequality of Lemma 2.1 in (3.8), the result (3.1) is obvious.
From (3.9), we have

|a3| =
1

3(1 + 2α)

∣∣∣∣p2 −
3

2

(
3α2 − 18α− 5

18(1 + α)2

)
p2

1

∣∣∣∣ . (3.11)

Using fourth inequality of Lemma 2.1 in (3.11), the result (3.2) can be easily obtained.
Furthermore, on applying Lemma 2.2 in (3.10), the result (3.3) is obvious.

Remark 3.1. The results of Theorem 3.1 are sharp and the equality is attained in (3.1), (3.2) and (3.3) for
the function f given by

(1− α)
zf ′(z)

f(z)
+ α

(zf ′(z))′

f ′(z)
= 1 +

4

3
z +

2

3
z2.
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Proof. The expansion of (1− α)
zf ′(z)

f(z)
+ α

(zf ′(z))′

f ′(z)
= 1 + 4

3z + 2
3z

2, yields

1 + (1 + α)a2z +
[
2(1 + 2α)a3 − (1 + 3α)a2

2

]
z2 +

[
3(1 + 3α)a4 − 3(1 + 5α)a2a3 + (1 + 7α)a3

2

]
z3 + ... =

1 + 4
3z + 2

3z
2.

On equating the coefficients of z, it gives

(1 + α)a2 = 4
3 , which implies |a2| =

4

3(1 + α)
and it gives equality in (3.1).

Equating the coefficients of z2, we obtain

2(1 + 2α)a3 − (1 + 3α)a2
2 =

2

3
.

On sustituting the value of a2, we can easily obtain

|a3| =
3α2 + 30α+ 11

9(1 + 2α)(1 + α)2
,

which shows equality in (3.2).
Further equating the coefficients of z3, we get

3(1 + 3α)a4 − 3(1 + 5α)a2a3 + (1 + 7α)a3
2 = 0.

On substituting the values of a2 and a3 and after simplification, it is obvious to get

|a4| =
180α3 + 940α2 + 444α+ 68

81(1 + 2α)(1 + 3α)(1 + α)3
,

which shows equality in (3.3).
For α = 0, Theorem 3.1 yields the following result proved by Shi et al. [17]:

Corollary 3.1. If f ∈ S∗car, then

|a2| ≤
4

3
, |a3| ≤

11

9
, |a4| ≤

68

81
.

On putting α = 1 in Theorem 3.1, the following result due to Shi et al. [17] can be easily obtained:

Corollary 3.2. If f ∈ Kcar, then

|a2| ≤
2

3
, |a3| ≤

11

27
, |a4| ≤

17

81
.

Theorem 3.2. If f ∈Mα
car, then

|a3 − µa2
2| ≤

2

3(1 + 2α)
max

{
1,

16µ(1 + 2α)− 3α2 − 30α− 11

6(1 + α)2

}
. (3.12)

Proof. From (3.8) and (3.9), we have

|a3 − µa2
2| =

1

3(1 + 2α)

∣∣∣∣p2 −
16µ(1 + 2α) + 3α2 − 18α− 5

12(1 + α)2
p2

1

∣∣∣∣ . (3.13)

Using fourth inequality of Lemma 2.1, (3.13) yields

|a3 − µa2
2| ≤

2

3(1 + 2α)
max

{
1,

16µ(1 + 2α)− 3α2 − 30α− 11

6(1 + α)2

}
. (3.14)

Hence, the result (3.12) is obvious from (3.14).
For µ = 1, the result (3.12) yields

|a3 − a2
2| ≤

2

3(1 + 2α)
max

{
1,

5 + 2α− 3α2

6(1 + α)2

}
.

But
5 + 2α− 3α2

6(1 + α)2
≤ 1, for 0 ≤ α ≤ 1.

Hence, we have

|a3 − a2
2| ≤

2

3(1 + 2α)
. (3.15)

For α = 0, the following result is obvious from Theorem 3.2:
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Corollary 3.3. If f ∈ S∗car, then

|a3 − µa2
2| ≤

2

3
max

{
1,

16µ− 11

6

}
.

For α = 1, Theorem 3.2 agrees with the following result:

Corollary 3.4. If f ∈ Kcar, then

|a3 − µa2
2| ≤

2

9
max

{
1,

12µ− 11

6

}
.

For µ = 1, α = 0, Theorem 3.2 yields the following result:

Corollary 3.5. If f ∈ S∗car, then

|a3 − a2
2| ≤

2

3
.

For µ = 1, α = 1, Theorem 3.2 gives the following result:

Corollary 3.6. If f ∈ Kcar, then

|a3 − a2
2| ≤

2

9
.

Theorem 3.3. If f ∈Mα
car, then

|a2a3 − a4| ≤
72α3 + 216α2 + 340α+ 68

81(1 + α)2(1 + 2α)(1 + 3α)
. (3.16)

Proof. Using (3.8), (3.9) and (3.10), we have a2a3 − a4

=
1

81(1 + α)2(1 + 2α)(1 + 3α)

[
(9α2 + 49α+ 8)p3

1 − 9(1 + α)(−1 + α− 2α2)p1p2 + 18(1 + α)2(−1− 2α)p3

]
.

(3.17)
Taking modulus and on applying Lemma 2.2, the result (3.16) is obvious from (3.17).

For α = 0, Theorem 3.3 yields the following result:

Corollary 3.7. If f ∈ S∗car, then

|a2a3 − a4| ≤
68

81
.

For α = 1, Theorem 3.3 yields the following result:

Corollary 3.8. If f ∈ Kcar, then

|a2a3 − a4| ≤
29

162
.

4 Conclusion and Open Problems
Till now, many researchers have studied the coefficient problems for various fundamental subclasses of
analytic functions, but not much work has been done on the coefficients of subclasses of alpha-convex
functions as it involves some lengthy and complicated calculations. In the present investigation, a new
subclass of alpha-convex functions is introduced by subordinating to the cardioid domain. We establish the
bounds for the first three coefficients, Fekete-Szegö inequality and Zalcman functional for the class Mα

car.
The results obtained here, generalize the results of various authors. The results of this paper can be extended
towards the estimation of third and fourth Hankel determinants and also this work will motivate the other
researchers to study some more generalized classes of functions.
Acknowledgement. The authors are very much grateful to the Editor and referees for their valuable
suggestions to revise the paper.

26



References
[1] M. Arif, M. Raza, H. Tang, S. Hussain and H. Khan, Hankel determinant of order three for familiar

subsets of ananlytic functions related with sine function, Open Math., 17 (2019), 1615-1630.
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Abstract
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1 Introduction and preliminaries
In the entire paper, in the standard notation it is provided that

C =
{
z : z = x+ iy : x, y∈ R,i =

√
(−1)

}
,Z−0 = {0,−1,−2, . . .} , R = (−∞,∞) and

N0 = N∪{0} = {0, 1, 2, 3, . . .} .
The generalized Gaussian hypergeometric function has been studied and applied in computation of various

problems occurring in different fields of science and technology (for example [5], [10], [11] and others) as
defined by (see [13, pp. 73-74], [18, pp. 42-43])

pFq

(
(α)1,p ;

(γ)1,q ;
z

)
=

∞∑

n=0

∏p
i=1 (αi)n∏q
i=1 (γi)n

zn

n!
, (1.1)

where p, q ∈ N0, αi∈ C, (i = 1, 2, 3, . . . , p) ; γi ∈ C\Z−0 , (i = 1, 2, 3, . . . , q) ; z∈ C.
The series in (1.1) (i) converges for |z| <∞, if p ≤ q; (ii) converges for |z| < 1, if p = q+ 1; (iii) diverges

for all z, z 6= 0, if p > q + 1; (iv) converges absolutely for |z| = 1, if p = q + 1, and R (ω) > 0, ω =∑q
i=1 γi −

∑p
i=1 αi; (v) converges conditionally for |z| = 1, z 6= 1, if p = q + 1, and −1 < R (ω) ≤ 0; (vi)

diverges for |z| = 1, if p = q + 1, and R (ω) < −1.
In reference of (1.1), when p = 2, q = 1, following extended Hurwitz-Lerch type hypergeometric Zeta

function is studied in [2], written by

φα,β;γ (z, s, a) =

∞∑

n=0

(α)n (β)n
(γ)n n!

zn

(n+ a)
s =

1

Γ (s)

∫ ∞

0

e−atts−1
2F1

(
α, β;
γ;

ze−t
)
dt,

∀ a, α, β, s, z∈ C, R(a) > 0,R(s) > 0 and γ∈ C\Z−0 . (1.2)

It is remarked that the series of the extended Hurwitz-Lerch type hypergeometric Zeta function (1.2)
converges if we have R (s) > 0, when |z| < 1, (z 6= 1) .

But when z = 1, we apply the techniques of Gaussian gamma function ([6], [7], [12]) and then Watson’s
theorem (see [14, p.54, Eqn. (2.3.3.13)], [18, p. 95, Problem 26] ) and it is provided R (γ) > 1

2R (α+ β + 1) >
0, then the series given in (1.2) converges if

R (s) >
1

2
R (α+ β)− 1

2
. (1.3)

28



Also in Eqns. (1.1)-(1.2), for a 6= 0 the Pochhammer symbol [18, p. 22] is used and defined as factorial
function given by

(a)n =

{
a (a+ 1) (a+ 2) . . . (a+ n− 1) ;n ≥ 1,

1;n = 0,

and is related with the gamma function as

(a)ν =
Γ (a+ ν)

Γ (a)
,∀ν∈ R. (1.4)

Clearly, a relation of (1.2) with the Hurwitz-Lerch Zeta function (see in [17]) is given as

φα,1;α (z, s, a) =

∞∑

n=0

zn

(n+ a)
s = φ (z, s, a) , (1.5)

converges for all s, z∈ C, and a∈ C\Z−0 , R (s) > 0, when |z| < 1, (z 6= 1) , and when z = 1, the series in
(1.2) is convergent for R (s) > 1.

Further by (1.5) at z = 1, we have a relation with shifted Hurwitz Zeta function ([3], see in also [8])

φα,1,α (1, s, a) =

∞∑

n=0

1

(n+ a)
s = ζ (s; a) , where, a∈ C\Z−0 and R (s) > 1. (1.6)

Generalized Kobayashi-Stieltjes type operators [9] seem identical to extended Hurwitz-Lerch type Zeta
functions, Srivastava-Daoust Double series used in initial value problems [4], Hurwitz-Lerch Zeta functions
associated with double series of the Appell, Kampé de Fériet and Srivastava-Daoust functions studied in
([17], [12] and others). Srivastava [16] obtained various generating relations associated with Hurwitz-Lerch
Zeta functions. In this motivation, here in our researches for exploring new ideas in the theory of Hurwitz-
Lerch Zeta functions and for obtaining of generating relations, series and integral identities, we consider the
parameters x, y, s, d ∈ C, a ∈ C\Z−0 , |x2| < 1 and An be bounded real or complex sequences ∀n ∈ N0 and
A0 6= 0. Then we present following the families of double series associated with general Hurwitz-Lerch type
Zeta functions defined as

R1

(
A,

d

2
+

1

2
,
d

2
+ 1;

3

2
;x, y; s, a

)
=

∞∑

m,n=0

An
(
d
2 + 1

2

)
m+n

(
d
2 + 1

)
m+n(

3
2

)
m

x2m+2nyn

(n+ a)
s
m!n!

, (1.7)

R2

(
A,

d

2
,
d

2
+

1

2
;

1

2
;x, y; s, a

)
=

∞∑

m,n=0

An
(
d
2

)
m+n

(
d
2 + 1

2

)
m+n(

1
2

)
m

x2m+2nyn

(n+ a)
s
m!n!

. (1.8)

For these double series (1.7) and (1.8), we evaluate their summation formulae and derive various
interesting series and integral identities. Further applying these identities, we obtain various known and
unknown results involving the Hurwitz-Lerch type Zeta functions and hypergeometric generating relations.

2 Summation Formulae
In this section, we obtain summation formulae of the families of double series associated with general Hurwitz-
Lerch type Zeta functions ∀s∈ C and R (s) > 1, defined in the Eqns. (1.7) and (1.8) in form of the generalized
Dirichlet type L-functions below in Eqn. (2.2) studied in [8].

For a bounded sequence An, an extended Dirichlet type L-function [8] is defined by

L(s,A; z) =

∞∑

n=1

Anz
n

ns
,∀s ∈ C, |z| < 1(z 6= 1) (2.1)

and

L(s,A) =

∞∑

n=1

An
ns
∀s ∈ C and R(s) > 1. (2.2)

Further we extend (2.1) and (2.2) ∀s, z ∈ C, and a ∈ C\Z−0 , An be bounded sequence, in general Hurwitz-
Lerch type Zeta functions as

φ(s,A, a; z) =

∞∑

n=0

Anz
n

(n+ a)s
, |z| < 1(z 6= 1), a ∈ C\Z−0 ∀s ∈ C, (2.3)

and

φ(s,A, a; 1) =

∞∑

n=0

An
(n+ a)s

, a ∈ C\Z−0 ∀s ∈ C and R(s) > 1. (2.4)
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Lemma 2.1. Let for all s, z ∈ C, a ∈ C\Z−0 and An be bounded sequence, then summation formulas (2.3)
and (2.4) for a general Hurwitz-Lerch type Zeta function exist in the form

φ(s,A, a; z) =
A0

as
+

∞∑

r=0

(
−s
r

)
L(s+ r,A; z)ar, (2.5)

where |z| < 1(z 6= 1), a ∈ C\Z−0 ,∀s ∈ C,
and

φ(s,A, a; 1) =
A0

as
+

∞∑

r=0

(
−s
r

)
L(s+ r,A)ar, (2.6)

where a ∈ C\Z−0 , s ∈ C and R(s) > 1.

Proof. Under the conditions of Lemma 2.1, we write (2.3) as

φ(s,A, a; z) =
A0

as
+

∞∑

n=1

Anz
n

ns

(
1 +

a

n

)−s
. (2.7)

Now applying binomial theorem and (2.1) we obtain (2.6).
Similarly making an appeal to (2.2) and (2.4) we get (2.6).
Hence Lemma 2.1 is proved.

It is remarked that the formula (2.6) is identical to the summation formula due to Murthy and Sinha [8],
when z = 1.

Lemma 2.2. Under the conditions α, β, s, z ∈ C, a, γ ∈ C\Z−0 and |z| < 1(z 6= 1), the function (1.2)
follows following summation formula

φα,β;γ(z, s, a) =
1

as
+

(
αβ

γ
z

) ∞∑

r=0

(
−s
r

)
φα+1,β+1;γ+1(z, s+ r + 1, 1)ar, (2.8)

and for α, β, s, z ∈ C, a, γ ∈ C\Z−0 , z = 1, there exists the formula

φα,β;γ(1, s, a) =
1

as
+

(
αβ

γ

) ∞∑

r=0

(
−s
r

)
φα+1,β+1;γ+1(1, s+ r + 1, 1)ar, (2.9)

provided that

R(γ) >
1

2
R(α+ β + 1) > 0.

Then the inner function in right hand side of (2.9) converges for

R(s) + r >
1

2
R(α+ β)− 1

2
, r = 0, 1, 2, ... . (2.10)

Proof. In Eqn. (2.3) setting An = (α)n(β)n
(γ)nn! and making an appeal to the formulae (1.2) and (2.5), we get

the summation formula for extended Hurwitz-Lerch type hypergeometric Zeta function (1.2) as

φα,β;γ(z, s, a) =
1

as
+

∞∑

r=0

(
−s
r

){ ∞∑

n=1

(α)n(β)n
(γ)nn!

zn

ns+r

}
ar

=
1

as
+

(
αβ

γ
z

) ∞∑

r=0

(
−s
r

){ ∞∑

n=0

(α+ 1)n(β + 1)n
(γ + 1)nn!

zn

(n+ 1)s+r+1

}
ar

=
1

as
+

(
αβ

γ
z

) ∞∑

r=0

(
−s
r

)
φα+1,β+1;γ+1(z, s+ r + 1, 1)ar. (2.11)

For z = 1, by the second equality of the Eqn. (2.11) under the restrictions

R(γ) >
1

2
R(α+ β + 1) > 0,

and also for large values of N , we write
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φα,β;γ(1, s, a) =
1

as
+

(
αβ

γ

) ∞∑

r=0

(
−s
r

)N−1∑

n=0

(α+ 1)n(β + 1)n
(γ + 1)nn!

1

(n+ 1)s+r+1
ar

+

(
αβ

γ

) ∞∑

r=0

(
−s
r

) ∞∑

n=N

(α+ 1)n(β + 1)n
(γ + 1)nn!

ar

(n+ 1)s+r+1

⇒ φα,β;γ(1, s, a) =
1

as
+

(
αβ

γ

) ∞∑

r=0

(
−s
r

)N−1∑

n=0

(α+ 1)n(β + 1)n
(γ + 1)nn!

1

(n+ 1)s+r+1
ar

+

(
αβ

γ

)
(α+ 1)N (β + 1)N

(γ + 1)NΓ(N + s+ r + 2)

∞∑

r=0

(
−s
r

) ∞∑

n=0

(α+N + 1)n(β +N + 1)n(1)n
(γ +N + 1)n(N + s+ r + 2)nn!

ar.

Again if we suppose that α1, β1, γ1, a1, s1 are the real parts of α, β, γ, a, s respectively and γ1 >
1
2 (α1 + β1 + 1) , we get an inequality

|φα1,β1;γ1(1, s1, a1)| < 1

(a1)
s1

+

(
α1β1

γ1

) ∞∑

r=0

(
−s1

r

)N−1∑

n=0

(α1 + 1)n (β1 + 1)n
(γ1 + 1)n n!

1

(n+ 1)s1+r+1
(a1)

r

+

(
α1β1

γ1

)
(α1 + 1)N (β1 + 1)N

(γ1 + 1)N Γ (N + s1 + r + 2)

∞∑

r=0

(
−s1

r

)

× 3F2

[
α1 +N + 1, β1 +N + 1, 1 + N

2 + S1

2 + r
2 ;

1
2 (α1 + β1 + 2N + 3) , 2 +N + s1 + r;

1

]
(a1)

r
. (2.12)

Now applying the Watson’s theorem (see [14, p.54, Eqn. (2.3.3.13)], [18, p. 95, Problem 26]) in the
function 3F2[·] of right hand side of (2.12), we find the convergence conditions as

R(s) + r >
1

2
R(α+ β)− 1

2
∀r = 0, 1, 2, . . . .

Hence the Lemma 2.2 is proved.

Making an appeal to theory of the Lemmas 2.1 and 2.2, we present following theorems:

Theorem 2.1. For all x, y, s, d ∈ C,R(s) > 1, a ∈ C\Z−0 , |x2| < 1 and A stands for a sequence An be
bounded real or complex sequences ∀n ∈ N0 and A0 6= 0, then by the double series associated with general
Hurwitz-Lerch Zeta function (1.7), following summation formula exists

R1

(
A,

d

2
+

1

2
,
d

2
+ 1;

3

2
;x, y; s, a

)
=

A0

(a)s
2F1

(
d
2 + 1

2 ,
d
2 + 1;

3
2 ;

x2

)

+ x2y

(
d2

4
+

3d

4
+

1

2

) ∞∑

r=0

(
−s
r

)
R1

(
A+,

d

2
+

3

2
,
d

2
+ 2;

3

2
;x, y; s+ r + 1, 1

)
ar (2.13)

where, A+stands for the sequence An+1 ∀n ∈ N0.

Proof. We write the formula (1.7) as

R1

(
A,

d

2
+

1

2
,
d

2
+ 1;

3

2
;x, y; s, a

)
=

∞∑

m=0

∞∑

n=0

An
(
d
2 + 1

2

)
m+n

(
d
2 + 1

)
m+n(

3
2

)
m

x2m(yx2)n

(n+ a)sm!n!
.

Then for a ∈ C\Z−0 , we derive

R1

(
A,

d

2
+

1

2
,
d

2
+ 1;

3

2
;x, y; s, a

)

=
A0

(a)s

∞∑

m=0

(
d
2 + 1

2

)
m

(
d
2 + 1

)
m(

3
2

)
m

x2m

m!
+

∞∑

m=0

∞∑

n=1

An
(
d
2 + 1

2

)
m+n

(
d
2 + 1

)
m+n(

3
2

)
m

x2m(yx2)n

(n+ a)sm!n!

=
A0

(a)s

∞∑

m=0

(
d
2 + 1

2

)
m

(
d
2 + 1

)
m(

3
2

)
m

(x2)m

m!

31



+ x2y

(
d2

4
+

3d

4
+

1

2

) ∞∑

r=0

(
−s
r

)
ar

∞∑

m=0

∞∑

n=0

An+1

(
d
2 + 3

2

)
m+n

(
d
2 + 2

)
m+n(

3
2

)
m

(n+ 1)s+r+1

x2m(yx2)n

m!n!
. (2.14)

Theorem 2.2. For all x, y, s, d ∈ C,R(s) > 1, a ∈ C\Z−0 , |x2| < 1 and A stands for the sequence An be
bounded real or complex sequences ∀n ∈ N0 and A0 6= 0, then by the double series associated with general
Hurwitz-Lerch Zeta function (1.8), following summation formula exists

R2

(
A,

d

2
,
d

2
+

1

2
;

1

2
;x, y; s, a

)
=
A0

as
2F1

(
d
2 ,

d
2 + 1

2 ;
1
2 ;

x2

)

+

(
d2

4
+
d

4

)
x2y

∞∑

r=0

(
−s
r

)
R2

(
A+,

d

2
+ 1,

d

2
+

3

2
;

1

2
;x, y; s+ r + 1, 1

)
ar. (2.15)

Proof. Considering the double series associated with general Hurwitz-Lerch Zeta function (1.8) and applying
the same techniques as in the proof of the Theorem 2.1, we establish the required result (2.15).

3 Series and integral identities
In this section, we derive series and integral identities associated with general Hurwitz-Lerch Zeta functions
due to double series defined in the Eqns. (1.7) and (1.8).

Theorem 3.1. If |x2| < 1, then the double series associated with general Hurwitz-Lerch Zeta function (1.7)
generates following series identity

∞∑

n=0

(
d
2 + 1

2

)
n

(
d
2 + 1

)
n
x2n

(
3
2

)
n
n!

n∑

m=0

Am(−n)m
(
− 1

2 − n
)
m

m!

ym

(m+ a)s

=
1

2xd(1− x)d

∞∑

n=0

An
(
d
2 + 1

2

)
n

(
d
2

)
n

(
x2y

(1−x)2

)n

n!(n+ a)s

− 1

2xd(1 + x)d

∞∑

n=0

An
(
d
2 + 1

2

)
n

(
d
2

)
n

(
x2y

(1+x)2

)n

n!(n+ a)s
, (3.1)

provided that all conditions of the Theorem 2.1 are satisfied.

Proof. Consider the double series associated with general Hurwitz-Lerch Zeta function (1.7) in the form

R1

(
A,

d

2
+

1

2
,
d

2
+ 1;

3

2
;x, y; s, a

)

=

∞∑

n=0

An
(
d
2 + 1

2

)
n

(
d
2 + 1

)
n
x2nyn

(n+ a)sn!

∞∑

m=0

(
d
2 + 1

2 + n
)
m

(
d
2 + 1 + n

)
m(

3
2

)
m

x2m
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. (3.2)

Now making an appeal to the result due to Sneddon [15, p. 42, Example II (1 (iii))] given by
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)
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2dx
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2dx
(1 + x)−d, x 6= ±1, (3.3)

in right hand side of (3.2), we derive
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2
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Further in the double series (1.7), making and appeal to the series rearrangement techniques [18, p. 100],
we obtain
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)
m
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ym

(m+ a)s
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Finally, employing (3.4) and (3.5) we establish the identity (3.1).

Srivastava [16] obtained various generating relations associated with some families of the extended
Hurwitz-Lerch Zeta functions, then to make extension in this area we derive following generating relations
for our defined families of the extended Hurwitz-Lerch Zeta functions (1.7) and (1.8), given by

Corollary 3.1. In the Theorem 3.1 set An =
∏p
i=1(αi)n∏q
i=1(γi)n

,∀n = 0, 1, 2, 3, . . ., and define an extended semi-

hypergeometric Hurwitz-Lerch Zeta function
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(
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i=1 (αi)n (−n)m
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)
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i=1 (γi)nm!

ym

(m+ a)s
, (3.6)

and then make an appeal to equality (3.1) for |x2| < 1, there exists a generating relation of extended
generalized hypergeometric Hurwitz-Lerch Zeta function due to the formula (1.7) given by
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)
. (3.7)

Theorem 3.2. The double series associated with general Hurwitz-Lerch Zeta function (1.7), generates the
following integral identity
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 dt, (3.8)

where, R(a) > 0,R(s) > 0, |x2| < 1.

Proof. Making an appeal to the equality (3.5) and to the Euler integral formula ([6], [7], [17]), we find an
integral representation for R(a) > 0,R(s) > 0 as
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m
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Again starting with the equality (3.4) and applying the same techniques as in (3.9), we obtain the result
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The relations (3.9) and (3.10) immediately give the integral equality (3.8).

Theorem 3.3. The double series associated with general Hurwitz-Lerch Zeta function (1.7) generates the
following general generating relation for |x2| < 1,
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Proof. Making an appeal to the result (3.8) of the Theorem 3.2 we get an identity. This identity gives us
the general generating relation (3.11).

In the similar manner by the double series associated with general Hurwitz-Lerch Zeta function (1.8), we
derive:

Theorem 3.4. Double series associated with general Hurwitz-Lerch Zeta function (1.8) generates following
series identity for |x2| < 1, as
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provided that all conditions of the Theorem 2.2 are satisfied.

Proof. Considering the formula (1.8) and making an appeal to the revised result due to Sneddon [15, p. 42,
Example II (1 (ii))]
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we arrive at
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34



provided that all conditions of the Theorem 2.2 are satisfied.
Further for the same conditions of (3.13). making an appeal to formula (1.8) and series rearrangement

techniques, we obtain
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But for all n such that 0 ≤ n ≤ m, we have(
1

2

)

m−n
=

(−1)n
(

1
2

)
m(

1
2 −m

)
n

and
1

(m− n)!
=

(−1)n(−m)n
m!

.

Therefore,

R2

(
A,

d

2
,
d

2
+

1

2
;

1

2
;x, y; s, a

)
=

∞∑

n=0

(
d
2

)
n

(
d
2 + 1

2

)
n

(
x2
)n

(
1
2

)
n
n!

n∑

m=0

Am(−n)m
(

1
2 − n

)
m
ym

(m+ a)sm!
. (3.15)

Finally, making an appeal to the results (3.13) and (3.15), we establish the formula (3.12).

Corollary 3.2. In the Theorem 3.4 setting An =
∏p
i=1(αi)n∏q
i=1(γi)n

,∀n = 0, 1, 2, 3, . . ., and defining an extended

semi-hypergeometric Hurwitz-Lerch Zeta function
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and then making an appeal to equality (3.12), we obtain the generating relation of extended generalized
hypergeometric Hurwitz-Lerch Zeta function defined by (1.8)
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Theorem 3.5. The double series associated with general Hurwitz-Lerch Zeta function (1.8) generates
following integral identity
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where R(a) > 0, R(s) > 0.

Proof. By equation (3.15) we immediately obtain the result (3.18) on applying Euler integral formule.

Theorem 3.6. The double series associated with general Hurwitz-Lerch Zeta function (1.8) generates
following general generating relation
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Proof. Make an appeal to the Theorem 3.5 and by the identity of Eqn. (3.18) we establish the result
(3.19).

This result (3.19) is identical to the generating relation due to H. Exton [1, (1999)].
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4 Applications
In this section, we present some known and unknown generating relations and summation formulae. Making
an appeal to the Corollary 3.1 and the identity (3.8) of the Theorem 3.2 we derive
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)
. (4.1)

Further making an appeal to the Corollary 3.2 and the identity (3.18) of the Theorem 3.5, we obtain
another generating relation
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Now in the results (4.1) and (4.2), setting p = 0, q = 1, γ1 = 3
2 and d = 1 so that Am = 1

( 3
2 )
m

and

supposing that for all n ∈ N0, x, y ∈ C and t ∈ [0+,∞), then for following sequences of functions defined by
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there exist following summation formulae
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respectively.
Further for all n ∈ N0,R(a) > 1

2 , x, y ∈ C and R(s) > 0, considering sequence of functions
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and

H(4)
n (a, y, s) =
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(
−n, n− 1
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1
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and making an appeal to the Theorems 3.2 and 3.5 in Eqns. (4.4) and (4.5), the following summation
formulae are computed as
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and
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respectively.
Several other results, integral identities and generating relations may be derived on making an application

of our formulae evaluated in previous sections, due to lack of space we omit them.
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5 Conclusion
The summation formulae of the families of double series associated with general Hurwitz-Lerch type Zeta
functions presented in the Section 2 may be useful in computational work. The identities found in the Section
3 applicable in evaluation of various generating relations of hypergeometric functions and the Zeta functions
found in the literature. The sequence of functions given in the Section 4 may be useful in various problems
of science and technology.
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Abstract

In this paper we have introduced Fuzzy gp∗ closure, Fuzzy gp∗-interior and separation axioms via
Fuzzy gp∗-open sets. Also we found out the relationship between Fuzzy separation axioms, Fuzzy gp∗

separation axioms and Fuzzy pre separation axioms.
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1 Introduction
In this paper we introduce and study separation properties of Fuzzy topological spaces via Fuzzy gp∗ closed
sets and draw a valid implication between the different axioms introduced earlier. Fuzzy separation axioms
were introduced and studied by Ghanim et al. [3]. Similarly Fuzzy pre separation axioms were introduced
and many of their properties were established by Singal et al. [11]. In 2011 Lee and Yun [9] introduced
and studied Fuzzy delta separation axioms based on Fuzzy δ-open sets. They investigated the relationship
between Fuzzy separation axioms and Fuzzy δ-separation axioms and showed Fuzzy δ-separation axioms are
hereditary in Fuzzy regular open subspaces. In 2018 Paul et al. [10] studied and introduced separation
axioms (Ti, i = 0, 1, 2) in the light of Fuzzy γ∗-open set via quasi-coincidence, quasi-neighborhood and also
established relation between Fuzzy separation axioms, Fuzzy pre-separation axioms and Fuzzy γ∗-separation
axioms.

In this paper, we introduce Fuzzy separation axioms via Fuzzy gp∗-open sets and find out there relation
with Fuzzy separation axioms and Fuzzy pre separation axioms introduced earlier. We find out that every
FTi space [3] is Fgp∗Ti space for i = 0, 1, 2 and every FPTi space [11] is Fgp∗Ti space for i = 0, 1, 2. But
the converse is not true for both the cases, which we proved by counter examples.

2 Preliminaries
In this paper (Z, τ) always mean Fuzzy topological space on which no separation axioms are mentioned
unless otherwise explicitly stated. A Fuzzy set in topological space (X, τ) is called a Fuzzy point iff it takes
the value 0 for all y ∈ X except one, say x ∈ X. If its value at x is λ (0 < λ ≤ 1) we denote this Fuzzy point
by xλ, where the point x is called its support see [11]. From the previous literature, following definitions
and remarks play a key role in establishing the main work of this paper.

Definition 2.1 ([5]). Suppose (Y, τ) is a Fuzzy topological space. Then a subset λ of (Y, τ) is called Fuzzy
generalized pre regular weakly closed (briefly Fuzzy gp∗-closed) if pcl(λ) ≤ µ whenever λ ≤ µ and µ is a
Fuzzy regular semi open set in (Y, τ). Complement of Fuzzy generalized pre regular weakly closed set is called
Fuzzy generalized pre regular weakly open (briefly Fuzzy gp∗-open).

Definition 2.2 ([2]). A Fuzzy set on X is called a Fuzzy singleton if it takes the value zero (0) for all
points x in X except one point. The point at which a Fuzzy singleton takes the non-zero value is called the
support and the corresponding element of (0, 1] its value. A Fuzzy singleton with value 1 is called a Fuzzy
crisp singleton.

Definition 2.3 ([3]). A Fuzzy topological space is said to be FT0 iff for every pair of Fuzzy singletons P1

and P2 with different supports, there exists an open Fuzzy set O such that p1 ≤ O ≤ cop2 or p2 ≤ O ≤ cop1 .
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Definition 2.4 ([3]). A Fuzzy topological space is said to be FT1 iff for every pair of Fuzzy singletons
p1 and p2 with different supports, there exists open Fuzzy sets O1 and O2 such that p1 ≤ O1 ≤ cop2 and
p2 ≤ O2 ≤ cop1 .

Definition 2.5 ([3]). A Fuzzy topological space is said to be FT2 ( F-Hausdorff) iff for every pair of Fuzzy
singletons p1 and p2 with different supports, there exists open Fuzzy sets O1 and O2 such that p1 ≤ O1 ≤ cop2,
p2 ≤ O2 ≤ cop1 and O1 ≤ coO2.

Definition 2.6 ([11]). A Fuzzy topological space is said to be Fuzzy pre-T0 or in short FPT0 if for every
pair of Fuzzy singletons p1 and p2 with different supports, there exists a Fuzzy pre-open set u such that either
p1 ≤ u ≤ cop2 or p2 ≤ u ≤ cop1.

Definition 2.7 ([11]). A Fuzzy topological space (X, τ) is said to be Fuzzy pre-T1 or in short FPT1 if for
every pair of Fuzzy singletons p1 and p2 with different supports x1 and x2, ( x1 6= x2 ), there exists Fuzzy
pre-open sets u and v such that p1 ≤ u ≤ cop2 and p2 ≤ v ≤ cop1.

Definition 2.8 ([11]). A Fuzzy topological space is said to be Fuzzy pre-Hausdorff or in short FPT2 iff for
every pair of Fuzzy singletons p1 and p2 with different supports, there exists two Fuzzy pre-open sets u and
v such that p1 ≤ u ≤ cop2, p2 ≤ v ≤ cop1 and u ≤ cov.

Remark 2.1 ([5]). Suppose (Y, τ) is a Fuzzy topological space and λ ≤ Y . Then we call λ Fuzzy gp∗-open if
(1− λ) is Fuzzy gp∗ closed in (Y, τ).

Remark 2.2 ([11]). In Fuzzy topological space (Y, τ) every Fuzzy closed set is Fuzzy pre-closed.

Remark 2.3 ([5]). In Fuzzy topological space (Y, τ), every Fuzzy open set is Fuzzy gp∗-open.

3 Fuzzy gp∗-closure
Definition 3.1. Suppose (Y, τ) is a Fuzzy topological space and α ≤ Y . Then Fuzzy gp∗-closure (briefly
Fgp∗-cl) and Fuzzy gp∗-interior (briefly Fgp∗-int) of α are respectively defined as,

Fuzzy gp∗-cl(α) = ∧ {µ : α ≤ µ, µ is Fuzzy gp∗-closed set in Y },
Fuzzy gp∗-int(α) = ∨ {µ : α ≥ µ, µ is Fuzzy gp∗-open set in Y }.

Theorem 3.1. In Fuzzy topological space (Y, τ) every Fuzzy pre-closed set is Fuzzy gp∗-closed.

Proof. Suppose λ is a Fuzzy pre-closed set in (Y, τ) such that λ ≤ µ, where µ is Fuzzy generalized pre-open
in (Y, τ). Now as λ is Fuzzy pre-closed implying that pcl(λ) = λ. Also by Remark 2.2 every Fuzzy closed set
is Fuzzy pre-closed, implying cl(λ) ≤ pcl(λ) = λ ≤ µ, whenever λ ≤ µ and µ is Fuzzy generalized pre-open
in (Y, τ). So λ is Fuzzy gp∗-closed.

Theorem 3.2. Suppose λ is a Fuzzy set in Fuzzy space (Y, τ). Then Fuzzy gp∗ − cl(1 − λ) = 1- (Fuzzy
gp∗ − int(λ)) and Fuzzy gp∗ − int(1− λ) = 1-(Fuzzy gp∗ − cl(λ)).

Proof. From Remark 2.1, a Fuzzy gp∗-open set p ≤ λ is the complement of Fuzzy gp∗-closed set q ≥ 1− λ.
So

Fuzzy gp∗-int(λ) =∨{1− q : q is fuzzy gp∗ closed and q ≥ 1− λ},
Fuzzy gp∗ − int(λ) = 1− ∧{q : q is Fuzzy gp∗ closed and q ≥ 1− λ},
Fuzzy gp∗ − int(λ) = 1- Fuzzy gp∗ − cl(1− λ)
=⇒ gp∗ − cl(1− λ) = 1-Fuzzy gp∗ − int(λ).

Now, suppose r is a Fuzzy gp∗-open set so for fuzzy gp∗-closed set s≥λ, r = 1− s ≤ 1− λ
Fuzzy gp∗ − cl(λ) = ∧{1− r : r is fuzzy gp∗-open and r ≤ 1− λ },
Fuzzy gp∗-cl(λ)=1-∨{r : r is Fuzzy gp∗-open and r ≤ 1− λ},
Fuzzy gp∗ − cl(λ) = 1- Fuzzy gp∗ − int(1− λ)
=⇒ Fuzzy gp∗ − int(1− λ) = 1-Fuzzy gp∗ − cl(λ).
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Theorem 3.3. Suppose (Y, τ) is a Fuzzy topological space and α, µ are Fuzzy subsets of Y. Then
(a) Fuzzy gp∗ − cl(1Y ) = 1Y and Fuzzy gp∗ − cl(0Y ) = 0Y ,
(b) α ≤ Fuzzy gp∗-cl(α),
(c) suppose µ ≤ α where α is Fuzzy gp∗-closed set. Then Fuzzy gp∗-cl(µ)≤α,
(d) If α ≤ µ then Fuzzy gp∗ − cl(α) ≤ Fuzzy gp∗ − cl(µ).

Proof. (a) Since Fuzzy gp∗ − cl(1Y ) is the intersection i.e. minimum of all Fuzzy gp∗-closed sets in Y
containing 1Y and since 1Y is the minimum Fuzzy gp∗-closed set containing 1Y . So Fuzzy gp∗−cl(1Y ) =
1Y . Now Fuzzy gp∗−cl(0Y ) is the intersection i.e. minimum of all Fuzzy gp ∗-closed sets in Y containing
0Y and since 0Y is the minimum Fuzzy gp∗-closed set containing 0Y , implying Fuzzy gp∗−cl(0Y ) = 0Y .

(b) As Fuzzy gp∗ − cl(α) is the intersection of all Fuzzy gp∗-closed sets containing α. So α ≤ Fuzzy
gp∗ − cl(α) is obvious.

(c) Suppose µ ≤ α, where α is Fuzzy gp∗-closed set. Now,

Fuzzy gp∗-cl(µ) = ∧ {π : µ ≤ π, π is Fuzzy gp∗-closed set in Y }

i.e. Fuzzy gp∗ − cl(µ) is contained in all Fuzzy gp∗-closed sets, so in particular Fuzzy gp∗ − cl(µ) ≤ α.
(d) Suppose α ≤ µ, also

Fuzzy gp∗-cl(µ) = ∧ {π : µ ≤ π, π is Fuzzy gp∗-closed set in Y } → (d.1).

Now ifµ ≤ π, where π is Fuzzy gp∗-closed in Y , then by (c) of this theorem, Fuzzy gp∗ − cl(µ) ≤ π.
Now by (b) of this theorem µ ≤ Fuzzy gp∗ − cl(µ) implies α ≤ µ ≤ π where π is Fuzzy gp∗-closed. So
Fuzzy gp∗ − cl(α) ≤ π (by (c) of this theorem). Therefore

Fuzzy gp∗-cl(α) ≤ ∧ {π : µ ≤ π, π is Fuzzy gp∗-closed set in Y }

=⇒ Fuzzy gp∗-cl(α) ≤ Fuzzygp∗ − cl(µ) (using(d.1))

4 Separation Axioms via Fuzzy gp∗-open Set
Definition 4.1. A Fuzzy topological space (Z, τ) is Fgp∗ − T0 if for arbitrary Fuzzy singletons x1

λ and x2
µ,

their exists a Fuzzy gp∗-open set Z such that x1
λ ≤ Z ≤ (1− x2

µ) or x2
µ ≤ Z ≤ (1− x1

λ).

Theorem 4.1. A Fuzzy topological space (Z, τ) is Fgp∗ − T0 iff Fuzzy-gp∗ closure of any two Fuzzy crisp
singletons with different supports is distinct.

Proof. Suppose (Z, τ) is Fgp∗ − T0 and x1, x2 are two Fuzzy crisp singletons with different supports. Now
(Z, τ) being Fgp∗ − T0 implies that ∃ a Fuzzy-gp∗ open set Z such that x1 ≤ Z ≤ (1 − x2), implying
x2 ≤ Fgp∗ − cl(x2) ≤ 1 − Z. Since x1 � 1 − Z so x1 � Fgp∗ − cl(x2), but x1 ≤ Fgp∗ − cl(x1) implies
Fgp∗ − cl(x1) 6= Fgp∗ − cl(x2).

Conversely, suppose x1 and x2 be two Fuzzy crisp singletons with different supports z1 and z2, respectively
such that x1(z1) = x2(z2) = 1. Also let l1 and l2 be Fuzzy singletons with different supports z1 and z2, so by
hypothesis 1Z−Fgp∗−cl{x1} ≤ 1Z−{x1} and so (1Z−Fgp∗−cl(x1)) ≤ (1Z−{l1}). Now (1Z−Fgp∗−cl(x1))
is a Fgp∗-open set such that l2 ≤ (1Z − Fgp∗ − cl(x1) ≤ (1Z − {l1}). Implying (Z, τ) is Fgp∗ − T0.

Definition 4.2. A Fuzzy topological space (Z, τ) is Fgp∗ − T1 if for arbitrary Fuzzy singletons X1
λ and x2

µ,
their exists Fuzzy gp∗ open sets Z1 & Z2 such that x1

λ ≤ Z1 ≤ (1− x2
µ) and x2

µ ≤ Z2 ≤ (1− x1
λ).

Obviously every Fgp∗ − T1 space is a Fgp∗ − T0 space.

Theorem 4.2. A Fuzzy topological space (Z, τ) is Fgp∗ − T1 iff every Fuzzy crisp singleton is Fuzzy-gp∗

closed.

Proof. Consider (Z, τ) is Fgp∗ − T1 and l1 is a Fuzzy singleton with support z1 such that l1(z1) = 1. So for
any arbitrary Fuzzy singleton l2 with support z2 6= z1, their exists Fuzzy-gp∗ open sets α and β such that
l1 ≤ α ≤ 1Z−l2 and l2 ≤ β ≤ 1Z−l1. Now, as every Fuzzy set can be written as the union of Fuzzy singletons
contained in it [2]. So 1Z − l1 = ∨l2≤1Z−l1 l2. From 1 − l1(z1) = 0 it is clear that 1Z − l1 = ∨l2≤1Z−l1β,
implying 1Z− l1 is Fuzzy-gp∗ open. Conversely suppose that l1 and m1 are Fuzzy singletons with support z1
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such that m1(z1) = 1 and l1(z1) 6= 1 & l2,m2 are Fuzzy singletons with support z2 such that m2(z2) = 1 and
l2(z2) 6= 1. Now the Fuzzy sets 1Z−m1 & 1Z−m2 are Fuzzy gp ∗ open sets satisfying l1 ≤ 1Z−m2 ≤ 1Z− l2
& l2 ≤ 1Z −m1 ≤ 1Z − l1 implying (Z, τ) is Fgp∗ − T1.

Definition 4.3. A Fuzzy topological space (Z, τ) is Fgp∗-Hausdorff or Fgp∗ − T2 if for arbitrary Fuzzy
singletons X1

λ and x2
µ, their exists Fuzzy gp ∗-open sets Z1 & Z2 such that x1

λ ≤ Z1 ≤ (1− x2
µ), x2

µ ≤ Z2 ≤
(1− x1

λ) and Z1 ≤ 1− Z2.
It is obvious that every Fgp∗ − T2 space is Fgp∗ − T1 space.

Definition 4.4. A Fuzzy topological space (Z, τ) is Fgp ∗-Uryshon or Fgp∗ − T2 1
2

if for arbitrary Fuzzy

singletons x1
λ and x2

µ, their exists Fuzzy gp ∗-open sets Z1 & Z2 such that x1
λ ≤ Z1 ≤ (1 − x2

µ), x2
µ ≤ Z2 ≤

(1− x1
λ) and Fgp∗ − cl(Z1) ≤ 1− (Fgp∗ − cl(Z2)).

Remark 4.1. Every Fuzzy pre-open set in fts (Z, τ) is a Fuzzy gp∗-open set in (Z,τ).

Proof. Suppose α is a Fuzzy pre-open set in (Z,τ), so 1− α is Fuzzy pre-closed. Now by Theorem 3.1 every
Fuzzy pre-closed set is Fuzzy gp∗-closed, implying 1− α is Fuzzy gp∗-closed & so α is a Fuzzy gp∗-open set
in (Z, τ).

Theorem 4.3. Every FPT0 space is Fgp∗ − T0 space.

Proof. Suppose (Z, τ) is a FPT0-space, so by [2] for Fuzzy singletons l1 & l2 with supports z1,z2 (z1 6= z2)
their exists a Fuzzy pre-open set ν such that l1 ≤ ν ≤ 1Z − l2 or l2 ≤ ν ≤ 1Z − l1. Now by Remark 4.1 ν is
a Fuzzy gp∗-open set satisfying l1 ≤ ν ≤ 1Z − l2 or l2 ≤ ν ≤ 1Z − l1. Hence (Z,τ) is a Fgp∗ − T0 space.

Remark 4.2. The converse of the above theorem need not be true, for proof the following example is given.

Example 4.1. If Z = {z1, z2, z3, z4} is a space with Fuzzy topology τ = {0Z , 1Z , l,m, n, o} where l,m, n, o :
Z → [0, 1] are defined as

l(z) =

{
1 if z = z1

0 otherwise,

m(z) =

{
1 if z = z2

0 otherwise,

n(z) =

{
1 if z = z1, z2

0 otherwise,

o(z) =

{
1 if z = z1, z2, z3

0 otherwise.

In this space Z with such kind of topology τ , the Fuzzy set p defined below is Fgp∗-open but not Fuzzy
pre-open, implying that the space (Z, τ) is Fgp∗ − T0 but not FPT0.

p(z) =

{
1 if z = z1, z3, z4

0 otherwise/

Theorem 4.4. All FPT1 spaces are Fgp∗ − T1 spaces.

Proof. Suppose (Z,τ) is a FPT1 space, so by the definition of FPT1 for arbitrary singletons l1 and l2,
l1 ≤ ν1 ≤ 1− l2 & l2 ≤ ν2 ≤ 1− l1 where ν1 and ν2 are Fuzzy pre-open sets. Now by Remark 4.1 ν1 and ν2

are Fuzzy gp ∗-open, concluding that (Z, τ) is a Fgp∗ − T1 spaces.

Remark 4.3. The converse of the above theorem may not be true as shown in the following example.

Example 4.2. In the Fuzzy topological space defined in Example 4.1, the Fuzzy sets p & q defined below
are Fgp ∗-open but not Fuzzy pre-open, implying that the space (Z, τ) is Fgp∗ − T1 but not FPT1.

p(z) =

{
1 if z = z1, z3, z4

0 otherwise,
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q(z) =

{
1 if z = z1, z4

0 otherwise.

Theorem 4.5. All FPT2 spaces are Fgp∗ − T2 spaces.

Proof. From the definition of FPT2 spaces in [11] and from Remark 4.1, the proof is obvious.

Remark 4.4. The converse of the above theorem need not be true as shown in the given example.

Example 4.3. In the Fuzzy topological space defined in Example 4.1, the Fuzzy sets r & s defined below
are Fgp∗-open but not Fuzzy pre-open, implying that the space (Z, τ) is Fgp∗ − T2 but not FPT2.

r(z) =

{
1 if z = z3

0 otherwise,

s(z) =

{
1 if z = z4

0 otherwise.

Theorem 4.6. Every FT0 space is Fgp∗ − T0 space.

Proof. Suppose (Z, τ) is a FT0 -space, so by [12] for Fuzzy singletons l1 & l2 with different supports, their
exists a Fuzzy open set ν such that l1 ≤ ν ≤ 1Z − l2 or l2 ≤ ν ≤ 1Z − l1. Now from Remark 2.3 every
Fuzzy open set is Fuzzy gp ∗-open, implying that ν is a Fuzzy gp∗-open set satisfying l1 ≤ ν ≤ 1Z − l2 or
l2 ≤ ν ≤ 1Z − l1 . Hence (Z, τ) is a Fgp∗ − T0 space.

Remark 4.5. The converse of the above theorem need not be true as shown in the following example.

Example 4.4. If Z = {z1, z2, z3, z4, z5} is a space with Fuzzy topology τ = {0Z , 1Z , λ1, λ2, λ3} where
λ1, λ2, λ3 : Z → [0, 1] are defined as

λ1(z) =

{
1 if z = z1, z2

0 otherwise,

λ2(z) =

{
1 if z = z3, z4

0 otherwise,

λ3(z) =

{
1 if z = z1, z2, z3, z4

0 otherwise.

In this Fuzzy topological space, the Fuzzy set λ4 defined below is a Fuzzy gp ∗-open set but not Fuzzy
open, implying that the space (Z, τ) is Fgp∗ − T0 but not FT0.

λ4(z) =

{
1 if z = z1, z2, z4, z5

0 otherwise.

Theorem 4.7. Every FT1 space is Fgp∗ − T1 space.

Proof. The proof is trivial from the definitions of FT1 and Fgp∗ − T1 spaces and from the result that every
Fuzzy open set is Fuzzy gp∗-open [5].

Remark 4.6. The converse that every Fgp∗ − T1 space is a FT1 space is not true, for proof the following
example is given

Example 4.5. In Fuzzy topological space (Z, τ) defined in Example 4.4, the Fuzzy sets λ4 and λ5 defined
below are Fuzzy gp∗-open sets but not Fuzzy open sets, implying the Fuzzy space (Z, τ) is a Fgp∗−T1 space
but not a FT1.

λ4(z) =

{
1 if z = z1, z2, z4, z5

0 otherwise,

λ5(z) =

{
1 if z = z2, z3, z4, z5

0 otherwise.
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Theorem 4.8. Every FT2 space is Fgp∗ − T2 space.

Proof. The proof is straightforward.

Remark 4.7. The converse of the above theorem need not be true as shown in the following example.

Example 4.6. In Fuzzy topological space (Z, τ) defined in Example 4.4, the Fuzzy sets λ4 and λ5 defined
below are Fuzzy gp∗-open sets but not Fuzzy open sets, implying the Fuzzy space (Z, τ) is a Fgp∗ − T2

space but not a FT2.

λ4(z) =

{
1 if z = z1, z2, z4, z5

0 otherwise.

λ5(z) =

{
1 if z = z2, z3, z4, z5

0 otherwise

From the above discussion, we have the following diagram of implications

5 Conclusion
The main portion of this manuscript is dedicated to Fuzzy separation axioms via Fuzzy gp∗-open sets, We
introduced these axioms and find out their relation with Fuzzy separation axioms and Fuzzy pre separation
axioms introduced earlier. We can further investigate these spaces and relate the new results with the results
already in trending in this area.
Acknowledgement. I am highly thankful to the Editors and anonymous Reviewers for their valuable
suggestions to improve the paper in its present form.
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Abstract

In this work, an EOQ model is presented with trade credit period and time dependent demand under
inflation and delay in payments for deteriorating items. Shortages are permitted and partially backlogged
that depends on the waiting time of next replenishment cycle. The holding cost and deterioration rate
is considered constant. The aim of this study is to maximize the total profit. An algorithm is presented
to get the optimal values of total profit, total inventory and stock-out period. To illustrate theoretical
model numerical assessments, graphical representation and sensitivity analysis is also discussed.
2020 Mathematical Sciences Classification: 90B05, 90B10, 90B50.
Keywords and Phrases: Trade credit period and time dependent demand, inflation, delay in payments,
deteriorating items, partially backlogged shortages.

1 Introduction
There are so many factors such as demand, deterioration, inflation, holding cost, shortages etc. that effects
a business directly. Deterioration of products during storage time is a common problem that industries face.
Deterioration is described as decay or spoilage of products that affects the value of products. Similarly,
demand of a product is defined as how much consumers want a companys product in a given duration. Price
of product itself and related complementary goods, income of consumers, fashion trends are some factors that
decides the demand of a product. Storehouses costs such as rents, salaries of these storehouses employees are
termed as carrying cost and costs of financing, damage, handling inventory are some aspects that determine
holding cost of an inventory system. Increase in prices and fall in the purchasing value of money is termed as
inflation and it plays a major role in todays business world. There are a number of researchers that developed
inventory models with including these aspects. With constant demand and decay rate, [5] presented A
two-storage inventory model for perishable products under trade credit policy and shortages. Similarly, [33]
introduced ordering policies with constant demand, deterioration and carrying cost under shortages. [18] and
[4] investigated the effect of inflation on an inventory model with constant demand rate. Considering constant
type of demand, [7], [1] and [35] also established ordering policies under trade credit policy. Researchers such
as [8] and [42] developed inventory models with price linked demand for Weibull deteriorate commodities
whereas for such products [28] analysed inventory control model with linear demand and carrying cost.
[17], [15] and [30] developed inventory models for perishable products with price sensitive demand, linearly
time linked deterioration rate and holding cost under fully backlogged shortages. [10] studied the effects of
inflation and time value of money on an inventory model with linearly time linked demand under shortages,
later [13] redevelop [10]s model by modifying the hypothesis of uniform inventory in each replenishment cycle.
Considering linear carrying cost and time sensitive demand rate under without shortages, [9] represented
inventory model which is applicable for food grains, fashion clothes and electronic products and with same
assumptions [22] derived inventory model for those industries that use preservation techniques to control the
deterioration. [2] and [12] derived inventory models for perishable commodities with stock sensitive demand
under without shortages with storage time linked and constant carrying cost respectively and similarly, [43]
also presented inventory model with stock induced demand and carrying cost and discussed it with and
without shortages. For retail business [14] presented inventory model for perishable products with shortages
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and stock dependent demand under inflation and time discounting. With inventory induced demand and
linearly time sensitive carrying cost, [41] developed inventory model for deteriorating commodities under
inflation. [6] and [36] presented two-storehouse inventory model for single perishable product with time,
selling price and recurrence of advertisement linked demand rate under partially backlogged shortages and in
addition [36] also take account of alternative trade credit policy. Considering uniform demand and production
rate, [32] presented inventory model with two-level trade credit strategy where supplier provide retailer a
full trade-credit policy whereas retailer give their customers a partial trade credit policy for exponentially
deteriorating products. [39] discussed two cases with time sensitive and uniform demand and time dependent
and uniform carrying cost for case 1 and case 2 respectively under without shortages. For the products that
deteriorate with time, [20] developed inventory model with stock sensitive demand and [3] studied the
effect of price induced demand and default risk on optimal customer credit duration and cycle length under
shortages. [19] discussed a production inventory model which comprise an unfilled-order backlog for an
inventory system for exponential deteriorating products and later [29] presented an optional method to get
the optimal aspects of [19]s model. [16] and [34] discussed inventory models under inflation with ramp-
type demand and advertisement sensitive demand respectively. Under partially backlogged shortages, [23]
discussed inventory model with exponentially decreasing time sensitive demand and [37] presented inventory
model where demand depends on inventory level and time during storage duration and shortage duration
respectively. For company possessed storehouses where deteriorating products stored for extended time with
extra caution, [40] developed an EOQ model with linearly time induced demand and discussed it with both
exponentially and linearly time sensitive carrying cost. For perishable products, [31] presented inventory
model with time linked increasing demand and fixed production rate under without shortages and on the other
hand, considering shortages, [11] discussed a cost minimization framework with promotional work and selling
price induced demand. For non-spontaneous perishable products under inflation and shortages, [38] studied
the effect of linearly time linked carrying cost on life time inventory model with price and stock sensitive
Demand whereas [24] presented inventory model with price and advertisement sensitive demand under trade
credit policy. Sometimes, to promote market competitiveness supplier and retailer both accept trade credit
policy and provides price discount, considering these facts, for perishable products under shortages, [25]
derived inventory model with stock linked demand and linearly time induced carrying cost and [27] presented
two-level inventory model with price and stock sensitive demand. [26] analysed the retailers replenishment
policies for perishable products with delay in payments where the demand rate decreases with time without
shortages. [21] developed inventory model with time and selling price dependent demand and shortages
under inflation and trade credit policy for constantly deteriorate commodities.

Demand is not always constant this varies with time. Just like the demand for coolers and fans goes
high in summer, the demand for heater-geyser is more in winter. Apart from the season, celebrations also
affect the demand, for example, the demand for clothes and jewelry is high during weddings and festivals.
Nowadays fashion has also become a factor in generating demand. The increase in demand for masks,
sanitizers, and other medical items in covid-19 is another example of time-dependent demand. When the
credit period is offered by the supplier to the wholesaler, then a demand can be increased indirectly like
the wholesaler can generate sales (like Diwali sale). Apart from this he/she can reduce inventory costs by
ordering more goods in quantity and he/she can generate demand by selling goods to the customer at a
lower price.

Considering the above facts in the present study, an inventory model is developed for spontaneous
perishable products with trade credit period and time induced demand, constant carrying cost and
deterioration rate under inflation. Delay in payments and shortages are tolerated and shortages are partially
backlogged. The optimal ordering policies are established by optimizing the total profit and stock-out
duration. The theoretical model is discussed with examples and sensitivity analysis of various parameters.

This work is arranges in the following manner: in section 2, the postulates and symbols of this study
are mentioned. Mathematical representation with solution and solution procedure of this model is presented
in section 3 and 4. Numerical examples, sensitivity analysis and results with observations are discussed in
section 5, 6 and 7 respectively. Conclusion and future work in this direction is discussed in section 8.

2 Assumptions and Notations
The following notations and assumptions are applied to develop our model.
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2.1 Assumptions
We have considered the upcoming hypothesis to construct the mathematical model of present inventory
model

• Lead time is minimal.
• Replenishment rate is infinite.
• The infinite planning horizon is considered.
• The demand rate Dp depends on time and credit period π

that is, Dp(π, t) = απλeσt,
where α is the selling parameter and λ > 0, 0 < σ < 1.

• In present work inventory model is derived for single spontaneous perishing products.
• Supplier didnt offered the replacement or return or repair policy.
• Shortages are permitted and the fraction of shortages backordered depends on the awaiting time for

the upcoming replenishment and S(t) = e−δp(T−t) where 0 ≤ δp ≤ 1.
• During the trade credit period, the retailer need not to clear the account with the supplier. This policy

is provided by the supplier to the retailer under terms and conditions for a fixed duration.
2.2 Notations

P0 ordering cost per order
Hp holding cost per item per order
Cp purchasing cost per item
Sp unit selling cost (Sp > Cp )
C2 shortage cost per unit per order
C0 lost sales cost per order

Symbols R0 inflation rate
π trade credit period
Pc interest charged per $ /year
Pe interest earned per $ /year
θp deterioration rate, 0 ≤ θp < 1
S maximum inventory level
P maximum demand backlogged/cycle
Q total order quantity
T cycle length

Decision variables tP stock out time period
Dp(π, t) The demand rate Dp depends on time and credit period π

that is, Dp(π, t) = απλeσt,
where α is the selling parameter and λ > 0, 0 < σ < 1

Functions S(t) S(t) = e−δp(T−t) where 0 ≤ δp ≤ 1
Ip(t) inventory level, 0 ≤ t ≤ tp
Is(t) inventory level, tp ≤ t ≤ T
TP (tp) total profit

3 Model Formulation
The inventory level for this paper is drafted in Figure 3.1. During the period (0, tp) the inventory level Ip
depends on both demand and deterioration. It is governed by the equation:

dIp(t)

dt
= −Dp − θpIp(t) ; 0 ≤ t ≤ tp. (3.1)

The solution of the equation (3.1) with boundary condition Ip(tp) = 0 is

Ip(t) = x3e
−θpt(ex2tp − ex2t), (3.2)

where x1 = απλ , x2 = σ + θp and x3 =
x1

x2
.

The maximum inventory level is S, where

S = Ip(0) = x3(ex2tp − 1). (3.3)

During the period (tp, T ), the inventory level Is(t) is given by the differential equation

dIs(t)

dt
= −Dpe

−δp(T−t) ; tp ≤ t ≤ T. (3.4)
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Figure 3.1: Graphical representation of the inventory model

Using boundary condition Is(tp) = 0 , the solution of the above Equation 3.4 is given by

Is(t) = x5e
−δpT (ex4tp − ex4t), (3.5)

where x4 = σ + δp and x5 =
x1

x4
.

The negative inventory is P , where

P = −Is(T ) = x5e
−δpT (ex4T − ex4tp). (3.6)

Total order quantity Q = S + P .

Q = x3(ex2tp − 1) + x5e
−δpT (ex4T − ex4tp). (3.7)

The total cost per cycle depends on the following:

Ordering cost

f1 = P0,

Purchase cost

f2 = Cp[S + P ],

Holding cost

f3 = Hp

∫ tp

0

Ip (t) e−R0tdt

= Hpx3

[
ex2tp(1− e−x6tp)

x6
+

(1− e−x7tp)

x7

]
,

where x6 = R0 + θp and x7 = R0 − σ.

Sales revenue

f4 = Sp

[ ∫ tp

0

Dpe
−R0tdt+

∫ T

tp

e−R0TDpe
−δp(T−t)dt

]

= Spx1

[
e−x7T − e(x8tp−x9T )

x6
+

(1− e−x7tp)

x7

]
,

where x8 = σ + δp and x9 = R0 + δp.

Shortage cost

f5 = −C2

∫ T

tp

Is (t) e−R0tdt
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= C2x5e
−δpT

[
e−x10tp − ex10T

x10
+
e−tpx4(e−R0T − e−R0tp)

R0

]
,

where x10 = x4 +R0.

Lost sales cost

f6 = C0

[ ∫ T

tp

e−R0tDp(1− e−δp(T−t))dt

]

= C0x1

[
(ex7T − ex7tp)

x7
+
e−δpT (ex11T − e−x11tp)

x11

]
,

where x11 = σ + δp −R0.

Interest payable

Case 1. 0 ≤ π ≤ tp

SP1 = CpPc

∫ tp

π

Ip(t)e
−R0tdt

= CpPcx3

[
(e−x12tp − e−x12π)

x12
+
etpx2(e−x6π − e−x6tp)

x6

]
,

where x12 = x2 + θp −R0.

Case 2. tp ≤ π ≤ T
SP2 = 0.

Interest earned

Case 1. 0 ≤ π ≤ tp

SE1 = SpPe

∫ π

0

Dpte
−R0tdt

= SpPex13[1 + e−x7π(x7π − 1)],

where

x13 =
x1

x2
7

Case 2. tp ≤ π ≤ T

SE2 = SpPe

[ ∫ tp

0

Dpte
−R0tdt+ (π − tp)

∫ tp

0

Dpe
−R0tdt

]

= SpPex13[(1 + e−x7tp(x7tp − 1)) + x7(π − tp)(1− e−x7tp)].

The total profit per unit time, is described as

TP (tp) =

{
TP1(tp); 0 ≤ π ≤ tp
TP2(tp); tp ≤ π ≤ T,

where

TP1(tp) =
(f4 + SE1 − f1 − f2 − f3 − f5 − f6 − SP1)

T
, (3.8)

TP1(tp) =
1

T

〈{
Spx1

[
e−x7T − e(x8tp−x9T )

x6
+

(1− e−x7tp)

x7

]}
+ SpPex13

[
1 + e−x7π(x7π − 1)

]
(3.9)
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− P0 − Cp
[
x3(ex2tp − 1) + x5e

−δpT (ex4T − ex4tp)
]
−Hpx3

[
ex2tp(1− e−x6tp)

x6
+

(1− e−x7tp)

x7

]

− C2x5e
−δpT

[
(e−x10tp − ex10T )

x10
+
e−tpx4(e−R0T − e−R0tp)

R0

]

− C0x1

[
(ex7T − ex7tp)

x7
+
e−δpT (ex11T − e−x11tp)

x11

]

− CpPcx3

[
(e−x12tp − e−x12π)

x12
+
etpx2(e−x6π − e−x6tp)

x6

]〉
,

TP2(tp) =
(f4 + SE2 − f1 − f2 − f3 − f5 − f6 − SP2)

T
, (3.10)

TP2(tp) =
1

T

〈{
Spx1

[
e−x7T − e(x8tp−x9T )

x6
+

(1− e−x7tp)

x7

]}
(3.11)

+ SpPex13

[
(1 + e−x7tp(x7tp − 1)) + x7(π − tp)(1− e−x7tp)

]

− P0 − Cp
[
x3(ex2tp − 1) + x5e

−δpT (ex4T − ex4tp)
]

−Hpx3

[
ex2tp(1− e−x6tp)

x6
+

(1− e−x7tp)

x7

]

− C2x5e
−δpT

[
(e−x10tp − ex10T )

x10
+
e−tpx4(e−R0T − e−R0tp)

R0

]

− C0x1

[
(ex7T − ex7tp)

x7
+
e−δpT (ex11T − e−x11tp)

x11

]
− 0

〉
.

4 Solution Procedure

Step 1. In the beginning differentiate TPi with respect to tp ,i.e.
d(TPi)

dtp
i = 1, 2 respectively.

Step 2. Putting the above derivative equal to zero, i.e.
d(TPi)

dtp
= 0.

Step 3. Find the value of tp.

Step 4. Find
d2(TPi)

dt2p
.

Step 5. If
d2(TPi)

dt2p
< 0 at tp then TPi will be maximum.

With the help of MATLAB software, the optimal value of tp which is denoted by t∗p can be obtained.
Then from Equations (3.7),(3.9) and (3.11), the values of TP ∗ and Q∗ can be found. Here we assume suitable
values for P0, Hp, CP , Sp, C0, C2, R0, π, Pc, Pe, θp, T, α, λ, σ and δp with appropriate units.

5 Numerical Examples
The trial and error method has been used for the numerical data of this paper. Tried increasing and
decreasing all fixed values and finally the set of fixed values which gives maximum total profit is as follows

P0 10000 R0 0.7 Hp 5
θp .5 Cp 5 Sp 40
σ 0.3 λ 4 α 5000
δp 0.3 C2 3 C0 3
Pc 2 Pe 4 T 1

.

Example 5.1. When 0 ≤ π ≤ tp.
Using the above data with π = 0.02, we find the optimal values as t∗p = 0.6733, TP1

∗ = 8607.6 and Q∗ =

29.3899. For the data taken in this, we get
d(TP1)

dtp
= 0.00. and

d2(TP1)

dt2p
= −0.02. i.e.

d2(TP1)

dt2p
< 0.

Example 5.2. When tp ≤ π ≤ T.
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In this case we consider π = 0.46. Using the above data we obtain the optimal values t∗p = 0.4541, TP2
∗ =

359.8152 and Q∗ = 63.7898. For the data taken in this, we get
d(TP2)

dtp
= 0 and

d2(TP2)

dt2p
< 0.

The examples are solved by MATLAB software.

6 Sensitivity Analysis

Figure 6.1: Analysis of tp with respect to the parameters

Figure 6.2: Analysis of Q with respect to the parameters

Figure 6.3: Analysis of TP with respect to the parameters
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Now, using Example 5.1 a sensitivity analysis is examined to analyze the effects of changes in parameters
on optimal values of t∗p, Q

∗and TP1
∗. The results are described in Table 6.1.

Table 6.1: Sensitivity analysis of key parameters

parameters % change tp TP1 Q
P0 -20 0.6733 6607.6 0 29.3899

-10 0.6733 7607.60 29.3899
+10 0.6733 9607.60 29.3899
+20 0.6733 10608.0 29.3899

R0 -20 0.6671 8508.60 28.8508
-10 0.6711 8559.30 29.1984
+10 0.6740 8653.60 29.4509
+20 0.6736 8697.50 29.4160

θp -20 0.7045 8598.20 30.7251
-10 0.6885 8603.00 30.0463
+10 0.6588 8612.00 28.7514
+20 0.6450 8616.20 28.1343

Cp -20 0.7422 8577.70 35.4926
-10 0.7076 8593.30 32.4018
+10 0.6390 8620.50 26.4278
+20 0.6046 8632.20 23.5051

Sp -20 0.5984 8905.80 22.9833
-10 0.6401 8757.40 26.5221
+10 0.7004 8456.80 31.7653
+20 0.7231 8305.20 33.7798

λ -20 0.6733 6332.30 77.4150
-10 0.6733 7740.20 47.6993
+10 0.6733 9142.10 18.1086
+20 0.6733 9471.40 11.1576

σ -20 0.6728 8637.40 28.2880
-10 0.6730 8622.70 28.8336
+10 0.6735 8592.20 29.9397
+20 0.6737 8576.50 30.4920

Hp -20 0.6638 8612.50 28.5646
-10 0.6685 8610.10 28.9724
+10 0.6780 8605.10 29.7996
+20 0.6827 8602.60 30.2103

δp -20 0.6449 8600.40 26.2033
-10 0.6596 8604.20 27.8604
+10 0.6858 8610.80 30.7790
+20 0.6975 8613.60 32.0666

7 Results and observation
Effect of % change in parameters on tp, Q and TP is described as:

• As we raise the parameter P0, total inventory Q and stock-out period tp remains unchanged and total
profit TP increases rapidly.

• Hike in the parameter R0 remains tp and Q almost unchanged and there is a slight increase in total
profit TP .

• Total profit TP and total inventory Q behaves proportional to the parameter θp whereas tp behaves
inversely proportional.

• As we increase the parameter Sp, Q and tp boosts and TP declines, on the other hand, total inventory
Q, total profit TP and tp behaves exactly opposite for the parameter Cp.

• When the parameter λ grows, tp remains unchanged, TP and Q rapidly raises and drops respectively.
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• Raising the parameter σ results tp remains unchanged whereas TP and Q slightly hikes and declines
respectively.

• As the parameters Hp and δp grows, tp and Q rises whereas TP remains almost unchanged.

8. Conclusion and Future Research Direction
In this article, we presented an inventory model for spontaneous perishable products with trade credit period
and time dependent demand rate under the effect of inflation. The carrying cost and deterioration of products
are considered constant over the ordering cycle time. Partially backlogged shortages and delay in payments
is allowed. The objective of this model is to maximizing the total profit by optimizing total inventory and
stock-out period. Numerical example is discussed to demonstrate this model. The major findings of this
study are

• If we increase the trade credit duration, it results more profit.
• To get maximum total profit, retailer should raise ordering cost.
• Hike in selling price of commodities, reduces total profit.
The further study in this direction can be done by considering variable holding cost and deterioration

rate and selling price dependent demand rate. Also, this study can be performed for non-instantaneous
deteriorating items.
Acknowledgement. The authors are very grateful to the anonymous Editors and reviewers for their
remarkable proposals.
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Abstract

We introduce, study and investigate the concepts of weakly semi -Is- open sets and some properties
of the set. We introduce weakly semi -Is- open functions and weakly semi -Is- closed functions. Also,
we introduced notion of weakly semi -Is- open sets and weakly semi -Is- closed sets. We discussed its
properties and its relationship between other sets in topological spaces as said in below introduction. We
also furnish decomposition of continuity in this paper.
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1 Introduction
Topology as a well-defined mathematical discipline dates from the early twentieth century, though some

isolated results can be traced back several centuries. An ideal topological space is a triplet ( X,τ ,I ), where
X is a nonempty set, τ is a topology on X and I is an ideal of subsets of X. Levine [13] introduced and
investigated the concept of semi-open sets and semi-continuity in 1963. In 2006, in his paper on weakly
semi-I-open sets and another decomposition of continuity via ideals, Hatir and Jafari [6] introduced the
notions of weakly semi-I-open sets and weakly semi-I-continuous functions and obtained a decomposition of
continuity. Khan and Noiri [11] introduced and investigated the concept of semilocal functions in his paper
Semi-local functions in ideal topological spaces in 2010. Santhi and Rameshkumar [16] obtained several
characterizations of semi-Is-open sets and semi-Is-continuous functions in 2013. Also, they introduce new
semi-Is-open and semi-Is-closed functions as well. In 2014, Santhi and Rameshkumar [17] presented BIs-sets,
CIs-sets, SIs-sets, α-Is-sets, semi-Is-sets, and pre-Is-sets to obtain a decomposition of continuity in ideal
topological spaces using semi-local functions.

In this paper, we are introducing some properties of weakly semi-Is-open sets and weakly semi-Is-closed
sets in ideal topological space via semilocal functions. We will study the relationship between weakly semi-
Is-open sets and weakly semi-Is-closed sets, weakly semi-Is-open sets and preopen set, weakly semi-Is-open
sets and α-Is-open set, etc,.

2 Preliminaries
Let A be the subset of a topological space (X,τ) then cl(A) and int(A) denote closure and interior of A

in (X,τ) respectively.
An Ideal I on a topological space (X,τ) is a non-empty collection of subsets of X which satisfies :
1. A ∈ I and B ⊆ A implies B ∈ I.
2. A ∈ I and B ∈ I implies A ∪ B ∈ I.

The space (X,τ ,I) is called an Ideal topological space or Ideal space.

Definition 2.1. Let P(X) be the power set of X. Then the operator ()∗ : P(X)→ P(X) called a local function
[12] of A with respect to τ and I is defined as follows : for A ⊆ X, A∗(I,τ) = {x ∈ X |U ∩ A /∈ I for every
open set U containing x }. We simply write A∗ instead of A∗(I,τ).

Definition 2.2. For A ⊆ X, A∗(I,τ) ={ x ∈ X |U ∩ A /∈ I for every U ∈ SO(X)} is called semi-local function
[11] of A with respect to I and τ , where SO(X,x) = {U ∈ SO(X) |x∈U}. We simply write A∗ instead of
A∗(I,τ).
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Definition 2.3. It is given in [4] that τ∗s(I) is a topology on X, generated by a sub basis {U – E:U ∈ SO(X)
and E ∈ I } or equivalently τ∗s(I) = {U ⊆ X:cl∗s(X – U)=X – U}.

Definition 2.4. The closure operator [4] cl∗s for a topology τ∗s(I) is defined as follows: for A⊆X, cl∗s(A)
= A ∪A∗ and int∗s denotes the interior of the set A in (X,τ∗s,I). It is known that τ⊆ τ∗(I)⊆τ∗s(I).

Definition 2.5. A subset A of (X,τ ,I) is called semi-∗-perfect [10] if A = A∗. A subset A of (X,τ ,I) is called
∗-semi dense in-itself [10] if A ⊂ A∗. A subset A of (X,τ ,I) is called semi-∗-closed in-itself [10] if A∗ ⊆ A.

Definition 2.6. A subset A of a space (X,τ) is said to be
1. regular closed [15] if cl(int(A)) =A.
2. semi-open [13] if A ⊂ cl(int(A)). The complement of semi open set is said to be semi-closed.
3. semi-closed [13] iff int(A) = int(cl(A)).
4. semi-closure [13] if intersections of all semi-closed sets containing A and it is denoted by scl(A).

Definition 2.7 ([11]). Let (X,τ ,I) be an ideal topological space and A, B subsets of X. Then for the semi-local
function the following properties hold:

1. If A ⊆ B then A∗ ⊆ B∗.
2. If U ∈ τ then U ∩ A∗ ⊆ (U ∩ A)∗.
3. A∗ = scl(A∗) ⊆ scl(A) and A∗ is semi-closed in X.
4. (A∗)∗ ⊆ A∗.
5. (A ∪ B)∗ = A∗ ∪ B∗.
6. If I = {∅}, then A∗ = scl(A).

Definition 2.8. A subset A of a topological space X is said to be
1. α-open [14] if A ⊆ int(cl(int(A))),
2. pre-open [3] if A ⊆ int(cl(A)),
3. β-open [5] if A ⊆ cl(int(cl(A))).

Definition 2.9. A subset A of an ideal topological space (X,τ ,I) is said to be
1. α-I-open [8] if A ⊆ int(cl∗(int(A))),
2. semi-I-open [8] if A ⊆ cl∗(int(A)),
3. pre-I-open [1] if A ⊆ int(cl∗(A)),
4. almost strong I-open [7] if A ⊂ cl∗(int(A∗)),
5. almost I-open [2] if A ⊂ cl(int(A∗)),
6. β-I-open [8] if A ⊂ cl(int(cl∗(A))),
7. strong β-I-open [7] if A ⊂ cl∗(int(cl∗(A))),
8. weakly semi-I-open [15] if A ⊂ cl∗(int(cl(A))).

Definition 2.10. A subset A of an ideal topological space (X,τ ,I) is said to be
1. α-Is-open [18] if A ⊆ int(cl∗s(int(A))),
2. s-Is-set [18] if cl∗s(int(A)) = int(A),
3. α∗-Is-set [18] if int(cl∗s(int(A))) = int(A).

Corollary 2.1. A subset A of an ideal topological space (X,τ ,I) is said to be
1. Every almost strong I-open set is almost I-open but not converse [7],
2. Every almost strong I-open set is a strong β-I-open set but not converse [7],
3. Every strong β-I-open set is a β-I-open set but not converse [7],
4. Every β-I-open set is a β-open set but not converse [7],
5. Every almost I-open set is a β-I-open set but not converse [7],
6. Every weakly semi-I-open set is a β-open set but not converse [6],
7. Every strong β-I-open set is a weakly semi-I-open set but not converse [6].

Definition 2.11. Let (X,τ ,I) be an ideal space and M be a *-semi dense in itself [10] subset of X. Then
A∗ = cl(A) = cl∗s(A).

Definition 2.12. Let (X,τ ,I) be an ideal space and A ⊂ X.
Then cl∗s(int(cl∗s(int(A)))) = cl∗s(int(A)).
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Definition 2.13. A subset A of an ideal space (X,τ ,I) is said to be semi-Is-open [18] if A ⊆ cl∗s(int(A))).

Definition 2.14. A subset A of an ideal space (X,τ ,I) is said to be semi-Is-open [16] iff there exists U ∈
τ such that U ⊆ A ⊆ cl∗s(U). A subset H of an ideal space (X,τ ,I) is said to be semi-Is-closed [16] if its
complement is semi-Is-open.

Definition 2.15. A subset A of an ideal space (X,τ ,I) is said to be pre-Is-open [18] if A ⊆ (int(cl∗s(A))).

Definition 2.16. A subset F of an ideal space (X,τ ,I) is said to be pre-Is-closed [17] if its complement is
pre-Is-open.

Definition 2.17. A subset A of an ideal space (X,τ ,I) is called
1. An AIS-set [9] if A = U ∩ V, where U is open and cl∗s(int(V)) = V.
2. A B1IS-set [9] if A = U ∩ V, where U is α-Is-open and cl∗s(int(V)) = X.
3. A B2IS-set [9] if A = U ∩ V, where U is α-Is-open and cl∗s(V) = X.
4. An αAIS-set [9] if A = U ∩ V, where U is α-Is-open and
cl∗s(int(V)) = V.

5. An αCIS-set [9] if A = U ∩ V, where U is α-Is-open and
int(cl∗s(int(V))) ⊂ V.

6. A WLCIS-set [9] if A = U ∩ V, where U is open and cl∗s(V) = V.
7. A SIS-set [18] if A = U ∩ V, where U ∈ τ and V is S-Is-set.

3 Weakly semi-Is-open sets
Definition 3.1. A subset M of an ideal space (X,τ ,I) is said to be weakly semi-Is-open if M ⊆
cl∗s(int(cl(M))).

Example 3.1. Consider X = {m,n,o} in an ideal space (X,τ ,I), where τ = {∅, {m}, {m,o}, X} and
I ={∅, {m}}. Let the semi open set of τ be B = {∅, X} and M = {m,n}. Then cl∗s(int(cl(M))) =
cl∗s(int(cl({m,n}))) = cl∗s(int(X)) = cl∗s(X) = X ⊃M and so M is weakly semi-Is-open.

Example 3.2. Consider X = {1, 2, 3, 4} in an ideal space (X,τ ,I), where τ = {∅, {1}, {3},
{1, 3}, X} and I = {∅, {1}}. Let the semi open set of τ be B = {∅, {1, 2, 4}, {1, 3, 4}, X}, M = {1, 3},
M∗ = {3}. Then cl∗s(int(cl(M))) = cl∗s(int(cl({1, 3}))) = cl∗s(int(X)) = cl∗s(X) = X ⊃ M and so M is
weakly semi-Is-open.

Lemma 3.1. Every semi-Is-open set is weakly semi-Is-open set, but converse doesn’t hold.

Example 3.3. Consider X = {m,n,o} in an ideal space (X,τ ,I), where τ = {∅, {m,n}, X} and I ={∅, {o}}.
Then M = {m}, cl∗s(int(cl(M))) = cl∗s(int(cl({m}))) = cl∗s(int(X)) = cl∗s(X) = X ⊃ M and so M is
weakly semi-Is-open, but cl∗s(int(M)) = cl∗s(int{m}) = cl∗s(∅) = ∅ 6⊃M and so M is not semi-Is-open.

Theorem 3.1. Let (X,τ ,I) be an ideal topological space. If M is weakly semi-Is-open set then M is β-open,
but not conversely.

Proof. If M is weakly semi-Is-open, then M ⊂ cl∗s(int(cl(M))) = (int(cl(M)))∗ ∪ (int(cl(M)))
⊂ cl(int(cl(M))) ∪ int(cl(M)) = cl(int(cl(M))). Therefore M is β-open and converse doesn’t hold.

Example 3.4. Consider X = {m,n,o} in an ideal space (X,τ ,I), where τ = {∅, {m}, {n}, {m,n}, X} and I
={∅, {m}}. Then M = {m,o} is β-open, but not weakly semi-Is-open.

Example 3.5. Consider X = {m,n,o,p} in an ideal space (X,τ ,I), where τ = {∅, {m}, {o}, {m,o}, X} and
I ={∅, {m}}. Let the semi open set of τ be B = {∅, {m,n,p}, {m,o,p}, X}, M = {m,o}, M∗ = {c}. Then
cl∗s(int(cl(M))) = cl∗s(int(cl({m,o}))) = cl∗s(int(X)) = cl∗s(X) = X ⊃ M and so M is weakly semi-Is-open.
Also M 6= M∗, hence M is not semi-*-perfect. M 6⊂M∗, hence M is not *-semidense. M ⊆M∗, hence M is
semi-*-closed.

Corollary 3.1. Let (X,τ ,I) be an ideal space and M is *-semi dense in itself, then the following are equivalent
:

(a) M is β-open,
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(b) M is weakly semi-Is-open.

Theorem 3.2. Let the ideal topological space be (X,τ ,I) and M, N be the subsets of X. If M is weakly
semi-Is-open set and N ∈ τ , then M ∩ N is weakly semi-Is-open.

Proof. Let M is weakly semi-Is-open and N ∈ τ . If M ⊂ cl∗s(int(cl(M))), then M ∩N ⊂ cl∗s(int(cl(M)))∩
N = ((int(cl(M)))∗∪int(cl(M)))∩N = (int(cl(M)))∗∩N∪int(cl(M))∩N ⊂ (int(cl(M))∩N∗)∪int(cl(M∩
N)) = (int(cl(M ∩N)))∗ ∪ int(cl(M ∩N)) = cl∗s(int(cl(M ∩N))). This shows that M ∩N is weakly semi-
Is-open.

Remark 3.1. In general, the finite intersection of weakly semi-Is-open sets need not be weakly semi-Is-open.

Lemma 3.2. Let the ideal topological space be (X,τ ,I), where M ⊂ X and U ∈ semiopen set of τ . Then
cl∗s(M) ∩ U = cl∗s(M ∩ U).

Proof. cl∗s(M) ∩ (U) = (M∗ ∪M) ∩ U = (M∗ ∩ U) ∪ (M ∩ U) ⊂ (M ∩ U)∗ ∪ (M ∩ U) = cl∗s(M ∩ U).

Example 3.6. Consider X = {1, 2, 3, 4} in an ideal space (X,τ ,I), where τ = {∅, {1}, {3},
{1, 3}, X} and I = {∅, {1}}. Let M = {1, 3} and M∗ = {3}. From example 3.2, M is weakly semi-Is-open.
M 6⊂M∗, hence M is not *-semidense.

Example 3.7. Consider X = {m,n,o} in an ideal space (X,τ ,I), where τ = {∅, {m}, {n}, {m,n}, X}
and I ={∅, {m}}. Let the semi open set of τ be B = {∅, {m,o}, {n,o}, X} and M = {m,o}, where
cl∗s(int(cl(M))) = cl∗s(int(cl({m, o}))) = cl∗s(int({m, o})) = cl∗s({m}) = ∅ 6⊃ M and so M is not weakly
semi-Is-open. since cl(int(cl∗s(M))) = cl(int(cl∗s({m, o}))) = cl(int(X)) = cl(X) = X ⊃ M and so M is
β − Is-open.

The above example shows that weakly semi-Is-openness and β-Is-openness are independent concepts.

Theorem 3.3. Let an ideal space be (X,τ ,I). If M is pre-open, then M is weakly semi-Is-open.

Proof. If M is pre-open, then M ⊂ int(cl(M)) and so M ⊂ cl∗s(int(cl(M))) which implies that M is weakly
semi-Is-open.

Example 3.8. Consider X = {m,n,o} in an ideal space (X,τ ,I), where τ = {∅, {m}, {m,o}, X} and
I ={∅, {m}}. Let the semi open set of τ be B = {∅, X} and M = {m,n}. Then cl∗s(int(cl(M))) =
cl∗s(int(cl({m,n}))) = cl∗s(int(X)) = cl∗s(X) = X ⊃ M and so M is weakly semi-Is-open. Also,
int(cl(M)) = int(cl({m,n})) = int(X) = X ⊃M and therefore, M is pre-open.

Theorem 3.4. Let an ideal space be (X,τ ,I). If M ⊂ N ⊂ cl∗s(M) and M is weakly semi-Is-open, then N
is weakly semi-Is-open. In particular, if M is weakly semi-Is-open, then cl∗s(M) is weakly semi-Is-open.

Proof. If M is weakly semi-Is-open, then M ⊂ cl∗s(int(cl(M))). Since N ⊂ cl∗s(M) ⊂
cl∗s(cl∗s(int(cl(M)))) = cl∗s(int(cl(M))) ⊂ cl∗s(int(cl(N))). Hence N is weakly semi-Is-open.

Theorem 3.5. Let the ideal space be (X,τ ,I). If M is α-Is-open and N is weakly semi-Is-open, then M ∩N
is weakly semi-Is-open.

Proof. Since M is α-Is-open, M ⊂ int(cl∗s(int(M))) and N is weakly semi-Is-open, N ⊂ cl∗s(int(cl(N))).
NowM∩N ⊂ int(cl∗s(int(M)))∩cl∗s(int(cl(N))) ⊂ cl∗s(int(cl∗s(int(M)))∩int(cl(N))) = cl∗s(int(cl∗s(int(M)∩
int(cl(N))))) ⊂ cl∗s(int(cl∗s(int(M)∩int(cl(N))))) = cl∗s(int(cl∗s(int(int(M)∩cl(N))))) ⊂ cl∗s(int(cl∗s(int(cl(int(M)∩
N))))) ⊂ cl∗s(int(cl∗s(int(cl
(M ∩N))))) = cl∗s(int(cl(M∩N))) by Definition 2.12, which implies that M∩N is weakly semi-Is-open.

Theorem 3.6. Let the ideal space be (X,τ ,I) and M ⊂ X be weakly semi-Is-open. If M is either semiclosed
or Is-locally closed, then M is semi-Is-open.
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Proof. Suppose M is Is-locally closed. M is Is-locally closed implies that M = U ∩ M∗ for some semi
open set U . M is weakly semi-Is-open implies that M ⊂ cl∗s(int(cl(M))). Now M = U ∩ M∗ ⊂ U ∩
(cl∗s(int(cl(M))))∗ ⊂ U∩cl∗s(cl∗s(int(cl(U∩M∗)))) = U∩cl∗s(int(cl(U∩M∗))) ⊂ cl∗s(U∩int(cl(U∩M∗))) =
cl∗s(int(U ∩ cl(U ∩M∗))) ⊂ cl∗s(int(U ∩ cl(U) ∩ cl(M∗))) = cl∗s(int(U ∩M∗)) = cl∗s(int(M)). Hence M
is semi-Is-open. Suppose M is semiclosed. Then int(cl(M)) = int(M). Since M is weakly semi-Is-open
implies that M ⊂ cl∗s(int(cl(M))) = cl∗s(int(M)). Hence M is semi-Is-open.

Example 3.9. Consider X = {m,n,o} in an ideal space (X,τ ,I), where τ = {∅, {m,n}, X} and I ={∅, {o}}.
Let the semi open set of τ be B = {∅, X} and M = {m}, then M∗ = X and cl∗s(int(cl(M))) = cl∗s(int(X)) =
X ⊂ M and so M is weakly semi-Is-open. Also, cl∗s(int(M)) = cl∗s(∅) = ∅. Hence M is not semi-Is-open.
Moreover, M is neither Is-locally closed nor semiclosed.

Definition 3.2. A subset M of an ideal space (X,τ ,I) is said to be weakly semi-Is-closed if M ⊆
int∗s(cl(int(M))).

Theorem 3.7. A subset M of a space (X,τ ,I) is weakly semi-Is-closed iff int∗s(cl(int(M))) ⊂ M . Also, if
M is weakly semi-Is-closed subset of X, then M is an α∗-Is-set.

Proof. Let M be weakly semi-Is-closed set of (X,τ ,I). Then X - M is weakly semi-Is-open and hence X -
M ⊂ cl∗s(int(cl(X−M))) = X− int∗s(cl(int(M))). Therefore, we have int∗s(cl(int(M))) ⊂M . Conversely,
let int∗s(cl(int(M))) ⊂ M . Then X - M ⊂ cl∗s(int(cl(X −M))) and hence X - M is weakly semi-Is-open.
Therefore, M is weakly semi-Is-closed. Also int∗s(cl(int(M))) ⊂ M and so int∗s(cl(int(M))) ⊂ int(M).
Hence it follows that int∗s(cl(int(M))) = int(M) which implies that M is α∗-Is-set.

Definition 3.3. A subset M of an ideal space (X,τ ,I) is said to be weakly SIS-set (resp. CIS-set [18]) if M
= G ∩ V where G is open and V is weakly semi-Is-closed (resp. α∗-Is-set).

Remark 3.2. Every open set is a weakly SIS-set and every weakly SIS-set is a CIS-set.

Theorem 3.8. Let (X,τ ,I) be an ideal space. Then the following are equivalent :
(a) M is open,
(b) M is α-Is-open and a weakly SIS-set,
(c) M is α-Is-open and a CIS-set.

Proof. If M is open, (a) implies (b) and (b) implies (c) are clear. Then (c) implies (a) follows from the
preposition 4.16 of [18].

Definition 3.4. A subset M of a space (X,τ ,I) is called Strong s− Is-set if cl∗s(int(cl(M))) = int(M).

Definition 3.5. A subset M of a space (X,τ ,I) is called Strong SIS-set if M = U ∩ V , where U ∈ τ and V
is Strong S − Is-set.

Remark 3.3. a) Every strong s− Is-set is S − Is-set.
b) Every strong SIS-set is SIS-set.
c) Every open set is strong SIS-set.

Proposition 3.1. For a subset M of a topological space (X,τ ,I), the following holds equivalently :
a) M is open,
b) M is weakly semi-Is-open and strong SIS-set,
c) M is semi-Is-open and strong SIS-set.

Proof. By the above remarks we prove this as follows:
If M is a semi-Is-open set and also a strong SIS-set, then M ⊆ cl∗s(int(cl(M))) = cl∗s(int(cl(U ∩ V ))),

where U ∈ τ and V is strong SIS-set. Hence M ⊂ U ∩M ⊂ U ∩ (cl∗s(int(cl(U))) ∩ cl∗s(int(cl(V )))) =
U ∩ int(V ) = int(M), shows that M is open
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4 Weakly semi-Is-open and Weakly semi-Is-closed functions
Definition 4.1. Let f : (M, τ, I) → (N, σ, J) be a function of weakly semi-Is-open if the image of every
open set in (M, τ, I) is weakly semi-Is-open in (N, σ, J).

Theorem 4.1. A function f : (M, τ, I)→ (N, σ, J) is weakly semi-Is-open iff for each point m of X and each
neighbourhood U of m, there exists a weakly semi-Is-open set V in N containing f(m) such that V ⊂ f(U).

Theorem 4.2. A function f : (M, τ, I) → (N, σ, J) is weakly semi-Is-open function such that F ⊂ N and
G ⊂M is a closed set containing f−1(F ), then there exists a weakly semi-Is-open set W ⊂ N containing F
such that f−1(W ) ⊂ G.

Definition 4.2. Let f : (M, τ, I) → (N, σ, J) be a function of weakly semi-Is-closed if the image of every
closed set in (M, τ, I) is weakly semi-Is-closed in (N, σ, J).

Theorem 4.3. A function f : (M, τ, I)→ (N, σ, J) is weakly semi-Is-closed function such that F ⊂ N and
G ⊂M is a open set containing f−1(F ), then there exists a weakly semi-Is-closed set W ⊂ N containing F
such that f−1(W ) ⊂ G.

Definition 4.3. A function f : (M, τ, I) → (N, σ, J) is said to be weakly semi-Is-continuous if for every
V ∈ σ, f−1(V ) is an ws-Is-set of (M, τ, I).

Proposition 4.1. f : (M, τ, I)→ (N, σ, J) be bijective function then the following condition holds:
(1) f−1 is weakly semi-Is-continuous,
(2) f is weakly semi-Is-open,
(3) f is weakly semi-Is-closed.

Theorem 4.4. Consider the functions f : (M, τ.I) → (N, σ, J) and g : (N, σ, J) → (O, ν,K), whre I, J
and K are ideals on M,N and O, respectively. The following statement holds:

(1) If f is open and g is weakly semi-Is-open then g ◦ f is weakly semi-Is-open,
(2) If g ◦ f is open and g is weakly semi-Is-continuous injection then f is weakly semi-Is-open.

5 Conclusion
In this paper, we obtained several characterization of weakly semi-Is-open sets. we introduced weakly
semi-Is-open sets and weakly semi-Is-closed sets using semi local functions. Also we introduced weakly
semi-Is-open functions and weakly semi-Is-closed functions. We discussed their relationship with various
sets.
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1 Introduction
The notion of fuzzy semi-open sets as well as fuzzy semi-closed sets plays a very significant role in fuzzy
topology. The concept of semi-open sets were introduced by Levine [8]. Azad [1] introduced the concept of
fuzzy semi-open sets and fuzzy semi-separation axioms in 1981.

We introduce and study the concept of fuzzy semi-separation axioms in different way. Here we introduce
fuzzy semi-connectedness in fuzzy biclosure spaces and also study their basic properties.

2 Preliminaries
The concept of fuzzy set was introduced by Zadeh (1965) in his classical paper [18]. A fuzzy set ’A’ in a
non-empty set X is a mapping from X to [0, 1].

A fuzzy point xr is a fuzzy set in X taking value r ∈ (0, 1) at x and zero otherwise. A fuzzy point xr is
said to belong to a fuzzy set A i.e. xr ∈ A iff r ≤ A(x) [13]. A fuzzy singleton xr is a fuzzy set in X taking
value r ∈ (0, 1] at x and 0 elsewhere. A non-empty set X together with two fuzzy topologies τ1, τ2 is called
fuzzy bitopological space. It is denoted by (X, τ1,τ2).

A fuzzy point xr is said to be quasi-coincident with A denoted by xrqA iff r+A(x) > 1. A fuzzy set A is
said to be quasi-coincident with another fuzzy set B denoted by AqB iff ∃ x ∈ X such that A(x) +B(x) > 1
similarly we say that Aq̄B iff A ⊆ coB i.e. A(x) +B(x) ≤ 1. Obviously, if A and B are quasi-coincident at
x both A(x) and B(x) are not zero and here A and B intersect at x. Here we follow the Lowen’s definition
[9] of fuzzy topology as a family τ of fuzzy sets of a non-empty X is said to form a fuzzy topology on X if it
is preserved under Arbitrary union, finite intersection and contains all constant fuzzy sets. The members of
τ are called fuzzy open sets and their complements are called fuzzy closed sets. All the definitions, results
and terminology used here is taken from Ming and Ming [13]. In this paper, we introduce the concept of
semi-separation axioms and semi-connectedness in fuzzy biclosure spaces. We use abbreviation fbcs for fuzzy
biclosure space.

The concept of closure operator was given by Čech [7] and Birkhoff [5] separately. A lot of works has
been done on Čech closure operator. We are using here Birkhoff closure operator. Now we mention the
definitions of closure operator as:

Definition 2.1 ([7]). (Čech closure operator)
An operator C : 2X → 2X is called closure operator if it satisfies the following axioms:
1. C(φ) = φ,
2. A ⊆ C(A), ∀A ∈ 2X ,
3. C(A ∪B) = C(A) ∪ C(B), ∀A,B ∈ 2X .
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Here C is called a closure operator and (X,C) is known as Čech closure space.

Definition 2.2 ([5]). (Birkhoff closure operator)
An operator C : 2X → 2X is called closure operator on a non-empty set X if it satisfies the following

axioms:
1. C(φ) = φ,
2. A ⊆ C(A), ∀A ∈ 2X ,
3. A ⊆ B ⇒ C(A) ⊆ C(B),∀A,B ∈ 2X ,
4. C(C(A)) = C(A), ∀A ∈ 2X ,
Here C is called Birkhoff closure operator and the pair (X,C) is called a closure space.

Definition 2.3 ([10]). A fuzzy closure operator on a set X is a function c : IX → IX satisfying the
following three axioms:

1. c(φ) = φ,
2. c(A) ⊂ A, ∀A ∈ IX ,
3. c(A ∪B) = c(A) ∪ c(B) < ∀A,B ∈ IX .
The pair (X, c) is a fuzzy closure space (in short fcs).

Definition 2.4 ([16]). A fuzzy closure operator c on a set X is a function c : IX → IX satisfying following
the axioms:

1. c(α) = α;α ∈ [0, 1] ,
2. A ⊆ c(A), ∀A ∈ IX ,
3. A ⊆ B ⇒ c(A) ⊆ c(B), ∀A,B ∈ IX ,
4. c(c(A)) = c(A), ∀A ∈ IX ,
Here (X, c) is known as fuzzy closure space.

Definition 2.5 ([17]). A function ci : IX → IX(i = 1, 2) is called a fuzzy biclosure operator on X if the
following postulates are satisfied:

1. ci(α) = α, α ∈ [0, 1] ,
2. A ⊆ ci(A),∀A ∈ IX ,
3. A ⊆ B ⇒ ci(A) ⊆ ci(B),∀A,B ∈ IX ,
4. ci(ci(A)) = ci(A), ∀A ∈ IX .
Then (X, c1, c2) is called a fuzzy biclosure spaces.

Definition 2.6. Let (X, c1, c2) be a fuzzy biclosure space. If the closure operator satisfies the condition
ci(A ∪B) = ci(A) ∪ ci(B) then it is called additive property.

The concept of semi-open sets was introduced by Levine [8] as “A set R in a topological space X will
be termed semi-open (simply written as s.o.) iff there exist an open set P such that P ⊂ R ⊂ c(P ) where
c denote the closure operator in X [8].” Also we know that a fuzzy set R is said to be fuzzy semi-open iff
R ⊆ cl (int R ). The complement of fuzzy semi-open set is called fuzzy semi-closed set. So, a fuzzy set A is
said to be fuzzy semi-closed iff int (cl(R) ⊆ R . Let {Rα}α ∈ Λ be a collection of semi-open set in X then
∪α∈ΛRα is semiopen.

Definition 2.7. Let (X, c1, c2) be a fuzzy biclosure space and the semi closure of a fuzzy set A in X is
defined as:

ci - scl(A) = ∩{B : B is fuzzy closed set and B ⊃ A}
Similarly the semi interior of a fuzzy set A in X is defined as:
ci - sint(A) = ∩{B : B is fuzzy open set and B ⊂ A}.

3 Fuzzy semi-separation axioms in fuzzy biclosure space
In this section, we define the concepts of fuzzy semi-separation axioms in fuzzy biclosure spaces:

Definition 3.1. A fuzzy biclosure space (X, c1, c2) is said to be
1. Fuzzy Pairwise Semi T0 if ∀x, y ∈ X,x 6= y ∃ a fuzzy semi-open set U such that U(x) 6= U(y),
2. Fuzzy Pairwise Semi T1 if ∀x, y ∈ X,x 6= y ∃ fuzzy semi-open sets U, V in X such that U(x) =

1, U(y) = 0 and V (x) = 0, V (y) = 1,

63



3. Fuzzy Pairwise Weakly semi T1 if ∃ a c1-fuzzy semi-open set or a c2-fuzzy semi-open set U such that
U(x) = 1, U(y) = 0,

4. Fuzzy Pairwise Semi T2 if for every pair of distinct fuzzy points xr, ys in X their exists fuzzy semi-open
sets U and V such that xr ∈ U, ys ∈ V and U ∩ V = ∅,

5. Fuzzy Pairwise Semi-Regular if for each fuzzy point xr and each fuzzy closed set F such that xr q̄F ∃
fuzzy semi-open sets U and V such that xr ⊆ U,F ⊆ V and Uq̄V ,

6. Fuzzy Pairwise Semi-Normal if for every pair of fuzzy closed set F1 and F2 such that F1q̄F2, ∃ fuzzy
semi-open sets U, V such that F1 ⊆ U and F2 ⊆ V and Uq̄V .

Clearly fuzzy semi T2 ⇒ fuzzy semi T1 ⇒ fuzzy semi T0 but not conversely.

Theorem 3.1. A fbcs (X, c1, c2) is fuzzy pairwise semi T0 if either (X, c1) or (X, c2) is semi T0.

Proof. It is given that (X, c1) or (X, c2) is fuzzy semi T0. If (X, c1) is semi T0 then we have x, y ∈ X,x 6=
y ∃ a c1-fuzzy semi-open set U such that U(x) 6= U(y). Now if (X, c2) is fuzzy semi T0 then ∃ a c2-fuzzy
semi-open set V such that V (x) 6= V (y). Thus for x, y ∈ X,x 6= y ∃ a fuzzy semi-open set U in c1 or c2 such
that U(x) 6= U(y). Hence (X, c1, c2) is fuzzy pairwise semi T0.

Theorem 3.2. A fbcs (X, c1, c2) is fuzzy pairwise semi T . iff (X, c1) and (X, c2) are fuzzy semi T1.

Proof. First let the fbcs (X, c1, c2) is fuzzy pairwise semi T1. then for x, y ∈ X,x 6= y ∃ U1 ∈ c1 and V1 ∈ c1
such that U1(x) = 1, V1(y) = 0 and U1(x) = 0, V1(y) = 1. If we take x, y ∈ X then U2, V2 ∈ X such that
U2(x) = 0, U2(y) = 1 and V2(x) = 1, V2(y) = 0 .Therefore x, y ∈ X,x 6= y we have U1, U2 ∈ c2 such that
U1(x) = 1, U1(y) = 0 and U2(x) = 0, U2(y) = 1 implies that (X, c1) is fuzzy semi T1. Similarly (X, c2) is
fuzzy semi T1.

Conversely suppose that (X, c1) and (X, c2) are fuzzy semi T1 then (X, c1) is fuzzy semi T1 for x, y ∈
X,x 6= y ∃ a c1-fuzzy semi-open set U such that U(x) = 1, U(y) = 0 and since (X, c2) is fuzzy semi T1 for
x, y ∈ X,x 6= y ∃ a c2-fuzzy semi-open set V such that V (x) = 0, V (y) = 1. Then for x, y ∈ X,x 6= y ∃ a c1-
fuzzy semi-open set U and a c2-fuzzy semi-open set V such that U(x) = 1, V (y) = 0 and V (x) = 0, U(y) = 1
implies that (X, c1, c2) is fuzzy pairwise semi T1.

Theorem 3.3. A fbcs (X, c1, c2) is fuzzy weakly pairwise semi T1 iff c1-scl{x} ∩ c2-scl{x} = {x} for every
x ∈ X.

Proof. Let (X, c1, c2) be a fuzzy pairwise semi T1. Let x ∈ X and choose any y 6= x, then ∃ a c1-fuzzy
semi-open set or a c2-fuzzy semi-open set U such that U(y) = 1, U(x) = 0.

First let us consider U as a c1-fuzzy semi-open set then clearly coU is c1-fuzzy semi-closed set such that
coU(x) = 1, coU(y) = 0. Thus c1 - scl{x} ⊇ {x} for i = 1, 2 where {x} is semi-closed.

Hence {c1-scl{x}} (x) = 1 for i = 1, 2 which implies that (c1-scl{x} ∩ c2-scl{x}) (x) = 1. let c1-scl{x} =
∩
{
F ∈ IX : F ⊇ {x}

}
and F is c1-fuzzy semi-closed set. Let

{
F ∈ IX : F ⊇ {x}

}
be defined by F . Then

coU ∈ F and since coU(y) = 0, we have (c1-scl{x}) (y) = 0 which implies that (c1-scl{x} ∩ c2-scl{x}) (y) = 0.
Let (X, c1, c2) be a fuzzy pairwise semi T1. Hence (X, c1, c2) is fuzzy weakly pairwise semi T1.

Conversely let x, y ∈ X x 6= y then (c1-scl{x} ∩ c2-scl{x})(x) = 1 and (c1-scl{x} ∩ c2-scl{x})(y) = 0.
Taking complement of both the sides we get
[(X − c1-scl{x}) ∪ (X − c2-scl{x})](x) = 0, [(X − c1-scl{x}) ∪ (X − c2-scl{x})](y) = 1 also [(X −

c1−scl{x})(y) = 1 or (X − c2-scl{x})(y) = 1.
Let us suppose that (X − c1-scl{x})(y) = 1, hence X − c1-scl{x} and X − c2-scl{x} are fuzzy open sets

such that (X − c1-scl{x})(x) = 0 and (X − c2-scl{x})(x) = 0 and
(X−c1-scl{x})(y) = 1 or (X−c2-scl{x})(y) = 1. Thus we have fuzzy semi-open set in c1 viz. X−c1-scl{x}

such that (X − c1-scl{x})(x) = 0 and (X − c1-scl{x})(y) = 1 which implies that (X, c1, c2) is fuzzy weakly
pairwise semi T1.

Theorem 3.4. A fuzzy biclosure space (X, c1, c2) is fuzzy pairwise semi T2 iff the diagonal set ∆X is fuzzy
semi-closed in (X ×X, c1 × c2).

Proof. Let (X, c1, c2) be fuzzy pairwise semi T2. We have to show that ∆X is fuzzy semiclosed in X ×X. In
other side, we have to show that X×X−∆X is fuzzy open. Let xr, yr be any two distinct fuzzy points in X
because (X, c1, c2) is fuzzy pairwise semi T2, ∃ a c1-fuzzy semi-open set U and a c2-fuzzy semi-open set V
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such that xr ∈ U, yr ∈ V and U ∩ V = ∅. Consider the basic fuzzy semi-open set U × V in (X ×X, c1 × c2)
then (xr, yr) ∈ U × V ⊆ X ×X −∆X which implies that X ×X −∆X is fuzzy semi-open in c1× c2 i.e. ∆X

is fuzzy semi-closed.
Conversely, let ∆X be fuzzy semi-closed in (X ×X, c1 × c2) i.e. X ×X −∆X be fuzzy open in X ×X.

We show that (X, c1, c2) is fuzzy pairwise semi T2. Let xr, yr ∈ X,x 6= y.
Let r ≤ s and consider (x, y)S then (x, y)S is a fuzzy point in. X ×X −∆X therefore ∃ a basic fuzzy

semi-open set U × V in c1 × c2 such that (x, y)S ∈ U × V ⊆ X ×X −∆X .
Here U ∈ c1 and V ∈ c2 where U =

⋃
i∈A1

Ui and V =
⋃
j∈A2

Vj where Ui ∈ c1 and Vj ∈ c2 thus
(x, y)s ∈ ∪iUi × ∪jVj ⊆ X ×X −∆X

This implies that ∃ i, j such that (x, y)sεUi × Vj ⊆ X ×X −∆X . Thus we may say that xr ∈ Ui and
ys ∈ Vj and Ui ∩ Vj = ∅ which implies that (X, c1, c2) is fuzzy pairwise semi T2.

Theorem 3.5. The fbcs (X, c1, c2) is fuzzy pairwise semi-regular iff for each ci-fuzzy open set F ∃ a ci-fuzzy
semi-open set U such that xr ⊆ U ⊆ c1-sclU q̄F .

Proof. Let (X, c1, c2) be fuzzy pairwise semi-regular. Then for every ci-fuzzy open set F and each fuzzy point
xr such that xr ⊆ F, ∃ a c1-fuzzy semi-open set U and c2-fuzzy semi-open set V such that xr ⊆ U, coF ⊆ V
and U ⊆ coV then xr ⊆ U ⊆ coV ⊆ F . Since coV is a ci-fuzzy semi-closed set such that Uq̄V then
xr ⊆ U and sclUq̄F . This can also be written as xr ⊆ U ⊆ c1-sclUq̄F . Conversely, let xr be a fuzzy
point and F be a c1-fuzzy semi-closed set such that xr q̄F . Thus ∃ a ci-fuzzy semi-open set U such that
xr ⊆ U ⊆ ci-sclUq̄F . Consider fuzzy sets U1 and V1 where U1 = U and V1 = 1 − ci-scl U clearly U1 is
c1-fuzzy semi-open set and V1 is cj-fuzzy semi-open set such that xr ⊆ U1, F ⊆ V1 and U1q̄V1 since for any
z ∈ X,U1(z) + V1(z) = U(z) + 1− ci − sclU(z) which is obviously ≤ 1.

Theorem 3.6. A fbcs (X, c1, c2) is fuzzy pairwise semi-normal iff for any ci-fuzzy semi-closed set A and a
cj-fuzzy semi-open set B such that A ⊆ B ∃ a ci-fuzzy semi-open set U such that A ⊆ U and ci-sclU ⊆ B

Proof. First let the fbcs (X, c1, c2) be fuzzy pairwise semi-normal then for any ci-fuzzy semi-closed set A
and a cj-fuzzy semi-open set B such that A ⊆ B ∃ a cj-fuzzy semi-open sets U and a ci-fuzzy semi-open set
V such that A ⊆ U and coB ⊆ V and Uq̄V thus A ⊆ U , Uq̄V and coV ⊆ B or V ⊆ coB. We can also write
A ⊆ U ⊆ c1-sclU ⊆ B.

Conversely, let A be any ci-fuzzy semi-closed set and B be any cj-fuzzy semi-closed set such that Aq̄B
then ∃ a cj-fuzzy semi-open set U such that A ⊆ U ⊆ c1-sclU ⊆ B.

Consider the fuzzy sets U1 and V1 such that U1 = U and V1 = 1 − c1-sclU . Obviously, U1 is a cj-fuzzy
semi-open set and V1 is a cj-fuzzy semi-open set such that A ⊆ U1, B ⊆ V1 and U1 ⊆ coV 1 i.e. Uq̄V1 as for
any x ∈ X,U1(x) + V1(x) = U(x) + 1− c1-scl(x) ≤ 1.

4 Fuzzy pairwise semi-continuous maps in fuzzy biclosure space
The concepts of fuzzy biclosed maps, pairwise fuzzy bicontinuous maps and generalized fuzzy continuous
maps in fbcs were introduced by Navalakhe [14, 15]. Pairwise continuity between fuzzy closure spaces was
introduced by Azad [1]. Further using fuzzy semi-open sets Azad [1] introduced and studied fuzzy pairwise
s-continuous mapping between fuzzy closure spaces. We introduce and study two more definitions using
fuzzy semi-open sets and compare all the definitions with each other. Let (X, c1, c2) and (Y, c1, c2) be any
two fuzzy biclosure spaces then

Definition 4.1 ([1]). A map f : X → Y is said to be fuzzy pairwise continuous if f−1(V ) is fuzzy open in
X whenever V is fuzzy open set in Y .

Definition 4.2 ([1]). A map f : X → Y is said to be fuzzy pairwise s-continuous if f−1(V ) is semi-open in
X whenever V is semi-open set in Y .

Definition 4.3. A map f : X → Y is said to be fuzzy pairwise semi-continuous if f−1(V ) is open in X
whenever V is semi-open set in Y .

Definition 4.4. A map f : X → Y is said to be fuzzy pairwise s∗-continuous if f−1(V ) is semi-open in X
whenever V is open set in Y .

Comparing them with each other we have
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7 
 

                                        Fuzzy pairwise-continuous 

                                                   ⇙   ⇓   ⇘ 

    Fuzzy semi-continuous  ⇒    Fuzzy s-continuous    ⇐   Fuzzy s*-continuous. 

5.   Fuzzy Semi-Connectedness in fuzzy biclosure spaces 

In this section we introduce and study the concept of q-separated sets. This concept is earlier 

introduced by Ming-Ming in 1980. 

Definition 5.1 ([13]). Two fuzzy sets 𝐴1 𝑎𝑛𝑑 𝐴2 in fts (𝑋, 𝑇) are said to be separated iff  

.∃ 𝑈𝑖 ∈ 𝑇(𝑖 = 1,2) ∶  𝑈𝑖 ⊃ 𝐴𝑖  𝑎𝑛𝑑 𝑈1⋂𝐴2 = ∅ = 𝑈2⋂𝐴1. 

Definition 5.2 ([13]). Two fuzzy sets 𝐴1 𝑎𝑛𝑑 𝐴2 in fts (𝑋, 𝑇) are said to be Q-separated iff  

∃ 𝑇 closed sets 𝐻𝑖 : 𝐻𝑖 ⊃ 𝐴𝑖 and 𝐻1 ∩ 𝐴2 = ∅ = 𝐻2 ∩ 𝐴1. 

It is obvious that 𝐴1 𝑎𝑛𝑑 𝐴2 are Q-Separated iff �̅�1 ∩ 𝐴2 = ∅ = �̅�2 ∩ 𝐴1 

Definition 5.3 ([13]). A fuzzy set 𝑌 in (𝑋, 𝑐) is called disconnected iff there exist two non-

empty sets 𝐴 𝑎𝑛𝑑 𝐵 in the subspace 𝑌0 (i.e supp 𝑌) such that 𝐴 𝑎𝑛𝑑 𝐵 are Q-separated 

and 𝑌 = 𝐴⋃𝐵. A fuzzy set is called connected iff it is not disconnected. 

Definition 5.4. Two fuzzy sets 𝐴 𝑎𝑛𝑑 𝐵 are said to be q-separated iff 𝑐𝑙(𝐴)�̅�𝐵 and  

𝐴�̅�𝑐𝑙(𝐵). 

Definition 5.5. Two fuzzy sets 𝐴 𝑎𝑛𝑑 𝐵 in a fbcs (𝑋, 𝑐1, 𝑐2) are said to be 𝑐𝑖˗𝑞˗separated (or 

simply q-separated) iff 𝑐𝑖(𝐴)�̅�𝐵 𝑎𝑛𝑑 𝑐𝑖(𝐵)�̅�𝐴. 

We introduce here the definition of semi-connectedness in a fuzzy closure space: 

Definition 5.6. A fuzzy set in a fuzzy closure space is said to be fuzzy semi-connected iff 

there doesn’t exist two non-empty semi-open sets 𝐴 𝑎𝑛𝑑 𝐵 in the subspace 𝑌0(𝑠𝑢𝑝𝑝𝑌) such 

that 𝑌 = 𝐴⋃𝐵 and 𝐴, 𝐵 are q-separated.  

Theorem 5.1. The s-continuous onto image of a fuzzy semi-connected biclosure space 

which has additive property also is fuzzy semi-connected biclosure space with additive 

property. 

Proof. Let 𝑋 𝑎𝑛𝑑 𝑌 be fbcs and 𝑋 be fuzzy semi-connected. Suppose 𝑌 is not fuzzy semi-

connected then 𝑌 is fuzzy semi disconnected. Then ∃ two non-empty fuzzy sets 𝐴 𝑎𝑛𝑑 𝐵 in 

the subspace 𝑌0(𝑠𝑢𝑝𝑝𝑌) such that 𝐴 𝑎𝑛𝑑 𝐵 are q-separated and 𝑌0 = 𝐴⋃𝐵 (𝑠𝑢𝑝𝑝𝑌) or 

𝑐𝑖(𝐴)�̅�𝐵 𝑎𝑛𝑑 𝐴�̅�𝑐𝑖(𝐵). Now 𝑓 𝑖𝑠 semi continuous 𝑓−1(𝐴) 𝑎𝑛𝑑 𝑓−1(𝐵) are subsets of 𝑋 

therefore 𝑋 = 𝑓−1(𝐴)⋃𝑓−1(𝐵)  where  𝑐𝑖(𝑓−1(𝐴))�̅�𝑓−1(𝐵) and 𝑓−1(𝐴)�̅�𝑐𝑖(𝑓−1(𝐵)). 

We know from the additive property that 𝑐𝑖(𝐴⋃𝐵) = 𝑐𝑖(𝐴)⋃𝑐𝑖(𝐵) 

5 Fuzzy semi-connectedness in fuzzy biclosure spaces
In this section, we introduce and study the concept of q-separated sets. This concept is earlier introduced
by Ming-Ming in 1980.

Definition 5.1 ([13]). The fuzzy sets A1 and A2 in fts (X,T ) are said to be separated iff ∃ Ui ∈ T (i = 1, 2) :
Ui ⊃ Ai and U1 ∩A2 = ∅ = U2 ∩A1.

Definition 5.2 ([13]). Two fuzzy sets A1 and A2 in fts (X,T ) are said to be Q-separated iff ∃ T closed
sets Hi : Hi ⊃ Ai and H1 ∩A2 = ∅ = H2 ∩A1.

It is obvious that A1 and A2 are Q-Separated iff Ā1 ∩A2 = ∅ = Ā2 ∩A1

Definition 5.3 ([13]). A fuzzy set Y in (X, c) is called disconnected iff there exist two non-void sets A and
B in the subspace Y0 (i.e supp Y ) such that A and B are Q-separated and Y = A ∪B. A fuzzy set is called
connected iff it is not disconnected.

Definition 5.4. The fuzzy sets A and B are said to be q-separated iff cl(A)q̄B and Aq̄cl(B)

Definition 5.5. The fuzzy sets A and B in a fbcs (X, c1, c2) are said to be ci - q-separated (or simply
q-separated) iff ci(A)q̄B and ci(B)q̄A.

We introduce here the definition of semi-connectedness using ci − q-separated sets in a fuzzy biclosure
space:

Definition 5.6. A fuzzy set in a fuzzy closure space is said to be fuzzy semi-connected iff there doesn’t exist
two non-empty semi-open sets A and B in the subspace Y0 (supp Y ) such that Y = A ∪ B and A,B are
q-separated.

Theorem 5.1. The s-continuous onto image of a fuzzy semi-connected biclosure space which has additive
property also is fuzzy semi-connected biclosure space with additive property.

Proof. Let X and Y be two fbcs and X be fuzzy semi-connected. Suppose Y is not fuzzy semi-connected
then Y is fuzzy semi disconnected. Then ∃ two non-empty fuzzy sets A and B in the subspace Y0 (supp
Y ) such that A and B are q-separated and Y0 = A ∪ B (supp Y ) or ci(A)q̄B and Aq̄ci(B). Now f is semi
continuous f−1(A) and f−1(B) are subsets of X therefore X = f−1(A)∪f−1(B) where ci

(
f−1(A)

)
q̄f−1(B)

and f−1(A)q̄ci
(
f−1(B)

)
.

We know from the additive property that ci(A ∪ B) = ci(A) ∪ ci(B). Then f−1 (Y0) = f−1(A ∪ B) =
f−1(A) ∪ f−1(B) which is a contradiction since f−1(A), f−1(B) are q-separated. It means our assumption
is wrong. Thus Y is fuzzy semi-conneced biclosure space with additive property.

Theorem 5.2. Let (X, c1, c2) be semi disconnected let ci ⊂ c∗i (i = 1, 2) then (X, c∗1, c
∗
2) is semi disconnected.

Proof. Let (X, c1, c2) be semi disconnected fbcs then ∃ two non-empty fuzzy semi-open sets A and B in
the subspace Y0 (supp Y ) such that Y = A

⋃
B where A and B are ci-q-separated. Since ci ⊂ c∗i then A

and B are c∗i -q-separated also. Thus we have two non void sets A and B in the space Y0(suppY ) such that
Y = A ∪B where A and B are c∗i -q-separated also. Hence (X, c∗1, c

∗
2) is semi-connected.

Theorem 5.3. Let (X, c1, c2) be a fbcs. Let c∗i ⊂ ci then (X, c∗1, c
∗
2) is also fuzzy semi-connected.

Proof. Let (X, c1, c2) be a semi-connected fbcs. Then it cannot be written as union of two non-empty q-
separated sets. Let c∗i ⊂ ci and suppose that (X, c∗1, c

∗
2) is disconnected. Since (X, c∗1, c

∗
2) is disconnected ∃

two non-empty semi-open set A and B in the subspace Y0 (supp Y ) such that Y = A ∪ B where A and B
are ci-q-separated also. Then (X, c1, c2) is also disconnected. Since ∃ two non-empty semi-open sets A and
B such that Y0 = A ∪ B (supp Y ) where A and B are ci-q-separated sets which is a contradiction. Hence
(X, c∗1, c

∗
2) is semi-connected.
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6 Conclusion
In this paper, we introduce and study fuzzy semi separation axioms in fuzzy biclosure space. Though this
is weaker than separation axioms already introduced and studied in fuzzy setting by various researchers but
it doesn’t affect its importance. It is used in Boolean algebra, convex set etc in pure mathematics. Here
we introduce various types of continuities using semi-open sets and compare them with each other. Here we
introduce semi-separated sets and semi connectedness in fuzzy biclosure space. Further scope of this research
is in the field of medical sciences using fuzzy semi-open sets.
Acknowledgement. Authors wish to express their thanks to the Editors and Reviewers for their help to
bring the paper in its present form.
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Abstract

Meta game theory is a non-quantitative reconstruction of mathematical game theory. This paper
attempts to adapt meta-game theory for conflict analysis. A conflict is a situation where parties with
opposing goals affect one another. A simple approach for performing meta-game analysis is adapted in
this paper and illustrated on various games standard in game theory literature. The approach presented
yields the desired results, although the computation required is much lesser than the standard Game
theory analysis. Even a person without detailed knowledge about meta-game analysis or game theory
can implement this method.
2020 Mathematical Sciences Classification: 91A40.
Keywords and Phrases: Stability analysis, Unilateral improvement (UI ), Preference vectors.

1 Introduction
Game playing can be used to couple direct competition with the intellectual activity. The chances of a
person’s winning more games improve if a person has better thinking abilities and learning skills. The
opportunity to test and refine his/her intellectual skills are provided by playing the game [19]. A scientific
method that reconstructs classical Game- Theory on a non-quantitative basis is Meta Game theory. Its
application to actual conflicts is called Meta-Game analysis or the analysis of options [7]. The Meta- Game
theory has been applied to various problems, including the fall of France, an international water allocation
conflict, and the Garrison Diversion Unit (GDU) irrigation project in North Dakota, U.S.A. [7], the Vietnam
war and arms control, and the Arab-Israeli conflict using the method of Meta- Game analysis. The technique
has also been applied to environmental management [12], and analysing political conflicts, particularly water
resources problems [11]. The conflict analysis uses Meta-Game theory to make non-quantitative predictions
instead of long mathematical calculations like Game-Theory. Conflict analysis can be employed to perform
decision-making on problems that are hard to deal with quantitatively. Further, conflict analysis avoids the
assumptions taken in Game Theory studies [25].

Various standard Game-Theoretical problems find applications in day-to-day life. The GameTheoretic
analysis of many such problems is described in the following text.

For the Game of Chicken, Cooper et al. [3] establish that the Pareto optimal outcome is only sometimes
selected in the games. If the opponent plays a dominated strategy, the equilibrium selection disturbs [3].
Similarly, other methods are discussed by Fox et al. [8], Carbon et al. [4], and Mehta et al. [16].

For the Prisoners’ dilemma, Holler et al. [13] consider the real-world cases of a state choosing a dominant
strategy. Using the method of general Meta-Games, Howard [14] showed that cooperation is an equilibrium
of the full Meta-Game. Zhang et al. [26] study the effect of memory on the evolution of Prisoners’ dilemma.
The authors construct different kinds of two-layer networks. Miettinen et al. [18] experimentally investigate
behaviour and beliefs in a sequential prisoners’ dilemma. Proto et al. [20] used a repeated Prisoners’
dilemma. The role of attention and memory is used to show that social interactions are likely to be mediated
by cognitive skills in heterogeneous groups.

The Stag-Hunt was invented by philosopher Jean-Jacques Rousseau [32] in his discourses on inequality.
Boudreau et al. [1] study a three-party game of conflict. They study the potential alliance formation
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introducing the concept of Stag-Hunt alliance. They further use this concept as a novel solution to the
alliance formation puzzle in contests. Girtz et al. [9] establish that risk-averse individuals tend to make
riskier choices less often than risk-loving individuals do in a series of economic games. Guarin et al. [10]
study whether the co-worker’s gender affects coordination on the mutually beneficial outcome in a socially
risky environment. Marsh et al. [1] conduct the first ever study to influence human cooperation by means of
positive imagery. Riedl [21] perform an experiment with human subjects. They study how free neighborhood
choice affects coordination. Luo et al. [15] study divide-and-conquer strategy with the Stag-Hunt Game to
model a terrorism and counter terrorism environment. The authors establish the universal characteristics
of cooperative dynamics in different scenarios for the N -person Stag-Hunt Game. Dong et al. [6] propose a
memory bases Stag-Hunt Game. The work is concerned with the study of evolutionary games with memory
effect. Capraro et al. [5] study two sets of experimental data (N = 523) to investigate Stag-Hunt cooperation.
The authors find that the cooperation is dependent on efficiency rather than moral Preferences. Belloc et
al. [2] establish that intuition and deliberation play a significant role in strategic situations that entail social
coordination.

A simple approach for performing Meta-Game analysis is adapted in this paper and illustrated on various
games popular in Game-Theory literature. The approach presented yields the desired results, although
the computation required is much lesser than the standard Game-Theory analysis. This method can be
implemented even by a person without detailed knowledge about Meta-Game analysis or Game-Theory.

2 Methodology
The information in the problem and the payoff matrices are transformed into binary to construct Preference
vectors. The Preference vectors contain the possible outcomes of the problem in descending order of the
players’ Preferences. The equally preferred outcomes are denoted by placing a bridge on the top. The
Preference vectors can be cross-checked logically. The Preference vectors are transformed into decimal form,
called decimalized Preference vectors, by multiplying the entry in the upper row by 20 and in the lower row
by 21. It is checked whether a player can improve his/her position while keeping the other player’s binary
values fixed. This is termed as UI. If an outcome has no UI, r is written on top of the column and u otherwise.
Stability analysis is conducted for individual players and amongst the players to obtain an outcome from
which no player wants to deviate. The analysis is done for various problems which were earlier solved using
Game-Theory analysis only. The results obtained using the (extension of) Meta-game theoretic analysis is
consistent with those obtained using GameTheoretic analysis. The significant advantage of using (extension
of) Meta-game theoretic analysis over Game-Theoretic analysis is less rigorous calculations.

Table 2.1: The algorithm to perform stability analysis [7]

1. Model the conflict
(a) for a particular point in time,
(b) as a game with players and options
(c) create a meaningful ordering of options.

2. Construct the tableau for the conflict
(a) Order outcomes by Preferences for each player
(b) and list UI under each outcome.

3. Perform the stability analysis
(a) and mark as rational (r) all outcomes with no UI
(b) for each successive outcome, determine if it is ”reasonable” for a player to improve. If it is

reasonable, mark the outcome as unstable (u), or if not reasonable to improve, mark it as stable
(s),

(c) if an outcome is unstable for two or more players, check for ”stability by simultaneity,”
(d) If an outcome is stable for all players, it is an equilibrium. All other outcomes are not equilibria.

4. Return to step 1) if necessary.

3 Stability Analysis
A stable outcome is one from which no player wants to deviate. The stability can be for a player or all the
players. Write ‘r’ (rational) above every outcome that does not have a UI, as the outcomes with no UI are
stable. (a) Suppose player A has a UI and player B does not have a UI from A ’s UI. In that case, that
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outcome is unstable for A. (b) If player A has a UI and player B has a UI from A ’s UI then (i) if A prefers
that outcome to B’s outcome, then it is unstable. (ii) It is stable if A does not prefer that outcome to B′s.

4 Game of Chicken
In the Game of Chicken, two drivers must pass a single road. If they keep driving straight, they will collide,
so at least one must swerve to avoid a head-on collision. If a person swerves and the other does not (i.e.,
goes straight), the one who swerves is called a chicken (loser). The relative payoffs in the different scenarios
that can emerge in this interaction are depicted in Table 4.1.

Table 4.1: The payoff matrix

Player B
Swerve Straight

Player
A

Swerve 0,0 −1,+1

Straight +1,−1 −1000,−1000

Preference vector for Player A and Player B
Let Swerve correspond to 1 and straight correspond to 0 .

For player A, in Table 4.2 (a) the first Preference vector is (1, 0), which means player A goes straight,
and player B swerves, (b) the second Preference vector is (0, 0), which means both player A and player B
swerve (c) the third Preference vector is (0, 1) which means player A swerves and player B goes straight (d)
the fourth Preference vector is (1, 1) which means both Player A goes straight and Player B goes straight.

Table 4.2: The Preference vector for player A

Outcomes
Player A 1 0 0 1 20 = 1
Player B 0 0 1 1 21 = 2

1 0 2 3 .

In Table 4.3, for player B (a) the first Preference vector is (0, 1), which means player A swerves and
player B goes straight, (b) the second Preference vector is (0, 0), which means both players A and player B
swerve (c) the third Preference vector is (1, 0) which means player A goes straight and player B swerves (d)
the fourth Preference vector is (1, 1) which means both players A and B go straight.

Table 4.3: The Preference vector for player B

Outcomes
Player A 0 0 1 1 20 = 1
Player B 1 0 0 1 21 = 2

2 0 1 3

Decimalized Preference vector for Player A and Player B
In Tables 4.5 and 4.6, decimalized Preference vectors are obtained by multiplying the first row of the
Preference vectors of A and B by 20 and the second row by 21.

Table 4.4: Decimalized Preference vector for player A

Player A 1 0 2 3

Table 4.5: Decimalized Preference vector for player B

Player B 2 0 1 3

70



Stability Analysis for Player A and Player B
The outcomes of player B are kept fixed in Table 4.3 and then checked for UI in the outcomes for player A.
Player A has UI from column two to column one and column four to three (Table 4.6).

Table 4.6: UI for player A

Player A 1 0 2 3
1 2

The outcomes of player A are kept fixed in Table 4.3. The authors check for UI in the outcomes for
player B. Player B has UI from column two to column one and four to three (Table 4.7).

Table 4.7: UI for player B

Player B 2 0 1 3
2 1

Player A, (Table 4.8) has UI from column two to column one, and player B (Table 4.9) has no UI from
column three, which means player A can improve from column two to column one. Thus, this is an unstable
outcome. Similarly, player A, (Table 4.8) has UI from column four to column three, and player B (Table 4.9)
has no UI from column one, which means player A can improve from column four to column three. Thus,
this too is an unstable outcome.

Table 4.8: Stability analysis for player

E E
r u r u

Player A 1 0 2 3
1 2

For player B, from column two to column one (Table 4.9) and player A (Table 4.8) has no UI from
column three, which means player B can improve from column two to column one. Thus, this is an unstable
outcome. Player B, (Table 4.9) has UI from column four to column three, and player A (Table 4.8) has no
UI from column one, which means player B can improve from column four to column three. Thus, this too
is an unstable outcome.

Table 4.9: Stability analysis vector for player B

E E
r u r u

Player B 2 0 1 3
2 1

Player A has a UI from column two to column one, and player B has no UI from column three. Hence,
column two is unstable for player A. Player B has UI from column two to column one, and player A has no
UI from column three. Hence, column two is unstable for B (Table 4.10).

Solutions
There are two stable equilibrium solutions Straight-Straight and Swerve-Swerve. When analyzed using
Game-Theoretic techniques, the Nash equilibria obtained for the game are identical [23].

5 Prisoners’ dilemma
There are two accused of a crime, and they are not allowed to communicate. The options left to the two
accused i.e., A and B are (i) If both defect, a two-year prison sentence is awarded to both (ii) If A defects
and B cooperates, A is released, and B gets a three-year prison sentence (iii) If A cooperates and B defects,

71



A will get three years in prison and B will be released (iv) If A and B both cooperate, they both get one-year
prison sentence (Table 5.1).

Table 5.1: The payoff matrix

Player B
Cooperate Defect

Player
A

Cooperate −1,−1 −3, 0

Defect 0,−3 −2,−2

Preference vector for Player A and Player B
Let Cooperate correspond to 1 and Defect correspond to 0 .

In Table 5.2, for player A (a) the first Preference vector is (0, 1), which means player A defects and player
B cooperates, (b) the second Preference vector is (1, 1), which means player A cooperates and player B
cooperates (c) the third Preference vector is (0, 0) which means player A defects and player B defects (d)
the fourth Preference vector is (1, 0) which means player A cooperates and player B defects.

Table 5.2: The Preference vector for player A

Outcomes
Player A 0 1 0 1 20 = 1
Player B 1 1 0 0 21 = 2

2 3 0 1

In Table 5.3, for player A (a) the first Preference vector is (1, 0), which means player A cooperates and
player B defects, (b) the second Preference vector is (1, 1), which means player A cooperates and player B
cooperates (c) the third Preference vector is (0, 0) which means player A defects and player B defects (d)
the fourth Preference vector is (0, 1) which means player A defects and player B cooperates.

Table 5.3: The Preference vector for player B

Outcomes
Player A 1 1 0 0 20 = 1
Player B 0 1 0 1 21 = 2

1 3 0 2

Decimalized Preference vector for Player A and Player B
In Tables 5.4 and 5.5, the authors obtain decimalized Preference vectors by multiplying the first row by 20

and the second row by 21.

Table 5.4: Decimalized Preference vector for player A

Player A 2 3 0 1

Table 5.5: Decimalized Preference vector for player B

Player B 1 3 0 2

Stability Analysis for Player A and Player B
The outcomes of player B are kept fixed in Table 5.2, then the authors check for UI in the outcomes for
player A. Player A has UI from two to one and four to three (Table 5.6).
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Table 5.6: UI for player A

Player A 2 3 0 1
2 0

The outcomes of player A are kept fixed in Table 5.3. The authors check for UI in the outcomes for
player B. Player B has UI from column two to column one and column four to column three (Table 5.7).

Table 5.7: UI for player B

Player B 1 3 0 2
1 0

In Table 5.8, Player A has UI from column two to one, and player B has UI from column four to three
as column two is more preferred over column three. Therefore, it is a stable outcome. Player A has UI from
column four to three, and player B has no UI from column three, so this is an unstable outcome.

Table 5.8: Stability analysis for player A

E E
r s r u

Player A 2 3 0 1
2 0

Player B has UI from column two to column one, player A has UI from column four to column three,
and player B prefers column two to column three. Therefore, it is a stable outcome. Player B has UI from
column four to three, and player A has no UI from column three. Thus, it is an unstable outcome (Table
5.9).

Table 5.9: Stability analysis for player B

E E
r s r u

Player B 1 3 0 2
1 0

Solution
The solution to the Prisoners’ dilemma is (i) column one and one, which means both players defect, (ii)
column three and three, which also means both players defect, (iii) column two and two, which means both
the players cooperate.

When analyzed using Game-Theoretic techniques, the same Nash equilibria are obtained [24].

6 Stag-Hunt Game
Imagine two hunters, they can hunt a stag or a hare. They can independently hunt a hare. For hunting
a stag, they need each other’s help. The (Stag, Stag) is the pareto optimal outcome. But in experimental
games, people choose (Hare, Hare).

Table 6.1: The payoff matrix

Player A Player B
Stag Hare

Stag 10,10 1,8
Hare 8,1 5,5
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Preference Vector for Player A and Player B
Let Stag correspond to 1 and Hare correspond to 0.

In Table 6.2, for player A (a) the first Preference vector is (1, 1) which means both player A and player
B want to hunt a stag, (b) the second Preference vector is (0, 1) which means player A wants to hunt a Hare
and player B wants to hunt a Stag (c) the third Preference vector is (0, 0) which means both player A and
player B want to hunt a hare (d) the fourth Preference vector is (1, 0) which means player A wants to hunt
a stag and player B wants to hunt a hare.

Table 6.2: The Preference vector for player A

Outcomes
Player A 1 0 0 1 20 = 1
Player B 1 1 0 0 21 = 2

3 2 0 1

In Table 6.3, for player A (a) the first Preference vector is (1, 1) which means player A and player B
wants to hunt a stag, (b) the second Preference vector is (1, 0) which means player A wants to hunt a stag
and player B wants to hunt a hare (c) the third Preference vector is (0, 0) which means player A and player
B want to hunt a hare (d) the fourth Preference vector is (0, 1) which means player A wants to hunt a hare
and player B wants to hunt a stag.

Table 6.3: The Preference vector for player B

Outcomes
Player A 1 1 0 0 20 = 1
Player B 1 0 0 1 21 = 2

3 1 0 2

Decimalized Preference vector for Player A and Player B
In Table 6.4 and 6.5, the authors obtain decimalized Preference vectors by multiplying first row by 20 and
second row by 21.

Table 6.4: Decimalized Preference vector for player A

Player A 3 2 0 1

Table 6.5: Decimalized Preference vector for player B

Player B 3 1 0 2

Stability Analysis for Player A and Player B
The outcomes of player B are kept fixed in Table 6.2, then the authors check for UI in the outcomes for
player A. Player A has UI from column two to column one and from column four to column three.

Table 6.6: UI for player A

Player A 3 2 0 1
3 0

The outcomes of player A are kept fixed in Table 6.3, then the authors check for UI in the outcomes for
player B. Player B has UI from column two to column one and from four to three.
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Table 6.7: UI for player B

Player B 3 1 0 2
3 0

The player A has UI from column two to column one and player B has no UI from column one, so it is
an unstable outcome. The player A has UI from column four to column three and player B has no UI from
column three, so it is an unstable outcome.

Table 6.8: Stability Analysis for player A

E E
u u

Player A 3 2 0 1
3 0

The player B has UI from column two to column one to 3 and player A has no UI from column one, so
it is an unstable outcome. The player B has UI from column four to column three and player A has no UI
from column three, so it is an unstable outcome.

Table 6.9: Stability Analysis for player B

E E
u u

Player B 3 1 0 2
3 0

Solutions
There are two stable equilibrium values, Stag- Stag and Hare- Hare.

When analyzed using Game-Theoretic techniques, the game yields exactly same values as the Nash
equilibrium values [22].

7 Conclusion
The authors attempted to do a novel analysis of standard Game-Theoretic problems using the MetaGame
analysis techniques. The Meta-Game analysis has many advantages. It includes all the information about
the conflict, is easy to do by hand, and can be used for hyper games and very complex conflicts. The results
obtained show the stability analysis for various standard Game Theoretic problems. These solutions obtained
in the three cases viz., Game of Chicken, Prisoners’ dilemma, and Stag-Hunt Game are consistent with the
Nash equilibrium values obtained from the Game-Theoretic analysis [22-24]. Thus, Meta-game theory can
replace Game-Theory in these situations as it includes no tedious mathematical calculations.
Acknowledgement. The authors are grateful to Professor D. S. Mishra and Professor S. K. Gaur, DEI for
their valuable inputs. We are also very much thankful to the Editors and Reviewers for valuable suggestions
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Abstract

In this paper, two unrelated natures of Mordell curves y3 = x2 + k where k is a multinomial of
degree four and six are scrutinized for many sets of relatively prime integer solutions. The geometrical
description of the curves for each set of solutions are also exhibited with an assistance of MATLAB tools.
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1 Introduction
A Diophantine problem is one in which the solutions are mandatory to be integers. If a Diophantine equation
has a supplementary variable or variables occurring as exponents, it is known as an exponential Diophantine
equation [3, 4, 5, 6]. In [7], the author considered the Diophantine equation Y 3 = X2 + C and found out
the numerical solutions for C = 9, 36,−16. In [1, 2, 8] authors discovered consecutive integer solutions to
the Diophantine equation y3 = x2 + k.

In this communication, two dissimilar forms of Mordell type curves y3 = x2 + k where k is a polynomial
of degree four and six are examined for various sets of relatively prime integer solutions. The geometrical
representation of the curves for each set of solutions are also displayed with the help of MATLAB tools.

2 Evaluation of relatively prime integer
solutions to Mordell type equations

It is well recognized that the Mordell equation is

a2 = b3 + r, (2.1)

where r is a constant. If S′(r) is the number of relatively prime integral solutions (a, b) ∈ Z(u) of (2.1) where
Z is the ring of integer, then lim supr→∞S

′(r) ≥ 1. Here the solutions to (2.1) are denoted by Mj = (aj , bj),
j = 1, 2, 3 etc.

In this paper two different kinds of Mordell type equations are considered in (2.1) and (2.2) for sleuthing
relatively prime integer solutions.
2.1 Equation of the form a2 = b3 + r where r = 64u4 + 64u3 + 16u2 + 1
Consider the equation of type (2.1) as

a2
j = b3j + 64u4 + 64u3 + 16u2 + 1, u ∈ N. (2.2)

The probable three sets of relatively prime integer solutions to (2.2) which are identified by

M1 : a1 = 8u2 + 1, b1 = −4u,

M2 : a2 = 8u2 + 4u, b2 = −1,

M3 : a3 = 8u2 + 8u+ 3, b3 = 4u+ 2.

Since (2.2) may have more than three solutions, lim supr→∞S
′(r) ≥ 3.

The following MATLAB program supports to treasure the numerical values for all variables.
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clear all;close all;clc;

disp(’the Equation is a^2 = b^3+(64*u^4)+(64*u^3)+(16*u^2)+1)’);

u = -50:50;

k = (64*u.^4)+(64*u.^3)+(16*u.^2)+1;

a1 = 8*u.^2+1;b1 = -4*u;

a2 =(8*u.^2)+4*u;

[r,c]=size(a2);

b2 = -1*ones(r,c);a3 = (8*u.^2)+(8*u)+3;

b3 = (4*u)+2;

fprintf(’The first solution \n’);fprintf(’a1 = %d\n’,a1);

fprintf(’b1 = %d\n’,b1);fprintf(’The second solution \n’);

fprintf(’a2 = %d\n’,a2);fprintf(’b2 = %d\n’,b2);

fprintf(’The third solution\n’);fprintf(’a3 = %d\n’,a3);

fprintf(’b3 = %d\n’,b3);

z1=[b1;a1;k];

surf(z1)

colormap(cool)

title(’8*u^2+1,-4*u,(64*u^4)+(64*u^3)+(16*u^2)+1)’)

figure

z2=[b2;a2;k];

surf(z2)

colormap(cool)

title(’(8*u^2)+4*u,-1,(64*u^4)+(64*u^3)+(16*u^2)+1)’)

figure

z3=[b3;a3;k];

surf(z3)

colormap(cool)

title(’(8*u^2)+(8*u)+3,(4*u)+2,(64*u^4)+(64*u^3)+(16*u^2)+1)’)

For easy verification the arithmetic values of (ajbj) for few natural numbers u are tabulated in Table 2.1.

Table 2.1

u r M1 = (a1, b1) M2 = (a2, b2) M3 = a3, b3)
1 145 (9,−4) (12,−1) (19, 6)
2 1601 (33.− 8) (40,−1) (51, 10)
3 7057 (73,−12) (84,−1) (99, 14)
4 20737 (129,−16) (144,−1) (163, 18)
5 48401 (201,−20) (220,−1) (243, 22)

The subsequent table (Table 2.2) displays the left-hand and right-hand side values of (2.2) for all the
above three sets of solutions.

Table 2.2

u M1 M2 M3

a2
1 b31 + r a2

2 b32 + r a2
3 b33 + r

1 81 81 144 144 361 361
2 1089 1089 1600 1600 2601 2601
3 5329 5329 7056 7056 9801 9801
4 16641 16641 20736 20736 26569 26569
5 40401 40401 48400 48400 59049 59049

For all other values of u the values of (aj , bj) can be calculated by using the above MATLAB algorithm.
The geometrical representation of (2.2) for the above three sets of solutions are visualized in Figures 2.1,

2.2 and 2.3.
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Figure 2.1: Visualization of (2.2) for the solution M1

Figure 2.2: Visualization of (2.2) for the solution M2

Figure 2.3: Visualization of (2.2) for the solution M3

2.2 Equation of the form a2 = b3 + r where r =
(
16(n+ 1)6u6 + 1

)

Consider an additional Mordell kind equation as

a2
j = b3j +

(
16(n+ 1)6u6 + 1

)
u, n ∈ N. (2.3)

It is experiential that (2.3) is fulfilled by six pair of values of (aj , bj). They are denoted by ±Mj , j = 1, 2, 3
where Mj = (aj , bj) and −M j = (aj−bj).

Among six set of solutions, the first three set of values of (aj , bj) , j = 1, 2, 3 are pointed out by the
following equations:

M1 : a1 = 4(n+ 1)
3
u3 + 1, b1 = 2(n+ 1)u.

M2 : a2 = 4(n+ 1)
3
u3, b2 = −1.
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M3 : a3 = 4(n+ 1)
3
u3 − 1, b3 = −2(n+ 1)u.

Let us find the remaining three pairs (aj , bj) , j = 4, 5, 6. If (a1, b1) and (a2, b2) are two distinct points
on E, their sum (a′, b′) is given by

a′ =

(
b2 − b1
a2 − a1

)2

− a1 − a2,

b′ =

(
b2 − b1
a2 − a1

)
(a′ − a1) + b1.

Since −Mj = (aj ,−bj) the co-ordinates of ai, bj for Mj ±Mk, 1 ≤ j < k ≤ 3 such that only three out of
these six points sustaining (2.3) are scrutinized that

M4 = M1 −M2 :

a4 = −(64(n+ 1)6u6 − 96(n+ 1)5u5 + 96(n+ 1)4u4

− 68(n+ 1)3u3 + 36(n+ 1)2u2 − 12(n+ 1)u+ 3),

b4 = 16(n+ 1)4u4 − 16(n+ 1)3u3 + 12(n+ 1)2u2 − 18(n+ 1)u+ 2,

M5 = M2 −M3 :

a5 = −(64(n+ 1)6u6 + 96 (n+ 1)
5
u5 + 96(n+ 1)4u4 + 68(n+ 1)3u3

+ 36(n+ 1)2u2 + 12(n+ 1)u+ 3),

b5 = 16(n+ 1)4u4 + 16(n+ 1)3u3 + 12(n+ 1)2u2 + 18(n+ 1)u+ 2,

M6 = M1 −M3 :

a6 = −
(
8(n+ 1)6u6 + 1

)
, b6 = 4(n+ 1)6u6.

To check all the above coordinates (aj , bj) are coprime for all integer u, Euclid’s algorithm may be applied.
Example for M1 −M2,

(16(n+ 1)4u4 − 16(n+ 1)3u3 + 12(n+ 1)2u2 − 18(n+ 1)u+ 2,
(
− 64(n+ 1)6u6 + 96(n+ 1)5u5 − 96(n+ 1)4u4

+ 68(n+ 1)3u3 − 36(n+ 1)2u2 + 12(n+ 1)u− 3
)

= (8(n+ 1)3u3 + 8(n+ 1)2u2 + 2(n+ 1)u+ 1,

6(n+ 1)4u4 + 16(n+ 1)3u3 + 12(n+ 1)2u2 + 18(n+ 1)u+ 2)

= (8(n+ 1)2u2 + 4(n+ 1) + 2, 4(n+ 1) + 1)

= (4(n+ 1), 1)

= 1.

Thus for M1 −M2, gcd (a4, b4) = 1 and subsequently the pair (a4b4) is relatively prime to each other.
Similarly, it is evidenced that all other pairs (aj , bj) for the remaining five sets of solutions are relatively

prime by utilizing Euclid’s algorithm. Since, it can be able to find more than six groups of solutions in
co-prime integers lim supr→∞S

′(r) ≥ 6.

3 MATLAB program for finding (aj , bj)
MATLAB program for finding (aj , bj) for distinct values of u are illustrated below:

clear all;close all;clc;

disp(’the Equation is a^2 = b^3+(16(n+1)^6*u^6+1)’);

n = 1;u = -50:50;k =(16*(n+1)^6*u.^6+1)

disp(’the following 6 solution’);

a1 = 4*(n+1)^3*u.^3+1;b1 = 2*(n+1)*u;

a2 = 4*(n+1)^3*u.^3;[r,c]=size(a2);

b2 = -1*ones(r,c);a3 = 4*(n+1)^3*u.^3-1;b3 = -2*(n+1)*u;

a4 = (-64*(n+1)^6*u.^6 )-(96*(n+1)^5*u.^5 )+(96*(n+1)^4*u.^4 )

-(68*(n+1)^3*u.^3)+(36*(n+1)^2*u.^2)-(12*(n+1)*u)+3;
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b4 = (16*(n+1)^4*u.^4)-(16*(n+1)^3*u.^3)+(12*(n+1)^2*u.^2)

-(6*(n+1)*u)+2;

a5 = -((64*(n+1)^6*u.^6)+(96*(n+1)^5*u.^5)+(96*(n+1)^4*u.^4)

+(68*(n+1)^3*u.^3)+(36*(n+1)^2*u.^2)+(12*(n+1)*u)+3);

b5 = (16*(n+1)^4*u.^4)+(16*(n+1)^3*u.^3)+(12*(n+1)^2*u.^2)

+(6*(n+1)*u)+2;

a6 = -(8*(n+1)^6*u.^6+1);b6 = 4*(n+1)^4*u.^4;

fprintf(’the first solution \n’);fprintf(’a1 = %d\n^’,a1);

fprintf(’b1 = %d\n’,b1);fprintf(’the second solution \n’);

fprintf(’a2 = %d\n^’,a2);fprintf(’b2 = %d\n’,b2);

fprintf(’the third solution\n’);fprintf(’a3 = %d\n^’,a3);

fprintf(’b3 = %d\n’,b3);fprintf(’the fourth solution \n’);

fprintf(’a4= %d\n’,a4);fprintf(’b4 = %d\n’,b4);

fprintf(’the fifth solution \n’);fprintf(’a5 = %d\n^’,a5);

fprintf(’b5 = %d\n’,b5);fprintf(’the Sixth solution \n’);

fprintf(’a6 = %d\n^’,a6);fprintf(’b6 = %d\n’,b6);

z1=[b1;a1;k];surf(z1)

colormap(cool)

title(’4*(n+1)^3*u^3+1,2*(n+1)*u,(16(n+1)^6*u^6+1)’)

figure

z2=[b2;a2;k];surf(z2)

colormap(cool)

title(’4*(n+1)^3*u^3,-1,(16(n+1)^6*u^6+1)’)

figure

z3=[b3;a3;k];

surf(z3)

colormap(cool)

title(’4*(n+1)^3*u^3+1,-2*(n+1)*u,(16(n+1)^6*u^6+1)’)

figure

z4=[b4;a4;k];surf(z4)

colormap(cool)

title(’(-64*(n+1)^6*u^6 )-(96*(n+1)^5*u^5 )+(96*(n+1)^4*u^4 )

-(68*(n+1)^3*u^3)+(36*(n+1)^2*u^2)-(12*(n+1)*u)+3,

(16*(n+1)^4*u.^4)-(16*(n+1)^3*u.^3)+(12*(n+1)^2*u^2)

-(6*(n+1)*u)+2,(16(n+1)^6*u^6+1)’)

figure

z5=[b5;a5;k];

surf(z5)

colormap(cool)

title(’-(64*(n+1)^6*u^6)+(96*(n+1)^5*u^5)+(96*(n+1)^4*u^4)

+(68*(n+1)^3*u^3)+(36*(n+1)^2*u^2)+(12*(n+1)*u)+3),

(16*(n+1)^4*u^4)+(16*(n+1)^3*u^3)+(12*(n+1)^2*u^2)

+(6*(n+1)*u)+2,(16(n+1)^6*u^6+1)’)

figure

z6=[b6;a6;k];

surf(z6)

colormap(cool)

title(’-(8*(n+1)^6*u^6+1),4*(n+1)^4*u^4,(16(n+1)^6*u^6+1)’)

Illustration: A
If n = 1, then the corresponding representation of (2.3) is

a2
j = b3j +

(
1024u6 + 1

)
. (3.1)

The six pair of solutions to (2.3) are viewed by

M1 : a1 = 32u3 + 1, b1 = 4u.
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M2 : a2 = 32u3, b2 = −1.

M3 : a3 = 32u3 − 1, b3 = −4u.

M4 = M1 −M2 : a4 = −
(
4096u6 − 3072u5 + 1536u4 − 544u3 + 144u2 − 24u+ 3

)
.

b4 = 256u4 − 128u3 + 48u2 − 12u+ 2.

M5 = M2 −M3 : a5 = −
(
4096u6 + 3072u5 + 1536u4 + 544u3 + 144u2 + 24u+ 3

)
.

b5 = 256u4 + 128u3 + 48u2 + 12u+ 2.

M6 = M1 −M3 : a6 = −
(
512u6 + 1

)
, b6 = 64u4.

Table 3.1 shows the six values of (aj , bj) equivalent to n = 1.

Table 3.1

u r M1 M2 M3

1 1025 (33,4) (32,−1) (31,−4)
2 65537 (257,8) (256,−1) (255,−8)
3 746497 (865,12) (864,−1) (863,−12)
4 4194305 (2049,16) (2048,−1) (2047,−16)
5 16000001 (4001,20) (4000,−1) (3999,−20)

M4 M5 M6

(−2139, 166) (−9419, 446) (−513, 64)
(−184595, 3242) (−390003, 5338) (−32769, 1024)

(−2350443, 17678) (−3872955, 24662) (−373249, 5184)
(−13992099, 58066) (−20353379, 74546) (−2097153, 16384)
(−55295483, 145142) (−74631723, 177262) (−8000001, 40000)

Table 3.2 displays the left-hand and right-hand side values of (2.3) for all the above six sets of solutions
equivalent to n = 1.

Table 3.2

u M1 M2 M3

a2
1 b31 + r a2

2 b32 + r a2
3 b33 + r

1 1089 1089 1024 1024 961 961
2 66049 66049 65536 65536 65025 65025
3 748225 748225 746496 746496 744769 744769
4 4198401 4198401 4190209 4190209 4190209 4190209

M4 M5 M6

a2
4 b34 + r a2

5 b35 + r a2
6 b36 + r

4575321 4575321 88717561 88717561 263169 263169
3.407× 1010 3.407× 1010 1.521× 1011 1.521× 1011 107380736 107380736
5.524× 1012 5.524× 1012 1.499× 1013 1.499× 1013 1.393× 1011 1.393× 1011

1.957× 1014 1.957× 1014 4.142× 1014 4.142× 1014 4.398× 1012 4.398× 1012

Illustration: B
If n = 2, then the required equation is

a2
j = b3j +

(
11664u6 + 1

)
. (3.2)

The equivalent solutions to (3.2) are given by

M1 : a1 = 108u3 + 1, b1 = 6u.

M2 : a2 = 108u3, b2 = −1.

M3 : a3 = 108u3 − 1, b3 = −6u.

M4 = M1 −M2 :

82



a4 = −
(
46656u6 − 23328u5 + 7776u4 − 1836u3 + 324u2 − 36u+ 3

)
.

b4 = 1296u4 − 432u3 + 108u2 − 18u+ 2.

M5 = M2 −M3 :

a5 = −
(
46656u6 + 23328u5 + 7776u4 + 1836u3 + 324u2 + 36u+ 3

)
.

b5 = 1296u4 + 432u3 + 108u2 + 18u+ 2.

M6 = M1 −M3 : a6 = −
(
5832u6 + 1

)
.

b6 = 324u4.

Table 3.3 shows the six values of (aj , bj) equivalent n = 2.

Table 3.3

u r M1 M2 M3

1 11665 (109,6) (108,−1) (107,−6)
2 746497 (865,12) (864,−1) (863,−12)
3 8503057 (2917,18) (2916,−1) (2915,−18)
4 47775745 (6913,24) (6912,−1) (6911,−24)

M4 M5 M6

(−29559, 956) (−79959, 1856) (−5833, 324)
(−2350443, 17678) (−3872955, 24662) (−373249, 5184)
(−28926615, 94232) (−40363383, 117668) (−4251529, 26244)

(−169093299, 365786) (−217104339, 361226) (−23887873, 82944)

Table 3.4 displays the left-hand and right-hand side values of (2.3) for all the above six sets of solutions
equivalent to n = 2.

Table 3.4

u M1 M2 M3

a2
1 b31 + r a2

2 b32 + r a2
3 b33 + r

1 11881 11881 11664 11664 11449 11449
2 748225 748225 746496 746496 744769 744769
3 8508889 8508889 8503056 8503056 8497225 8497225
4 4.8× 104 4.8× 104 4.8× 104 4.8× 104 1.82× 108 1.82× 108

M4 M5 M6

a2
4 b34 + r a2

5 b35 + r a2
6 b36 + r

873734481 873734481 6393441681 6393441681 34023889 34023889
5.524× 1012 5.524× 1012 1.499× 1013 1.499× 1013 1.393× 1011 1.393× 1011

8.367× 1014 8.367× 1014 1.629× 1015 1.629× 1015 1.807× 1013 1.807× 1013

2.859× 1016 2.859× 1016 4.713× 1016 4.713× 1016 5.706× 1014 5.706× 1014

The three-dimensional shape of the original equation (2.3) for each of the above six set of solutions are
envisaged below.
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Figure 3.1: Visualization of (2.3) for the solution M1

Figure 3.2: Visualization of (2.3) for the solution M2

Figure 3.3: Visualization of (2.3) for the solution M3
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Figure 3.4: Visualization of (2.3) for the solution M4

Figure 3.5: Visualization of (2.3) for the solution M5

Figure 3.6: Visualization of (2.3) for the solution M6
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4 Conclusion
Two discrete Mordell kinds equations y3 = x2 + k where k is a polynomial of degree four and six are
scrutinized for finite sets of relatively prime integer solutions. The pictures of the curves for each pair of
solutions are also unveiled with the support of MATLAB program. In this manner, one can search varieties
of such types of equations for consecutive odd and even integers.
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Jñānābha, Vol. 53(1) (2023), 87-91
(Dedicated to Professor G. C. Sharma on His 85th Birth Anniversary Celebrations)

HYPERGEOMETRIC FORM OF (1 + x2)
ib
2 exp(b tan−1 x) AND ITS APPLICATIONS

M. I. Qureshi, Aarif Hussain Bhat? and Javid Majid
Department of Applied Sciences and Humanities, Faculty of Engineering and Technology, Jamia Millia

Islamia (A Central University), New Delhi, India-110025
Email: miqureshi delhi@yahoo.co.in, javidmajid375@gmail.com, ?

Corresponding author: Email: aarifsaleem19@gmail.com
(Received: March 05, 2022; Informat: May 10, 2022; Revised: January 30, 2023; Accepted January 31,

2023)

DOI: https://doi.org/10.58250/jnanabha.2023.53110

Abstract

In this article, we obtain hypergeometric forms (not available in the literature) of some composite
functions like:

(1− y2)
d
2 exp(d tanh−1 y), (1 + x2)

g
2 cos(g tan−1 x), (1 + x2)

g
2 sin(g tan−1 x),

(1 + x2)
ik
2 cosh(k tan−1 x), (1 + x2)

ik
2 sinh(k tan−1 x), (1− y2)

g
2 cosh(g tanh−1 y),

(1− y2)
g
2 sinh(g tanh−1 y), (1− y2)

ik
2 cos(k tanh−1 y), (1− y2)

ik
2 sin(k tanh−1 y),

by using Leibniz theorem for successive differentiation and Maclaurin’s series expansion. Some
applications are also discussed.
2020 Mathematical Sciences Classification: 33C05, 34A35, 41A58, 33B10.
Keywords and Phrases: Hypergeometric function; Maclaurin series; Leibniz theorem.

1 Introduction and Preliminaries
In this paper, we shall use the following standard notations:
N : = {1, 2, 3, · · · } ;N0 := N

⋃ {0} ; and Z−0 := Z−
⋃ {0} = {0,−1,−2,−3, · · · } .

The symbols C,R,N,Z,R+ and R− denote the sets of complex numbers, real numbers, natural numbers,
integers, positive and negative real numbers respectively.

The Pochhammer symbol (α)p(α, p ∈ C) is defined by ([15, p.22 Eq.(1), p.32, Q.N.(8) and Q.N.(9)],see
also [17, p.23, Eq.(22) and Eq.(23)]).

A natural generalization of the Gaussian hypergeometric series 2F1[α, β; γ; z] is accomplished by
introducing any arbitrary number of numerator and denominator parameters [17, p.42, Eq.(1)].

Relations between hyperbolic and trigonometric functions are:

cos(iθ) = cosh(θ), sin(iθ) = i sinh(θ), (1.1)

tan−1(ix) = i tanh−1(x). (1.2)

The Maclaurin’s series is a particular case of Taylor’s series expansion of a function about the origin, the
Maclaurin series is given as:

y(x) = (y)0 + x(y1)0 +
x2

2!
(y2)0 +

x3

3!
(y3)0 +

x4

4!
(y4)0 +

x5

5!
(y5)0 + · · ·

=

∞∑

n=0

xn

n!
(yn)0 (1.3)

=

∞∑

n=0

x2n

(2n)!
(y2n)0 +

∞∑

n=0

x2n+1

(2n+ 1)!
(y2n+1)0, (1.4)

where, (ym)0 =
(
dmy
dxm

)
x=0

.
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The general Leibniz rule, named after Gottfried Wilhelm Leibniz, generalizes the product rule (which is
also known as ”Leibniz’s rule”), which states that if U(x) and T (x) are n-times differentiable functions, then
the product U(x).T (x) is also n-times differentiable and its nth derivative is given by:

Dn[U(x) T (x)] = (nC0)(Dn U)(D0 T ) + (nC1)(Dn−1 U)(D1 T ) + (nC2)(Dn−2 U)(D2 T ) + · · ·+
+(nCn−1)(D1 U)(Dn−1 T ) + (nCn)(D0 U)(Dn T ), (1.5)

=

n∑

r=0

nCr(D
rT )(Dn−rU), (1.6)

=

n∑

r=0

nCr(D
n−rT )(DrU), (1.7)

where D = d
dx .

Euler’s formula is
exp(iθ) = cos(θ) + i sin(θ). (1.8)

The present article is organized as follows. In section 3 we have given the proof of presented composite
function. In section 4 we have discussed some applications using the relations between inverse trigonometric
and inverse hyperbolic functions. The proof of the presented function is not available in the literature[1, 2,
3, 4, 6, 7, 9, 10, 5, 8] see also [11, 13, 12, 14, 16]. So we are interested to give the proof of hypergeometric
form using Maclaurin series.

2 Hypergeometric Form of Composite Function
When the values of numerator, denominator parameters and arguments leading to the results which do not
make sense are tacitly excluded, then the following hypergeometric form holds true:

(1 + x2)
ib
2 exp(b tan−1 x) = 2F1



− ib2 , −ib+1

2 ;
−x2

1
2 ;


+ bx2F1




1−ib
2 , 2−ib

2 ;
−x2

3
2 ;


 . (2.1)

Note:In above hypergeometric function x and b can be purely real or purely imaginary or complex
numbers.

3 Independent Proof of Hypergeometric Form
Proofof(2.1).

Let
y = (1 + x2)

ib
2 exp(b tan−1 x). (3.1)

Put x = 0 in equation (3.1), we get
(y)0 = 1. (3.2)

Differentiate equation (3.1) w.r.t. x and put x = 0, we get

(1 + x2)y1 − (xi+ 1)yb = 0. (3.3)

(y1)0 = b = i(−ib). (3.4)

Differentiate equation (3.3) n-times w.r.t. x, and applying Leibniz theorem, we get

Dn
{

(1 + x2)y1

}
− bDn {(xi+ 1)y} = 0; n ≥ 1.

(1 + x2)yn+1 + 2nxyn + n(n− 1)yn−1 − b(xi+ 1)yn − bin(1− b)yn−1 = 0; n ≥ 1. (3.5)

Put x = 0 in equation(3.5) we get

(yn+1)0 = − [n(n− 1)− bin] (yn−1)0 + b(yn)0; n ≥ 1. (3.6)

Put n = 1, 2, 3, 4, 5, 6, 7, 8.... in equation (3.6), we get

(y2)0 = b(b+ i) = ib(1− ib), (3.7)

(y3)0 = b(b+ i)(b+ 2i) = i2b(1− ib)(2− ib), (3.8)

(y4)0 = b(b+ i)(b+ 2i)(b+ 3i) = i3b(1− ib)(2− ib)(3− ib), (3.9)
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(y5)0 = b(b+ i)(b+ 2i)(b+ 3i)(b+ 4i) = i4b(1− ib)(2− ib)(3− ib)(4− ib), (3.10)

(y6)0 = b(b+ i)(b+ 2i)(b+ 3i)(b+ 4i)(b+ 5i) = i5b(1− ib)(2− ib)(3− ib)(4− ib)(5− ib) (3.11)

(yn)0 =

n∏

k=1

{b+ (k − 1)i} , (3.12)

(yn)0 = (i)n−1b(1− ib)(2− ib)(3− ib)....(n− 1− ib), (3.13)

(yn)0 = in(−ib)n. (3.14)

We know by Maclaurin series expansion

y = (y)0 + x(y1)0 +
x2

2!
(y2)0 +

x3

3!
(y3)0 +

x4

4!
(y4)0 +

x5

5!
(y5)0 + .... (3.15)

y =

∞∑

n=0

(yn)0 x
n

n!
, (3.16)

y =

∞∑

n=0

(−ib)n(xi)n

n!
, (3.17)

y =

∞∑

n=0

(−ib)2n(xi)2n

(2n)!
+

∞∑

n=0

(−ib)2n+1(xi)2n+1

(2n+ 1)!
, (3.18)

y =

∞∑

n=0

(
− ib2

)
n

(
− ib+1

2

)
n

(−x2)n(
1
2

)
n
n!

+ bx

∞∑

n=0

(
− ib+1

2

)
n

(
− ib+2

2

)
n

(−x2)n(
3
2

)
n
n!

. (3.19)

Using definition of generalized hypergeometric function of one variable, we get the required result (2.1).

4 Applications
Suppose x ∈ R and b is purely imaginary in equation (2.1), then putting x = iy and b = −id in equation
(2.1), where y is purely imaginary and d is purely real, we get

(1− y2)
d
2 exp(d tanh−1 y) = 2F1



−d2 , 1−d

2 ;
y2

1
2 ;


+ dy 2F1




1−d
2 , 2−d

2 ;
y2

3
2 ;


 . (4.1)

Putting b = −ig in the equation (2.1), where g is purely real, we get

(1 + x2)
g
2 exp(−ig tan−1 x) = 2F1



− g2 ,

−g+1
2 ;

−x2

1
2 ;


− igx2F1




1−g
2 , 2−g

2 ;
−x2

3
2 ;


 . (4.2)

Applying Euler’s formula on left hand side of equation (4.2), then on equating real and imaginary parts,
we get

(1 + x2)
g
2 cos(g tan−1 x) = 2F1



− g2 ,

−g+1
2 ;

−x2

1
2 ;


 , (4.3)

(1 + x2)
g
2 sin(g tan−1 x) = gx 2F1




1−g
2 , 2−g

2 ;
−x2

3
2 ;


 . (4.4)

Put g = ik in equation (4.3) and (4.4), where k is purely imaginary, we get

(1 + x2)
ik
2 cosh(k tan−1 x) = 2F1



− ik2 , −ik+1

2 ;
−x2

1
2 ;


 , (4.5)

(1 + x2)
ik
2 sinh(k tan−1 x) = kx 2F1




1−ik
2 , 2−ik

2 ;
−x2

3
2 ;


 . (4.6)
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Putting x = iy in equation (4.3) and (4.4) , where y is purely imaginary, we get

(1− y2)
g
2 cosh(g tanh−1 y) = 2F1



− g2 ,

−g+1
2 ;

y2

1
2 ;


 , (4.7)

(1− y2)
g
2 sinh(g tanh−1 y) = gy 2F1




1−g
2 , 2−g

2 ;
y2

3
2 ;


 . (4.8)

Putting x = iy and g = ik in equation (4.3) and (4.4), where y and k are purely imaginary, we get

(1− y2)
ik
2 cos(k tanh−1 y) = 2F1



− ik2 , −ik+1

2 ;
y2

1
2 ;


 , (4.9)

(1− y2)
ik
2 sin(k tanh−1 y) = ky2F1




1−ik
2 , 2−ik

2 ;
y2

3
2 ;


 . (4.10)

5 Conclusion

In our present investigation, we have obtained hypergeometric forms of some composite functions using

Maclaurin’s series expansion and Leibniz theorem. We conclude our present investigation by observing that

hypergeometric form of some other functions can be derived in an analogous manner. More over the results

derived are significant. These are expected to find some potential applications in the fields of Applied

Mathematics and Engineering Sciences.
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Jñānābha, Vol. 53(1) (2023), 92-100
(Dedicated to Professor G. C. Sharma on His 85th Birth Anniversary Celebrations)

A GEOMETRIC PROGRAMMING APPROACH TO CONVEX MULTI-OBJECTIVE
PROGRAMMING PROBLEMS

Rashmi Ranjan Ota and Sudipta Mishra
Department of Mathematics, ITER, SOA (Deemed to be University), Bhubaneswar, Odisha, India-751030

Email: rashmiranjanota@soa.ac.in, sudiptamishra00@gmail.com
(Received: January 11, 2023; In format January 19, 2023; Revised April 18, 2023; Accepted: April 21,

2023)

DOI: https://doi.org/10.58250/jnanabha.2023.53111

Abstract

Over the past few years, convex optimization has played a vital role in the study of complex
engineering problems in different fields. Geometric programming is one of the available techniques
particularly used for solving nonconvex programming problems. But in this article, a suitable attempt has
been made to solve a real-life model on convex multi-objective using geometric programming technique
with help of the ε-constraint method and result is compared with the solutions obtained by fuzzy
technique. Finally, a conclusion is presented by analyzing the solutions to a numerical problem.
2020 Mathematical Sciences Classification: 90C25,90C29,90C30,90C70.
Keywords and Phrases: Convex optimization; Multi-objective optimization; Geometric programming;
ε-constraint method; Fuzzy.

1 Introduction
There is hardly ever a situation that arises where one can expect only one goal at the same time. For
example, while purchasing something we are expecting a high-quality product at a low price. In the same
manner, most of the technical problems involve more than one goal to maximize quality versus minimizing
the cost. This ambiguity proceeds to the field of multi-objective optimization. There exists an infinite
number of optimal solutions to multi-objective problems because of conflicting objectives. The group of these
agreement solutions is called the pareto set[8] and solutions are called pareto solutions. But the question
arises how to combine different objectives to yield optimal solutions for our modeled problems. In this article
geometric programming technique has been discussed for solving different engineering applications, which
was developed by Duffin, Peterson and Zener [9]. Nowadays, it can be used in various fields like circuit
design [4, 5], production, and constructing models for market planning [2, 11]. Many important problems
in engineering need to solve non-convex multi-objective optimization problems to achieve the proper results.
But in this article, we have tried to discuss convex multi-objective optimization problems. The optimization
problem in which objective functions, as well as, constraints are convexly is known as the convex problems.
Recently convex optimization methods are widely used in the design and analysis of communication systems
and signal processing algorithms because in convex problems local optimum is considered as global optimum.
Luo et al.[12], in their recent paper have shown how convex optimization is useful for communications and
signal processing. Different applications in the field of automatic control systems, electronic circuit design,
data analysis, statistics, and finance has been discovered since its development. The basic advantages of
the convex optimization problem for solving a problem very reliably and efficiently using interior-point
methods or other special methods have been shown by Boyd et al.[6]. The connectedness properties of
quasi-convex problems using cone-efficient set of the solution have been shown by Zhou[16]. An and Liu[1]
have proven different necessary and sufficient conditions for getting weakly Pareto solutions and weakly
efficient solutions of convex multi-objective programming problems. For deriving the solutions of multi-
objective convex problems using both equality and inequality constraints, Shang et al.[15] have discussed
the homotopy method which does not require any starting point to be the feasible point.

The paper is structured as follows: beginning with the introduction, the basic concept of convex
optimization has been discussed in sec 2. The modeling of multi-objective convex geometric problems
discussed in sec 3 and corresponding solution procedure by ε-constraint method discussed in sec 4. The rule
of convergence of solutions by ε-constraint method and a suitable example based on our discussion given in
sec 5 and sec 6 respectively. Finally, conclusion drawn is presented in Sec 7.
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2 Basic concepts of convex set, convex function and convex programming
The study of fundamental concepts of convexity and its use in the construction of mathematical models[7, 14]
related to various physical problems are key for everyone.
Convex sets:
A set S ⊂ Rn is said to be convex if for any two points x, y ∈ S, their convex linear combination also lies in
S. Mathematically, it is represented as.
λ x + (1-λ)y∈ S for all λ ∈ [0, 1] and x, y ∈ S
Since the line segment joining any two distinct points is no longer on the unit sphere, the unit sphere is not
convex whereas the unit ball is a convex set. Generally, a convex set is a solid object having no holes and
always curved outward. An important property regarding convex sets is that the intersection of more than
one number of convex sets is again convex.
Convex functions
A function f(x) : Rn → R is called convex if for any two points x, y ∈ Rn the following condition must be
satisfied
f(λ x + (1-λ)y)≤ λ f(x) + (1-λ)f(y) for all λ ∈ [0, 1].
Geometrically, a function is called convex if the line joining x and y lies above the graph of f that is called
an epigraph.
Theorem 2.1. Let f is a function which is defined and differentiable on domf . Then f is called convex if
and only if f(y) ≥ f(x) +∇f(x)T (y − x) for all x, y ∈ domf .
It will be strictly convex if and only if domf is convex for every x, y ∈ domfand x 6= y. Then we have
f(y) > f(x) +∇f(x)T (y − x).
Theorem 2.2. Let f be a twice differentiable function on its convex domain domf . Then f is called convex
if and only if the hessian of the function should be positive semi definite: ∇2f(x) ≥ 0 for allx ∈ domf .
However, if ∇2f(x) > 0 for all x ∈ domf , then f will be strictly convex.
Basic Properties of convex functions
· f is called strictly convex if the strict inequality holds and x 6= y.
· if f is concave then −f will be convex.
· if f is convex then its epigraph epi f is also a convex set.
· If f is a convex function over a convex set S, then the local minimum will be the global minimum.
Convex Optimization
The optimization problem of the form

minf(x) (2.1)

subject to
fi(x) ≤ 0, i = 1, 2, ...,m, (2.2)

gj(x) = 0, j = 1, 2, 3, ..., n, x ∈ S, (2.3)

is called convex optimization problem if inequality constraints are convex and equality constraints are affine
where S is a convex set. The optimization problem will be non-convex if one of the conditions is violated.
Convex optimization problems have three important properties that make them fundamentally more powerful
than any generic non-convex optimization problems.
· Local optimum is necessarily a global optimum;
· Detection of exact infeasibility ;
· Very large problems can be handled by efficient numerical solution methods.
Theorem 2.3. (Local optima implies global optima)Let Q be a convex optimization problem and let x∗ ∈ S
be a point such that f(x∗) ≤ f(y) for all feasible y with ||x∗ − y|| ≤ ρ. Then f(x∗) ≤ f(y) for all feasible y.
proof: The proof is by contradiction. Assume that there is some feasible t such that f(t) < f(x∗). Then
take y = αx∗ + (1− α)t for α ∈ (0, 1) close to 1. We claim this point is feasible. The affine constraints are
satisfied due to linearity, since both x∗and t are feasible. As for the inequality constraints, by convexity we
get
gi(αx

∗ + (1− α)t) ≤ αgi(x∗) + (1− α)gi(t) ≤ 0.
Hence y is feasible. However, the objective value is strictly smaller than f(x∗), since
f(αx∗ + (1− α)t) ≤ αf(x∗) + (1− α)f(t) < f(x∗).
For α close to one, we will get ||x∗ − y|| ≤ ρ, which is a contradiction.
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3 Multi-objective convex geometric programming problem (MOCGPP)
Optimization of multiple objective functions subject to given constraints is known as multi-objective
optimization. In this process a solution which is optimal with respect to one objective function may not
be same for remaining objectives. As a result, we can not find only one global optimal solution. Therefore
optimizing a problem means, find a solution such that it should acceptable to all the decision makers. A
multi-objective geometric problem will be convex if all objective functions as well as constraints are convex.
It can be defined mathematically as follows:

To determine x = (x1, x2, ..., xn)T in order to

min : fk(x) =

αk∑

i=1

βk0i

n∏

j=1

x
ck0ij
j , k = 1, 2, ..., p. (3.1)

Subject to

gt(x) =

αt∑

i=1

βit

n∏

j=1

x
citj
j ≤ 1, t = 1, 2, ...,m, (3.2)

xj > 0, j = 1, 2, ..., n, (3.3)

where all objective functions and constraints are convex and
βk0i ≥ 0 ∀ k and i,
βit ≥ 0 ∀ i and t,
ck0tj and citj are real numbers ∀ i, j, k, t,
αk = no. of terms in the kth objective function fk(x),
αt= no. of terms in the tth constraint.

4 The ε-constraintmethod
This method was developed first by Haimes et al.[10] for generating pareto optimal solutions for the multi-
objective optimization problems. In this method at a time, only one of the objective functions solved
expressing other objective functions as constraints. This method can be stated as:

min : f l0(x), where l ∈ {1, 2, ..., k}, (4.1)

subject to
fp0 (x) ≤ εp, p = 1, 2, ..., k, p 6= l, (4.2)

gi(x) ≤ 1, i = 1, 2, ...,m. (4.3)

We define
Lp ≤ εp ≤ Up, p = 1, 2, ..., k, p 6= l.

where
Lp = min

∀x∈X
fp0 (x), p = 1, 2, ..., k.

and
Up = max

∀x∈X
fp0 (x), p = 1, 2, ..., k,

x ∈ X, X being the feasible region .

Compromise solutions of the problems can be generated considering the values of εp in the interval
[Lp, Up] for p = 1, 2, ..., k.

5 Test of convergence of solutions by ε-constraint method
Sometimes, it is necessary to check the convergence of optimal solutions in multi-objective problems.
Regarding this, Ojha and Biswal[13] in their recent paper have shown how the pareto solutions converges
using ε-constraint method. Below given steps are some of the notes representing converges of the solutions.

Step 1. Determine the bounds of the objectives (f
(l)
0 (x), l = 1, 2, ..., k) using ideal points X(1), X(2), ..., X(k)

as obtained by geometric programming technique. Let Ll and Ul are the least and best values of f
(l)
0 i.e

Ll ≤ f (l)
0 (x) ≤ Ul, l = 1, 2, ..., k.

Step 2.Consider εl be a point in the interval [Ll, Ul] such that Ll ≤ εl ≤ Ul, l = 1, 2, ...., k.
Step 3. If we assign different values to εl in the interval [Ll, Ul], it will initiate a set of pareto optimal
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solution.
Step 4. Weigh the differences between the pareto solutions with the solution obtained by fuzzy method.
Step 5. If the solution obtained in step 3 is same as that obtained in step 4, then stop and accept the
solution of the problem.

6 Numerical example
Let’s consider and solve the following example on the basis of our above discussion.
Example 6.1.

Find x1, x2 and x3 to
min f1(x) = 2x−1

1 x−1
2 + 20x2 + 12x−1

3 , (6.1)

min f2(x) = 4x−1
1 x−1

2 x−1
3 + 20x2

2 + 10x−1
3 , (6.2)

subject to

2x2
1x
−1/2
2 + 2x−1

2 x2
3 ≤ 1, (6.3)

where x1, x2, x3 ≥ 0. (6.4)

Verification of convexity of objective functions
It can be shown that a function f(x1, x2, ....xn) is a convex function if and only if the matrix of second

order derivatives or Hessian matrix is positive semi-definite and principal minor determinants of this matrix
are all non negative.

for example, if H(x) = [ ∂2f
∂xi .∂xj

] =



a11 a12 a13

a21 a22 a23

a31 a32 a33


, where i=1, 2, 3 and j=1, 2, 3

Let us verify the convexity of 1st objective function f1(x) = 2x−1
1 x−1

2 + 20x2 + 12x−1
3

As per the definition, Hessian matrix for the given problem will be

H(x) =




4x−3
1 x−1

2 2x−2
1 x−2

2 0
2x−2

1 x−2
2 4x−1

1 x−3
2 0

0 0 24x−3
3


 .

Corresponding to the above hessian matrix, the determinant of the principal minors D1 = 4x−3
1 x−1

2 , D2 =
12x−4

1 x−4
2 and D3 = 288x−4

1 x−4
2 x−3

3 are positive for the design variables x1, x2 and x3. So it is a convex
function.

Similarly for the 2nd objective function f2(x) = 4x−1
1 x−1

2 x−1
3 + 20x2

2 + 10x−1
3 , hessian matrix will be

H(x) =




8x−3
1 x−1

2 x−1
3 4x−2

1 x−2
2 x−1

3 4x−2
1 x−1

2 x−2
3

4x−2
1 x−2

2 x−1
3 84x−1

1 x−3
2 x−1

3 + 40 4x−1
1 x−2

2 x−2
3

4x−2
1 x−1

2 x−2
3 4x−1

1 x−2
2 x−2

3 8x−1
1 x−1

2 x−3
3 + 20x3


 .

Corresponding to the above hessian matrix, the determinant of the principal minors D1 =
8x−3

1 x−1
2 x−1

3 , D2 = 64x−4
1 x−4

2 x−2
3 + 320x−3

1 x−1
2 x−1

3 − 16x−4
1 x−4

2 x−2
3 and D3 = 2564x−5

1 x−5
2 x−5

3 +
19208x−4

1 x−2
2 x−4

3 + 6400x−3
1 x−1

2 x−4
3 − 192x−4

1 x−4
2 x−5

3 are positive for the design variables x1, x2 and x3. So
it is a convex function.

For the given constraint 2x2
1x
−1/2
2 + 2x−1

2 x2
3 ≤ 1, the hessian matrix will be

H(x) =




4x
−1/2
2 −2x1x

−3/2
2 0

−2x1x
−3/2
2 3/2x2

1x
−5/2
2 + 4x−3

2 x2
3 −4x−2

2 x3

0 −4x−2
2 x3 4x−1

2


 .

Now this hessian matrix can be checked for convexity of constraints. We found it is also convex function.
Therefore the given optimization problem is a convex optimization problem.

Here we have divided this problem into two sub problems as primal(i) and primal(ii)in order to find its
optimal solutions.
Primal (i) Corresponding dual and their solutions
Primal(i).
Find x1, x2 and x3 to

min f1(x) = 2x−1
1 x−1

2 + 20x2 + 12x−1
3 , (6.5)
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subject to

2x2
1x
−1/2
2 + 2x−1

2 x2
3 ≤ 1, (6.6)

where x1, x2, x3 ≥ 0. (6.7)

Dual:
The Dual of the above primal will be as follows:

max
t

: V (t) =

(
2

t01

)t01 ( 20

t02

)t02 ( 12

t03

)t03 ( 2

t11

)t11 ( 2

t12

)t12
(t11 + t12)

(t11+t12)
. (6.8)

Subject to

t01 + t02 + t03 = 1,

−t01 + 2t11 = 0,

−t01 + t02 −
1

2
t11 − t12 = 0,

−t03 + 2t12 = 0,

t01, t02, t03, t11, t12 ≥ 0,

Solution of primal(i) is f1(x) = 45.10214 for x1 = 0.3390946, x2 = 0.9131737 and x3 = 0.5888183 where
as its corresponding dual is f∗1 = 45.10214 for t01 = 0.1432052, t02 = 0.4049359, t03 = 0.4518589, ‘t11 =
0.0716025, t12 = 0.2259295.
Primal(ii) Corresponding dual and their solutions
Primal(ii).
Find x1, x2 and x3 to minimize,

min f2(x) = 4x−1
1 x−1

2 x−1
3 + 20x2

2 + 10x−1
3 , (6.9)

subject to

2x2
1x
−1/2
2 + 2x−1

2 x2
3 ≤ 1, (6.10)

where x1, x2, x3 ≥ 0. (6.11)

Dual.

max
t

: V (t) =

(
4

t01

)t01 ( 20

t02

)t02 ( 10

t03

)t03 ( 2

t11

)t11 ( 2

t12

)t12
(t11 + t12)

(t11+t12)
. (6.12)

Subject to

t01 + t02 + t03 = 1,

−t01 + 2t11 = 0,

−t01 + 2t02 −
1

2
t11 − t12 = 0,

−t01 − t03 + 2t12 = 0,

t01, t02, t03, t11, t12 ≥ 0.

Solution of primal f2(x) = 54.28115 for x1 = 0.40671, x2 = 0.9880575 and x3 = 0.5741136 where as its
dual will be f∗2 = 54.28115 for t01 = 0.3194082, t02 = 0.3597041, t03 = 0.3208877, t11 = 0.1597041, t12 =
0.3201480.

Replacing the value of f1 in f2 and f2 in f1, we find both lower and upper bound of the functions:
L1 = 45.10214 ≤ f1 ≤ 45.63988 = U1,

and L2 = 54.28115 ≤ f2 ≤ 55.64130 = U2.
Defining ε1 and ε2 based on the values of f1 and f2, we have

45.10214 ≤ ε1 ≤ 45.63988 and 54.28115 ≤ ε2 ≤ 55.64130 .
We can observe, as the value of ε1 and ε2 changes within their range, the value of objective functions f1 and
f2 also changes and are converging towards their suitable compromise values.
Primal(i) and its solution by ε-constraint method
Find x1, x2 and x3 to

min f1(x) = 2x−1
1 x−1

2 + 20x2 + 12x−1
3 , (6.13)
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subject to
4x−1

1 x−1
2 x−1

3 + 20x2
2 + 10x−1

3 ≤ ε2, (6.14)

2x2
1x
−1/2
2 + 2x−1

2 x2
3 ≤ 1, (6.15)

where x1, x2, x3 > 0. (6.16)

Different values of the Primal(i) will be obtained by changing ε2 between 54.28115 to 55.63988 given in
Table 6.1.

Table 6.1: (Optimal solution of Primal(i))

ε2 x1 x2 x3 primalf1

54.3 0.3968714 0.9834149 0.5792341 45.50971
54.5 0.3744542 0.9677492 0.5881633 45.27651
54.7 0.3634936 0.9560997 0.5906395 45.19375
54.9 0.3557495 0.9455062 0.5913476 45.14871
55.1 0.3497639 0.9355950 0.5911580 45.12281
55.3 0.3449175 0.9262459 0.5904456 45.10875
55.5 0.3408725 0.9173958 0.5894118 45.10279
55.6 0.3390946 0.9131737 0.5888183 45.10214

Dual
The Dual of the above primal will be:

max
t

: V (t) =

(
1

t01

)t01 ( 1

4t02

)t02 ( 3

4t11

)t11 ( 3

8t12

)t12
(t11 + t12)

(t11+t12)

(
2

ε2t21

)t21 ( 2

ε2t22

)t22
(t21 + t22)

(t21+t22)
, (6.17)

subject to

t01 + t02 = 1,

−2t01 + 2t11 − t21 + t22 = 0,

2t02 − 2t11 + t12 − t21 + t22 = 0,

−t02 + 2t12 − t21 = 0,

t01, t02, t11, t12, t21, t22 ≥ 0.

(6.18)

As the value of ε2 will change between 54.28115 to 55.64130, the changes occur in the dual value is given
in the Table 6.2.

Table 6.2: (Dual Solution)

ε2 t01 t02 t03 t11 t12 t13 t21 t22 Dualf1

54.3 0.1126002 0.432175 0.455221 1.23822 1.35357 1.208159 0.675410 1.45080 45.50971
54.5 0.1218983 0.427481 0.450619 0.240704 0.240232 0.218063 0.181301 0.454694 45.27651
54.7 0.1273361 0.423111 0.449552 0.127157 0.119299 0.110479 0.127246 0.343594 45.19375
54.9 0.1316970 0.418840 0.449462 0.075176 0.668398 0.063216 0.103437 0.293928 45.14871
55.1 0.1354475 0.414688 0.449864 0.043940 0.037172 0.035917 0.089675 0.264842 45.12281
55.3 0.1387802 0.410672 0.450547 0.022454 0.018169 0.0017934 0.080617 0.245468 45.10875
55.5 0.1418002 0.406802 0.451397 0.006534 0.005608 0.0005108 0.074167 0.231528 45.10279
55.6 0.1432051 0.404935 0.451859 0.22940×

10−7
0.17625×
10−7

0.18190×
10−7

0.071600 0.225929 45.10214

From table 6.2, we found the optimal value of dual, that is 45.10214 for t01 = 0.143051, t02 =
0.4049359, t03 = 0.4518591, t11 = 0.22940 × 10−7, t12 = 0.17625 × 10−7, t13 = 0.18190 × 10−7, t21 =
0.071600, t22 = 0.225929
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Primal(ii) and its solution by ε-constraint method
Find x1, x2 and x3 to

min f2(x) = 4x−1
1 x−1

2 x−1
3 + 20x2

2 + 10x−1
3 , (6.19)

subject to
2x−1

1 x−1
2 + 20x2 + 12x−1

3 ≤, ε1 (6.20)

2x2
1x
−1/2
2 + 2x−1

2 x2
3 ≤ 1, (6.21)

where x1, x2, x3 ≥ 0. (6.22)

Solutions of the Primal(ii) obtained by changing the values of ε1 between 45.10214 to 45.63988 given in Table
6.3.

Table 6.3: (Optimal solution of Primal(ii))

ε1 x1 x2 x3 primalf2

45.11 0.345469 0.927377 0.590554 55.2752
45.3 0.377145 0.970123 0.587336 54.46271
45.5 0.396079 0.982994 0.579618 54.30320
45.6 0.403834 0.986803 0.575673 54.28274
45.61 0.404565 0.987130 0.575281 54.28203
45.63 0.406007 0.987758 0.574499 54.28125
45.639 0.406647 0.988031 0.574148 54.28115

Dual
The Dual of the above Primal will be

max
t

: V (t) =

(
1

t01

)t01 ( 1

4t02

)t02 ( 3

4t11

)t11 ( 3

8t12

)t12
(t11 + t12)

(t11+t12)

(
2

ε2t21

)t21 ( 2

ε2t22

)t22
(t21 + t22)

(t21+t22)
. (6.23)

Subject to

t01 + t02 = 1

−2t01 + 2t11 − t21 + t22 = 0,

2t02 − 2t11 + t12 − t21 + t22 = 0,

−t02 + 2t12 − t21 = 0,

t01, t02, t11, t12, t21, t22 ≥ 0.

(6.24)

As the value of ε1 will change between 45.10214 to 45.63988,the changes occur in dual value is given in Table
6.4.

Table 6.4: (Dual Solution)

ε1 t01 t02 t03 t11 t12 t13 t21 t22 Dualf2

45.11 0.327074 0.350879 0.322046 0.0075578 0.028352 0.031227 0.167315 0.340174 54.29273
45.3 0.322068 0.356626 0.321305 0.0025116 0.0097014 0.010488 0.162289 0.326931 54.28255
45.5 0.319408 0.359704 0.320887 0.116862×

10−7
0.453369×
10−7

0.487989×
10−7

0.159704 0.320148 54.28115

45.6 0.319408 0.359704 0.320887 0.116030×
10−7

0.453361×
10−7

0.491941×
10−7

0.159704 0.320148 54.28115

From table 6.4, it can be found that the optimal value of the dual is 54.28115 for t01 = 0.319408, t02 =
0.359704, t03 = 0.320887, t11 = 0.116030 × 10−7, t12 = 0.453361 × 10−7, t13 = 0.491941 × 10−7, t21 =
0.159704, t22 = 0.320148
Solution by fuzzy method
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Case-1.Solution of f1

The crisp model of f1 using fuzzy method can be stated as:
max : θ
subject to

2x−1
1 x−1

2 + 20x2 + 12x−1
3 + (45.63988− 45.10214)θ ≤ 45.63988,

2x2
1x
−1/2
2 + 2x−1

2 x2
3 ≤ 1,

θ > 0, xi > 0 for i = 1, 2, 3. (6.25)

The optimal value of f1 = 45.10214 for θ = 1.00008, x1 = 0.3390946, x2 = 0.9131737, x3 = 0.5888183.

Case-2.Solution of f2

The crisp model of f2 using fuzzy method is defined as follows:
max : θ
s.to

4x−1
1 x−1

2 x−1
3 + 20x2

2 + 10x−1
3 + (55.64130− 54.28115)θ ≤ 55.64130,

2x2
1x
−1/2
2 + 2x−1

2 x2
3 ≤ 1,

θ > 0, xi > 0 for i = 1, 2, 3. (6.26)

The optimal value of f2 = 54.28115 for θ = 1.0000, x1 = 0.4067100, x2 = 0.9880575 and x3 = 0.5741136.

Result Analysis
Usually, the geometric programming problems are non-convex in nature. In this paper, the problem taken
for our research purposes is a convex problem. The main aim of taking convex problem is that global minima
of a problem will be global optima if the considered test problem is convex.
The above work out shows how the solutions converging to f1 = 45.10214 for x1 = 0.3390946, x2 = 0.9131737,
x3 = 0.588183 and f2 = 54.281159 for x1 = 0.4067100, x2 = 0.9880575, x3 = 0.5741136 by obtained by
ε-constraint method which is exactly same as obtained by fuzzy method. However, the decision makers have
multiple choices in ε-constraint method But there is only one choice in fuzzy method.

7 Conclusion
It is very interesting to search a suitable solution for the multi-objective problems. But only one difficulty
arises because of conflicting of objectives. Due to non-convexity nature,sometimes it is difficult to find a
best compromise solutions for multi-objective problems. Here we are not interested to explain whether a
generic multi-objective optimization problem is efficiently solvable or not. However, we are interested,how
to solve the problem efficiently. As far as the solutions of the problem is concerned, there exists optimization
problems in which both objective and the constraints are convex. Under the given conditions a convex
optimization problem can be solve up to to a given accuracy. In contrast, a non-convex problems is difficult
to solve. The computational effort required to solve such problems by the best known numerical methods
grows fast with the dimensions of the problems and therefore it is difficult to study an intrinsic nature of
non-convex problems. Because of this, we have considered a multi-objective convex geometric problem to
study its behaviour in order to find best compromise solutions.
Acknowledgement. We are very much grateful to the Editor and Referee for their valuable suggestions to
bring the paper in its present form.
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Abstract

In this paper, the sequence of 3-tuples named as singular 3-tuples {f(x), g(x), h(x)}, {g(x), h(x), i(x)}
etc concerning Abel’s polynomial and Cyclotomic polynomial such that the arithmetic mean of any two
polynomials increased by a monomial with integer coefficients provides square of a particular polynomial
is enumerated. Furthermore, Python program for conformation of each of an evaluated singular 3-tuples
is also exemplified.
2020 Mathematical Sciences Classification: 11B83
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1 Introduction
“A set of s positive integers {r1, r2, . . . , rs} is called a Diophantine s-tuples with the property D(l), l ∈ Z−{0}
if rmrn + l is a perfect square for all 1 ≤ m < n ≤ s.” In [1, 2, 4], the writers originate limited number of
Diophantine triples with precise properties. For an inclusive analysis of numerous problems on Diophantine 3-
tuples with appropriate properties, see [5-11, 15-18]. In this communication, the process of finding sequence
of singular 3-tuples {f(x), g(x), h(x)}, {g(x), h(x), i(x)} etc consisting Abel’s polynomial and Cyclotomic
polynomial such that the arithmetic mean of any two polynomials in each 3-tuples enlarged by a monomial
with integer coefficients remains square of a polynomial is demonstrated. Moreover, Python program for
checking each of such singular 3-tuples with numerical values is illustrated.

2 Basic Definitions
2.1 Abel’s Polynomial

The nth term of Abel’s Polynomial is defined by

pa,n(x) = x(x− an)n−1.

Therefore
P1,2(x) = x2 − 2x, P2,2(x) = x2 − 4x.

2.2 Cyclotomic Polynomial

The nth term of Cyclotomic Polynomial is defined by

ϕn(x) =





n−1∑
k=0

xk, if n is a prime number

p−1∑
k=0

(−x)
k
, if n = 2p where p is an odd prime number.

Then, ϕ3(x) = x2 + x+ 1, ϕ6(x) = x2 − x+ 1.
2.3 Singular 3-tuples
A set of 3-tuples {f(x), g(x), h(x)} is called singular 3-tuples with property D [r(x)] if the average of any
two polynomials in the set added with r(x) is a square of some other polynomial where f(x), g(x), h(x), r(x)
are polynomials with integer coefficients.
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3 Process of Receiving Singular 3-tuples
The method of discovering two different types of singular 3-tuples in which the elements are Abel’s polynomial
and Cyclotomic polynomial such that average of any two polynomials added with certain monomial gives a
square of a polynomial is expressed in Section 3.1 and Section 3.2.
3.1 Singular 3-tuples with Ables Polynomial
Choose f(x) = P1,2(16x) = 256x2 − 32x and g(x) = P2,2(16x) = 256x2 − 64x be such that average of f(x)
and g(x) added with 80x+ 1 is a square of a polynomial.

Mathematically, the above hypothesis is expressed by[
f(x) + g(x)

2

]
+ 80x+ 1 = (16x+ 1)2 = [α(x)]

2
(say). (3.1)

Let h(x) be another polynomial collected with the resulting two conditions that
[
g(x) + h(x)

2

]
+ 80x+ 1 = [β(x)]

2
, (3.2)

[
f(x) + h(x)

2

]
+ 80x+ 1 = [γ(x)]

2
. (3.3)

Subtraction of (3.3) from (3.2) affords the succeeding equation
[
g(x)− f(x)

2

]
= [β(x)]

2 − [γ(x)]
2
. (3.4)

For finding the third element h(x) in an essential triple, let us select the proper conversions as specified
below.

β(x) = A+ 2 and γ(x) = A. (3.5)

Replacing the chosen values of f(x), g(x) and the alterations (3.5) in (3.4), the possibility of A and hence
γ(x) is attained by

γ(x) = A = 4x− 1.

Retaining f(x) and the above derived value of γ(x) in (3.3), it is scrutinized that

h(x) = −224x2 − 112x.

Note that, {f(x), g(x), h(x)} =
{

256x2 − 32x, 256x2 − 64x,−224x2 − 112x
}

is a gorgeous singular 3-tuples
with property D(80x+ 1).

Similarly opening with patterns of singular 2-tuples {g(x), h(x)}, {h(x), i(x)} etc, it is possible to extend
patterns of singular 3-tuples {g(x), h(x), i(x)} {h(x), i(x), j(x)} etc with an equivalent condition D(80x+ 1).
Here

i(x) = 7200x4 + 1440x3 + 56x2 − 72x,

j (x) = 1620000x8+648000x7+190800x6+43200x5+2450x4−20x3+134x2−68x.

Table 3.1 demonstrates singular 3-tuples for few values of x for easy understanding.

Table 3.1

x D(80x+ 1) {f(x), g(x), h(x)} {g(x), h(x)i(x)} {h(x)i(x), j(x)}
1 D(81) {224, 192,−336} {192,−336, 8624} {−336, 8624, 2504496}
2 D(161) {960, 896,−1120} {896,−1120, 126800} {−1120, 126800, 511297040}
3 D(241) {2208, 2112,−2352} {2112,−2352, 622368} {−2352, 622368, 12195785712}
4 D(321) {3968, 3840,−4032} {3840,−4032, 1935968} {−4032, 1935968, 117611533392}
5 D(401) {6240, 6080,−6160} {6080,−6160, 4681040} {−6160, 4681040, 686555281760}

3.2 Singular 3-tuples with Cyclotomic Polynomial

Let {k(x), l(x)} = {ϕ3(16x), ϕ6(16x)} =
{

256x2 + 16x+ 1, 256x2 − 16x+ 1
}

be a pair comprising
Cyclotomic Polynomials such that the average of these two polynomials augmented by the monomial 32x is
a square of some other polynomial. Following the procedure as explained in Section 3.1, this pair is extended
into singular triple {k(x), l(x),m(x)} with property D(32x). Here m(x) = −224x2 − 64x+ 1.
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Similarly, if {l(x),m(x)} , {m(x), n(x)} etc are pairs in which the elements are certain polynomials, then
as in Section 3.1 each pair can be protracted into singular triples {l(x),m(x), n(x)} , {m(x), n(x), p(x)} etc
with the similar property D(32x). Here

n(x) = 7200x4 + 1440x3 + 56x2 − 24x+ 1,

p(x) = 1620000x8 + 648000x7 + 190800x6 + 43200x5 + 2450x4 − 20x3 + 134x2 − 20x+ 1.

The ensuing Table 3.2 establishes the prescribed singular 3-tuples for limited values of x.

Table 3.2

x D(32x) {k(x), l(x),m(x)} {l(x),m(x), n(x)} {m(x), n(x), p(x)}
1 D(32) {273, 241,−287} {241,−287, 8673} {−287, 8673, 2504545}
2 D(64) {1057, 993,−1023} {993,−1023, 126897} {−1023, 126897, 511297137}
3 D(96) {2353, 2257,−2207} {2257,−2207, 622513} {−2207, 622513, 12195785857}
4 D(128) {4161, 4033,−3839} {4033,−3839, 1936161} {−3839, 1936161, 117611533585}
5 D(160) {6481, 6321,−5919} {6321,−5919, 4681281} {−5919, 4681281, 686555282001}

4 Python program
Python program is displayed below for endorsement of each of the singular 3-tuples with arithmetic values.

1 import math

2 Section=int(input(’ENTER THE VALUE OF SECTION’))

3 if Section == 1:

4 x=int(input(’ENTER THE VALUE OF x = ’))

5 f=256 * x * x-32 * x

6 g=256 * x * x-64 * x

7 h=-224 * x * x-112 * x

8 i=7200 * x * x * x * x+1440 * x * x * x+56 * x * x-72 * x

9 j=1620000 * (x * x * x * x * x * x * x * x) + 648000 * (x * x * x * x * x * x * x)

10 + 190800 * (x * x * x * x * x * x)+43200 * (x * x * x * x * x)

11 + 2450 * (x * x * x * x)-20 * (x * x * x)+134 * (x * x)-68 * x

12 print(’f(x)=’, f,’g(x)=’, g,’h(x)=’, h,’i(x)=’, i,’j(x)=’, j)

13 R=((f+g)/2)+80 * x+1

14 Y=((g+h)/2)+80 * x+1

15 Z=((h+f)/2)+80 * x+1

16 M=((g+i)/2)+80 * x+1

17 N=((h+i)/2)+80 * x+1

18 P=((h+j)/2)+80 * x+1

19 Q=((i+j)/2)+80 * x+1

20 root1=mathsqrt(R)

21 root2=mathsqrt(Y)

22 root3=mathsqrt(Z)

23 root4=mathsqrt(M)

24 root5=mathsqrt(N)

25 root6=mathsqrt(P)

26 root7=mathsqrt(Q)

27 if (int(root1+0.5) ** 2==R) and (int(root2+0.5) ** 2==Y) and (int(root3+0.5) ** 2==Z):

28 print(’(f(x), g(x), h(x))=’,(f, g, h), "is a Singular triple with D(80x+1)")

29 else:

30 print(’(f(x), g(x), h(x))=’,(f, g, h), "is not a Singular triple with D(80x+1)")

31 if (int(root2+0.5) ** 2==Y) and (int(root4+0.5) ** 2==M) and (int(root5+0.5) ** 2==N):

32 print(’(g(x), h(x), i(x))=’,(g, h, i), "is a Singular triple with D(80x+1)")

33 else:

34 print(’(g(x), h(x), i(x))=’,(g, h, i), "is not a Singular triple with D(80x+1)")

35 if (int(root5+0.5) ** 2==N) and (int(root6+0.5) * * 2==P) and (int(root7+0.5) ** 2==Q):

36 print(’(h(x), i(x), j(x))=’,(h, i, j), "is a Singular triple with D(80x+1)")

37 else:

38 print(’(h(x), i(x), j(x))=’,(h, i, j), "is not a Singular triple with D(80x+1)")

39 elif Section == 2:

40 X=int(input(’ENTER THE VALUE OF X = ’))

41 k=256 * X * X+16 * X+1

42 l=256 * X * X-16 * X+1
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43 m=-224 * X * X-64 * X+1

44 n=7200 * X * X * X * X+1440 * X * X * X+56 * X * X-24 * X+1

45 p=1620000 * (X * X * X * X * X * X * X * X) + 648000 * (X * X * X * X * X * X * X)

46 + 190800 * (X * X * X * X * X * X)+43200 * (X * X * X * X * X)

47 + 2450 * (X * X * X * X)-20 * (X * X * X)+134 * (X * X)-20 * X+1

48 print(’k(x)=’, k,’l(x)=’, l,’m(x)=’, m,’n(x)=’, n,’p(x)=’, p)

49 A=((k+l)/2)+32 * X

50 B=((l+m)/2)+32 * X

51 C=((m+k)/2)+32 * X

52 D=((l+n)/2)+32 * X

53 E=((m+n)/2)+32 * X

54 F=((m+p)/2)+32 * X

55 G=((n+p)/2)+32 * X

56 root1=mathsqrt(A)

57 root2=mathsqrt(B)

58 root3=mathsqrt(C)

59 root4=mathsqrt(D)

60 root5=mathsqrt(E)

61 root6=mathsqrt(F)

62 root7=mathsqrt(G)

63 if (int(root1+0.5) ** 2==A) and (int(root2+0.5) ** 2==B) and (int(root3+0.5) ** 2==C):

64 print(’(k(x), l(x), m(x))=’,(k,l,m), "is a Singular triple with D(32x)")

65 else:

66 print(’(k(x), l(x)m(x))=’,(k,l,m), "is not a Singular triple with D(32x)")

67 if (int(root2+0.5) ** 2==B) and (int(root4+0.5) ** 2==D) and (int(root5+0.5) ** 2==E):

68 print(’(l(x), m(x), n(x))=’,(l,m,n), "is a Singular triple with D(32x)")

69 else:

70 print(’(l(x), m(x), n(x))=’,(l,m,n), "is not a Singular triple with D(32x)")

71 if (int(root5+0.5) ** 2==E) and (int(root6+0.5) ** 2==F)

72 and (int(root7+0.5) ** 2==G):

73 print(’(m(x), n(x), p(x))=’,(m, n, p), "is a Singular triple with D(32x)")

74 else:

75 print(’(m(x), n(x), p(x))=’,(m, n, p), "is not a Singular triple with D(32x)")

Output of Some Examples

1 ENTER THE VALUE OF SECTION 1

2 ENTER THE VALUE OF x = 1

3 f(x)= 224 g(x)= 192 h(x)=-336 i(x)= 8624 j(x)= 2504496

4 (f(x), g(x), h(x))= (224, 192,-336) is a Singular triple with D(80x+1)

5 (g(x), h(x), i(x))= (192, -336, 8624) is a Singular triple with D(80x+1)

6 (h(x), i(x), j(x))= (-336, 8624, 2504496) is a Singular triple with D(80x+1)

7

8 ENTER THE VALUE OF SECTION 1

9 ENTER THE VALUE OF x = 2

10 f(x)= 960 g(x)= 896 h(x)=-1120 i(x)= 126800 j(x)= 511297040

11 (f(x), g(x), h(x))= (960, 896,-1120) is a Singular triple with D(80x+1)

12 (g(x), h(x), i(x))= (896, -1120, 126800) is a Singular triple with D(80x+1)

13 (h(x), i(x), j(x))= (-1120,126800,511297040) is a Singular triple with D(80x+1)

14

15 ENTER THE VALUE OF SECTION 2

16 ENTER THE VALUE OF X = 1

17 k(x)= 273 l(x)= 241 m(x)=-287 n(x)= 8673 p(x)= 2504545

18 (k(x), l(x), m(x))= (273, 241,-287) is a Singular triple with D(32x)

19 (l(x), m(x), n(x))= (241, -287, 8673) is a Singulartriple with D(32x)

20 (m(x), n(x), p(x))= (-287, 8673, 2504545) is a Singular triple with D(32x)

21

22 ENTER THE VALUE OF SECTION 2

23 ENTER THE VALUE OF X = 2

24 k(x)= 1057 l(x)= 993 m(x)=-1023 n(x)= 126897 p(x)= 511297137

25 (k(x), l(x), m(x))= (1057, 993, -1023) is a Singular triple with D(32x)

26 (l(x), m(x), n(x))= (993,-1023, 126897) is a Singular triple with D(32x)

27 (m(x), n(x), p(x))= (-1023, 126897, 511297137) is a Singular{triple with D(32x)
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5 Conclusion
In this paper, the development of finding order of singular 3-tuples {f(x), g(x), h(x)},
{g(x), h(x), i(x)} etc entailing Abel’s polynomial and Cyclotomic polynomial in which the arithmetic mean
of any two polynomials in each 3-tuples added by a monomial with integer coefficients leftovers square of a
polynomial is recognized. Additionally, Python program for inspection of each of such singular 3-tuples with
numerical values is presented. To conclude this, one can pursuit varieties of 3-tuples nourishing innumerable
exciting features.
Acknowledgement. Authors are grateful to the Editor and Reviewer for their fruitful suggestions to
improve the paper.
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Abstract

This paper presents a new cryptographic scheme for encryption and decryption by introducing the
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1 Introduction
Cryptography is a scientific technique related to aspects of information security such as data integrity, entity
authentication and data origin authentication. Cryptography is a set of techniques to provide information
security. It helps to store sensitive information, transmit it across insecure networks like internet so that it
can’t be read by anyone except the intended receiver.

Analysis of cryptographic security leads to using theoretical computer science especially complexity
theory. The actual implementation of crypto systems and the hard work of carrying out security analysis for
specific cryptosystems fall into engineering and practical computer science and computing. The persons or
systems performing cryptanalysis in order to break a crypto system are called attackers. The process of such
type of attacking is called hacking. Some cryptographic algorithms are very trivial to understand, replicate
and therefore easily cracked. To secure the data from hackers it needs to be encrypted with high level of
security.

Encryption and Decryption are carried forward using mathematical algorithms in cryptography. Initially
Stanoyevitch [14] introduced cryptography with mathematical foundations and computer implementations.
Overbey, Traves and Wojdylo [9] used technique of Hill cipher keyspace consist of all matrices that are
invertible. Use of matrices for encryption and decryption were found by Dhanorkar and Hiwarekar[1]. After
that [3,4, 5,8] used Laplace transform techniques for the cryptographic purpose by combining infinite series
of various functions . Dhingra, Savalgi and Jain [2] presented new scheme for the cryptography by combining
infinite series and Laplace transform using ASCII code. Genoglu [16] used a new method of cryptography
using Lapalce transform of Hyperbolic function. Some interesting results are found in the literature [7, 10−13]
regarding modular arithmetic and cryptography.

In this paper, the process of encryption is expanded using series of error function and taking its Laplace
transform. On the basis of literature survey we found while using the cryptography on the basis of Laplace
transform only functions with positive terms were considered so far, but in error function we have an
alternating series, so we used the concept of congruence relation to change the sign of transformed series
terms coefficients , and use modular arithmetic to find symmetric key , cipher text and Decryption process.

2 Some Basic Terminologies
2.1 Plain text
It signifies a message that can be understood by the sender, the recipient and also by anyone else who gets
access to that message.
2.2 Cipher text
When a plain text message is codified using any suitable scheme, the resulting message is called as cipher
text.
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2.3 Encryption and Decryption
Encryption transforms a plain text message into cipher text, whereas decryption transforms a cipher text
message back into plain text.
2.4 Symmetric and Asymmetric Key
Cryptography algorithms classified mainly into two major types: Symmetric-key cryptography and public
key (Asymmetric) cryptography [15]. In Symmetric-key cryptography, each sender and receiver shared the
same key used to encrypt and decrypt data with disadvantage of key management required to keep the
key secure. The Data Encryption Standard (DES) and the Advanced Encryption Standard (AES) are
examples of Symmetrickey cryptography methods. In public-key cryptography, each sender and receiver use
two different keys to encrypt and decrypt data - public key and private key-, the public key can be freely
distributed, while its paired private key must remain secret. In public-key cryptography, we overcome the
key management distribution issue of Symmetric-key cryptography, but at the expense of performance speed
2.5 Laplace transform
Laplace transform is useful out of many transformations that are used for security purposed and as per the
requirement which is a useful factor for changing key where algorithm plays an important role. That’s why
it will be difficult for a hacker to trace the key by any mode. For any function f(t), t ≥ 0 Laplace transform
L{f(t)} is defined as

L{f(t)} =

∫ ∞

0

e−stf(t)dt = f(s),

where t is known as time domain parameter and S (may be real or complex) is known as frequency domain
parameter.
2.6 Error Function

erf(
√
t)} =

2√
π

∫ √t

0

e−u
2

du =
2√
π

∞∑

i=0

(−1)i
t(2i+1)/2

i!(2i+ 1)
.

3 Encryption Algorithm
The proposed algorithm uses the Laplace transform of error function to generate the cipher text and a sender
key as symmetric encryption. In the beginning this secret key between sender and receiver is determined
and shared on the basis of quotient reminder theorem and congruence relation.

Step 1: Sender and receiver agree on secret key.
Step 2: Select the message to be sent and convert each plain text alphabet into as a number in an

increasing sequence as A = 0, B = 1, C = 2, . . . , Z = 25.
Let the plain text is ”SUBJECT” and it is equivalent to 1820194219.
Let C0 = 18,C1 = 20,C2 = 1,C3 = 9,C4 = 4,C5 = 2,C6 = 19.
Step 3: Now writing these numbers as coefficients of erf(

√
t), neglecting higher coefficients (i ≥ 7) and

considering f(t) = C erf(
√
t),

we get

f(t) =
2√
π

[
C0t

1/2 − C1t
3/2

3
+
C2t

5/2

2!5
− C3t

7/2

3!7
+
C4t

9/2

4!9
− C5t

11/2

5!11
+
C6t

13/2

6!13

]

=
2√
π

∞∑

i=0

(−1)i
t(2i+1)/2

i!(2i+ 1)
Ci. (3.1)

Step 4: Now taking Laplace transform of (3.1) , we get

L{f(t)} =
2√
π
L

{
C0t

1/2 − C1t
3/2

3
+
C2t

5/2

2!5
− C3t

7/2

3!7
+
C4t

9/2

4!9
− C5t

11/2

5!11
+
C6t

13/2

6!13

}
.

Using L {tn} = Γ(n+1)
sn+1 , (n+ 1) > 0,

L{f(t)} =
C0

s3/2
− C1

2s5/2
+

3C2

23s7/2
− 5C3

24s9/2
+

105C4

26s11/2
− 63C5

28s13/2
+

231C6

210s15/2
.

Alternating terms of the series are converted using congruence relation to integer modulo 26 .

L{f(t)} =
C0

s3/2
+

25C1

2s5/2
+

3C2

23s7/2
+

21C3

24s9/2
+

105C4

26s11/2
+

15C5

28s13/2
+

231C6

210s15/2
. (3.2)

Substituting the values of Cii = 0, 1, 2, . . . , 6 and simplifying, we get

210L{f(t)} =
18432

s3/2
+

256000

s5/2
+

384

s7/2
+

12096

s9/2
+

6720

s11/2
+

120

s13/2
+

4389

s15/2
.

Step 5: Now we calculate ri using ri = Mi mod (26) and qi as quotient
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i Mi ri qi
0 18432 24 708
1 256000 4 9846
2 384 20 14
3 12096 6 465
4 6720 12 258
5 120 16 4
6 4389 21 168

Hence the message “SUBJECT” is encrypted to “YEUGMQV ” as cipher text and the symmetric secret
key as 708 9846 14 465 258 4 168, delivered to receiver.

4 Decryption Algorithm
Steps involved in Decryption are as follows:
Step 1. Consider the cipher text and key received from the sender. In the above example cipher text is
“YEUGMQV ” and the secret key 708 9846 14 465 258 4 168.
Step 2 . Convert the given cipher text to a corresponding finite sequence of numbers, 24 4 20 6 12 16 21,
comparing with (3.2) using modular arithmetic equivalent in mod 26, we get

C0 · 210 = 26.K0 + 24⇒ C0 =
26.K0 + 24

210
⇒
{
K0 = 196 C0,1 = 5
K0 = 708 C0,2 = 18

C1 · 29 · 25 = 26.K1 + 4⇒ C1 =
26.K1 + 4

29.25
⇒
{
K1 = 3446 C1,1 = 7
K1 = 9846 C1,2 = 20

C2 · 27 · 3 = 26.K2 + 20⇒ C2 =
26.K2 + 20

27 · 3 ⇒
{

K2 = 14 C2,1 = 1
K2 = 206 C2,2 = 14

C3.2
6.21 = 26.K3 + 6⇒ C3 =

26.K3 + 6

26.21
⇒
{

K3 = 465 C3,1 = 9
K3 = 1137 C3,2 = 22

C4 · 24.105 = 26.K4 + 12⇒ C4 =
26.K4 + 12

24.105
⇒
{

K4 = 258 C4,1 = 4
K4 = 1098 C4,2 = 17

C5 · 22 · 15 = 26.K5 + 16⇒ C5 =
26.K5 + 16

22.15
⇒
{

K5 = 4 C5,1 = 2
K5 = 34 C5,2 = 15

=

Step 3. Now using the secret key 708 9846 14 465 258 4 168 we get required Ci’s as 18,20 , 1, 9, 4, 2, 19, now
convert the numbers of above finite sequence to alphabets the original plain text is obtained as ”SUBJECT”.

5 Conclusion
The proposed algorithm give us an encrypted cipher text and after decryption we are getting a original plain
text, thus the proposed method is valid and helpful in the case when an alternative series such as error
function is used in cryptography. On the basis of modular arithmetic we get proper results instead of using
sequential numbers as coefficients we can use ASCII code, with the same function for getting more secured
chipper text and key.

In the proposed work we expand an innovative cryptographic scheme using Laplace transforms of error
function and modular arithmetic functions.
Acknowledgement. We are thankful to Editors and Reviewers for their valuable suggestions to improve
the article.
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(2022), 218-223.

[11] A. G. Sanatee, L. Rathour, V. N. Mishra and V. Dewangan, Some fixed point theorems
in regular modular metric spaces and application to Caratheodory’s type anti-periodic bound-
ary value problem, The Journal of Analysis, (2022), DOI: https://doi.org/10.1007/s41478-022-
00469https://doi.org/10.1007/s41478-022-00469

[12] P. Shahi, L. Rathour and V. N. Mishra, Expansive Fixed Point Theorems for tri-simulation
functions, The Journal of Engineering and Exact Sciences -JCEC, 8(3)(2022), 14303-01e. DOI:
https://doi.org/10.18540/jcecvl8iss3pp14303-01ehttps://doi.org/10.18540/jcecvl8iss3pp14303-01e

[13] N. Sharma, L. N. Mishra, V. N. Mishra and S. Pandey, Solution of Delay Differential equation
via $N∧v1$ iteration algorithm, European J. Pure Appl. Math., 13(5) (2020), 1110-1130. DOI:
https://doi.org/10.29020/nybg.ejpam.v13i5.3756https://doi.org/10.29020/nybg.ejpam.v13i5.3756.

[14] A. Stanoyevitch, Introduction to cryptography with mathematical foundations and computer implemen-
tations, CRC Press, 2002.

[15] W.Stallings, Cryptography and network security, 4th edition, Prentice Hall, 2005.
[16] M. Tuncay Genoglu,-Cryptanalysis of A New Method of Cryptography using Laplace Transform

Hyperbolic Functions, Communications in Mathematics and Applications, 8(2) (2017), 183-189.

109



ISSN 0304-9892 (Print) ISSN 2455-7463 (Online)
www.vijnanaparishadofindia.org/jnanabha
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1 Introduction

Let f(z) =

∞∑

mj=0,j=1,2,··· ,n
amjz

mj
j where zj = xj + iyj , xj , yj ∈ R, be an entire function of n-

complex variables and Mf (r1, r2, · · · , rn) := max
{|zj |=rj ;j=1,2,··· ,n}

|f(zj)| be the maximum modulus of

f and let µf (r1, r2, · · · , rn) := max
mj≥0,j=1,2,··· ,n

|amj |r
mj
j be the maximum term of f . The central

index νf (r1, r2, · · · , rn) := {mk | µf (r1, r2, · · · , rn) = |amk |rmk} or |aνf (r1,r2,··· ,rn)|rνf (r1,r2,··· ,rn) =
µf (r1, r2, · · · , rn). Clearly µf (r1, r2, · · · , rn) is non decreasing function and µf (r1, r2, · · · , rn) ≤
Mf (r1, r2, · · · , rn).

Let g be an entire function. Then the ratio
Mf (r1,r2,··· ,rn)
Mg(r1,r2,··· ,rn) , where rk → ∞, k = 1, 2, · · · , n is called the

growth of f with respect to g in term of maximum moduli.
In fact µf (r1, r2, · · · , rn) is much weaker than Mf (r1, r2, · · · , rn) in some sense. So from another angle of view
µf (r1,r2,··· ,rn)
µg(r1,r2,··· ,rn) , where rk → ∞, k = 1, 2, · · · , n is called growth of f with respect to g, in term of maximum

terms, now in similar way we get growth of f with respect to g in terms of central index,
νf (r1,r2,··· ,rn)
νg(r1,r2,··· ,rn) where

rk → ∞, k = 1, 2, · · · , n. Rastogi [7], Biswas [1] and Pramanik [10] worked on central index. The details
of the notations of maximum modulus, entire functions, growth, maximum term and central index for one
variable appear in [1,2,3,4,6,7,8,9,11,13].

To start our paper we just recall the following definitions:

2 Definitions
Definition 2.1 ([12]). Let f and g be entire functions. The relative order of f with respect to g is defined
by

ρg(f) = lim sup
r→∞

log ν−1
g νf (r)

log[r]
,

and relative lower order is defined by

λg(f) = lim inf
r→∞

log ν−1
g νf (r)

log[r]
.
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Definition 2.2 ([12]). L order and L lower order for an entire function, where L ≡ L(r) is a positive
continuous function such that L(ar) ∼ L(r) as r → ∞, for every positive constant a, on the basis of
maximum modulus M(r, f). The relative L order of an entire function f with respect to g, in terms of
central index is defined by

ρLg (f) = lim sup
r→∞

log ν−1
g νf (r)

log[rL(r)]
,

and relative L lower order is defined by

λLg (f) = lim inf
r→∞

log ν−1
g νf (r)

log[rL(r)]
.

In the light of Definition 2.2 and from the concept of several complex variables [5], we would like to
introduce the following definitions for several complex variables:

Definition 2.3. Let f and g be entire functions of n complex variables. The relative order and relative
lower order of f with respect to g are defined by

ρg(f) = lim sup
(r1,r2,··· ,rn)→∞

log ν−1
g νf (r1, r2, · · · , rn)

log(r1r2 · · · , rn)
,

and

λg(f) = lim inf
(r1,r2,··· ,rn)→∞

log ν−1
g νf (r1, r2, · · · , rn)

log(r1r2 · · · , rn)
,

respectively.

Definition 2.4. Let f and g be entire functions of n complex variables. The relative L order and relative L
lower order of f with respect to g, are defined by

ρLg (f) = lim inf
(r1,r2,··· ,rn)→∞

log ν−1
g νf (r1, r2 · · · , rn)

log[(r1r2 · · · , rn)L(r1r2 · · · , rn)]
,

and

λLg (f) = lim inf
(r1,r2,··· ,rn)→∞

log ν−1
g νf (r1, r2 · · · , rn)

log[(r1r2 · · · , rn)L(r1r2 · · · , rn)]
,

respectively. Here idea of L order (respectively, L lower order) of entire function is defined in [10,12].

Definition 2.5. Let f and g be entire functions of n complex variables. The relative L∗ order and relative
L∗ lower order of f with respect to g is defined by

ρL
∗

g (f) = lim sup
r1,r2,··· ,rn→∞

log ν−1
g νf (r1, r2, · · · , rn)

log[(r1r2 · · · , rn) expL(r1r2··· ,rn)]
.

Here idea of L∗ order (respectively, L∗ lower order) of an entire function where L∗ is nothing but a weaker
assumption of L [13]. The relative L∗ lower order is defined by

λL
∗

g (f) = lim inf
(r1,r2,··· ,rn→∞)

log ν−1
g νf (r1, r2, · · · , rn)

log[(r1r2 · · · , rn) expL(r1r2··· ,rn)]
.

3 Results
In this section, we establish some interesting results.

Theorem 3.1. Let f , g and h be entire functions such that 0 < λh(f ◦ g) ≤ ρh(f ◦ g) <∞ and 0 < λh(f) ≤
ρh(f) <∞.
Then

λh(f ◦ g)

ρhf
≤ lim inf

(r1,r2,··· ,rn)→∞

log ν−1
h νf◦g(r1, r2, · · · , rn)

log ν−1
h νf (r1, r2, · · · , rn)

≤ min
{
λh(f ◦ g)

λhf
,
ρh(f ◦ g)

ρhp,qf

}

≤ max
{
λh(f ◦ g)

λhf
,
ρh(f ◦ g)

ρhf

}
≤ lim sup

(r1,r2,··· ,rn)→∞

log ν−1
h νf◦g(r1, r2, · · · , rn)

log νh−1νf (r1, r2, · · · , rn)
≤ ρh(f ◦ g)

λhf
.
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Proof. From the definition of relative order defined in (2.3), for arbitrary ε > 0, we get the following

log ν−1
h νf◦g(r1, r2, · · · , rn) ≤ (ρh(f ◦ g) + ε) log(r1r2 · · · , rn), (3.1)

and

log ν−1
h νf◦g(r1, r2, · · · , rn) ≥ (λh(f ◦ g)− ε) log(r1r2 · · · , rn), (3.2)

when rk →∞, where k = 1, 2, · · · , n
log ν−1

h νf◦g(r1, r2, · · · , rn) ≤ (λh(f ◦ g) + ε) log(r1r2 · · · , rn), (3.3)

and

log ν−1
h νf◦g(r1, r2, · · · , rn) ≥ (ρh(f ◦ g)− ε) log(r1r2 · · · , rn). (3.4)

Similarly when we replace f ◦ g by f in the above equation, we get the following

log ν−1
h νf (r1, r2, · · · , rn) ≤ (ρh(f) + ε) log(r1r2 · · · rn), (3.5)

and

log ν−1
h νf (r1, r2, · · · , rn) ≥ (λh(f)− ε) log(r1r2 · · · rn). (3.6)

When rk →∞, where k = 1, 2, · · · , n
log ν−1

h νf (r1, r2, · · · , rn) ≤ (λh(f) + ε) log(r1r2 · · · rn), (3.7)

and

log ν−1
h νf (r1, r2, · · · , rn) ≥ (ρh(f)− ε) log(r1r2 · · · rn). (3.8)

From (3.2) and (3.5) it follows for sufficiently large value of (r1, r2, · · · , rn) that

log ν−1
h νf◦g(r1, r2, · · · , rn)

log ν−1
h νf (r1, r2, · · · , rn)

≥ λh(f ◦ g)− ε
ρh(f) + ε

.

Since ε is arbitrary

lim inf
(r1,r2,··· ,rn)→∞

log ν−1
h νf◦g(r1, r2, · · · , rn)

log ν−1
h νf (r1, r2, · · · , rn)

≥ λh(f ◦ g)

ρh(f)
. (3.9)

From (3.3) and (3.6), we obtain

log ν−1
h νf◦g(r1, r2, · · · , rn)

log ν−1
h νf (r1, r2, · · · , rn)

≤ λh(f ◦ g) + ε

λh(f)− ε .

Since ε is arbitrary

lim inf
(r1,r2,··· ,rn)→∞

log ν−1
h νf◦g(r1, r2, · · · , rn)

log ν−1
h νf (r1, r2, · · · , rn)

≤ λh(f ◦ g)

λh(f)
, (3.10)

from (3.1) and (3.8)

log ν−1
h νf◦g(r1, r2, · · · , rn)

log ν−1
h νf (r1, r2, · · · , rn)

≤ ρh(f ◦ g) + ε

ρh(f)− ε .

Since ε is arbitrary

lim inf
(r1,r2,··· ,rn)→∞

log ν−1
h νf◦g(r1, r2, · · · , rn)

log ν−1
h νf (r1, r2, · · · , rn)

≤ ρh(f ◦ g)

ρh(f)
. (3.11)

From (3.9), (3.10) and (3.11), we obtain

λh(f ◦ g)

ρh(f)
≤ lim inf

(r1,r2,··· ,rn)→∞

log ν−1
h νf◦g(r1, r2, · · · , rn)

log ν−1
h νf (r1, r2, · · · , rn)

≤ min
{
λh(f ◦ g)

λh(f)
,
ρh(f ◦ g)

ρh(f)

}
. (3.12)

From (3.2) and (3.7) for rk →∞, where k = 1, 2, · · · , n, we get

log ν−1
h νf◦g(r1, r2, · · · , rn)

log ν−1
h νf (r1, r2, · · · , rn)

≥ λh(f ◦ g)− ε
λh(f) + ε

.
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As ε > 0 is arbitrary, we obtain

lim sup
(r1,r2,··· ,rn)→∞

log ν−1
h νf◦g(r1, r2, · · · , rn)

log ν−1
h νf (r1, r2, · · · , rn)

≥ λh(f ◦ g))

λh(f))
. (3.13)

From (3.1) and (3.6), we obtain the following

log ν−1
h νf◦g(r1, r2, · · · , rn)

log ν−1
h νf (r1, r2, · · · , rn)

≤ ρh(f ◦ g) + ε

λh(f)− ε .

As ε > 0, we obtain

lim sup
(r1,r2,··· ,rn)→∞

log ν−1
h νf◦g(r1, r2, · · · , rn)

log ν−1
h νf (r1, r2, · · · , rn)

≤ ρh(f ◦ g)

λh(f)
. (3.14)

Similarly from (3.4) and (3.5)

log ν−1
h νf◦g(r1, r2, · · · , rn)

log ν−1
h νf (r1, r2, · · · , rn)

≥ ρh(f ◦ g)− ε
ρh(f) + ε

.

As ε is arbitrary

lim sup
(r1,r2,··· ,rn)→∞

log ν−1
h νf◦g(r1, r2, · · · , , rn)

log ν−1
h νf (r1, r2, · · · , rn)

≥ ρh(f ◦ g)

ρh(f)
. (3.15)

Combining (3.13), (3.14) and (3.15), we obtain

max

{
λh

p,q(f ◦ g)
λhf

,
ρh (f ◦ g)
ρhf

}
≤ lim sup

(r1,r2,··· ,rn)→∞

log ν−1
h νf◦g(r1, r2, · · · , rn)

log ν−1
h νf(r1, r2, · · · , rn)

≤ ρh (f ◦ g)
λh (f)

. (3.16)

Hence, from (3.12) and (3.16), we obtain

λh(f ◦ g)

ρh(f)
≤ lim inf

(r1,r2,··· ,rn)→∞

log ν−1
h νf◦g(r1, r2, · · · , rn)

log ν−1
h νf (r1, r2, · · · , rn)

≤ min
{
λh(f ◦ g)

λhf
,
ρh(f ◦ g)

ρhf

}

≤ max
{
λh(f ◦ g)

λhf
,
ρh(f ◦ g)

ρhf

}
≤ lim sup

(r1,r2,··· ,rn)→∞

log ν−1
h νf◦g(r1, r2, · · · , rn)

log νh−1νf (r1, r2, · · · , rn)
≤ ρh(f ◦ g)

λh(f)
.

Theorem 3.2. Let f , g and h be entire functions such that 0 < λh(f ◦ g) ≤ ρh(f ◦ g) <∞ and 0 < λh(f) ≤
ρh(f) <∞.

Then

λh(f ◦ g)

ρh(f)
≤ lim inf

(r1,r2,··· ,rn)→∞

log ν−1
h νf◦g(r1, r2, · · · , rn)

log ν−1
h νf (r1, r2, · · · , rn)

≤ λh(f ◦ g)

λhf

≤ lim sup
(r1,r2,··· ,rn)→∞

log ν−1
h νf◦g(r1, r2, · · · , rn)

log νh−1νf (r1, r2, · · · , rn)
≤ ρh(f ◦ g)

λh(f)
.

Proof. The above theorem follows from (3.9), (3.10), (3.13) and (3.16).

Theorem 3.3. Let f , g and h be entire functions such that 0 < λh(f ◦ g) ≤ ρh(f ◦ g) <∞ and 0 < λh(f) ≤
ρh(f) <∞.

Then

lim inf
(r1,r2,··· ,rn)→∞

log ν−1
h νf◦g(r1, r2, · · · , rn)

log ν−1
h νf (r1, r2, · · · , rn)

≤ ρh(f ◦ g)

ρhf

≤ lim sup
(r1,r2,··· ,rn)→∞

log ν−1
h νf◦g(r1, r2, · · · , rn)

log νh−1νf (r1, r2, · · · , rn)
.

Proof. From the definition of relative order of f for ε > 0 and rk →∞, where k = 1, 2, · · · , n
log ν−1

h νf (r1, r2, · · · , rn) ≥ (ρh(f)− ε) log(r1r2 · · · rn), (3.17)

and

log ν−1
h νf◦g(r1, r2, · · · , rn) ≤ (ρh(f ◦ g) + ε) log(r1r2 · · · rn). (3.18)
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From (3.17) and (3.18) we obtain

log ν−1
h νf◦g(r1, r2, · · · , rn)

log ν−1
h νf (r1, r2, · · · , rn)

≤ ρh(f ◦ g) + ε

ρhf − ε
.

As ε > 0

lim inf
(r1,r2,··· ,rn)→∞

log ν−1
h νf◦g(r1, r2, · · · , rn)

log ν−1
h νf (r1, r2, · · · , rn)

≤ ρh(f ◦ g)

ρhf
. (3.19)

Since rk →∞, where k = 1, 2, · · · , n
log[p] ν−1

h νf◦g(r1, r2, · · · , rn) ≥ (ρp,qh (f ◦ g)− ε) log[q](r1r2. · · · , rn). (3.20)

Now combining form of (3.5) and (3.20) is the following:

log ν−1
h νf◦g(r1, r2, · · · , rn)

log ν−1
h νf (r1, r2, · · · , rn)

≥ ρh(f ◦ g) + ε

ρhf − ε
.

As ε > 0 is arbitrary

lim sup
(r1,r2,··· ,rn)→∞

log ν−1
h νf◦g(r1, r2, · · · , rn)

log ν−1
h νf (r1, r2, · · · , rn)

≥ ρh(f ◦ g)

ρh(f)
. (3.21)

Hence, from (3.21) and (3.19), we obtain

lim inf
(r1,r2,··· ,rn)→∞

log ν−1
h νf◦g(r1, r2, · · · , rn)

log ν−1
h νf (r1, r2, · · · , rn)

≤ ρh(f ◦ g)

ρhf

≤ lim sup
(r1,r2,··· ,rn)→∞

log ν−1
f◦gνf (r1, r2, · · · , rn)

log ν−1
h νf (r1, r2, · · · , rn)

.

Theorem 3.4. Let f , g and h be entire functions such that 0 < λh
L(f ◦ g) ≤ ρh

L(f ◦ g) < ∞ and
0 < λh

L(f) ≤ ρhL(f) <∞.
Then

λh
L(f ◦ g)

ρhL(f)
≤ lim inf

(r1,r2,··· ,rn)→∞

log ν−1
h νf◦g(r1, r2, · · · , rn)

log ν−1
h νf (r1, r2, · · · , rn)

≤ min
{
λh

L(f ◦ g)

λh
Lf

,
ρh
L(f ◦ g)

ρhLf

}

≤ max
{
λh

L(f ◦ g)

λh
Lf

,
ρh
L(f ◦ g)

ρhLf

}
≤ lim sup

(r1,r2,··· ,rn)→∞

log ν−1
h νf◦g(r1, r2, · · · , rn)

log νh−1νf (r1, r2, · · · , rn)
≤ ρh

L(f ◦ g)

λh
L(f)

.

Proof. From the definition (2.4) and arbitrary ε > 0

log ν−1
h νf◦g(r1, r2, · · · , rn) ≤ (ρLh (f ◦ g) + ε) log[(r1r2 · · · rn)L(r1r2 · · · rn)], (3.22)

and

log ν−1
h νf◦g(r1, r2, · · · , rn) ≥ (λLh (f ◦ g)− ε) log[(r1r2 · · · rn)L(r1r2 · · · rn)]. (3.23)

Since rk →∞, where k = 1, 2, · · · , n
log ν−1

h νf◦g(r1, r2, · · · , rn) ≤ (λLh (f ◦ g) + ε) log[(r1r2 · · · rn)L(r1r2 · · · rn)], (3.24)

and

log ν−1
h νf◦g(r1, r2, · · · , rn) ≥ (ρLh (f ◦ g)− ε) log[(r1r2 · · · rn)L(r1r2 · · · rn)]. (3.25)

Similarly for the function f , we obtain

log ν−1
h νf (r1, r2, · · · , rn) ≤ (ρLh (f) + ε) log[(r1r2 · · · rn)L(r1r2 · · · rn)], (3.26)

and

log ν−1
h νf (r1, r2, . . . , rn) ≥ (λLh (f)− ε) log[(r1r2 · · · rn)L(r1r2 · · · rn)]. (3.27)

Since rk →∞, where k = 1, 2, · · · , n
log ν−1

h νf (r1, r2, · · · , rn) ≤ (λLh (f) + ε) log[(r1r2 · · · rn)L(r1r2 · · · rn)], (3.28)

and

log ν−1
h νf (r1, r2, · · · , rn) ≥ (ρLh (f)− ε) log[(r1r2 · · · rn)L(r1r2 · · · rn)]. (3.29)
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From (3.23) and (3.26) it follows for sufficiently large value of (r1, r2, · · · , rn)

log ν−1
h νf◦g(r1, r2, · · · , rn)

log ν−1
h νf (r1, r2, · · · , rn)

≥ λLh (f ◦ g)− ε
ρLh (f) + ε

.

Since ε > 0 is arbitrary

lim inf
(r1,r2,··· ,rn)→∞

log ν−1
h νf◦g(r1, r2, · · · , rn)

log ν−1
h νf (r1, r2, · · · , rn)

≥ λLh (f ◦ g)

ρLh (f)
. (3.30)

From (3.24) and (3.27), we obtain

log ν−1
h νf◦g(r1, r2, . . . rn)

log ν−1
h νf (r1, r2, · · · , rn)

≤ λLh (f ◦ g) + ε

λLh (f)− ε .

Since ε > 0 is arbitrary

lim inf
r1,r2,··· ,rn→∞

log ν−1
h νf◦g(r1, r2, · · · , rn)

log ν−1
h νf (r1, r2, · · · , rn)

≤ λLh (f ◦ g)

λLh (f)
. (3.31)

From (3.22) and (3.29), we obtain

log ν−1
h νf◦g(r1, r2, · · · , rn)

log ν−1
h νf (r1, r2, · · · , rn)

≤ ρLh (f ◦ g) + ε

ρLh (f)− ε .

As ε > 0

lim inf
(r1,r2,··· ,rn)→∞

log ν−1
h νf◦g(r1, r2, · · · , rn)

log ν−1
h νf (r1, r2, · · · , rn)

≤ ρLh (f ◦ g)

ρLh (f)
. (3.32)

From (3.30), (3.31) and (3.32), we get the following

λLh (f ◦ g)

ρLh (f)
≤ lim inf
r1,r2,··· ,rn→∞

log ν−1
h νf◦g(r1, r2, · · · , rn)

log ν−1
h νf (r1, r2, · · · , rn)

≤ min
{
λLh (f ◦ g)

λLh (f)
,
ρLh (f ◦ g)

ρLh (f)

}
. (3.33)

From (3.23) and (3.28) for rk →∞, where k = 1, 2, · · · , n, then

log ν−1
h νf◦g(r1, r2, · · · , rn)

log ν−1
h νf (r1, r2, · · · , rn)

≥ λLh (f ◦ g)− ε
λLh (f) + ε

.

As ε > 0 is arbitrary

lim sup
(r1,r2,··· ,rn)→∞

log ν−1
h νf◦g(r1, r2, · · · , rn)

log ν−1
h νf (r1, r2, . . . , rn)

≥ λLh (f ◦ g)

λLh (f)
. (3.34)

From (3.22) and (3.27)

log ν−1
h νf◦g(r1, r2, · · · , rn)

log ν−1
h νf (r1, r2, · · · , rn)

≤ ρLh (f ◦ g) + ε

λLh (f)− ε .

As ε > 0 is arbitrary

lim sup
(r1,r2,··· ,rn)→∞

log[p] ν−1
h νf◦g(r1, r2, · · · , rn)

log[p] ν−1
h νf (r1, r2, · · · , rn)

≤ ρLh (f ◦ g)

λLh (f)
. (3.35)

Similarly from (3.25) and (3.26), we get the following:

log ν−1
h νf◦g(r1, r2, · · · , rn)

log ν−1
h νf (r1, r2, · · · , rn)

≥ ρLh (f ◦ g)− ε
ρ,Lh (f) + ε

.

As ε > 0 is arbitrary

lim sup
(r1,r2,··· ,rn)→∞

log ν−1
h νf◦g(r1, r2, · · · , rn)

log ν−1
h νf (r1, r2, · · · , rn)

≥ ρLh (f ◦ g)

ρLh (f)
. (3.36)

From (3.34), (3.35) and (3.36) we obtain

max

{
λh

L(f ◦ g)

λh
Lf

,
ρh
L(f ◦ g)

ρhLf

}
≤ lim sup

(r1,r2,··· ,rn)→∞

log ν−1
h νf (r1, r2, · · · , rn)

log ν−1
h νf(r1, r2, · · · , rn)

≤ ρh
L(f ◦ g)

λh
L(f)

.(3.37)

From (3.33) and (3.37)

λh
L(f ◦ g)

ρhL(f)
≤ lim inf

(r1,r2,··· ,rn)→∞

log ν−1
h νf◦g(r1, r2, · · · , rn)

log ν−1
h νf (r1, r2, · · · , rn)

≤ min
{
λh

L(f ◦ g)

λh
Lf

,
ρh

L(f ◦ g)

ρhLf

}
≤ max

{
λh

L(f ◦ g)

λh
Lf

,
ρh

L(f ◦ g)

ρhLf

}
≤ lim sup

(r1,r2,··· ,rn)→∞

log ν−1
h νf◦g(r1, r2, . . . , rn)

log νh−1νf (r1, r2, · · · , rn)
≤ ρh

L(f ◦ g)

λh
L(f)

.
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From the above theorems we can obtain the following corollaries:

Corollary 3.1. Let f , g and h be entire functions such that 0 < λh
L(f ◦ g) ≤ ρh

L(f ◦ g) < ∞ and
0 < λh

L(f) ≤ ρhL(f) <∞.}
λh

L(f ◦ g)

ρhL(f)
≤ lim inf

(r1,r2,··· ,rn)→∞

log ν−1
h νf◦g(r1, r2, · · · , rn)

log ν−1
h νf (r1, r2, · · · , rn)

≤ λh
L(f ◦ g)

λh
Lf

≤ lim sup
(r1,r2,··· ,rn)→∞

log ν−1
h νf◦g(r1, r2, · · · , rn)

log νh−1νf (r1, r2, · · · , rn)
≤ ρh

L(f ◦ g)

λh
L(f)

.

Proof. When we take L-lower order and L-order in Theorem 3.2 then we get the corollary.

Corollary 3.2. Let f , g and h be entire functions such that 0 < λh
L(f ◦ g) ≤ ρh

L(f ◦ g) < ∞ and
0 < λh

L(f) ≤ ρhL(f) <∞.
Then

lim inf
(r1,r2,··· ,rn)→∞

log ν−1
h νf◦g(r1, r2, · · · , rn)

log ν−1
h νf (r1, r2, · · · , rn)

≤ ρh
L(f ◦ g)

ρhLf

≤ lim sup
(r1,r2,··· ,rn)→∞

log ν−1
h νf◦g(r1, r2, · · · , rn)

log νh−1νf (r1, r2, · · · , rn)
.

Proof. When we take L-order and L- lower order in Theorem 3.3 we can get the result.

Corollary 3.3. Let f , g and h be entire functions such that 0 < λh
L∗(f ◦ g) ≤ ρh

L∗(f ◦ g) < ∞ and

0 < λh
L∗(f) ≤ ρhL

∗
(f) <∞.

Then

λh
L∗(f ◦ g)

ρhL
∗(f)

≤ lim inf
(r1,r2,··· ,rn)→∞

log ν−1
h νf◦g(r1, r2, · · · , rn)

log ν−1
h νf (r1, r2, · · · , rn)

≤ λh
L∗(f ◦ g)

λh
L∗f

≤ lim sup
(r1,r2,··· ,rn)→∞

log ν−1
h νf◦g(r1, r2, · · · , rn)

log νh−1νf (r1, r2, · · · , rn)
≤ ρh

L∗(f ◦ g)

λh
L∗(f)

.

Proof. When we take L∗ order and L∗ lower order in Theorem 3.2 we can get the result.

Corollary 3.4. Let f , g and h be entire functions such that 0 < λh
L∗(f ◦ g) ≤ ρh

L∗(f ◦ g) < ∞ and

0 < λh
L∗(f) ≤ ρhL

∗
(f) <∞.

Then

lim inf
(r1,r2,··· ,rn)→∞

log ν−1
h νf◦g(r1, r2, · · · , rn)

log ν−1
h νf (r1, r2, · · · , rn)

≤ ρh
L∗(f ◦ g)

ρhL
∗f

≤ lim sup
(r1,r2,··· ,rn)→∞

log ν−1
h νf◦g(r1, r2, · · · , rn)

log νh−1νf (r1, r2, . . . , rn)
.

Proof. When we take L∗ order and L∗ lower order in Theorem 3.3 we can get the result.

4 Conclusion
In this paper we have established some inequalities between relative order and relative lower order of entire
functions of several complex variables in terms of central index. Further we have obtained some corollaries
of the above theorems.
Acknowledgement. We are very much grateful to the Editor and Referee for their fruitful suggestions to
bring the paper in its present form.
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Abstract

In this paper, we present a new type of cyclic (ψ, φ,Z )− contraction which is a combination of cyclic
(ψ, φ,A,B)− contraction and Z−contraction in the framework of complete partial metric space with the
help of simulation function. We investigate the existence of fixed point result using cyclic (ψ, φ,Z )−
contraction in the setting of complete partial metric space. Also we give an example to clarify the main
result.
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1 Introduction
The idea of partial metric space was introduced by Mathews ([19]) and it is defined as the same point

in partial metric does not necessarily need to be zero. In 2003, Kirk ([17]) introduced the notion of cyclic
contraction. Karapinar ([14]) explored cyclic contraction in partial metric space in 2012 while Agarwal ([2])
defined a very useful cyclic generalized contractions on the complete partial metric space in the same year.
Khojasteh ([16]) introduced new approach in fixed point theory by using a simulation function. This paper
inspired us to find a different type of cyclic contraction in complete partial metric space. Many authors have
already demonstrated different types of contractions in partial metric spaces (see [4, 5, 6, 7, 8, 11]).

In this paper, we establish a cyclic (ψ, φ, Z)− contraction in complete partial metric space to determine
a unique fixed point.

On the other hand, the concept of simulation function was established in [16] to unify the existing fixed
point results.

2 Preliminaries
Definition 2.1 ([16]). A function ξ : [0,∞)→ [0,∞) satisfying the following conditions
(ξ1) ξ(0, 0) = 0;
(ξ2) ξ(t, s) < t− s for all t, s > 0;
(ξ3) {tn}, {sn} are sequences in (0,∞) such that limn→∞tn = limn→∞sn > 0, then lim supn→∞ ξ(tn, sn) <

0, is called a simulation function.

Due to the axiom (ξ2), we have ξ(t, t) < 0 for all t > 0.

Example 2.1 ([3, 16, 20]). Let φ1 : [0,∞)→ [0,∞) be a continuous functions with φi(t) = 0 if and only if
t = 0. For i = 1, 2, 3, 4, 5, 6, we define the mappings ξi : [0,∞)× [0,∞)→ R as follows

(i) ξ1(t, s) = φ1(s)− φ1(t) for all t, s ∈ [0,∞), where φ1(t) < t ≤ φ2(t) for all t > 0;

(ii) ξ1(t, s) = s − f(t,s)
g(t,s) t for all t, s ∈ [0,∞), where f, g : [0,∞)2 → [0,∞) are two continuous functions

with respect to each variable such that f(t, s) > g(t, s) for all t, s > 0;
(iii) ξ3(t, s) = s− φ3(s)− t for all t, s ∈ [0,∞);
(iv) If ψ : [0,∞)→ [0, 1) is a function such that lim supt→r+ ψ(t) < 1 for all r > 0 and define

ξ4(t, s) = sψ(s)− t for all s, t ∈ [0,∞);
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(v) If η : [0,∞)→ [0,∞) is an upper semi-continuous mapping such that η(t) < t for all t > 0 and η(0) = 0
and define

ξ5(t, s) = η(s)− t for all s, t ∈ [0,∞);

(vi) If φ : [0,∞) → [0,∞) is a function such that
∫ ε

0
φ(u)du exists and

∫ ε
0
φ(u)du > ε for each ε > 0 and

define

ξ6(t, s) = s−
∫ t

0

φ(u)du for all s, t ∈ [0,∞).

It is clear that each function ξi(i = 1, 2, 3, 4, 5, 6) forms a simulation function.

Definition 2.2 ([19]). A partial metric on a non empty set X is a function p : X ×X → R+ such that for
all x, y ∈ X
(p1) x = y ⇐⇒ p(x, x) = p(y, y) = p(x, y);
(p2) p(x, x) ≤ p(x, y);
(p3) p(x, y) = p(y, x);
(p4) p(x, z) ≤ p(x, y) + p(y, z)− p(y, y).

A pair (X, p) is called a partial metric space. Each partial metric on X generates T0 topology τp on X which
is the family of p−open balls {Bp(x, δ) : x ∈ X, δ > 0}, where Bp(x, δ) = {y ∈ X : p(x, y) < p(x, x) + δ} for
all x ∈ X and δ > 0. If p is partial metric on X, then the function dp : X ×X → R+ given by
dp(x, y) = 2p(x, y)− p(x, x)− p(y, y) is a metric on X.

Definition 2.3. Let (X, p) be a partial metric space. Then
(1) A sequence {xn} in a partial metric space (X, p) converges to a point x ∈ X if and only if

p(x, x) = lim
n→∞

p(x, xn);

(2) A sequence {xn} in a partial metric space (X, p) is called a Cauchy sequence if and only if

lim
n,m→∞

p(xn, xm)

exists (finite);
(3) A partial metric space (X, p)is said to be complete if every Cauchy sequence {xn} in X converges with

respect to τp to a point x ∈ X such that

p(x, x) = lim
n,m→∞

p(xn, xm);

(4) A subset A of a partial metric space (X, p) is closed if whenever {xn}is a sequence in A such that {xn}
converges to some x ∈ X, then x ∈ A.

Definition 2.4. Let A and B be non-empty subset of a metric space (X, d) and T : A ∪B → A ∪B. Then
T is called a cyclic map if T (A) ⊆ B and T (B) ⊆ A.

Theorem 2.1 ([17]). Let A and B be non empty closed subsets of a complete metric space (X, d). Suppose
that T : A ∪B → A ∪B is a cyclic map such that

d(Tx, Ty) ≤ kd(x, y).

If k ∈ [0, 1), then T has a unique fixed point in A ∩B.

To see [12], Karapinar and Erhan showed different types of cyclic contractions in usual metric space.

Definition 2.5 ([15]). The function φ : [0,∞) → [0,∞) is called an altering distance functions if the
following conditions are satisfied:

(1) φ is continuous and non decreasing;
(2) φ(t) = 0 if and only if t = 0.

3 Main Results
Definition 3.1. Let (X, p) be a partial metric space and A,B be a non empty closed subsets of (X, p). A
mapping T : A ∪B → A ∪B is called cyclic (ψ, φ, Z)-contraction if

(i) A ∪B has a cyclic representation with respect to T , i.e) T (A) ⊆ B and T (B) ⊆ A;
(ii) If ψ and φ are altering distance functions,

ξ(ψ(p(Tx, Ty)), φ(max(p(x, Tx), p(y, Ty)))) ≥ 0 ∀x ∈ A and y ∈ B. (3.1)

119



Theorem 3.1. Let A,B be non empty closed subsets of a complete partial metric space (X, p). if T : A∪B →
A ∪B is a cyclic (ψ, φ, Z)-contraction. Then T has a unique fixed point v ∈ A ∩B.

Proof. Fix any x0 ∈ A. We choose x1 ∈ B, since T (A) ⊆ B such that Tx0 = x1. Again we choose x2 ∈ A
such that Tx1 = x2, since T (B) ⊆ A. Continuing on this way, we construct a sequence {xn} in X such that
x2n ∈ A, x2n+1 ∈ B, i.e) x2n+1 = Tx2n and x2n+2 = Tx2n+1. if x2n0+1 = Tx2n0+1. Thus x2n0+1 is a fixed
point of T in A ∩B.

In this above manner we assume that x2n+1 6= x2n+2 for all n ∈ N. If n is even, then n = 2j for some
j ∈ N. Let x2j+1 6= x2j+2 and from equation (3.1), we have

ξ(ψ(p(Tx2j , Tx2j+1)), φ(max(p(x2j , Tx2j), p(x2j+1, Tx2j+1)))) ≥ 0.

Using (ξ2), we have

ξ(ψ(p(x2j+1, x2j+2)), φ(max(p(x2j , x2j+1), p(x2j+1, x2j+2))))

< φ(max(p(x2j , x2j+1), p(x2j+1, x2j+2)))− ψ(p(x2j+1, x2j+2)). (3.2)

From the above, we have

ψ(p(x2j+1, x2j+2)) < φ(max(p(x2j , x2j+1), p(x2j+1, x2j+2))), (3.3)

if max(p(x2j , x2j+1), p(x2j+1, x2j+2)) = p(x2j+1, x2j+2),
p(x2j , x2j+1) < p(x2j+1, x2j+2),
ψ(p(x2j , x2j+1)) < φ(p(x2j+1, x2j+2)).
Since φ is non-decreasing function
φ(p(x2j+1, x2j+2)) = 0, hence p(x2j+1, x2j+2) = 0.
By (p1) and (p2), x2j+1 = x2j+2,
which is a contradiction to our assumption

max(p(x2j , x2j+1), p(x2j+1, x2j+2)) = p(x2j , x2j+1)

From (3.3), we get
ψ(p(x2j+1, x2j+2)) < φ(p(x2j , x2j+1)). (3.4)

If n is odd, then n = 2j + 1 for some j ∈ N. By equation (3.1), we get

ξ(ψ(p(Tx2j+1, Tx2j+2)), φ(max(p(x2j+1, Tx2j+1), p(x2j+2, Tx2j+2)))) ≥ 0.

Using (ξ2), we get
ψ(p(x2j+2, x2j+3)) < φ(max(p(x2j+1, x2j+2), p(x2j+2, x2j+3))),

if
max(p(x2j+1, x2j+2), p(x2j+2, x2j+3)) = p(x2j+2, x2j+3)

i.e)
p(x2j+2, x2j+3) < p(x2j+2, x2j+3)

ψ(p(x2j+2, x2j+3)) < φ(p(x2j+2, x2j+3)).

Since φ is non-decreasing function.
φ(p(x2j+2, x2j+3)) = 0 and hence p(x2j+2, x2j+3) = 0,by (p1) and (p2).
It implies that, x2j+2 = x2j+3

which contradicts to our assumption
Therefore,

max(p(x2j+1, x2j+2), p(x2j+2, x2j+3)) = p(x2j+1, x2j+2),

ψ(p(x2j+2, x2j+3)) < φ(p(x2j+1, x2j+2)). (3.5)

From equation (3.4) and (3.5), we get

ψ(p(xn+1, xn+2)) < φ(p(xn, xn+1)). (3.6)

In the above {p(xn, xn+1)/n ∈ N} is a non-increasing sequence and hence there exist r ≥ 0 such that

lim
n→∞

p(xn, xn+1) = r. (3.7)
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Let n→∞ in equation (3.6) and also using the fact ψ and φ are continuous, we get ψ(r) < φ(r). It gives

ξ(ψ(r), φ(r)) ≥ 0, ξ(ψ(r), φ(r)) < φ(r)− ψ(r).

From (ξ1), ξ(ψ(r), φ(r)) = 0 and hence ψ(r) = φ(r) = 0, by altering distance function, ψ(r) = φ(r) = 0 iff
r = 0.
By equation (3.7), we get

lim
n→∞

p(xn, xn+1) = 0, (3.8)

by (p2), we get
lim
n→∞

p(xn, xn) = 0, (3.9)

since dp(x, y) = 2p(x, y) for all x, y ∈ X.

lim
n→∞

dp(xn, xn+1) = 0. (3.10)

Next we show that {xn} is a Cauchy sequence in metric space (A∪B, dP ). It is sufficient to show that {x2n}
is a Cauchy sequence in (A∪B, dP ). Suppose to the contrary {x2n} is not a Cauchy sequence in (A∪B, dP )
, there exist ε > 0 and two subsequences {x2n(k)} and {x2m(k)} of {x2n} with m(k) > n(k) > k. m(k) is the
smallest index in N such that

dp(x2m(k), x2n(k)) ≥ ε, (3.11)

this means that
dp(x2m(k), x2n(k)−2) < ε, (3.12)

from equation (3.10), (3.11) and triangle inequality, we get

ε ≤ dp(x2m(k), x2n(k))

≤ dp(x2m(k), x2n(k)−2) + dp(x2n(k)−2, x2n(k))

< ε+ dp(x2n(k)−2, x2n(k)−1) + dp(x2n(k)−1, x2n(k)).

As k →∞ and using (3.8) we have
lim
k→∞

dp(x2m(k), x2n(k)) = ε. (3.13)

Again from (3.10) and we use triangle inequality we get

ε ≤ dP (x2m(k), x2n(k))

≤ dp(x2n(k), x2n(k)−1) + dp(x2n(k)−1, x2m(k))

≤ dp(x2n(k), x2n(k)−1) + dp(x2n(k), x2m(k)+1) + dp(x2m(k)+1, x2m(k))

≤ dp(x2n(k), x2n(k)−1) + dp(x2n(k)−1, x2m(k)) + 2dp(x2m(k)+1, x2m(k))

≤ 2dp(x2n(k), x2n(k)−1) + dp(x2m(k), x2n(k)) + 2dp(x2m(k)+1, x2m(k)).

Using limit n→∞ in the above inequality and using equation (3.8), (3.10), we get

lim
k→∞

dp(x2m(k), x2n(k)) = lim
k→∞

dp(x2m(k)+1, x2n(k)−1)

= lim
k→∞

dp(x2m(k)+1, x2n(k))

= lim
k→∞

dp(x2m(k), x2n(k)−1).

Since dp(x, y) = 2p(x, y)− p(x, x)− p(y, y) for all x, y ∈ X, therefore

lim
k→∞

dp(x2m(k), x2n(k)) = lim
k→∞

dp(x2m(k)+1, x2n(k)−1)

= lim
k→∞

dp(x2m(k)+1, x2n(k))

= lim
k→∞

dp(x2m(k), x2n(k)−1)

=
ε

2
.

By equation (3.1) , we have

ξ(ψ(p(x2m(k)+1, x2n(k)−1)), φ(max(p(x2m(k), Tx2m(k)), p(xn(k)−2, Tx2n(k)−2))))

< φ(max(p(x2m(k), Tx2m(k)), p(xn(k)−2, Tx2n(k)−2)))− ψ(p(x2m(k)+1, x2n(k)−1)
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ξ(ψ(p(x2m(k)+1, x2n(k)−1)) < φ(max(p(x2m(k), Tx2m(k)), p(xn(k)−2, Tx2n(k)−2))).

Therefore
ξ(ψ(p(x2m(k)+1, x2n(k)−1)) = 0.

Also ξ(ψ(p(x2m(k)+1, x2n(k)−1)) = 0 if and only if x2m(k)+1 = x2n(k)−1, hence ψ( ε2 ) = 0 iff ε
2 = 0 and ε = 0.

It is a contradiction to our assumption, thus {x2n} is a Cauchy sequence in (A ∪ B, dp). Since (X, d) is
complete and A ∪B is a closed subspace of (X, p), then (A ∪B, p) is complete.
Therefore {xn} converges in the metric space (A ∪B, dp),

lim
n→∞

dp(xn, v) = 0.

Hence
p(v, v) = lim

n→∞
p(xn, v) = lim

n,m→∞
p(xn, xm). (3.14)

Since {xn} is Cauchy in (A ∪B, dp) and (A ∪B, p) if and only if it is Cauchy in (A ∪B, dp) and (A ∪B, p)
is complete iff (A ∪B, dp) is complete.

lim
n,m→∞

dp(xn, xm) = 0,

dp(xm, xn) = 2p(xm, xn)− p(xm, xm)− p(xn, xn). (3.15)

As m,n→∞ and using equation (3.9) and equation (3.15) in the above we get

lim
n,m→∞

dp(xm, xn) = 2p(xm, xn) = 0.

By equation (3.14), we have

lim
n→∞

p(xn, v) = p(v, v) = 0.

Since p(x2n, v)→ 0, x2n is belongs to A and A is closed in (X, p),v ∈ A, ie) v ∈ A ∩B.
From definition of p, we have

p(xn, T v) ≤ p(xn, v) + p(v, Tv)− p(v, v)

≤ p(xn, v) + p(v, xn) + p(xn, T v)− p(v, v)− p(xn, xn).

Taking limit n→∞ in the above inequality, we get

lim
n→∞

p(xn, T v) = p(v, Tv).

Now, we claim that Tv = v.
Since x2n ∈ A and v ∈ B by equation (3.1), we have

ξ(ψ(p(x2n+1, T v), φ(max(p(x2n, Tx2n), p(v, Tv))))) < φ(max(p(x2n, Tx2n), p(v, Tv))

− ψ(p(x2n+1, T v))),

ψ(p(x2n+1, T v)) ≤ φ(max(p(x2n, Tx2n), p(v, Tv)))

= φ(p(v, Tv)).

Since φ is an altering distance function, φ(v, Tv) = 0 ⇐⇒ p(v, Tv) = 0,
ie) Tv = v.
Hence v is a fixed point of T .
To prove uniqueness:
Let w be any other fixed point of T in A ∩B.It is easy to prove p(v, w) = 0.

ξ(ψ(p(Tv, Tw), φ(max(p(v, Tv), p(w, Tw))))) < φ(max(p(v, Tv), p(w, Tw))

− ψ(p(Tv, Tw)

ψ(p(Tv, Tw) ≤ φ(max(p(v, Tv), p(w, Tw))).

Thus ψ(p(Tv, Tw)) = 0 and hence p(Tv, Tw) = 0, p(v, w) = 0. Hence v = w.
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4 Conclusion
In this paper, the main result determines a fixed point using cyclic (ψ, φ,Z )− contraction in partial metric
spaces. Suppose, if we use this contraction in quasi-partial metric space, it satisfies the conditions (QPM1),
(QPM2), (QPM3), (QPM4) in [13]. As a result, this contraction has a unique fixed point in quasi-partial
metric space as well.
Acknowledgement. Authors are very much thankful to the Editor and Reviewer for their valuable
suggestions to bring the paper in its present form.
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Abstract

Purpose of writing this paper is to introduce simple parametric solutions to quintic Diophantine
equations 5.n.m where integer n > 2 and integer m > 3. Methodology applied is writing numbers in
algebraic form as aix + bi with variable x, then writing fifth power Diophantine equation, in algebraic
form with one variable and then transforming it to a linear equation by vanishing its four terms. For
achieving this purpose, values to ai and bi of algebraic numbers are assigned so as to vanish constant
term and coefficient of fifth power of x. Then equating with zero the coefficient of second power and
coefficient of x, vanishes other two terms. These operations yield two relations between various ai and
bi and also a linear equation in x. On putting the value of x obtained from this linear equation in given
Diophantine equation, provides solution. Paper provides a single direct parametric solution to all quintic
Diophantine equations 5.n.n where ∞ > n > 5 and is simple, easily comprehensible and didactic.
2020 Mathematical Sciences Classification: 11D4.
Keywords and Phrases: Integers, Rational quantity, Linear equation, Diophantine equation of fifth
power.

1 Introduction
In this paper, integer solutions to the Diophantine equations 5.4.4, 5.3.4, 5.3.5, 5.5.5, 5.4.5, 5.6.6, 5.5.7, 5.5.6,
5.n.n (where n is integer such that ∞ > n > 5) as detailed below

A5 +B5 + C5 +D5 = E5 + F 5 +G5 +H5, (1.1)

A5 +B5 + C5 +D5 = F 5 +G5 +H5, (1.2)

A5 +B5 + C5 +D5 + E5 = F 5 +G5 +H5, (1.3)

A5 +B5 + C5 +D5 + E5 = F 5 +G5 +H5 + I5 + J5, (1.4)

A5 +B5 + C5 +D5 + E5 = F 5 +G5 +H5 + I5, (1.5)

A5 +B5 + C5 +D5 + E5 + F 5 = G5 +H5 + I5 + J5 +K5 + L5, (1.6)

A5 +B5 + C5 +D5 + E5 + F 5 +G5 = H5 + I5 + J5 +K5 + L5, (1.7)

A5 +B5 + C5 +D5 + E5 + F 5 = G5 +H5 + I5 + J5 +K5, (1.8)

and

A5
1 +A5

2 +A5
3 + . . .+A5

n−2 +A5
n−1 +A5

n = B5
1 +B5

2 +B5
3 + . . .+B5

n−2 +B5
n−1 +B5

n, (1.9)

have been determined using numbers in algebraic form. Alphabets A,B,C, . . . , L used in Equations (1.1) to
(1.8) and alphabets A1, A2, A3, . . . , An, B1, B2, B3, . . . , Bn used in equation (1.9) denote integers. W. Eric
Weisstein, [8] gave history of solutions to some of these Diophantine equation of fifth power. Swinnerton-Dyer
[7] also solved Diophantine equations 5.3.3 using a method of transformation of the equation but the method
being presented in the paper is easy, simple, comprehensible and didactic also. In addition to individual
parametric solution specific to the equation, we have provided in the paper, there is a single direct parametric
solution to all quintic Diophantine equations 5.n.n, where ∞ > n > 5. Xeroudakes and Moessner [9], and
Gloden [5] determined parametric solutions to solve equation 5.3.4. using two parameters. Rao [6] gave
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the smallest solution to this equation 5.3.4. Again Xeroudakes and Moessner [9] found several parametric
solutions to the equation 5.4.4. Xeroudakes and Moessner [9] and Gloden [5] found the solution to the
equation 5.5.6. Chen Shuwen [4] has found the solution to equation 5.6.6. Chaudhry [2, 3] while presenting
methods of solution to fifth power Diophantine equation, gave method for representation of every rational
number by an algebraic sum of fifth powers of rational numbers. Notwithstanding above works, a geometric
approach to solve Diophantine equations of fifth power was also adopted by Bremner [1].

Nomenclature 5.n.m of Diophantine equation indicates, it is a fifth degree equation with larger number of
terms m and smaller number of terms n. It is already stated in the Abstract, an algebraic equation of power
five with variable x has been obtained by assigning algebraic form (ai ·x+ bi) to the integers of Diophantine
equation. This equation is then, transformed to a linear equation. Although method of transformation of
algebraic equation of fifth power, has been used earlier, the method being presented in the paper is easy,
simple, comprehensible and didactic also. We have also provided parametric solutions, followed by exhaustive
examples to illustrate and corroborate the results derived. To start with, we express a number, say n as
a ·x+ b where a and b are real rational quantities as assigned by us and x is a real rational variable quantity.
For example, a number, say 7, can be written as 3 · x + 1 assigning values 3 for a and 1 for b where x = 2.
Similarly, 7 can be written (3/4)x+ 11/2 where a = 3/4, b = 11/2 and x = 2. From above, it can be stated,
7 = 3 · 2 + 1 = (3/4) · 2 + 1. In general,

n = a · x+ b. (1.10)

This proves Lemma 1.1.

Lemma 1.1. A number n is always expressible in algebraic form as a ·x+ b where a and b are fixed rational
quantities neither zero nor infinity and x is a variable.

Using Lemma 1.1, equation (1.1) can be written as

(ax+ p)5 + (bx+ q)5 + (cx+ r)5 + (dx+ s)5

= (ex+ t)5 + (fx+ u)5 + (gx+ v)5 + (hx+ w)5, (1.11)

where a, b, c, . . . , h, p, q, r, . . . , v are arbitrary rational numbers and x is a real variable. On expanding and
rearranging equation (1.11),

x5(a5 + b5 + c5 + d5 − e5 − f5 − g5 − h5)

+ 5x4(a4p+ b4q + c4r + d4s− e4t− f4u− g4v − h4w)

+ 10x3(a3p2 + b3q2 + c3r2 + d3s2 − e3t2 − f3u2 − g3v2 − h3w2)

+ 10x2(a2p3 + b2q3 + c2r3 + d2s3 − e2t3 − f2u3 − g2v3 − h2w3)

+ 5x(ap4 + bq4 + cr4 + ds4 − et4 − fu4 − gv4 − hw4)

+ (p4 + q4 + r4 + s4 − t4 − u4 − v4 − w4) = 0, (1.12)

it is found, resultant equation (1.12) is too tedious and difficult to solve for x. This equation is, therefore,
transformed into a linear equation so as to solve it easily. Obviously, constant term and term containing x4

can be ridden of, if (
a5 + b5 + c5 + d5 − e5 − f5 − g5 − h5

)
= 0 (1.13)

and (
p4 + q4 + r4 + s4 − t4 − u4 − v4 − w4

)
= 0. (1.14)

To achieve this motive, we replace e, f, g, h with a, b, c, d and t, u, v, wwith p, q, r, s respectively and
accordingly, equation (1.1) is written in algebraic form,

(ax+ p)5 + (bx+ q)5 + (cx+ r)5 + (dx+ s)5

= (ax+ q)5 + (bx+ r)5 + (cx+ s)5 + (dx+ p)5. (1.15)

With this introduction, further steps will be taken to vanish other two terms to transform this equation
into a linear equation.
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2 Transformation into linear equation
Expansion of equation (1.13) on expansion, yields

5x4{p(a4 − d4) + q(b4 − a4) + r(c4 − b4) + s(d4 − c4)}
+ 10x3{p2(a3 − d3) + q2(b3 − a3) + r2(c3 − b3) + s2(d3 − c3)}
+ 10x2{p3(a2 − d2) + q3(b2 − a2) + r3(c2 − b2) + s3(d2 − c2)}
+ 5x{p4(a− d) + q4(b− a) + r4(c− b) + s4(d− c)} = 0. (2.1)

It has solution at x = 0 but that yields p5 + q5 + r5 + s5 = p5 + q5 + r5 + s5, which is a trivial solution
and is ignored. Equation (2.1) can, then be written as

x3{p(a4 − d4) + q(b4 − a4) + r(c4 − b4) + s(d4 − c4)}
+ 2x2{p2(a3 − d3) + q2(b3 − a3) + r2(c3 − b3) + s2(d3 − c3)}
+ 2x{p3(a2 − d2) + q3(b2 − a2) + r3(c2 − b2) + s3(d2 − c2)}
+ {p4(a− d) + q4(b− a) + r4(c− b) + s4(d− c)} = 0. (2.2)

It is a cubic equation and to transform it into a linear equation, its constant term and coefficient of x are
equated to zero. That is

{
p4 (a− d) + q4 (b− a) + r4 (c− b) + s4 (d− c)

}
= 0

and
2
{
p3
(
a2 − d2

)
+ q3

(
b2 − a2

)
+ r3

(
c2 − b2

)
+ s3

(
d2 − c2

)}
= 0.

On simplification,

a = −b
(
q4 − r4

)
+ c

(
r4 − s4

)
+ d

(
s4 − p4

)

p4 − q4
, (2.3)

and

a2 = −b
2
(
q3 − r3

)
+ c2

(
r3 − s3

)
+ d2

(
s3 − p3

)

p3 − q3
, (2.4)

where p 6= q and also p 6= −q.
2.1 Determination of a and b from Equations (2.3) and (2.4)
Equations (2.3) and (2.4) impose certain conditions on values of a and b that make these dependent upon
c, d, p, q, r and s. From equations (2.3) and (2.4),

{
−b
(
q4 − r4

)
+ c

(
r4 − s4

)
+ d

(
s4 − p4

)

p4 − q4

}2

= −b
2
(
q3 − r3

)
+ c2

(
r3 − s3

)
+ d2

(
s3 − p3

)

p3 − q3
. (2.5)

For its easy solvability for b, term with coefficient of b2 in equation (2.5) is eliminated by equating its
coefficients to zero and that yields (

q4 − r4

p4 − q4

)2

= −
(
q3 − r3

p3 − q3

)
.

Considering q = 0, yields r = p and on simplifying equation (2.5) by substituting r with p and q = 0, we
obtain

b =
1

2
(c− d)

(
1− t4

)
+

1

2
(c+ d)

(
1 + t+ t2

)

(1 + t2) (1 + t)
, (2.6)

where s/p = t and t 6= −1. On simplifying equation (2.3) by substituting r with p, q = 0 and s/p = t,

a = b− (c− d)
(
1− t4

)
. (2.7)

On putting value of b from equation (2.6) in equation (2.7),

a = −1

2
(c− d)

(
1− t4

)
+

1

2
(c+ d)

(
1 + t+ t2

)

(1 + t2) (1 + t)
. (2.8)
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2.2 Determination of value of x and solution to Equation (1.1)
When equation (2.3) and (2.4) are satisfied, then equation (2.2) transforms into

x3
{
p
(
a4 − d4

)
+ q

(
b4 − a4

)
+ r

(
c4 − b4

)
+ s

(
d4 − c4

)}

+ 2x2
{
p2
(
a3 − d3

)
+ q2

(
b3 − a3

)
+ r2

(
c3 − b3

)
+ s2

(
d3 − c3

)}
= 0. (2.9)

On simplifying after putting r = p, s/p = t and q = 0, it transforms into linear equation

x = −2p(P/Q), (2.10)

where
P = a3 − b3 +

(
c3 − d3

) (
1− t2

)
(2.11)

and
Q = a4 − b4 +

(
c4 − d4

)
(1− t). (2.12)

By putting values of a and b from equations (2.8) and (2.6) in equations (2.10) and (2.11), x is determined
by equation (2.9). Substituting this value x in equation (1.13), solution to equation (1.10) is obtained after
normalisation. On putting r = p and q = 0, equation (1.11) takes the form

(ax+ p)5 + ( bx)
5

+ (cx+ p)5 + (dx+ s)5 = (ax)
5

+ (bx+ p)5 + (cx+ s)5 + (dx+ p)5. (2.12)
Normalisation, wherever, the word normalisation appears in this paper, it will mean converting-fractions

to integers by multiplying these with lowest, common multiplier abbreviated LCM. Based on the method
discussed in foregoing paragraphs, some solutions are given in Table 2.1.

Table 2.1: Solution to Diophantine equation A5 +B5 + C5 +D5 = E5 + F 5 +G5 +H5

S. 
N. 

Values of 
𝑐, 𝑑, 𝑝, 𝑠 

Calculated 𝑎, 𝑏, 𝑡  and 𝑥 Normalized and rearranged 
𝐴! + 𝐵! + 𝐶! + 𝐷! = 𝐸! + 𝐹! + 𝐺! + 𝐻! 

1 𝑐 = 1,   𝑑 = 2,
𝑝 = 1, 𝑠 = −2 𝑎 = −

42
5 , 𝑏 =

33
5 ,  

𝑡 = −2 , 𝑥 =
7160

12651 

(47256)! + (19811)! + (60144)! + (18142)! 
= (47493)! + (59907)! + (10982)!

+ (26971)! 

2 𝑐 = 1,   𝑑 = −2,
𝑝 = −1, 𝑠 = 2 

𝑎 =
114

5 , 𝑏 = −
111

5 ,  

𝑡 = −2 , 𝑥 = 2040/1223 

(45289)! + (817)! + (5303)! + (46511)! 
= (46512)! + (4486)! + (1634)! + (45288)! 

3 𝑐 = 3,   𝑑 = 1,
𝑝 = 1, 𝑠 = −2 

𝑎 = 69/5, 𝑏 = −81/5, 

𝑡 = −2 , 𝑥 =
7085

16858 

(114777)! + (26631)! + (97773)! + (23943)! 
= (114631)! + (38113)! + (97919)!

+ (12461)! 
4 𝑐 = 3,   𝑑 = −5,

𝑝 = 1, 𝑠 = −2 
𝑎 = 303/5, 𝑏 = −297/5, 

𝑡 = −2 , 𝑥 = −
112415
134801 

(6677548)! + (202444)! + (6812252)!

+ (696876)! 
= (6677451)! + (292473)! + (6812349)!

+ (606847)! 
5 𝑐 = 3,   𝑑 = 2,

𝑝 = 1, 𝑠 = −2 
𝑎 = 6, 𝑏 = −9, 

𝑡 = −2 , 𝑥 =
296
845 

(2664)! + (1098)! + (1776)! + (1437)! 
= (2621)! + (1733)! + (1819)! + (802)! 

6 𝑐 = 4,   𝑑 = 1,
𝑝 = 1, 𝑠 = −2 

𝑎 = 21, 𝑏 = −24, 

𝑡 = −2 , 𝑥 =
2544
7585 

(61056)! + (12626)! + (53424)! + (10129)! 
= (61009)! + (17761)! + (53471)! + (4994)5 

7 𝑐 = 0,   𝑑 = 1,
𝑝 = 1, 𝑠 = −2 

𝑎 = −39/5, 𝑏 = 36/5, 
𝑡 = −2 , 𝑥 = 640/383 

(4609)! + (126)! + (4991)! + (1023)! 
= (4608)! + (383)! + (4992)! + (766)5 

        This proves Lemma 2.1 and Lemma 2.2. 
Lemma 2.1. A Diophantine equation 5.4.4, (𝑎𝑥 + 𝑝)! + ( 𝑏𝑥)! + (𝑐𝑥 + 𝑝)! + (𝑑𝑥 + 𝑠)! = (𝑎𝑥)! + (𝑏𝑥 +
𝑝)! + (𝑐𝑥 + 𝑠)! + (𝑑𝑥 + 𝑝)! is always transformable into a linear equation, 𝑥{𝑎$ − 𝑏$ + (𝑐$ − 𝑑$)(1 −
𝑡#)} + 2𝑝{𝑎$ − 𝑏$ + (𝑐$ − 𝑑$)(1 − 𝑡#)} = 0, where 𝑎, 𝑏, 𝑐, 𝑑,  𝑝, 𝑞, 𝑠  are rational quantities,  𝑎, 𝑏, 𝑡 are 
given by Equations 2.8, 2.6 and  𝑡 = 𝑠/𝑝. 
Lemma 2.2. After normalisation, a Diophantine equation 5.4.4,  (𝑎𝑥 + 𝑝)! + ( 𝑏𝑥)! + (𝑐𝑥 + 𝑝)! +
(𝑑𝑥 + 𝑠)! = (𝑎𝑥)! + (𝑏𝑥 + 𝑝)! + (𝑐𝑥 + 𝑠)! + (𝑑𝑥 + 𝑝)!  is always true and, in fact, is an identity, when 

𝑎 = − "
#

(𝑐 − 𝑑)(1 − 𝑡() + "
#

(𝑐 + 𝑑) +"/4/4".
("/4")("/4)

, 𝑏 = "
#

(𝑐 − 𝑑)(1 − 𝑡() + "
#

(𝑐 + 𝑑) +"/4/4".
("/4")("/4)

,  𝑥 =

−2𝑝 78#&*#/+0#&2#.+"&4".9
{8!&*!/(0!&2!)("&4)}

,  𝑡 = 𝑠/𝑝, 𝑐, 𝑑, 𝑝 are real rational quantities and 𝑡 ≠ −1 .  

        However, it was observed,  solution to Diophantine equations 5.4.4 also yields solutions to Diophantine 
equation 5.5.3. These solutions are given in Table 2.2. 

  Table 2.2 Solution to Diophantine equation 𝐴! + 𝐵! + 𝐶! + 𝐷! + 𝐸! = 𝐹! + 𝐺! + 𝐻! 
S. 

N. 
Values of 
𝑐, 𝑑, 𝑝, 𝑠 

Calculated 𝑎, 𝑏, 𝑡  
and 𝑥 

Normalized and rearranged 
𝐴! + 𝐵! + 𝐶! + 𝐷! + 𝐸! = 𝐹! + 𝐺! + 𝐻! 

1 𝑐 = 3,   𝑑
= −1,
𝑝 = 1, 𝑠
= −2 

𝑎 = 147/5,
𝑏 = −153/5, 

𝑡 = −2 , 𝑥 =
28115
33701 

(860319)! + (95517)! + (826581)! + (16943)!

+ 5586! 
= (860282)! + (118046)! + (826618)! 

2 𝑐 = 4,   𝑑
= −1,
𝑝 = 1, 𝑠
= −2 

𝑎 = 183/5,
𝑏 =   −192/5, 

𝑡 = −2 , 𝑥

=
175760
315951 

(6749184)! + (807662)! + (6432816)! + (71138)!

+ (140191)! 
= (6748767)! + (1018991)! + (6433233)! 

This proves Lemma 2.1 and Lemma 2.2.
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Lemma 2.1. A Diophantine equation 5.4.4, (ax+ p)5 + ( bx)
5

+ (cx+ p)5 + (dx+ s)5 = (ax)
5

+ (bx+ p)5 +

(cx+s)5 +(dx+p)5 is always transformable into a linear equation, x
{
a3 − b3 +

(
c3 − d3

) (
1− t2

)}
+2p{a3−

b3 +
(
c3 − d3

) (
1− t2

)
} = 0, where a, b, c, d, p, q, s are rational quantities, a, b, t are given by equations (2.6),

(2.8) and t = s/p.

Lemma 2.2. After normalisation, a Diophantine equation 5.4.4, (ax+p)5 + ( bx)
5

+ (cx+p)5 + (dx+ s)5 =

(ax)
5

+ (bx + p)5 + (cx + s)5 + (dx + p)5 is always true and, in fact, is an identity, when a = − 1
2 (c −

d)
(
1− t4

)
+ 1

2 (c + d)
(1+t+t2)

(1+t2)(1+t) , b = 1
2 (c − d)

(
1− t4

)
+ 1

2 (c + d)
(1+t+t2)

(1+t2)(1+t) , x = −2p
{a3−b3+(c3−d3)(1−t2)}
{a4−b4+(c4−d4)(1−t)} ,

t = s/p, c, d,p are real rational quantities and t 6= −1.
However, it was observed, solution to Diophantine equations 5.4.4 also yields solutions to Diophantine

equation 5.5.3. These solutions are given in Table 2.2.

Table 2.2: Solution to Diophantine equation A5 +B5 + C5 +D5 + E5 = F 5 +G5 +H5

 

S. 

N. 

Values of 

𝑐, 𝑑, 𝑝, 𝑠 

Calculated 𝑎, 𝑏, 𝑡  

and 𝑥 

Normalized and rearranged 

𝐴5 + 𝐵5 + 𝐶5 + 𝐷5 + 𝐸5 = 𝐹5 + 𝐺5 + 𝐻5 

1 𝑐 = 3,   𝑑

= −1,

𝑝 = 1, 𝑠

= −2 

𝑎 = 147/5,

𝑏 = −153/5, 

𝑡 = −2 , 𝑥 =
28115

33701
 

(860319)5 + (95517)5 + (826581)5 + (16943)5

+ 55865 

= (860282)5 + (118046)5 + (826618)5 

2 𝑐 = 4,   𝑑

= −1,

𝑝 = 1, 𝑠

= −2 

𝑎 = 183/5,

𝑏 =   −192/5, 

𝑡 = −2 , 𝑥

=
175760

315951
 

(6749184)5 + (807662)5 + (6432816)5 + (71138)5

+ (140191)5 

= (6748767)5 + (1018991)5 + (6433233)5 

3 𝑐 = 6,   𝑑

= −1,

𝑝 = 1, 𝑠

= −2 

𝑎 = 51, 𝑏 = −54, 

𝑡 = −2 , 𝑥 =
13784

41285
 

(744336)5 + (96354)5 + (702984)5 + (134)5

+ (27501)5 

= (744269)5 + (123989)5 + (703051)5 

4 𝑐 = 5,   𝑑

= −1,

𝑝 = 1, 𝑠

= −2 

𝑎 = 219/5,

𝑏 = −231/5, 

𝑡 = −2 , 𝑥

=
63285

151658
 

(2923767)5 + (366601)5 + (2771883)5 + (13109)5

+ (88373)5 

= (2923541)5 + (468083)5 + (2772109)5 

 

  2.3 Solution to Diophantine Equation 5.4.3, A5+B5+C5+D5=F5+G5+H5

On putting a = 0, in equation (2.12), it transforms into Diophantine equation 5.4.3

(p)5 + ( bx)
5

+ (cx+ p)5 + (dx+ s)5 = (bx+ p)5 + (cx+ s)5 + (dx+ p)5 (2.13)

and equation (2.8), (2.6) transform into

c

d
=

(
1− t4

)2
+
(
1− t3

)

(1− t4)
2 − (1− t3)

, (2.14)

b = 2d · (1− t4)
(
1− t3

)

(1− t4)
2 − (1− t3)

. (2.15)

where b, c, d, p, s are real rational quantities, t is neither equal to one nor equal to zero and also d 6= 0. Value
of x is, then given by relation

x = −2p(P/Q), (2.16)
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where

P = −d3

{
2 ·

(
1− t3

) (
1− t4

)

(1− t4)
2 − (1− t3)

}3

+ d3
(
1− t2

)


{(

1− t4
)2

+
(
1− t3

)

(1− t4)
2 − (1− t3)

}3

− 1


 , (2.17)

Q = −d4

{
2 ·

(
1− t3

) (
1− t4

)

(1− t4)
2 − (1− t3)

}4

+ d4 (1− t)



{(

1− t4
)2

+
(
1− t3

)

(1− t4)
2 − (1− t3)

}4

− 1


 . (2.18)

Based on the method discussed in foregoing paragraphs, some solutions are given in Table 2.3.

Table 2.3: Solution to Diophantine Equation A5 +B5 + C5 +D5 = F 5 +G5 +H5

 

S.N. Values of 

𝑡, 𝑝, 𝑑 

Calculated 𝑐, 𝑏,  

  and 𝑥 

Normalized And Rearranged 

𝐴5 + 𝐵5 + 𝐶5 + 𝐷5 = 𝐹5 + 𝐺5 + 𝐻5 

1 𝑡 = −2,   𝑝 = 1,

𝑑 = 1 

𝑐 = 13/12, 

 𝑏 = −5/4, 

 𝑥 = 7872/4525 

(4525)5 + (13053)5 + (5315)5 + (522)5 

= (9840)5 + (1178)5 + (12397)5 

2 𝑡 = −1/2,    

𝑝 = 1,

𝑑 = 1 

𝑐 = −57/7,

𝑏 = −60/7, 

 𝑥

= −11207/29900 

(26157)5 + (125960)5 + (76307)5 + (18693)5 

= (29900)5 + (96060)5 + (121157)5 

 

  This proves Lemmas 2.3 and 2.4.

Lemma 2.3. A Diophantine equation 5.4.3, (p)5+( bx)
5
+(cx+p)5+(dx+s)5 = (bx+p)5+(cx+s)5+(dx+p)5

is always transformable into a linear equation x = −2p(P/Q) where P and Q are given by Equations (2.17)
and (2.18). Real rational quantities b, c, are given by Equations (2.15), (2.14) respectively, d, s, p are real
rational quantities, t = s/p which is neither equal to one nor equal to zero and also d 6= 0.

Lemma 2.4. After normalisation, a Diophantine equation 5.4.3, (p)5 + ( bx)
5

+ (cx + p)5 + (dx + s)5 =
(bx + p)5 + (cx + s)5 + (dx + p)5 is always true and, in fact, is an identity when x, P,Q, b, c are given by
Equations (2.16), (2.17), (2.18), (2.15), (2.14) respectively, d, s, p are real rational quantities, t = s/p which
is neither equal to one nor equal to zero and also d 6= 0.

Next Diophantine equation 5.5.5 is taken up. Procedure applied to equation 5.4.4 will also be used here.

3 Transformation of Diophantine Equation 5.5.5 A5+B5+C5+D5+E5=F 5+G5+H5+I5+J5

into linear equation and its solution
Diophantine equation A5 +B5 +C5 +D5 +E5 = F 5 +G5 +H5 + I5 + J5 can be written in algebraic form

(ax+p)5+(bx+q)5+(cx+r)5+(dx+s)5+(ex+u)5 = (ax+q)5+(bx+r)5+(cx+s)5+(dx+u)5+(ex+p)5, (3.1)

where a, b, c, d, e, p, q, r, s, u are real rational quantities ,p 6= q and also p 6= −q. On expansion, it takes the
form

5x4
{
p
(
a4 − e4

)
+ q

(
b4 − a4

)
+ r

(
c4 − b4

)
+ s

(
d4 − c4

)
+ u

(
e4 − d4

)}

+ 10x3
{
p2
(
a3 − e3

)
+ q2

(
b3 − a3

)
+ r2

(
c3 − b3

)
+ s2

(
d3 − c3

)
+ u2

(
e3 − d3

)}

+ 10x2
{
p3
(
a2 − e2

)
+ q3

(
c2 − b2

)
+ r3

(
c2 − b2

)
+ s3

(
d2 − c2

)
+ u3

(
e2 − d2

)}

+ 5x
{
p4 (a− e) + q4 (b− a) + r4 (c− b) + s4 (d− c) + u4(e− d)

}
= 0. (3.2)

On equating coefficient of x and x2 with zero,
{
p4 (a− e) + q4 (b− a) + r4 (c− b) + s4 (d− c) + u4(e− d)

}
= 0 (3.3)

and {
p3
(
a2 − e2

)
+ q3

(
b2 − a2

)
+ r3

(
c2 − b2

)
+ s3

(
d2 − c2

)
+ u3

(
e2 − d2

)}
= 0. (3.4)
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From Equations (3.3) and (3.4),

a = −b
(
q4 − r4

)
+ c

(
r4 − s4

)
+ d

(
s4 − u4

)
+ e

(
u4 − p4

)

p4 − q4
, (3.5)

a2 = −b
2
(
q3 − r3

)
+ c2

(
r3 − s3

)
+ d2

(
s3 − u3

)
+ e2

(
u3 − p3

)

p3 − q3
. (3.6)

That results in{
−b
(
q4 − r4

)
+ c

(
r4 − s4

)
+ d

(
s4 − u4

)
+ e

(
u4 − p4

)

p4 − q4

}2

= −b
2
(
q3 − r3

)
+ c2

(
r3 − s3

)
+ d2

(
s3 − u3

)
+ e2

(
u3 − p3

)

p3 − q3
.

(3.7)
For easy solvability, quadratic equation (3.7) in b is transformed into linear equation by equating coefficient

of b2 to zero. That yields (
q4 − r4

p4 − q4

)2

= −
(
q3 − r3

p3 − q3

)
.

Let q = 0, s = 0, then r = p and equation (3.1) transforms into

(ax+ p)5 + ( bx)
5

+ (cx+ p)5 + (dx)
3

+ (ex+ u)5

= (ax)
5

+ (bx+ p)5 + (cx)
5

+ (dx+ u)5 + (ex+ p)5. (3.8)

Also equation (3.2) transforms into

5x4
{
p
(
a4 + c4 − b4 − e4

)
+ u

(
e4 − d4

)}
+ 10x3

{
p2
(
a3 + c3 − b3 − e3

)
+ u2

(
e3 − d3

)}

+ 10x2
{
p3
(
a2 + c2 − b2 − e2

)
+ u3

(
e2 − d2

)}

+ 5x
{
p4 (a+ c− b− e) + u4 (e− d)

}
= 0, (3.9)

and equation (3.3) and (3.4) transform into{
p4 (a− b+ c− e) + u4(e− d)

}
= 0, (3.10){

p3
(
a2 − b2 + c2 − e2

)
+ u3

(
e2 − d2

)}
= 0. (3.11)

From equation (3.10) and (3.11),

a = (b+ e− c)− t4 (e− d) , (3.12)

a2 =
(
b2 + e2 − c2

)
− t3

(
e2 − d2

)
, (3.13)

where u/p = t. Therefore,
{

(b+ e− c)− t4 (e− d)
}2

=
(
b2 + e2 − c2

)
− t3

(
e2 − d2

)
.

On simplification,

b =
c2+

{
c+ t4(e− d)

}2
+ t3

(
e2 − d2

)
− 2e

{
c+ t4 (e− d)

}

2 {c− e+ t4 (e− d)} , (3.14)

where c − e + t4(e − d) 6= 0 and also c 6= d. For easy solvability, we assign t = −1 and simplify equations
(3.14) and (3.15) and obtain

b = c− d+
cd− e2

c− d (3.15)

and

a =
cd− e2

c− d . (3.16)

When a and b have values as given by equations (3.15) and (3.16), then equation (3.9) transforms into
linear equation

x = −2p

(
a3 − b3 + c3 − d3

a4 − b4 + c4 + d4 − 2e4

)
, (3.17)

wherec, d, e are arbitrary real rational quantities such that c 6= d and a4 + c4 + d4 6= b4 + 2e4. On putting the
value of x given by equation (3.16) in equation (3.8), gives solution to Diophantine Equation 5.5.5.

That also proves Lemmas 3.1 and 3.2. In the Table 3.1, p is neither considered nor assigned any value
except one owing to the fact that it does not appear in final equation when value of x is put in equation
(3.8).
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Table 3.1: Solution to Diophantine equation A5 +B5 + C5 +D5 + E5 = F 5 +G5 +H5 + I5 + J5

S
.N. 

Values of 
𝑐, 𝑑 , 𝑒 

Calculated 𝑎, 𝑏 and 𝑥 (𝑎𝑥 + 𝑝)! + ( 𝑏𝑥)! + (𝑐𝑥 + 𝑝)! + (𝑑𝑥)$ + (𝑒𝑥 − 𝑝)! 
= (𝑎𝑥)! + (𝑏𝑥 + 𝑝)! + (𝑐𝑥)! + (𝑑𝑥 − 𝑝)! + (𝑒𝑥 + 𝑝)!. 

1 2, 3, 5 19, 18, −1/12 7! + 18! + 3! + 17! + 7! = 10! + 19! + 6! + 2! + 15! 
2 −2, 3, 5 31/5, 6/5, −5/4 27! + 6! + 15! + 29! + 10! = 14! + 31! + 2! + 19! + 21! 
3 3, −4, 5 −37/7, 12/5, 

−7/8 
12! + 13! + 43! + 37! + 20!

= 45! + 28! + 4! + 21! + 27! 
4 3, −4, 1 −13/7, 36/7, 

−7/24 
36! + 31! + 13! + 4! + 17! = 37! + 3! + 28! + 12! + 21! 

5 3, −4, 
0 

−12/7, 37/7, 
−21/74  

111! + 74! + 36! + 10! + 74!

= 110! + 11! + 84! + 37! + 63! 
6 3, 4, 0 −12, 1 3, −3/26 10! + 39! + 26! + 9! + 26!

= 35! + 12! + 36! + 13! + 14! 
7 3, 4, 6 24, 2 3 , −3/46 26! + 69! + 12! + 64! + 28!

= 37! + 72! + 23! + 9! + 58! 
8 −4, 5, 6 −56/9,

−2 5/9, 27/50 
75! + 58! + 168! + 85! + 212!

= 218! + 135! + 112! + 25! + 108! 
9 −4, 5, 0 20/9,

−61/9, 27/122 
183! + 122! + 60! + 13! + 122!

= 182! + 14! + 135! + 61! + 108! 
10 −4, 5, 1 7/3, −20/3, 9/40 60! + 31! + 21! + 5! + 49! = 61! + 4! + 45! + 20! + 36! 

Lemma 3.1. A Diophantine equation 5.5.5, (ax+p)5 + ( bx)
5

+ (cx+p)5 + (dx)
5

+ (ex−p)5 = (ax)
5

+ (bx+

p)5 +(cx)
5
+(dx−p)5 +(ex+p)5 is always transformable into a linear equation, x = −2p

(
a3−b3+c3−d3

a4−b4+c4+d4−2e4

)
,

where a, b are given by Equations (3.16), (3.15) respectively, c, d, e andp are arbitrary real rational quantities
such that c 6= d and a4 + c4 + d4 6= b4 + 2e4.

Lemma 3.2. After normalisation, a Diophantine equation 5.5.5, (ax + p)5 + ( bx)
5

+ (cx + p)5 + (dx)
5

+

(ex− p)5 = (ax)
5

+ (bx+ p)5 + (cx)
5

+ (dx− p)5 + (ex+ p)5 is always true and, in fact, is an identity, when

x = −2p
(

a3−b3+c3−d3
a4−b4+c4+d4−2e4

)
, a = cd−e2

c−d , b = c − d + cd−e2
c−d , c, d, e andp are arbitrary real rational quantities

such that c 6= d and a4 + c4 + d4 6= b4 + 2e4.

4 Solution to Diophantine Equation 5.5.4, A5+B5+C5+D5+E5=G5+H5+I5+J5

Procedure of Diophantine equations A5 +B5 + C5 +D5 + E5 = F 5 +G5 +H5 + I5 + J5 as determined in
foregoing paragraphs will be utilised here by putting a = 0. In that case, the equation

(ax+ p)5 + ( bx)
5

+ (cx+ p)5 + (dx)
5

+ (ex− p)5 = (ax)
5

+ (bx+ p)5 + (cx)
5

+ (dx− p)5 + (ex+ p)5

transforms into

(p)5 + ( bx)
5

+ (cx+ p)5 + (dx)
5

+ (ex− p)5 = (bx+ p)5 + (cx)
5

+ (dx− p)5 + (ex+ p)5, (4.1)

and equations (3.15), (3.14) and (3.16) transform into

d = e2/c, (4.2)

b = c− e2/c, (4.3)

x = −2p

( −b3 + c3 − d3

−b4 + c4 + d4 − 2e4

)
, (4.4)

respectively where c 6= 0. On putting the value of b and d in equation (4.4) and simplifying

x = − 3pc

2 (c2 − e2)
. (4.5)
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where p, c and e are arbitrarily assigned real rational quantities such that c 6= 0 and also c2 = e2 Putting
the value of x given by equation (4.5) in equation (4.1) gives solutions to Diophantine equation 5.5.4. Based
on these equations, some solutions are given in Table 4.1. Here also p is not considered on the basis of
explanation already given.

Table 4.1: Solution to Diophantine equation A5 +B5 + C5 +D5 + E5 = G5 +H5 + I5 + J5

and Equations (3.15), (3.14) and (3.16) transform into 
         𝑑 = 𝑒#/𝑐,    (4.2) 

 𝑏 = 𝑐 − 𝑒#/𝑐 ,   (4.3) 

𝑥 = −2𝑝 r &*#/0#&2#

&*!/0!/2!&#>!s,  (4.4)               

respectively where 𝑐 ≠ 0. On putting the value of 𝑏 and 𝑑 in equation (4.4) and simplifying 
           𝑥 = − $30

#(0"&>")
 .  (4.5)   

where 𝑝, 𝑐 and 𝑒 are arbitrarily assigned real rational quantities such that 𝑐 ≠ 0 and also 𝑐# = 𝑒#  Putting the 
value of 𝑥 given by equation (4.5) in equation (4.1) gives solutions to Diophantine equation 5.5.4. Based on 
these equations, some solutions are given in Table 4.1. Here also 𝑝  is not considered on the basis of explanation 
already given.  

S.N. Values 
of 𝒄, 𝒆 

Calculated 
value of 𝒃, 𝒅 and 𝒙 

𝑨𝟓 + 𝑩𝟓 + 𝑪𝟓 + 𝑫𝟓 + 𝑬𝟓 = 𝑮𝟓 + 𝑯𝟓 + 𝑰 + 𝑱 

1 3,4 −7/3, 16/3,9/14 14! + 41! + 48! + 22! + 7! = 21! + 27! + 34! + 50! 
2 5, 4 9/5, 16/5, −5/6 6! + 3! + 25! + 22! + 14! = 9! + 19! + 16! + 26! 
3 7, 4 33/7, 16/7, −7/22 22! + 11! + 49! + 38! + 6! = 33! + 27! + 16! + 50! 
4 3, 5 −16/3, 25/3, 9/32 32! + 59! + 75! + 13! + 16! = 48! + 27! + 43! + 77! 
5 5, 8 −39/5, 64/5, 5/26 26! + 51! + 64! + 14! + 13! = 39! + 25! + 38! + 66! 

(𝑐𝑥)! + (𝑑𝑥 − 𝑝)! + (𝑒𝑥 + 𝑝)! is always transformable into linear equation, 𝑥 = −2𝑝 r &*#/0#&2#

&*!/0!/2!&#>!s, 

where 𝑏, and 𝑑 are given by Equations 4.3, 4.2, and 𝑐, 𝑒 and 𝑝 are real rational quantities. 
Lemma 4.2. After normalisation, a Diophantine equation 5.5.4, (𝑝)! + ( 𝑏𝑥)! + (𝑐𝑥 + 𝑝)! + (𝑑𝑥)! +
(𝑒𝑥 − 𝑝)! = (𝑏𝑥 + 𝑝)! + (𝑐𝑥)! + (𝑑𝑥 − 𝑝)! + (𝑒𝑥 + 𝑝)! is always true and, in fact, is an identity, when  

𝑥 = −2𝑝 r &*#/0#&2#

&*!/0!/2!&#>!s , 𝑑 = >"

0
 , 𝑏 = 𝑐 − >"

0
 ,  and 𝑐, 𝑒 and 𝑝 are arbitrary real rational quantities such 

that 𝑐 ≠ 0 and𝑐( + 𝑑( ≠ 𝑏( + 2𝑒(. 
5. Solution to Diophantine Equation 5.6.6  𝑨𝟓 + 𝑩𝟓 + 𝑪𝟓 + 𝑫𝟓 + 𝑬𝟓 + 𝑭𝟓 = 𝑮𝟓 + 𝑯𝟓 + 𝑰𝟓 + 𝑱𝟓 + 𝑲𝟓 +
𝑳𝟓 
        Equation 𝐴! + 𝐵! +  𝐶! + 𝐷! + 𝐸! + 𝐹! = 𝐺! + 𝐻! + 𝐼! + 𝐽! + 𝐾! + 𝐿! can be written in algebraic 
form as 

    (𝑎"𝑥 + 𝑝)! + (𝑎#𝑥)! +  (𝑎$𝑥 + 𝑝)! + (𝑎(𝑥)! +  (𝑎!𝑥 + 𝑝)! + (𝑎?𝑥)! 
       = (𝑎"𝑥)! + (𝑎#𝑥 + 𝑝)! + (𝑎$𝑥)! + (𝑎(𝑥 + 𝑝)! + (𝑎!𝑥)! + (𝑎?𝑥 + 𝑝)!.   (5.1) 

On expansion, 
   5𝑥(𝑝(𝑎"

( + 𝑎$
( + 𝑎!

( − 𝑎#
( − 𝑎(

( − 𝑎?
() + 10𝑥$𝑝#z𝑎"

$ + 𝑎$
$ + 𝑎!

$ − 𝑎#
$ − 𝑎(

$ − 𝑎?
${ 

           +10𝑥#𝑝$z𝑎"
# + 𝑎$

# + 𝑎!
# − 𝑎#

# − 𝑎(
# − 𝑎?

#{ 
           +5𝑥𝑝((𝑎" + 𝑎$ + 𝑎! − 𝑎# − 𝑎( − 𝑎?) = 0.          (5.2) 

where 𝑎", 𝑎#, 𝑎$, … , 𝑎@  and 𝑝 are real rational quantities.  Equating coefficients of 𝑥 and 𝑥# equal to zero, 
(𝑎" + 𝑎$ + 𝑎! − 𝑎# − 𝑎( − 𝑎?) = 0 

and 
z𝑎"

# + 𝑎$
# + 𝑎!

# − 𝑎#
# − 𝑎(

# − 𝑎?
#{ = 0. 

From aforementioned equations, 
 𝑎" = −𝑎$ − 𝑎! + 𝑎# + 𝑎( + 𝑎?   (5.3) 

and 
   𝑎"

# = −𝑎$
# − 𝑎!

# + 𝑎#
# + 𝑎(

# + 𝑎?
# .   (5.4) 

From Equations (5.3) and (5.4) 
(𝑎# − 𝑎$ + 𝑎( − 𝑎! + 𝑎?)# = −𝑎$

# − 𝑎!
# + 𝑎#

# + 𝑎(
# + 𝑎?

# . 
On simplification, it yields  

Lemma 4.1. A Diophantine equation 5.5.4, (p)5 + ( bx)
5

+ (cx+ p) + (dx)
5

+ (ex− p)5 = (bx+ p)5 + (cx)
5

+

(dx − p)5 + (ex + p)5 is always transformable into linear equation, x = −2p
(

−b3+c3−d3
−b4+c4+d4−2e4

)
, where b and

d are given by equations (4.3), (4.2), and c, e and p are real rational quantities.

Lemma 4.2. After normalisation, a Diophantine equation 5.5.4, (p)5 + (bx)5 + (cx + p)5 + (dx)5 + (ex −
p)5 = (bx + p)5 + (cx)5 + (dx − p)5 + (ex + p)5 is always true and, in fact, is an identity, when x =

−2p
(

−b3+c3−d3
−b4+c4+d4−2e4

)
, d = e2

c , b = c− e2

c , and c, e and p are arbitrary real rational quantities such that c 6= 0

and c4 + d4 6= b4 + 2e4.

5 Solution to Diophantine Equation 5.6.6A5+B5+C5+D5+E5+F 5=G5+H5+I5+J5+K5+L5

Equation A5 +B5 + C5 +D5 +E5 +F 5 = G5 +H5 + I5 +J5 +K5 +L5 can be written in algebraic form as

(a1x+ p)
5

+ (a2x)
5

+ (a3x+ p)
5

+ (a4x)
5

+ (a5x+ p)
5

+ (a6x)
5

= (a1x)
5

+ (a2x+ p)
5

+ (a3x)
5

+ (a4x+ p)
5

+ (a5x)
5

+ (a6x+ p)
5
. (5.1)

On expansion,

(5x4p
(
a4

1 + a4
3 + a4

5 − a4
2 − a4

4 − a4
6

)
+ 10x3p2

(
a3

1 + a3
3 + a3

5 − a3
2 − a3

4 − a3
6

)

+ 10x2p3
(
a2

1 + a2
3 + a2

5 − a2
2 − a2

4 − a2
6

)

+ 5xp4 (a1 + a3 + a5 − a2 − a4 − a6) = 0. (5.2)

where a1, a2, a3, . . . , a7 and p are real rational quantities. Equating coefficients of x and x2 equal to zero,

(a1 + a3 + a5 − a2 − a4 − a6) = 0

and (
a2

1 + a2
3 + a2

5 − a2
2 − a2

4 − a2
6

)
= 0.

From aforementioned equations,

a1 = −a3 − a5 + a2 + a4 + a6 (5.3)

and
a2

1 = −a2
3 − a2

5 + a2
2 + a2

4 + a2
6. (5.4)

From Equations (5.3) and (5.4)

(a2 − a3 + a4 − a5 + a6)
2

= −a2
3 − a2

5 + a2
2 + a2

4 + a2
6 .

On simplification, it yields

a2 = a3 + a5 −
a3a5 − a4a6

a3 − a4 + a5 − a6
. (5.5)

where a3 + a5 6= a4 + a6. On putting the value of a2 in equation (5.3),

a1 = a4 + a6 −
a3a5 − a4a6

a3 − a4 + a5 − a6
. (5.6)
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When equations (5.5) and (5.6) are satisfied, equation (5.2) transforms into

x = −2p

(
a3

1 + a3
3 + a3

5 − a3
2 − a3

4 − a3
6

)

(a4
1 + a4

3 + a4
5 − a4

2 − a4
4 − a4

6)
= −2p

(∑3
n=1 a

3
2n−1

)
−
(∑3

n=1 a
3
2n

)

(∑3
n=1 a

4
2n−1

)
−
(∑3

n=1 a
4
2n

) , (5.7)

where
∑3
n=1 a

4
2n−1 6=

∑3
n=1 a

4
2n. Sign

∑3
n=1 a

3
2n−1 used in this paper, means summation of terms a3

2n−1 and
n varies from 1 to 3. On putting the values of a1 and a2 in equation (5.7) and, then putting the value of x
in equation (5.1), gives solutions to Diophantine Equation 5.6.6. Based on this method, some solutions are
given in the Table 5.1.

Table 5.1: Solution to Diophantine equation A5 +B5 + C5 +D5 + E5 + F 5 = G5 +H5 + I5 + J5 +K5 + L5

𝑎2 = 𝑎3 + 𝑎5 −
𝑎3𝑎5−𝑎4𝑎6

𝑎3−𝑎4+𝑎5−𝑎6
. (5.5)   

where  𝑎3 + 𝑎5 ≠ 𝑎4 + 𝑎6.  On putting the value of  𝑎2 in equation (5.3),

𝑎1 = 𝑎4 + 𝑎6 −
𝑎3𝑎5−𝑎4𝑎6

𝑎3−𝑎4+𝑎5−𝑎6
. (5.6)   

When Equations (5.5) and (5.6) are satisfied, equation (5.2) transforms into 

𝑥 = −2𝑝
(𝑎1

3+𝑎3
3+𝑎5

3−𝑎2
3−𝑎4

3−𝑎6
3)

(𝑎1
4+𝑎3

4+𝑎5
4−𝑎2

4−𝑎4
4−𝑎6

4)
= −2𝑝

(∑ 𝑎2𝑛−1
33

𝑛=1
)−(∑ 𝑎2𝑛

33

𝑛=1
)

(∑ 𝑎2𝑛−1
43

𝑛=1
)−(∑ 𝑎2𝑛

43

𝑛=1
)

. (5.7) 

where ∑ 𝑎2𝑛−1
43

𝑛=1
≠ ∑ 𝑎2𝑛

43

𝑛=1
. Sign∑ 𝑎2𝑛−1

33

𝑛=1
used in this paper, means summation of terms 𝑎2𝑛−1

3 and 

𝑛 varies from 1 to 3. On putting the values of 𝑎1 and 𝑎2 in equation (5.7) and, then putting the value of 𝑥 in 

equation (5.1), gives solutions to Diophantine Equation 5.6.6.  Based on this method,  some solutions are given 

in the Table 5.1. 

Table 5.1 Solution to Diophantine equation 𝐴5 + 𝐵5 + 𝐶5 + 𝐷5 + 𝐸5 + 𝐹5 = 𝐺5 + 𝐻5 + 𝐼5 + 𝐽5 + 𝐾5 + 𝐿5

S. 

N. 

Ass. Values of 

𝑎3, 𝑎4, 𝑎5 and  𝑎6

Calculated 

values of 

𝑎1, 𝑎2, 𝑥

(𝑎1𝑥 + 𝑝)5 + (𝑎2𝑥)5 +  (𝑎3𝑥 + 𝑝)5 + (𝑎4𝑥)5

+  (𝑎5𝑥 + 𝑝)5 + (𝑎6𝑥)5

= (𝑎1𝑥)5 + (𝑎2𝑥 + 𝑝)5 + (𝑎3𝑥)5 + (𝑎4𝑥 + 𝑝)5

+ (𝑎5𝑥)5 + (𝑎6𝑥 + 𝑝)5

1 3, 5, 6, 7 19/3, 10/3,

−9/92 

355 + 655 + 385 + 575 + 275 + 545

= 305 + 455 + 635 + 625 + 475

+ 295

2 2, 5, 6, 7 25/4, 9/4, 
−2 /19 

135 + 305 + 145 + 255 + 85 + 245

= 95 + 205 + 285 + 295 + 185

+ 105

3 −2, −5, − 6, 

7 

67/10, 

−33/10, 15/13 

995 + 345 + 1505 + 1545 + 2015 + 2365

= 2275 + 2105 + 735 + 605 + 1245 + 1805

4 −4, −5, − 6, 

7 

83/12,

−61/12, 18 /37 

1835 + 705 + 1805 + 1425 + 2495 + 3265

= 3235 + 2525 + 1095 + 1445 + 1065 + 2165

5 −3, 5,6, 7 55/9,

−26/9, −27/164 

785 + 2455 + 25 + 1655 + 1625 + 255

= 15 + 1355 + 1895 + 2425 + 815

+ 295

6 −3, − 5, 

− 6, 7 

75/11,

−46/11, 11/16 

465 + 175 + 555 + 505 + 755 + 935

= 915 + 775 + 305 + 335 + 395

+ 665

7 −3, − 5, 

6, 1 

−15/7, 34/7,

−7/4 

195 + 255 + 355 + 305 + 425 + 35

= 345 + 385 + 75 + 155 + 215

+ 395

8 −3, 5, 

6, 1 

−5/3, −14/3,

−9/8 

235 + 425 + 355 + 375 + 545 + 15

= 455 + 465 + 95 + 155 + 505

+ 275

9 3, −5, 

−6, −1/2 

27/10, 26/5,   5 295 + 525 + 325 + 485 + 605 + 35

= 505 + 585 + 55 + 375 + 545

+ 305

That also proves Lemmas 5.1 and 5.2. 

Lemma 5.1. A Diophantine equation 5.6.6, (𝑎1𝑥 + 𝑝)5 + (𝑎2𝑥)5 +  (𝑎3𝑥 + 𝑝)5 + (𝑎4𝑥)5 +  (𝑎5𝑥 + 𝑝)5 +

(𝑎6𝑥)5 = (𝑎1𝑥)5 + (𝑎2𝑥 + 𝑝)5 + (𝑎3𝑥)5 + (𝑎4𝑥 + 𝑝)5 + (𝑎5𝑥)5 + (𝑎6𝑥 + 𝑝)5 is always transformable 

into linear equation,  𝑥 = −2𝑝
(𝑎1

3+𝑎3
3+𝑎5

3−𝑎2
3−𝑎4

3−𝑎6
3)

(𝑎1
4+𝑎3

4+𝑎5
4−𝑎2

4−𝑎4
4−𝑎6

4)
= −2𝑝

(∑ 𝑎2𝑛−1
33

𝑛=1
)−(∑ 𝑎2𝑛

33

𝑛=1
)

(∑ 𝑎2𝑛−1
43

𝑛=1
)−(∑ 𝑎2𝑛

43

𝑛=1
)

, where 𝑎1 and  𝑎2 are 

That also proves Lemmas 5.1 and 5.2.

Lemma 5.1. A Diophantine equation 5.6.6, (a1x+ p)
5
+(a2x)

5
+(a3x+ p)

5
+(a4x)

5
+(a5x+ p)

5
+(a6x)

5
=

(a1x)
5

+ (a2x+ p)
5

+ (a3x)
5

+ (a4x+ p)
5

+ (a5x)
5

+ (a6x+ p)
5

is always transformable into linear equation,
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x = −2p
(a31+a33+a35−a

3
2−a

3
4−a

3
6)

(a41+a43+a45−a42−a44−a46)
= −2p

(
∑3
n=1 a

3
2n−1)−(

∑3
n=1 a

3
2n)

(
∑3
n=1 a

4
2n−1)−(

∑3
n=1 a

4
2n)

, where a1 and a2 are given by equations (5.5),

(5.6) and a3, a4, a5, a6 and p are arbitrary real rational quantities such that
∑3
n=1 a

4
2n−1 6=

∑3
n=1 a

4
2n.

Lemma 5.2. After normalisation, a Diophantine equation 5.6.6, (a1x+ p)
5

+(a2x)
5

+(a3x+ p)
5

+(a4x)
5

+

(a5x+ p)
5

+ (a6x)
5

= (a1x)
5

+ (a2x+ p)
5

+ (a3x)
5

+ (a4x+ p)
5

+ (a5x)
5

+ (a6x+ p)
5

is always true and, in
fact, is an identity, when

x = −2p

(
a3

1 + a3
3 + a3

5 − a3
2 − a3

4 − a3
6

)

(a4
1 + a4

3 + a4
5 − a4

2 − a4
4 − a4

6)
= −2p

(∑3
n=1 a

3
2n−1

)
−
(∑3

n=1 a
3
2n

)

(∑3
n=1 a

4
2n−1

)
−
(∑3

n=1 a
4
2n

) ,

a2 = a3 + a5 −
a3a5 − a4a6

a3 − a4 + a5 − a6
, a1 = a4 + a6 −

a3a5 − a4a6

a3 − a4 + a5 − a6

and a3, a4, a5, a6 andp are arbitrary real rational quantities such that
∑3
n=1 a

4
2n−1 6=

∑3
n=1 a

4
2n.

6 Solution to Diophantine Equation 5.7.5A5+B5+C5+D5+E5+F 5+G5=H5+I5+J5+K5+L5

While solving Diophantine Equations 5.6.6, solutions to Diophantine Equations 5.7.5 are also obtained and
are entered in Table 6.1.

Table 6.1: Solution to Diophantine equation A5 +B5 + C5 +D5 + E5 + F 5 = G5 +H5 + I5 + J5 +K5 + L5

−2𝑝
AB 8"()'

##
(*' C&AB 8"(

##
(*' C

AB 8"()'
!#

(*' C&AB 8"(
!#

(*' C
, 𝑎# = 𝑎$ + 𝑎! − 8#8%&8!8&

8#&8!/8%&8&
, 𝑎" = 𝑎( + 𝑎? − 8#8%&8!8&

8#&8!/8%&8&
 and 𝑎$, 𝑎(,  𝑎!,

𝑎? and 𝑝 are arbitrary real rational quantities such that | 𝑎#%&"
($

%D" ≠ | 𝑎#%
($

%D" . 
6. Solution to Diophantine Equation 5.7.5  𝑨𝟓 + 𝑩𝟓 + 𝑪𝟓 + 𝑫𝟓 + 𝑬𝟓 + 𝑭𝟓 + 𝑮𝟓 = 𝑯𝟓 + 𝑰𝟓 + 𝑱𝟓 + 𝑲𝟓 +
𝑳𝟓 
        While solving Diophantine Equations 5.6.6, solutions to  Diophantine Equations 5.7.5 are also obtained 
and are entered in Table 6.1. 

S.N. Assigned 
values of 

𝑎$, 𝑎(, 𝑎! and  
𝑎? 

Calculated 
values of 
𝑎", 𝑎#, 𝑥 

(𝑎"𝑥 + 𝑝)! + (𝑎#𝑥)! +  (𝑎$𝑥 + 𝑝)! + (𝑎(𝑥)!

+  (𝑎!𝑥 + 𝑝)! + (𝑎?𝑥)! + (−𝑎"𝑥)! 
= (𝑎#𝑥 + 𝑝)! + (𝑎$𝑥)! + (𝑎(𝑥 + 𝑝)! + (𝑎!𝑥)!

+ (𝑎?𝑥 + 𝑝)! 
1 −2, 5, 6, 7 49/8, −15/8,

−4/27 
5! + 15! + 70! + 6! + 49! + 48! + 2!

= 40! + 56! + 69! + 16! + 14! 
2 −2, −5, 6, 7 −19/2, −15/2,

3/11 
10! + 58! + 42! + 57! + 23! + 12! + 8!

= 35! + 45! + 30! + 36! + 64! 
3 3, − 5, 6, 7 −39/7, 10/7,

−7/16 
10! + 5! + 6! + 49! + 39! + 26! + 51!

= 55! + 35! + 21! + 42! + 33! 
4 3, − 5, − 6, 7 27/5, 2/5, −5/8 19! + 2! + 7! + 35! + 6! + 33! + 30!

= 25! + 38! + 27! + 15! + 27! 
5 −3, − 5, − 6, 1 3/5, −22/5,

5/28 
22! + 25! + 2! + 3! + 6! + 3! + 33!

= 31! + 13! + 5! + 15! + 30! 
6 3, −5, −6, 1/2 35/6, 22/3,

−9/17 
71! + 132! + 20! + 9! + 124! + 108! + 25! 

= 90! + 142! + 105! + 98! + 54! 

    (𝑝)! + (𝑎#𝑥)! +  (𝑎$𝑥 + 𝑝)! + (𝑎(𝑥)! +  (𝑎!𝑥 + 𝑝)! + (𝑎?𝑥)! 
    = (𝑎#𝑥 + 𝑝)! + (𝑎$𝑥)! + (𝑎(𝑥 + 𝑝)! + (𝑎!𝑥)! + (𝑎?𝑥 + 𝑝)!,  (7.1)        

          𝑎$ = 𝑎(
 + 𝑎?

 − 8!8&
(8!&8%/8&)

 ,   (7.2) 

𝑎# = 𝑎!
 − 8!8&

(8!&8%/8&)
 ,    (7.3)

𝑥 = −2𝑝 +8#
#/8%

#&8"
#&8!

#&8&
#.

+8#
!/8%

!&8"
!&8!

!&8&
!. = −2𝑝

AB 8"()'
##

(*" C&AB 8"(
##

(*' C

AB 8"()'
!#

(*" C&AB 8"(
!#

(*' C
 ,   (7.4)          

where 𝑎(, 𝑎!, 𝑎?  and 𝑝 are arbitrary real quantities such that | 𝑎#%&"
($

%D# ≠ | 𝑎#%
($

%D" . 
The values of 𝑎#, 𝑎$  obtained from equations (7.3), (7.2) and values of  𝑎(

 , 𝑎! and 𝑎?
  as assigned by us, are 

then put in equation (7.4), that yields value of 𝑥. Putting the value of 𝑥 so obtained in  equation (7.1), gives its 
solution. Based on this method, some solutions to this equation are given in the Table 7.1. 

Table 7.1 Solution to Diophantine equation  𝐴! + 𝐵! +  𝐶! + 𝐷! + 𝐸! + 𝐹! = 𝐻! + 𝐼! + 𝐽! + 𝐾! + 𝐿! 
S.N. Assigned 

𝑎(, 𝑎! and  
𝑎? 

Calculated7 
𝑎#, 𝑎$, 𝑥 

(𝑝)! + (𝑎#𝑥)! +  (𝑎$𝑥 + 𝑝)! + (𝑎(𝑥)! +  (𝑎!𝑥 + 𝑝)!

+ (𝑎?𝑥)! 
= (𝑎#𝑥 + 𝑝)! + (𝑎$𝑥)! + (𝑎(𝑥 + 𝑝)! + (𝑎!𝑥)!

+ (𝑎?𝑥 + 𝑝)! 
1 4, 5, 6 1/5, 26/5,

−5/34 
1! + 20! + 30! + 33! + 14! + 4!

= 34! + 8! + 9! + 26! + 25! 

7 Solution of Diophantine Equation 5.6.5 A5+B5+C5+D5+E5+F 5=H5+I5+J5+K5+L5

For solutions of Diophantine equation 5.6.5, equations (5.1), (5.5), (5.6) and (5.7) are referred to. When
a1 = 0, these equations take the forms after simplification as given below.

(p)5 + (a2x)5 + (a3x+ p)5 + (a4x)5 + (a5x+ p)5 + (a6x)5

= (a2x+ p)5 + (a3x)5 + (a4x+ p)5 + (a5x)5 + (a6x+ p)5, (7.1)

a3 = a4 + a6 −
a4a6

(a4 − a5 + a6)
, (7.2)

a2 = a5 −
a4a6

(a4 − a5 + a6)
, (7.3)

x = −2p

(
a3

3 + a3
5 − a3

2 − a3
4 − a3

6

)

(a4
3 + a4

5 − a4
2 − a4

4 − a4
6)

= −2p

(∑3
n=2 a

3
2n−1

)
−
(∑3

n=1 a
3
2n

)

(∑3
n=2 a

4
2n−1

)
−
(∑3

n=1 a
4
2n

) , (7.4)
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where a4, a5, a6 and p are arbitrary real quantities such that
∑3
n=2 a

4
2n−1 6=

∑3
n=1 a

4
2n.

The values of a2, a3 obtained from equations (7.3), (7.2) and values of a4, a5 and a6 as assigned by us,
are then put in equation (7.4), that yields value of x. Putting the value of x so obtained in equation (7.1),
gives its solution. Based on this method, some solutions to this equation are given in the Table 7.1.

Table 7.1: Solution to Diophantine equation A5 +B5 + C5 +D5 + E5 + F 5 = H5 + I5 + J5 +K5 + L5

 

S.N. Assigned 

𝑎4, 𝑎5 and  

𝑎6 

Calculated7 

𝑎2, 𝑎3, 𝑥 

(𝑝)5 + (𝑎2𝑥)5 +  (𝑎3𝑥 + 𝑝)5 + (𝑎4𝑥)5 +  (𝑎5𝑥 + 𝑝)5

+ (𝑎6𝑥)5 

= (𝑎2𝑥 + 𝑝)5 + (𝑎3𝑥)5 + (𝑎4𝑥 + 𝑝)5 + (𝑎5𝑥)5

+ (𝑎6𝑥 + 𝑝)5 

1 4, 5, 6 1/5, 26/5,

−5/34 

15 + 205 + 305 + 335 + 145 + 45

= 345 + 85 + 95 + 265 + 255 

2 4, −5, 6 −33/5, 

42/5, −15/34 

345 + 995 + 1095 + 1265 + 265 + 565

= 925 + 605 + 905 + 1335 + 755 

3 −4, − 5, 6 −13/7, 38/7,

−7/2 

25 + 115 + 285 + 375 + 385 + 405

= 365 + 425 + 135 + 305 + 355 

4 −4, − 5, 7 −3/2, 13/2, −1 25 + 35 + 85 + 125 + 135 + 125

= 115 + 145 + 55 + 105 + 105 

5 4, 5, 7 1/3, 19/3,

−9/68 

35 + 365 + 635 + 655 + 325 + 55

= 685 + 115 + 235 + 575 + 455 

6 −4, 5, −7 27/4,

−37/4,      6/17 

345 + 815 + 945 + 1115 + 145 + 505

= 775 + 485 + 845 + 1155 + 605 

7 −4, 5, −3 6, −6,     3/2 25 + 185 + 175 + 185 + 105 + 75

= 165 + 125 + 95 + 205 + 155 

8 −4, 5, 3 3, −3,    − 3/4 45 + 135 + 125 + 55 + 155 + 55

= 95 + 115 + 95 + 95 + 165 

 

  That also proves Lemma 7.1 and 7.2.

Lemma 7.1. An Diophantine equation 5.6.5, (p)5 + (a2x)
5

+ (a3x+ p)
5

+ (a4x)
5

+ (a5x+ p)
5

+ (a6x)
5

=

(a2x+ p)
5

+ (a3x)
5

+ (a4x+ p)
5

+ (a5x)
5

+ (a6x+ p)
5

is always transformable into linear equation, x =

−2p
(a33+a35−a

3
2−a

3
4−a

3
6)

(a43+a45−a42−a44−a46)
− 2p

(
∑3
n=2 a

3
2n−1)−(

∑3
n=1 a

3
2n)

(
∑3
n=2 a

4
2n−1)−(

∑3
n=1 a

4
2n)

, where a2 and a3 are given by equations (7.3), (7.2) and

a4, a5, a6 are arbitrarily assigned real rational quantities such that such that
∑3
n=2 a

4
2n−1 6=

∑3
n=1 a

4
2n.

Lemma 7.2. After normalisation, a Diophantine equation 5.6.5, (p)5 + (a2x)
5

+ (a3x+ p)
5

+ (a4x)
5

+

(a5x+ p)
5

+ (a6x)
5

= (a2x+ p)
5

+ (a3x)
5

+ (a4x+ p)
5

+ (a5x)
5

+ (a6x+ p)
5

is always true and, in fact,

is an identity, when x = −2p
(a33+a35−a

3
2−a

3
4−a

3
6)

(a43+a45−a42−a44−a46)
− 2p

(
∑3
n=2 a

3
2n−1)−(

∑3
n=1 a

3
2n)

(
∑3
n=2 a

4
2n−1)−(

∑3
n=1 a

4
2n)

, a2 = a5 − a4a6
(a4−a5+a6) , a3 =

a4 + a6 − a4a6
(a4−a5+a6) , and a4, a5, a6

are arbitrarily assigned real rational quantities such that such that
∑3
n=2 a

4
2n−1 6=

∑3
n=1 a

4
2n.

8 Solution to generalised form 5.n.n of Diophantine Equation 5.n.n Y 5
1 +Y 5

2 +Y 5
3 + . . .+Y 5

n−2+

Y 5
n−1+Y 5

n =Z5
1+Z5

2 +Z5
3+ . . .+Z5

n−2+Z5
n−1+Z5

n, where n is an integer ≥ 6.
For generalised form of Diophantine equation 5.n.n, two cases will be taken up, first case will be of the
category, when n = 2k (even integers) and second when n = 2k − 1 (odd integers) where k ≥ 3.

a. When n = 2k,
Diophantine equation 5.8.8 as mentioned below, is taken up.

(a1x+ p)
5

+ (a2x)
5

+ (a3x+ p)
5

+ (a4x)
5

+ (a5x+ p)
5

+ (a6x)
5

+ (a7x+ p)
5

+ (a8x)
5
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= (a1x)
5

+ (a2x+ p)
5

+ (a3x)
5

+ (a4x+ p)
5

+ (a5x)
5

+ (a6x+ p)
5

+ (a7x)
5

+ (a8x+ p)
5
, (8.1)

where a1, a2, a3, . . . , a8 are arbitrarily assigned real rational quantities. On equating coefficients of x and x2

equal to zero in equation (8.1) , following equations are obtained

a1 = − (a3 + a5 + a7 − a2 − a4 − a6 − a8) , (8.2)

and
a2

1 = −
(
a2

3 + a2
5 + a2

7 − a2
2 − a2

4 − a2
6 − a2

8

)
, (8.3)

5x4p
(
a4

1 + a4
3 + a4

5 + a4
7 − a4

2 − a4
4 − a4

6 − a4
8

)
+ 10x3p2

(
a3

1 + a3
3 + a3

5 + a4
7 − a3

2 − a3
4 − a3

6 − a3
8

)
= 0. (8.4)

Elimination of a1 from the equations (8.2) and (8.3) yields

a2 = A8 −
P8 −Q8

A8 −B8
, (8.5)

and putting this value of a2 in equation (8.2) results in

a1 = B8 −
P8 −Q8

A8 −B8
. (8.6)

where a3, a4, a5, . . . , a8 are arbitrarily assigned real rational quantities,

A8 = a3 + a5 + a7 =

4∑

i=2

a(2i−1), (8.7)

B8 = a4 + a6 + a8 =

4∑

i=2

a2i, (8.8)

P8 = a3 (a5 + a7) + a5 (a7) = a3 ·
4∑

i=3

a(2i−1) + a5 · a7, (8.9)

Q8 = a4 (a6 + a8) + a6 (a8) = a4 ·
4∑

i=3

a2i + a6 · a8, (8.10)

A8 6= B8 and also
∑4
n=2 a

4
2n−1 6=

∑4
n=1 a

4
2n. Value of x obtained from equation (8.4) is then given by

x = −2p

(
a3

1 + a3
3 + a3

5 + a3
7 − a3

2 − a3
4 − a3

6 − a3
8

)

(a4
1 + a4

3 + a4
5 + a4

7 − a4
2 − a4

4 − a4
6 − a4

8)
= −2p

(∑4
n=1 a

3
(2n−1)

)
−
(∑4

n=1 a
3
2n

)

(∑4
n=1 a

4
(2n−1)

)
−
(∑4

n=1 a
4
2n

) . (8.11)

Substituting this value of x in equation (8.1), will give solutions to Diophantine equation 5.8.8.
Generalising it forn = 2k, where n ≥ 3 for the Diophantine equation

(a1x+ p)
5

+ (a2x)
5

+ (a3x+ p)
5

+ . . .+
{
a(2k−2) · x

}5
+
{
a(2k−1) · x+ p

}5
+ (a2kx)

5

= (a1x)
5

+ (a2x+ p)
5

+ (a3x)
5

+ . . .+
{
a(2k−2) · x+ p

}5
+
{
a(2k−1) · x

}5
+ (a2kx+ p)

5
,

(8.12)

and following the same procedure as that of Diophantine equation 5.8.8, equations for a2 and a1 can be
derived as given below

a2 = A2k −
P2k −Q2k

A2k −B2k
, (8.13)

a1 = B2k −
P2k −Q2k

A2k −B2k
. (8.14)

where a3, a4, a5, . . . , a2k are arbitrarily assigned real rational quantities,

A2k = a3 + a5 + a7 + . . .+ a2k−5 + a2k−3 + a2k−1 =

k∑

i=2

a2i−1, (8.15)

B2k = a4 + a6 + a8 + . . .+ a2k−4 + a2k−2 + a2k =

k∑

i=2

a2i, (8.16)
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P2k = a3 (a5 + a7 + a9 . . .+ a2k−1) + a5 (a7 + a9 + a11 + . . .+ a2k−1)

+ a7 (a9 + a11 + a13 + . . .+ a2k−1) + . . .+ a2k−3 · a2k−1 (8.17)

and

Q2k = a4 (a6 + a8 + a10 . . .+ a2k) + a6 (a8 + a10 + a12 + . . .+ a2k)

+ a8 (a10 + a12 + a14 + . . .+ a2k−) + . . .+ a2k−2a2k, (8.18)

A2k 6= B2k and also
∑4
n=2 a

4
2n−1 6=

∑4
n=1 a

4
2n. In mathematical notations,

P2k = a3 ·
k∑

i=3

a2i−1 +a5 ·
k∑

i=4

a2i−1 +a7 ·
k∑

i=5

a2i−1 + . . .+a2k−7 ·
k∑

i=k−2

a2i−1 +a2k−5 ·
k∑

i=k−1

a2i−1 +a2k−3a2k−1,

Q2k = a4 ·
k∑

i=3

a2i + a6 ·
k∑

i=4

a2i + a8 ·
k∑

i=5

a2i + . . .+ a2k−6 ·
k∑

i=k−2

a2i + a2k−4 ·
k∑

i=k−1

a2i + a2k−2a2k.

To avoid repetition , the procedure is not reiterated here for finding the relation of x which is given by

x = −2p

(
a3

1 + a3
3 + a3

5 + . . .+ a3
2k−1)− (a3

2 + a3
4 + a3

6 + . . .+ a3
2k

)
(
a4

1 + a4
3 + a4

5 + . . .+ a4
2k−1)− (a4

2 + a4
4 + a4

6 + . . .+ a4
2k

) = −2p

(∑k
i=1 a

3
2i−1

)
−
(∑k

i=1 a
3
2i

)

(∑k
i=1 a

4
2i−1

)
−
(∑k

i=1 a
4
2i

) .

(8.19)

where
∑k
n=1 a

4
2i−1 6=

∑4
n=1 a

4
2i. Substitution of this value of x in equation (8.12), will give solution to

Diophantine equation 5.n.nwhere n = 2k and k ≥ 3.
b. When n = 2k − 1 and k ≥ 3.
Such 5.n.n equations can be written as

(a1x+ p)
5

+ (a2x)
5

+ (a3x+ p)
5

+ . . .+ (a2k−3x+ p)
5

+ (a2k−2x)
5

+ (a2k−1x− p)5

= (a1x)
5

+ (a2x+ p)
5

+ (a3x)
5

+ . . .+ (a2k−3x)
5

+ (a2k−2x− p)5
+ (a2k−1x+ p)

5
. (8.20)

Kindly note in case of Diophantine equations where n = 2k, signs of p were always positive since number
of terms containing p appearing in Left Hand Side was equal to those appearing in Right Hand Side, thus
constant term containing p5 vanished. But when n is odd, number of terms containing p in LHS is more by
one than the correspondent terms in RHS, therefore, last term of LHS is taken as −p and last but one term
of RHS is also taken as −p. With this arrangement, constant term of equation (8.20) expansion vanishes.
Assuming n = 7,Diophantine equation 5.7.7 can be written as

(a1x+ p)
5

+ (a2x)
5

+ (a3x+ p)
5

+ (a4x)
5

+ (a5x+ p)
5

+ (a6x)
5

+ (a7x− p)5

= (a1x)
5

+ (a2x+ p)
5

+ (a3x)
5

+ (a4x+ p)
5

+ (a5x)
5

+ (a6x− p)5
+ (a7x+ p)

5
. (8.21)

Equating coefficients of x and x2 with zero yields,

a1 = −a3 − a5 + a2 + a4 + a6, (8.22)

a2
1 = −a2

3 − a2
5 + 2a2

7 + a2
2 + a2

4 − a2
6, (8.23)

and

x = −2p

(
a3

1 + a3
3 + a3

5 − a3
2 − a3

4 − a3
6

)

(a4
1 + a4

3 + a4
5 − 2a4

7 − a4
2 − a4

4 + a4
6)

= −2p

(∑3
i=1 a

3
2i−1

)
−
(∑3

i=1 a
3
2i

)

(∑3
i=1 a

4
2i−1

)
− 2 (a4

7 − a4
6)−

(∑3
i=1 a

4
2i

) , (8.24)

where
∑3
n=1 a

4
2i−1 −

∑4
n=1 a

4
2i 6=2

(
a4

7 − a4
6

)
. From Equations (8.23) and (8.24),

a1 = B7 −
P7 −Q7 + a2

7 − a2
6

A7 −B7
, (8.25)

a2 = A7 −
P7 −Q7 + a2

7 − a2
6

A7 −B7
, (8.26)

where
A7 = a3 + a5, (8.27)
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B7 = a4 + a6, (8.28)

P7 = a3 (a5) , (8.29)

Q7 = a4 (a6) . (8.30)

Generalising it for Diophantine equation (8.21) where n = 2k − 1, the equations, then can be written

a2 = A2k−1 −
P2k−1 −Q2k−1 + a2

2k−1 − a2
2k−2

A2k−1 −B2k−1
, (8.31)

a1 = B2k−1 −
P2k−1 −Q2k−1 + a2

2k−1 − a2
2k−2

A2k−1 −B2k−1
, (8.32)

where

A2k−1 = a3 + a5 + a7 + . . . a2k−3 =

k−1∑

i=2

a2i−1, (8.33)

B2k−1 = a4 + a6 + a8 + . . . a2k−2 =

k−1∑

i=2

a2i, (8.34)

P2k−1 = a3 (a5 + a7 + a9 + . . .+ a2k−3) + a5 (a7 + a9 + a11 + . . .+ a2k−3)

+ a7 (a9 + a11 + a13 + . . .+ a2k−3) + . . .+ a2k−5 (a2k−3) , (8.35)

Q2k−1 = a4 (a6 + a8 + a10 + . . .+ a2k−2) + a6 (a8 + a10 + a12 + . . .+ a2k−2)

+ a8 (a10 + a12 + a14 + . . .+ a2k−2) + . . .+ a2k−4 (a2k−2) , (8.36)

and

x = −2p

(
a3

1 + a3
3 + a3

5 + . . . a3
2k−3)− (a3

2 + a3
4 + a3

6 + . . .+ a3
2k−2

)
(
a4

1 + a4
3 + a4

5 + . . .+ a4
2k−3 − 2a4

2k−1)− (a4
2 + a4

4 + a4
6 + . . .+ a4

2k−4 − a4
2k−2

) , (8.37)

where
∑3
n=1 a

k−1
2i−1 −

∑k−1
n=1 a

4
2i 6=2

(
a4

2k−1 − a4
2k−2

)
. In mathematical notations,

P2k−1 = a3 ·
k−1∑

i=3

a2i−1 + a5 ·
k−1∑

i=4

a2i−1 + a7 ·
k−1∑

i=5

a2i−1 + . . .+ a2k−7 ·
k−1∑

i=k−2

a2i−1 + a2k−5 · a2k−3,

Q2k−1 = a4 ·
k−1∑

i=3

a2i + a6 ·
k−1∑

i=4

a2i + a8 ·
k−1∑

i=5

a2i + . . .+ a2k−6 ·
k−1∑

i=k−2

a2i + a2k−4 · a2k−2,

and

x = −2p

(∑k−1
i=1 a

3
2i−1

)
−
(∑k−1

i=1 a
3
2i

)

(∑k−1
i=1 a

4
2i−1

)
− 2

(
a4

2k−1 − a4
2k−2

)
−
(∑k−1

i=1 a
4
2i

) .

where
∑3
n=1 a

k−1
2i−1 −

∑k−1
n=1 a

4
2i 6=2

(
a4

2k−1 − a4
2k−2

)
and a1, a2, a3, . . . , a2k−1 are arbitrarily assigned real

rational quantities. Based on these equations, some Diophantine equations have been solved. Kindly refer
to Table 8.1..

This proves Lemma 8.1, Lemma 8.2, Lemma 8.3 and Lemma 8.4. From figures mentioned in Table 8,1,
it is observed that while solving Diophantine equations 5.n.n , solutions to Diophantine equation 5.n− 1.n.
were also obtained.

Lemma 8.1. A Diophantine equation 5.n.n where n = 2k and k ≥ 3, then (a1x+ p)
5
+(a2x)

5
+(a3x+ p)

5
+

. . .+ (a2k−2x)
5

+ (a2k−1x+ p)
5

+ (a2kx)
5

= (a1x)
5

+ (a2x+ p)
5

+ (a3x)
5

+ . . .+ (a2k−2x+ p)
5

+ (a2k−1x)
5

+

(a2kx+ p)
5

is always transformable into linear equation x = −2p
(a31+a33+a35+...+a32k−1)−(a32+a34+a36+...+a32k)
(a41+a43+a45+...+a42k−1)−(a42+a44+a46+...+a42k)

,

where a1,a2, A2k, B2k, P2k and Q2k are given by equations (8.14), (8.13), (8.15). (8.16), (8.17) and (8.18)

respectively and a1,a2, a3, . . . , a2k are all real rational quantities such that
∑k
n=1 a

4
2i−1 6=

∑4
n=1 a

4
2i.
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Table 8.1: Solution to Diophantine equation Y 5
1 +Y 5

2 +Y 5
3 + . . .+Y 5

n−2 +Y 5
n−1 +Y 5

n = Z5
1 +Z5

2 +Z5
3 + . . .+Z5

n−2 +
Z5

n−1 + Z5
n

𝑄#Q&" = 𝑎( · � 𝑎#'

Q&"

'D$

+ 𝑎? · � 𝑎#'

Q&"

'D(

+ 𝑎I · � 𝑎#'

Q&"

'D!

+ ⋯ + 𝑎#Q&? · � 𝑎#'

Q&"

'DQ&#

+ 𝑎#Q&( · 𝑎#Q&#, 

and 

𝑥 = −2𝑝
r| 𝑎#'&"

$Q&"
'D" s − r| 𝑎#'

$Q&"
'D" s

r| 𝑎#'&"
(Q&"

'D" s − 2(𝑎#Q&"
( − 𝑎#Q&#

( ) − r| 𝑎#'
(Q&"

'D" s
 . 

where | 𝑎#'&"
Q&"$

%D" − | 𝑎#'
( ≠Q&"

%D" 2z𝑎#Q&"
( − 𝑎#Q&#

( {     and 𝑎", 𝑎#, 𝑎$, … , 𝑎#Q&"   are arbitrarily assigned 
real rational quantities. Based on these equations, some Diophantine equations have been solved. Kindly 
refer to Table 8.1..  

D.E. Assigned 
𝑎$, 𝑎(. 

𝑎! … 𝑎% 

Calculat
ed 
𝐴%, 𝐵%, 
𝑃%, 𝑄% 

Calcul
ated 
𝑎", 𝑎# 

, 𝑥 

(𝑎"𝑥 + 𝑝)! + (𝑎#𝑥)! +  (𝑎$𝑥 + 𝑝)! + ⋯ +  (𝑎%𝑥)! 
= (𝑎"𝑥)! +  (𝑎#𝑥 + 𝑝)! +  (𝑎$𝑥)! + ⋯ + (𝑎%𝑥 + 𝑝)! 

5.11.11 1, −1, 2, −2,  
3, −3,4, −4,  

6, 

10, −10 
35, 35 

−11, 9 
31/50 

291! + 31! + 62! + 93! + 124! + 329! + 31! + 19!

+ 62! + 93! + 124! + 236! 
= 279! + 81! + 112! + 143! + 174! + 136! + 341!

+ 12! + 43! + 174! 
5.12.12 1, −1, 2, −2,  

3, −3,
4, −4,  

5, −6 

15, − 16, 
85,95 

−
486
31 ,

475
31 ,

527
176

8086! + 527! + 1054! + 1581! + 2108! + 3162!

+ 8251! + 527! + 1054! + 1581!

+ 2108! + 2635! 
= 8075! + 703! + 1230! + 1757!+2284! + 2811!

+ 8262! + 351! 
+878! + 1405! + 1932! + 2986! 

5.15.15 1, −1,  
2, −2,  
3, −3, 
4, −4,  
5, −5, 
6, −6, 

8 

21, −21, 
175, 175 

−
65
3 ,

61
3 ,

2844
6523

58097! + 2844! + 5688! + 8532! + 11376!

+ 14220!+17064! + 61351! 
+2844! + 679! + 5688! + 8532! + 11376! + 14220!

+ 17064! + 26275! 

= 57828! + 6367! + 9211! + 12055! + 14899!

+ 17743! + 20587! 
+19229! + 61620! + 2165! + 5009! + 7853!

+ 10697! + 20587! 

were also obtained.  
 Lemma 8.1. A Diophantine equation 5. 𝑛. 𝑛 where 𝑛 = 2𝑘  and 𝑘 ≥ 3, then (𝑎"𝑥 + 𝑝)! + (𝑎#𝑥)! +
 (𝑎$𝑥 + 𝑝)! + ⋯ +  (𝑎#Q&#𝑥)! +  (𝑎#Q&"𝑥 + 𝑝)! +  (𝑎#Q𝑥)! = (𝑎"𝑥)! +  (𝑎#𝑥 + 𝑝)! +  (𝑎$𝑥)! + ⋯ +
(𝑎#Q&#𝑥 + 𝑝)! + (𝑎#Q&"𝑥)! + (𝑎#Q𝑥 + 𝑝)! is always transformable into linear equation 𝑥 =

−2𝑝 +8'
#/8#

#/8%
#/⋯/8"0)'

# )&(8"
#/8!

#/8&
#/⋯/8"0

# .
+8'

!/8#
!/8%

!/⋯/8"0)'
! )&(8"

!/8!
!/8&

!/⋯/8"0
! . , where 𝑎",𝑎#, 𝐴#Q , 𝐵#Q , 𝑃#Q and  𝑄#Q are given by equations 

(8.14),  (8.13), (8.15). (8.16), (8.17) and (8.18) respectively and 𝑎",𝑎#, 𝑎$, … , 𝑎#Q are all real rational 

quantities such that | 𝑎#'&"
(Q

%D" ≠ | 𝑎#'
( .(

%D"  
 Lemma 8.2. After normalisation, a Diophantine equation 5. 𝑛. 𝑛, (𝑎"𝑥 + 𝑝)! + (𝑎#𝑥)! +  (𝑎$𝑥 + 𝑝)! + ⋯ +
 (𝑎#Q&#𝑥)! +  (𝑎#Q&"𝑥 + 𝑝)! +  (𝑎#Q𝑥)! = (𝑎"𝑥)! +  (𝑎#𝑥 + 𝑝)! +  (𝑎$𝑥)! + ⋯ + (𝑎#Q&#𝑥 + 𝑝)! +
(𝑎#Q&"𝑥)! + (𝑎#Q𝑥 + 𝑝)! is always true and, in fact, is an identity where where 𝑛 = 2𝑘  𝑘 ≥ 3, 𝑥 =

Lemma 8.2. After normalisation, a Diophantine equation 5.n.n, (a1x+ p)
5

+ (a2x)
5

+ (a3x+ p)
5

+

. . . + (a2k−2x)
5

+ (a2k−1x+ p)
5

+ (a2kx)
5

= (a1x)
5

+ (a2x+ p)
5

+ (a3x)
5

+ . . . + (a2k−2x+ p)
5

+

(a2k−1x)
5

+ (a2kx+ p)
5

is always true and, in fact, is an identity where where n = 2k k ≥ 3,

x = −2p
(a31+a33+a35+...+a32k−1)−(a32+a34+a36+...+a32k)
(a41+a43+a45+...+a42k−1)−(a42+a44+a46+...+a42k)

, a1,a2, A2k, B2k, P2k and Q2k are given by equations (8.14),

(8.13), (8.15). (8.16), (8.17) and (8.18) respectively and a1,a2, a3, . . . , a2k are all real rational quantities such

that
∑k
n=1 a

4
2i−1 6=

∑4
n=1 a

4
2i.

Lemma 8.3. An equation 5.n.n where n = 2k − 1 and k > 3, then (a1x+ p)
5

+ (a2x)
5

+ (a3x+ p)
5

+

. . . + (a2k−2x)
5

+ (a2k−1x− p)5
= (a1x)

5
+ (a2x+ p)

5
+ (a3x)

5
+ . . . + (a2k−2x− p)5

+ (a2k−1x+ p)
5

is

always transformable into linear equation x = −2p
(a31+a33+a35+...a32k−3)−(a32+a34+a36+...+a32k−2)

(a41+a43+a45+...+a42k−3)−2(a42k−1−a
4
2k−2)−(a42+a44+a46+...+a42k−2)

, where a1,a2, A2k−1, B2k−1, P2k−1 and Q2k−1 are given by equations (8.26), (8.25), (8.27), (8.28), (8.29)

and (8.30) respectively and a1,a2, a3, . . . , a2k−1 are all real rational quantities such that
∑3
n=1 a

k−1
2i−1 −∑k−1

n=1 a
4
2i 6=2

(
a4

2k−1 − a4
2k−2

)
.

Lemma 8.4. After normalisation, a Diophantine equation 5.n.n, (a1x+ p)
5

+ (a2x)
5

+ (a3x+ p)
5

+

. . . + (a2k−2x)
5

+ (a2k−1x− p)5
= (a1x)

5
+ (a2x+ p)

5
+ (a3x)

5
+ . . . + (a2k−2x− p)5

+

(a2k−1x+ p)
5

is always true and in fact is an identity where n = 2k and k ≥ 3, x =

−2p
(a31+a33+a35+...a32k−3)−(a32+a34+a36+...+a32k−2)

(a41+a43+a45+...+a42k−3)−2(a42k−1−a
4
2k−2)−(a42+a44+a46+...+a42k−2)

, a1,a2, A2k−1, B2k−1, P2k−1 and Q2k−1 are

given by equations (8.26), (8.25), (8.27). (8.28), (8.29) and (8.30) respectively and a1,a2, a3, . . . , a2k−1 are
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all real rational quantities such that
∑3
n=1 a

k−1
2i−1 −

∑k−1
n=1 a

4
2i 6=2

(
a4

2k−1 − a4
2k−2

)
.

9 Parametrisation
9.1 Parametric solution to Diophantine Equation 5.4.4
For parametric solution to Diophantine equation 5.4.4, referring to equation (2.9), equation (2.12) can be
written as

(2a · P −Q)5 + (2b · P )
5

+ (2c · P −Q)5 + (2d · P − t ·Q)3

= (2a · P )5 + (2b · P −Q)5 + (2c · P − t ·Q)5 + (2d · P −Q)5, (9.1)

where a, b, P and Q are given by Equations (2.8), (2.6), (2.10) and (2.11) respectively and t = s/p. For the
sake of brevity, these are not reiterated here. Evidently a and b are dependent upon c, d and t meaning
thereby that by changing the value of any one out of three, will give new values of a and b, since P and Q
are dependent upon upon a, b and t, therefore, varying c, d or t will give a new set of solution. Kindly peruse
Table 2.1, where t is kept equal to −2 and values of c and d have been changed. Alternatively, all c, dand t
can be varied, therefore, equation (9.1) can be transformed into two variables or one variable by keeping two
or one parameter constant. That proves there can be infinite parametric solutions to Diophantine Equation
5.4.4.
9.2 Parametric solution to Diophantine Equation 5.4.3
For parametric solution to Diophantine equation 5.4.3, a is equated with zero then equation (9.1) transforms
into

(−Q)5 + (2b · P )
5

+ (2c · P −Q)5 + (2d · P − tQ)3 = (2b · P −Q)5 + (2c · P − t ·Q)5 + (2d · P −Q)5. (9.2)

a in Diophantine equation 5.4.4 was dependent upon c, dand t and now a has been equated with zero,
therefore, c now depends upon d and t by equation (2.14) meaning thereby that now there are two variable
d and t. Value of b is dependent upon t by equation (2.15). Values of P and Q now are given by equation
(2.17) and (2.18). By fixing one variable, say t, then parametric solution will be in one variable. This also
has infinite parametric solutions by fixing t or d at different values. Based on this parametrisation, some
solutions are given in Table 2.3.
9.3 Parametric solution to Diophantine Equation 5.5.5
For parametric solution of Diophantine equation 5.5.5, equations (3.16) and (3.15) can be written as a =
cd−e2
c−d = c

(
z−y2
1−z

)
and b = c

{
1− z +

(
z−y2
1−z

)}
where e

c = y, dc = z. Considering z = −1, these equations

take the form, a = − c
2

(
1 + y2

)
and b = c

{
2− 1

2

(
1 + y2

)}
. Putting these values of a and b in equation

(3.17) and simplifying

x =
3p

c

(
1

y2 − 3

)
, (9.3)

where c 6= 0. Also Diophantine equation (3.8) takes the form

(ax+ p)5 + ( bx)
5

+ (cx+ p)5 + (−cx)3 + (ex− p)5

= (ax)
5

+ (bx+ p)5 + (cx)
5

+ (−cx− p)5 + (ex+ p)5. (9.4)

On putting the value of xgiven by equation (9.3) in equation (9.4) and simplifying,
{
−(y2 + 9)

}5
+
{

3
(
3− y2

)}5
+
{

2y2
}5

+ {−6}5 +
{
−2y2 + 6y + 6

}5

=
{
−3
(
y2 + 1

)}5
+
{
−y2 + 3

}5
+ {6}5 +

{
−2y2

}5
+
{

2y2 + 6y − 6
}5
. (9.5)

This is a parametric solution with one variable, however, by changing the value of z and t, an infinite
parametric solutions can be had. On the basis of parametric solution given by equation (9.5), some solutions
to Diophantine Equation 5.5.5 are given in Table 9.1. Since solutions to Diophantine equation 5.5.5 also
give solution to equation 5.6.4 both are given in the Table 9.1. These solutions prove veracity of parametric
solutions given by equation (9.5).
9.4 Parametric solution to Diophantine Equation 5.5.4
For parametric solution to Diophantine equation 5.5.4, d is equated with zero and equation (9.4) takes the
form

(ax+ p)5 + ( bx)
5

+ (cx+ p)5 + (ex− p)5 + p5

= (ax)
5

+ (bx+ p)5 + (cx)
5

+ (ex+ p)5 (9.6)
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Table 9.1: Solution to Diophantine equation A5 + B5 + C5 +D5 + E5 = F 5 +G5 +H5 + I5 + J5 and A5 + B5 +
C5 +D5 + E5 + F 5 = G5 +H5 + I5 + J5

    𝑥 = $3
0

r "
W"&$

s,  (9.3) 

where 𝑐 ≠ 0. Also Diophantine equation (3.8) takes the form 
 (𝑎𝑥 + 𝑝)! + ( 𝑏𝑥)! + (𝑐𝑥 + 𝑝)! + (−𝑐𝑥)$ + (𝑒𝑥 − 𝑝)! 

           = (𝑎𝑥)! + (𝑏𝑥 + 𝑝)! + (𝑐𝑥)! + (−𝑐𝑥 − 𝑝)! + (𝑒𝑥 + 𝑝)!.            (9.4)   
On putting the value of 𝑥 given by equation (9.3) in equation (9.4) and simplifying, 

 {−(𝑦# + 9)}! + {3(3 − 𝑦#)}! + {2𝑦#}! + {−6}! + {−2𝑦# + 6𝑦 + 6}! 
       = {−3(𝑦# + 1)}! + {−𝑦# + 3}! + {6}! + {−2𝑦#}! + {2𝑦# + 6𝑦 − 6}!.           (9.5) 

    This is a parametric solution with one variable, however, by changing the value of 𝑧 and  𝑡, an infinite 
parametric solutions can be had. On the basis of parametric solution given by equation (9.5), some solutions 
to Diophantine Equation 5.5.5 are given in Table 9.1. Since solutions to Diophantine equation 5.5.5 also give 
solution to equation 5.6.4 both are given in the Table 9.1. These solutions prove veracity of parametric 
solutions given by equation (9.5). 

S.N. 𝑦 𝐴! + 𝐵! + 𝐶! + 𝐷! + 𝐸! = 𝐹! + 𝐺! + 𝐻! + 𝐼! + 𝐽! 
and  𝐴! + 𝐵! + 𝐶! + 𝐷! + 𝐸! + 𝐹! = 𝐺! + 𝐻! + 𝐼! + 𝐽! 

1 2 13! + 3! + 6! + 14! + 6! = 8! + 10! + 15! + 1! + 8! 
2 4 25! + 39! + 6! + 2! + 6! + 50! = 32! + 51! + 13! + 32! 
3 5 34! + 66! + 6! + 14! + 6! + 74! = 50! + 78! + 22! + 50! 
4 6 45! + 99! + 6! + 30! + 6! + 102! = 72! + 111! + 33! + 72! 
5 7 58! + 138! + 6! +  50! + 6! + 134! = 98! + 150! + 46! + 98! 
6 8 73! + 183! + 6! + 74! + 6! + 170! = 128! + 195! + 61! + 128! 
7 9 90! + 234! + 6! + 102! + 6! + 210! = 162! + 246! + 78! + 162! 
8 10 109! + 291! + 6! + 134! + 6! + 254! = 200! + 303! + 254! + 200! 

       For parametric solution to Diophantine equation 5.5.4, 𝑑 is equated with zero and equation (9.4) takes the 
form 

 (𝑎𝑥 + 𝑝)! + ( 𝑏𝑥)! + (𝑐𝑥 + 𝑝)! + (𝑒𝑥 − 𝑝)! + 𝑝! 
        = (𝑎𝑥)! + (𝑏𝑥 + 𝑝)! + (𝑐𝑥)! + (𝑒𝑥 + 𝑝)!                        (9.6) 

and Equation (3.15) transforms into 𝑏 = 𝑐 − 𝑒#/𝑐 and equation (3.16) transforms to 𝑎 = −𝑒#/𝑐. On putting 
these values of 𝑎, 𝑏 and 𝑑 in Equation (3.17) and then after simplification,  

       𝑥 = $3
#0

[ "
(W"&")

\,   (9.7)           

where 𝑐 ≠ 0. and 𝑦 ≠ 1.Putting this value  𝑥 in in equation (9.6) and after simplification, 
 [−(𝑦# + 2)]! +  [3(1 − 𝑦#)]! +  [2𝑦# + 1]! + [3𝑦 − 2𝑦# + 2]! + [2𝑦# − 2]! 

          = [−3𝑦#]! +  [1 − 𝑦#]! +  [3]! + [2𝑦# + 3𝑦 − 2]!.             (9.8)            
This is a parametric solution with one variable, however, by changing the value  𝑡 in equation (3.14), infinite 
parametric solutions can be had. On the basis of parametric solution given by equation (9.8), some solutions 
of Diophantine Equation 5.5.4 are given in Table 9.2. These solutions prove veracity of parametric solutions 
given by this equation.   

Table 9.2 Solution to Diophantine equation   𝐴! + 𝐵! + 𝐶! + 𝐷! + 𝐸! = 𝐺! + 𝐻! + 𝐼! + 𝐽! 
S.N. 𝑦 𝐴! + 𝐵! + 𝐶! + 𝐷! + 𝐸! = 𝐹! + 𝐺! + 𝐻! + 𝐼! 
1 3 11! + 24! + 7! + 3! + 25! = 27! + 8! + 19! + 16! 
2 4 18! + 45! + 18! + 3! + 42! = 33! + 20! + 48! + 15! 
3 5 27! + 72! + 33! + 3! + 63! = 51! + 48! + 75! + 24! 
4 6 38! + 105! + 52! + 3! + 88! = 73! + 70! + 108! + 35! 
5 7 51! + 144! + 75! + 3! + 117! = 99! + 96! + 147! + 48! 

and Equation (3.15) transforms into b = c− e2/c and equation (3.16) transforms to a = −e2/c. On putting
these values of a, band d in Equation (3.17) and then after simplification,

x =
3p

2c

{
1

(y2 − 1)

}
, (9.7)

where c 6= 0. and y 6= 1.Putting this value x in in equation (9.6) and after simplification,[
−(y2 + 2)

]5
+
[
3
(
1− y2

)]5
+
[
2y2 + 1

]5
+
[
3y − 2y2 + 2

]5
+
[
2y2 − 2

]5

=
[
−3y2

]5
+
[
1− y2

]5
+ [3]5 +

[
2y2 + 3y − 2

]5
. (9.8)

This is a parametric solution with one variable, however, by changing the value t in equation (3.14),
infinite parametric solutions can be had. On the basis of parametric solution given by equation (9.8), some
solutions of Diophantine Equation 5.5.4 are given in Table 9.2. These solutions prove veracity of parametric
solutions given by this equation.

Table 9.2: Solution to Diophantine equation A5 +B5 + C5 +D5 + E5 = G5 +H5 + I5 + J5

S.N. 𝑦 𝐴5 +𝐵5 + 𝐶5 + 𝐷5 + 𝐸5 = 𝐹5 + 𝐺5 +𝐻5 + 𝐼5 

1 3 115 + 245 + 75 + 35 + 255 = 275 + 85 + 195 + 165 

2 4 185 + 455 + 185 + 35 + 425 = 335 + 205 + 485 + 155 

3 5 275 + 725 + 335 + 35 + 635 = 515 + 485 + 755 + 245 

4 6 385 + 1055 + 525 + 35 + 885 = 735 + 705 + 1085 + 355 

5 7 515 + 1445 + 755 + 35 + 1175 = 995 + 965 + 1475 + 485 

6 8 665 + 1895 + 1025 + 35 + 1505 = 1295 + 1265 + 1925 + 635 

7 9 835 + 2405 + 1335 + 35 + 1875 = 1635 + 1605 + 2435 + 805 

 
9.5 Parametric solution to Diophantine Equations 5.6.6 and 5.6.5
Equation (5.7) can be written as x = −2p(P/Q) where P = a3

1 + a3
3 + a3

5 − a3
2 − a3

4 − a3
6 and Q = a4

1 + a4
3 +

a4
5 − a4

2 − a4
4 − a4

6. Putting this value of x in equation (5.1), it takes the form

(−2a1P +Q)
5

+ (−2a2P )
5

+ (−2a3P +Q)
5

+ (−2a4P )
5

+ (−2a5P +Q)
5

+ (−2a6P )
5

= (−2a1P )
5

+ (−2a2P +Q)
5

+ (−2a3P )
5

+ (−2a4P +Q)
5

+ (−2a5P )
5

+ (−2a6P +Q)
5
,

(9.9)

where a1 and a2 are given by equation (5.6) and (5.5) and a3, a4, a5 and a6 are real rational quantities. By
fixing the value of one variable, say a3, and assigning different real rational values to a4, a5 and a6, infinite
numbers of parametric solutions to Diophantine equation 5.6.6 are obtained.
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Following the same procedure and equating a1 = 0, parametric solutions to Diophantine Equation 5.6.5
are obtained as follow.

((Q)5 + (−2a2P )
5

+ (−2a3P +Q)
5

+ (−2a4P )
5

+ (−2a5P +Q)
5

+ (−2a6P )
5

= (−2a2P +Q)
5

+ (−2a3P )
5

+ (−2a4P +Q)
5

+ (−2a5P )
5

+ (−2a6P +Q)
5
, (9.10)

whereP = a3
3 +a3

5−a3
2−a3

4−a3
6 ,Q = a4

3 +a4
5−a4

2−a4
4−a4

6. ,a3 and a4 are given by Equations (7.2), (7.3) and
a4, a5 and a6 are real rational quantities. By fixing the value of one variable say a4 and assigning different
real rational values to a5 and a6, infinite numbers of parametric solutions to Diophantine equation 5.6.5 are
obtained. Based on this parametrisation, some solutions are given in Table 7.1. and may be perused.
9.6 Parametric solution to Diophantine Equation 5.n.n where n = 2k and k ≥ 3

Equation (8.19) can be written as x = −2p(P/Q) where P =
(
a3

1 + a3
3 + a3

5 . . .+ a3
2k−1

)
−(

a3
2 + a3

4 + a3
6 + . . .+ a3

2k

)
and Q =

(
a4

1 + a4
3 + . . .+ a4

2k−1

)
−
(
a4

2 + a4
4 + a4

6 + . . .+ a4
2k

)
. Putting this

value of x in equation (8.1), it takes the form

(−2a1P +Q)
5

+ (−2a2P )
5

+ (−2a3P +Q)
5

+ . . .+ (−2a2k−2P )
5

+ (−2a2k−1P +Q)
5

+ (−2a2kP )
5

= (−2a1P )
5

+ (−2a2P +Q)
5

+ (−2a3P )
5

+ . . .+ (−a2k−2P +Q)
5

+ (−2a2k−1P )
5

+ (−2a2kP +Q)
5
,

(9.11)

where a1 and a2 are given by equations (8.14), (8.13),A2k and B2k are given by Equations (8.15) and (8.16),
P2k and Q2k are given by equations (8.17) and (8.18), a3, a4 and a5 are real rational quantities. By fixing
the value of one variable say a3 and assigning different real rational values to a4, a5, a6, . . . a2kinfinite
numbers of parametric solutions to Diophantine equation 5.n.n where n = 2k are obtained. Based on this
parametrisation, some solutions are given in Table 8.1 and may be perused.
9.7 Parametric solution to Diophantine Equation5.n.n where n = 2k− 1 and ∞ >k > 3

Equation (8.31) can be written as x = −2p(P/Q) where P =
(
a3

1 + a3
3 + a3

5 . . .+ a3
2k−3

)
−(

a3
2 + a3

4 + a3
6 + . . .+ a3

2k−2

)
andQ =

(
a4

1 + a4
3 + . . .+ a4

2k−3 − a4
2k−1

)
−
(
a4

2 + a4
4 + a4

6 + . . .+ a4
2k−4 − a4

2k−2

)
.

Putting this value of x in equation (8.21), it takes the form

(−2a1P +Q)
5

+ (−2a2P )
5

+ (−2a3P +Q)
5

+ . . .+ (−2a2k−2P )
5

+ (−2a2k−1P −Q)
5

= (−2a1P )
5

+ (−2a2P +Q)
5

+ (−2a3P )
5

+ . . .+ (−2a2k−2P −Q)
5

+ (−a2k−1P +Q)
5
.

(9.12)

where a1 and a2 are given by equations (8.32), (8.31), A2k−1 and B2k−1 are given by Equations (8.33)
and (8.34),P2k−1 and Q2k−1 are given by equations (8.35) and (8.36), a3, a4a5,. . . a2k−1 are real rational
quantities. By fixing the value of one variable say a3 and assigning different real rational values to a4,
a6, . . . a2k−1 infinite numbers of parametric solutions to Diophantine equation 5.n.nwhere n = 2k − 1 are
obtained. Based on this parametrisation, some solutions are given in Table 8.1 and may be perused.

10 Results and conclusions
On overviewing what have been derived in this paper, it can be concluded that a real rational number say n
can be expressed in algebraic form as a · x+ b where a andb are real rational quantities as assigned and x is
a real rational quantity which is a variable. On the basis of this representation, a Diophantine equation say
5.n.n

Y 5
1 + Y 5

2 + Y 5
3 + . . .+ Y 5

n−2 + Y 5
n−1 + Y 5

n = Z5
1 + Z5

2 + Z5
3 + . . .+ Z5

n−2 + Z5
n−1 + Z5

n

where integer n > 3 can be written as algebraic equation

(a1x+A1)
5
+(a2x+A2)

5
+(a3x+A3)

5
+..+(anx+An)

5
= (b1x+B1)

5
+(b2x+B2)

5
+(b3x+B3)

5
+..+(bnx+Bn)

5

where a1, a2, a3, . . . an, b1, b2, b3, . . . bn, A1, A2, A3, . . . An and B1, B2, B3, . . . Bn are real rational quantities.
Obviously, this is a fifth power equation, if R1, R2, R3, R4 and R5 are its rational roots then substituting
R1, R2, R3, R4 and R5 in above would be its solutions. Stumbling block for these solutions is determination
of roots R1, R2, R3, R4 and R5 of fifth power algebraic equation. To tide over this difficulty, fifth degree
equation is transformed into a linear equation. In the preliminary stage, coefficient of x5 is equated with
zero so that a5

1 + a5
2 + a5

3 + . . .+ a5
n−2 + a5

n−1 + a5
n = b51 + b52 + b53 + . . .+ b5n−2 + b5n−1 + b5n. This was achieved

by assigning values so that ai = bi, where i varies from 1 to n. Next task was to get rid off constant term.
That required

A5
1 +A5

2 +A5
3 + . . .+A5

n−2 +A5
n−1 +A5

n = B5
1 +B5

2 +B5
3 + . . .+B5

n−2 +B5
n−1 +B5

n.
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For that equation 5.n.n was written in the following manner
(a1x+A1)

5
+(a2x+A2)

5
+(a3x+A3)

5
+ . . .+(anx+An)

5
++ (anx+An)

5
= (a1x+A2)

5
+(a2x+A3)

5
+

(a3x+A4)
5

+ . . .+ (an−1x+An)
5

+ (anx+A1)
5
.

To further simplify it, the equation with n = 2k was written as

(a1x+ p)
5
+(a2x)

5
+(a3x+ p)

5
+. . .+(a2k−1x+ p)

5
+(a2kx)

5
= (a1x)

5
+(a2x+ p)

5
+(a3x)

5
+. . .+(a2k−1x)

5
+(a2kx+ p)

5

by putting A2 = A4 = A6 = . . . = An = 0, and A1 = A3 = A5 = . . . = An−1 = p, where p is a rational
number. This equation, in fact, is a cubic equation
x3
{
a4

1 + a4
3 + a4

5 + . . .+ a4
2k−1 − a4

2 − a4
4 + a4

6 + . . .+ a4
2k

}

+2x2p
{
a3

1 + a3
3 + a3

5 + . . .+ a3
2k−1 − a3

2 − a3
4 − a3

6 − . . .− a3
2k

}

+2xp2
{
a2

1 + a2
3 + a2

5 + . . .+ a2
np2k−1 − a2

2 − a2
4 − a2

6 − . . .− a2
2k

}

+p3 {a1 + a3 + a5 − . . .+ a2k−1 − a2 − a4 − a6 − . . .− a2k} = 0.
By equating coefficients of x and constant term to zero, this equation transforms into

x = −2p

(
a3

1 + a3
3 + a3

5 + . . .+ a3
2k−1)− (a3

2 + a3
4 + a3

6 + . . .+ a3
2k

)
(
a4

1 + a4
3 + a4

5 + . . .+ a4
2k−1)− (a4

2 + a4
4 + a4

6 + . . .+ a4
2k

) ,

where a2, a1, A2k, B2k, P2k and Q2k are given by Equations 8.13, 8.14, 8.15. 8.16, 8.17 and 8.18 respectively.
When n = 2k − 1 and k > 3, Diophantine equation is written as

(a1x+ p)
5

+ (a2x)
5

+ (a3x+ p)
5

+ . . . + (a2n−2x)
5

+ (a2n−1x− p)5
= (a1x)

5
+ (a2x+ p)

5
+ (a3x)

5
+ . . . +

(a2n−2x− p)5
+ (a2n−1x+ p)

5
.

when a1 and a2 are given by Equations (8.32), (8.31), A2k−1 and B2k−1 are given by Equations (8.33)
and (8.34), P2k−1 and Q2k−1 are given by Equations (8.35) and (8.36),a3, a4a5,. . . a2k−1 are real rational
quantities, above said equation transforms into linear equation (8.31). For Diophantine equations, 5.6.6 and
5.5.5, above said methods were adopted. For Diophantine equations 5.m.n where m < n,terms n − m in
numbers can be eliminated by equating a1, a3 . . . equal to zero.

Highlights of the paper are
a) Write summing numbers of Diophantine Equation in algebraic form as aix + bi choosing ai and bi

so that constant term and coefficient of fifth power of x vanishes. Put these algebraic numbers in
Diophantine Equation and expand it.

b) Equate to zero coefficients of power two and power one of x and obtain two relations between various
ai and bi.

c) Satisfy above two relations and obtain transformed linear equation. Substitute value of x obtained
from transformed linear equation in algebraic numbers.

d) Note value of algebraic numbers of the form aix+bi after multiplication with lowest common multiplier.
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Abstract

In this paper, we exhibit certain double series associated with general hypergeometric type Hurwitz-
Lerch Zeta functions and then derive their summation formulae and relations due to their series and
integral identities. We also obtain various known and unknown results in terms of Hurwitz-Lerch Zeta
functions and their generating relations.
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1 Introduction and preliminaries
Recently, the authors [10] studied the generalized hypergeometric type Hurwitz-Lerch Zeta function defined
by

pHq

(
(α)1,p;
(γ)1,q;

z, s, a

)
=

∞∑

n=0

∏p
i=1 (αi)n∏q
i=1 (γi)nn!

zn

(n+ a)s
, (1.1)

where p, q ∈ N0, αi ∈ C, (i = 1, 2, 3, . . . , p); a, γi ∈ C\Z−0 , (i = 1, 2, 3, . . . , q); s, z ∈ C.
Here in (1.1) the notations denote

C = {z : z = x+ iy : x, y ∈ R, i =
√

(−1)},Z−0 = {0,−1,−2, . . .},
R = (−∞,∞), R+ = R\(−∞, 0] and N0 = {0, 1, 2, 3, . . .}.

Again for a 6= 0, the Pochhammer symbol ([14, p.45] and [21, pp.21-22]) as generalized factorial function
is given by

(a)n =

{
a(a+ 1)(a+ 2) . . . (a+ n− 1);n ≥ 1,

1;n = 0,

and in general it is defined as

(a)v =
Γ(a+ v)

Γ(a)
∀v ∈ R.

In (1.1) it is also claimed that due to [7,8,10], for fixed and large value of N and with the properties
of Gaussian gamma function [21, p.20 ], we find that the function (1.1) is written as partial sum of
hypergeometric type Hurwitz-Lerch Zeta series and the generalized Gaussian hypergeometric series ([14,
p. 73] and [21, pp. 42-43]), as

pHq

(
(α)1,p;
(γ)1,q;

z, s, a

)
=

N−1∑

n=0

∏p
i=1 (αi)n∏q
i=1 (γi)n n!

zn

(n+ a)s

+

∏p
i=1 (αi)N Γ(N + a)zN∏q

i=1 (γi)N Γ(N + s+ a)N !
p+2Fq+2

(
(α+N)1,p, N + a, 1;

(γ +N)1,q, N + 1, N + s+ a;
z

)
(1.2)

Since in formula (1.2) for fixed and large N , the first series is finite and the second series is the generalized
Gaussian hypergeometric function pFq (.) which follows the convergent conditions given by [21, p.43]
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(i) converges for |z| <∞, if p ≤ q;
(ii) converges for |z| < 1, if p = q + 1;

(iii) diverges for all z, z 6= 0, if p > q + 1;
(iv) converges absolutely for |z| = 1, if p = q + 1 alongwith

R(ω) = R

(
q∑

i=1

γi + s−
p∑

i=1

αi

)
> 0;

(v) converges conditionally for |z| = 1, z 6= 1, if p = q + 1
and −1 < R(ω) ≤ 0;

(vi) diverges for |z| = 1, if p = q + 1 and R(ω) < −1.
Therefore, the series in (1.1) also satisfies same convergence conditions as given above in (i) to (vi).
In the formula (1.1) taking p = 2, q = 1, α1 = α, α2 = β, and γ1 = γ, we convert it specially into

the extended hypergeometric type Hurwitz-Lerch Zeta function, used in the probability distributions due to
Garg et al. [5], in the form

2H1

(
α, β;
γ;

z, s, a

)
=

∞∑

n=0

(α)n(β)n
(γ)nn!

zn

(n+ a)s
= φα,β;γ(z, s, a), (1.3)

where, α, β, s, z ∈ C and a, γ ∈ C\Z−0 , converges if R(s) > 0, when |z| < 1, (z 6= 1). But when z = 1, for
R(γ) > 1

2R(α+ β + 1) > 0, the series in (1.3) converges if

R(s) >
1

2
R(α+ β)− 1

2
, ( see [10]). (1.4)

It is remarked that on combining both the conditions of R(γ) and the R(s) given in (1.3) and (1.4), we
get

R(γ + s− α− β) > 0,

which is identical to R(ω) given in (iv) of (1.2) for p = 2 and q = 1.
Further in the generalized hypergeometric type Hurwitz-Lerch Zeta function (1.1), if we set

q = p− 1, γ1 = α1, γ2 = α2, . . . , γp−1 = αp−1, αp = 1, it becomes Hurwitz-Lerch Zeta function as

pHp−1

(
(α)1,p−1, 1;
(α)1,p−1;

z, s, a

)
=

∞∑

n=0

∏p−1
i=1 (αi)n (1)n∏p−1
i=1 (αi)n n!

zn

(n+ a)s

=

∞∑

n=0

zn

(n+ a)s
= φ(z, s, a), (1.5)

which converges if R(s) > 0, when |z| < 1, (z 6= 1), but when z = 1, the series (1.5) converges for R(s) > 1.
We also verify it as setting γ = α, β = 1 in remark of Eqn. (1.4) and R(s) > 1.

In extension of (1.1), we again define a general hypergeometric type Hurwitz -Lerch Zeta function in
following form

pKq

(
(α)1,p;
(γ)1,q;

A; z, s, a

)
=

∞∑

n=0

An
∏p
i=1 (αi)n∏q

i=1 (γi)n

zn

(n+ a)sn!
, (1.6)

where p, q ∈ N0, αi ∈ C, (i = 1, 2, 3, . . . , p); a, γi ∈ C\Z−0 , (i = 1, 2, 3, . . . , q);
s, z ∈ C. A symbolizes for a bounded real or complex An ∀n ∈ N0 and follows certain restrictions.

For a sequence 〈An〉 = 〈1〉 ∀n ∈ N0, by (1.1) and (1.6), we find an identity

pKq

(
(α)1,p;
(γ)1,q;

1; z, s, a

)
= pHq

(
(α)1,p;
(γ)1,q;

z, s, a

)
.

Again, for a sequence 〈An〉 = 〈(1)n〉 ∀n ∈ N0, we have a relation with (1.1) and (1.6) as

pKq

(
(α)1,p;
(γ)1,q;

(1); z, s, a

)
= p+1Hq

(
(α)1,p, 1;
(γ)1,q;

z, s, a

)
.

It is recalled that Exton [3] obtained some theorems on general hypergeometric generating relations,
Srivastava [17] established certain generating relations of Hurwitz-Lerch Zeta functions and recently, Kumar
and Chandel [10] derived various relations and identities for double series associated with general Hurwitz-
Lerch type Zeta functions. In this motivation, we exhibit these researches for exploring new ideas in the
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theory of extended generalized hypergeometric type Hurwitz-Lerch Zeta functions and thus consider x, y, s ∈
C; a, 2d ∈ C\Z−0 and An, a bounded real or complex sequence ∀n ∈ N0, which follows certain restrictions to
introduce following families of general hypergeometric type Hurwitz-Lerch Zeta functions in the form

φ1(A, d, d− 1/2; 2d;x, y; s, a) =

∞∑

m,n=0

An(d)m+n

(
d− 1

2

)
m+n

(2d)m+2n

xm+nyn

(n+ a)sm!n!
, (1.7)

φ2(A, d, d+ 1/2; 2d;x, y; s, a) =

∞∑

m,n=0

An(d)m+n

(
d+ 1

2

)
m+n

(2d)m+2n

xm+nyn

(n+ a)sm!n!
. (1.8)

Here in left hand sides of (1.7) and (1.8), A stands for bounded real or complex sequence An ∀n ∈ N0 as
in right hand side of their series.

Again, to obtain summation formulae, series and integral identities of the functions defined in (1.7) and
(1.8) in terms of (1.6), we make an appeal to following preliminary formulae:

For z ∈ C, |z| ≤ 1, 2d 6= 0,−1,−2, . . ., (see Erdélyi et al. [2, Vol. I, p. 101], Srivastava and Manocha [21,
p. 34])

2F1

(
d, d− 1

2 ;
2d;

z

)
=

(
1 +
√

1− z
2

)1−2d

, (1.9)

but by (1.9), we immediately have

2F1

(
d, d− 1

2 ;
2d;

1

)
= 22d−1. (1.10)

Also there exists another result

2F1

(
d, d+ 1

2 ;
2d;

z

)
=

1√
1− z

(
1 +
√

1− z
2

)1−2d

, (1.11)

provided that, z ∈ C, |z| < 1, 2d 6= 0,−1,−2, . . ..
For all 0 ≤ n ≤ m

1

(m− n)!
=

(−1)n(−m)n
m!

, (1.12)

and ∀n ∈ N0

(λ)2n = 22n

(
λ

2

)

n

(
λ

2
+

1

2

)

n

. (1.13)

2 Eulerian Integral representations
In this section, we derive Eulerian integral representations of the general hypergeometric type Hurwitz-Lerch
Zeta functions defined in the Eqns. (1.1), (1.6), (1.7) and (1.8) involving known and unknown hypergeometric
functions.

Here ∀n ∈ N0, a, s ∈ C,R(s) > 0,R(a) > 0, we apply the following Eulerian integral formula
[4,11,12,13,18]

1

Γ(s)

∫ ∞

0

e−(a+n)tts−1dt =
1

(n+ a)s
,

in the Eqns. (1.1) and (1.6) and obtain their Eulerian integral representations

pHq

(
(α)1,p;
(γ)1,q;

z, s, a

)
=

1

Γ(s)

∫ ∞

0

e−atts−1
pFq

(
(α)1,p;
(γ)1,q;

ze−t
)
dt, (2.1)

pKq

(
(α)1,p;
(γ)1,q;

A; z, s, a

)
=

1

Γ(s)

∫ ∞

0

e−atts−1
pGq

(
(α)1,p;
(γ)1,q;

A; ze−t
)
dt, (2.2)

where, pGq

(
(α)1,p;
(γ)1,q;

A; z

)
=
∑∞
n=0

An
∏p
i=1(αi)n∏q

i=1(γi)n

zn

n! is a general hypergeometric function. A stands for a

bounded real or complex sequence An ∀n ∈ N0. For example if 〈An〉 = 〈1〉, ∀n ∈ N0, then there exists a
relation

pGq

(
(α)1,p;
(γ)1,q;

1; z

)
= pFq

(
(α)1,p;
(γ)1,q;

z

)
.
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It is remarked that on specialization of the parameters in (2.1) and (2.2), we may obtain various Hurwitz-
Lerch Zeta functions associated with the hypergeometric functions and hypergeometric polynomials found in
the literature (for example, Rainville [14], Slater [15], Sneddon [16], Srivastava and Karlsson [20], Srivastava
and Manocha [21] and others).

In above motivation of (2.1) and (2.2) ∀x, y ∈ C; 2d ∈ C\Z−0 ; a, s ∈ C,R(s) > 0,R(a) > 0, we introduce
following integral representations of the functions (1.7) and (1.8) defined by

φ1(A, d, d− 1/2; 2d;x, y; s, a) =
1

Γ(s)

∫ ∞

0

e−atts−1φ1
∗ (A, d, d− 1/2; 2d;x, xye−t

)
dt, (2.3)

φ2(A, d, d+ 1/2; 2d;x, y; s, a) =
1

Γ(s)

∫ ∞

0

e−atts−1φ2
∗ (A, d, d+ 1/2; 2d;x, xye−t

)
dt, (2.4)

where the general double functions φ∗1(.) and φ∗2(.) are defined in the double series

φ1
∗(A, d, d− 1/2; 2d;x, y) =

∞∑

m,n=0

An(d)m+n

(
d− 1

2

)
m+n

(2d)m+2n

xmyn

m!n!
, (2.5)

φ2
∗(A, d, d+ 1/2; 2d;x, y) =

∞∑

m,n=0

An(d)m+n

(
d+ 1

2

)
m+n

(2d)m+2n

xmyn

m!n!
. (2.6)

Here, A denotes for bounded real or complex sequence An ∀n ∈ N0 and follows certain restrictions.
It is noticed that on specialization of the parameters of (2.5) and (2.6) and making an appeal to

the formulae (2.3) and (2.4), we may obtain various Hurwitz-Lerch Zeta functions associated with the
hypergeometric functions of two variables like Appell’s functions, Kampé de Fériet functions, Humbert
functions and others found in the literature ( see for example, Bailey [1], Exton [4], Srivastava and Panda
[19], Srivastava and Karlsson [20], Srivastava and Manocha [21] and so on).

For example, under the conditions
∑Q
j=1 ϑj −

∑P
j=1 θj > 0, if we set the sequence An =

∏P
j=1 Γ(αj+θjn)∏Q
j=1 Γ(βj+ϑjn)′

,

∀n ∈ N0, αj ∈ C, θj ∈ R+, ∀(j = 1, 2, 3, . . . , P );βj ∈ C, ϑj ∈ R+, ∀(j = 1, 2, 3, . . . , Q), then for 2d, βj ∈
C\Z−0 , ∀(j = 1, 2, 3, . . . , Q), the functions (2.5) and (2.6) become double Srivastava-Daoust functions [18] in
the following form

φ1
∗(d, d−1/2, [(α) : θ]; 2d, [(β) : ϑ];x, y) =

22d−1Γ
(
d+ 1

2

)

Γ
(

1
2

)
Γ
(
d− 1

2

)S2:0;P
1:0;Q

[
[d : 1, 1],

[
d− 1

2 : 1, 1
]

: −; [(α) : θ];
[2d : 1, 2] : −; [(β) : ϑ];

x, y

]
,

(2.7)
provided that |x| <∞, |y| < 1,
and

φ2
∗(d, d+ 1/2, [(α) : θ]; 2d, [(β) : ϑ];x, y) =

22d−1

Γ
(

1
2

)S2:0;P
1:0;Q

[
[d : 1, 1],

[
d+ 1

2 : 1, 1
]

: −; [(α) : θ];
[2d : 1, 2] : −; [(β) : ϑ];

x, y

]
, (2.8)

provided that |x| <∞, |y| < 1, respectively.
Thus making an appeal to (2.7) and (2.8) in the Eqns. (2.3) and (2.4) respectively, for a, s ∈ C,R(s) >

0,R(a) > 0; 2d, βj ∈ C\Z−0 , ∀(j = 1, 2, 3, . . . , Q), we generate integral representation of the Hurwitz-Lerch
double Zeta functions associated with the Srivastava-Daoust double series, given by

ψ1

(
d, d− 1

2 : [(α) : θ];
2d : [(β) : ϑ];

x, y; s, a

)
=

∞∑

m,n=0

(d)m+n(d− 1
2 )m+n

(2d)m+2n

∏P
j=1 Γ(αj + θjn)

∏Q
j=1 Γ(βj + ϑjn)

xm+nyn

(m+ 2n+ a)sm!n!

=
Γ(d+ 1

2 )√
πΓ(d− 1

2 )

22d−1

Γ(s)

∫ ∞

0

e−atts−1S2:0;P
1:0;Q

[
[d : 1, 1], [d− 1

2 : 1, 1] : −; [(α) : θ];
[2d : 1, 2] : −; [(β) : ϑ];

xe−t, xye−2t

]
dt,

provided that |x| <∞, |y| < 1, (2.9)

and

ψ2

(
d, d+ 1/2 : [(α) : θ];

2d : [(β) : ϑ];
; s, a

)
=

∞∑

m,n=0

(d)m+n

(
d+ 1

2

)
m+n

(2d)m+2n

∏P
j=1 Γ (αj + θjn)

∏Q
j=1 Γ (βj + ϑjn)

xm+nyn

(m+ 2n+ a)sm!n!

=
22d−1

√
πΓ(s)

∫ ∞

0

e−atts−1S2:0;P
1:0;Q

[
[d : 1, 1], [d+ 1

2 : 1, 1] : −; [(α) : θ];
[2d : 1, 2] : −; [(β) : ϑ];

xe−t, xye−2t

]
, (2.10)
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provided that |x| <∞, |y| < 1, respectively.
Recently, some general Hurwitz-Lerch type Zeta functions associated with the double and multiple

Srivastava-Daoust hypergeometric functions are analyzed in [18] which are applied in different scientific
problems for example see [6,9]. Therefore importance in further researches, we study analytic continuation
properties of the double functions (2.9) and (2.10) through their integral representations.

3 Summation Formulae
In this section, we obtain summation formulae of the general hypergeometric type Hurwitz-Lerch Zeta
functions of one and two variables defined by Eqns. (1.1), (1.6), (1.7) and (1.8). Again we show that the
functions (1.7) and (1.8) are represented as the sum of functions (1.6).

Lemma 3.1. If p, q ∈ N0, αi ∈ C, (i = 1, 2, 3, . . . , p); a, γi ∈ C\Z−0 , (i = 1, 2, 3, . . . , q); s, z ∈ C. Then under
the conditions given in (1.2), the summation formula of (1.1) exists as

pHq

(
(α)1,p;
(γ)1,q;

z, s, a

)
= exp[− slog a] +

∏p
i=1 (αi)∏q
i=1 (γi)

∞∑

r=0

(s)r
r!

(−a)rpHq

(
(α+ 1)1,p;
(γ + 1)1,q;

z, s+ r + 1, 1

)
. (3.1)

Proof. Considering the formula (1.1) and for a 6= 0, using the binomial theorem, we write it as

pHq

(
(α)1,p;
(γ)1,q;

z, s, a

)
=

1

as
+
∞∑

r=0

(s)r
r!

(−a)r
∞∑

n=1

∏p
i=1 (αi)n∏q
i=1 (γi)n n!

zn

ns+r
. (3.2)

The Eqn. (3.2) on aid of (1.1) immediately gives the result (3.1).
Clearly, making an appeal to the formula (3.1), we get following summation formulae in terms of the

hyperbolic functions:
∏p
i=1 (αi)

2
∏q
i=1 (γi)

∞∑

r=0

(s)r
r!

(−a)rpHq

(
(α+ 1)1,p;
(γ + 1)1,q;

z, s+ r + 1, 1

)
−1

2
pHq

(
(α)1,p;
(γ)1,q;

z, s, a

)
+

1

2
pHq

(
(α)1,p;
(γ)1,q;

z, s, a−1

)

−
∏p
i=1 (αi)

2
∏q
i=1 (γi)

∞∑

r=0

(s)r
r!

(−a−1)rpHq

(
(α+ 1)1,p;
(γ + 1)1,q;

z, s+ r + 1, 1

)

= sinh[s log a] (3.3)

and

1

2
pHq

(
(α)1,p;
(γ)1,q;

z, s, a

)
−
∏p
i=1 (αi)

2
∏q
i=1 (γi)

∞∑

r=0

(s)r
r!

(−a)rpHq

(
(α+ 1)1,p;
(γ + 1)1,q;

z, s+ r + 1, 1

)
−

+
1

2
pHq

(
(α)1,p;
(γ)1,q;

z, s, a−1

)
−
∏p
i=1 (αi)

2
∏q
i=1 (γi)

∞∑

r=0

(s)r
r!

(−a−1)rpHq

(
(α+ 1)1,p;
(γ + 1)1,q;

z, s+ r + 1, 1

)

= cosh[s log a]. (3.4)

Similarly by the formula (1.6), we get

pKq

(
(α)1,p;
(γ)1,q;

A; z, s, a

)
= A0 exp[−s log a]+

∏p
i=1 (αi)∏q
i=1 (γi)

∞∑

r=0

(s)r
r!

(−a)rpKq

(
(α+ 1)1,p;
(γ + 1)1,q;

A+; z, s+ r + 1, 1

)
,

(3.5)
where p, q ∈ N0, αi ∈ C, (i = 1, 2, 3, . . . , p); a, γi ∈ C\Z−0 , (i = 1, 2, 3, . . . , q); s, z ∈ C, A stands for a sequence
An, a bounded real or complex sequences ∀n ∈ N0. Also A+stands for a sequence An+1, ∀n ∈ N0.

Theorem 3.1. If all x, y, s ∈ C; a, 2d ∈ C\Z−0 and An be bounded real or complex sequences ∀n ∈ N0, then
under the conditions |x| ≤ 1, the double series (1.7) follows a summation formula

φ1(A, d, d− 1/2; 2d;x, y; s, a)

=
A0

as

(
1 +
√

1− x
2

)1−2d

+
xy(2d− 1)

4(2d+ 1)

(
1 +
√

1− x
2

)−2d−1

×
∞∑

r=0

(s)r
r!

(−a)r1K1

(
d+ 1

2 ;
d+ 3

2 ;
A+;

xy

(1 +
√

1− x)2
, s+ r + 1, 1

)
, (3.6)

where, 1K1 (.) is a general hypergeometric type Hurwitz -Lerch Zeta function (1.6) and A+stands for the
sequence An+1, a bounded real or complex sequences ∀n ∈ N0 that follows certain restrictions.
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Proof. We consider the double series (1.7) in the form

φ1(A, d, d− 1/2; 2d;x, y; s, a) =

∞∑

m=0

∞∑

n=0

An(d)m+n

(
d− 1

2

)
m+n

(2d)m+2n

xm(xy)n

(n+ a)sm!n!
,

and apply series rearrangement techniques to derive hypergeometric function

φ1(A, d, d− 1/2; 2d;x, y; s, a) =

∞∑

n=0

An(d)n
(
d− 1

2

)
n

(2d)2n

(xy)n

(n+ a)sn!
2F1

(
d+ n, d+ n− 1

2 ;
2d+ 2n;

x

)
. (3.7)

Now in (3.7) under the conditions |x| ≤ 1, using the formulae (1.9) and (1.13), we get

φ1(A, d, d− 1/2; 2d;x, y; s, a) =

(
2

(1 +
√

1− x)

)2d−1 ∞∑

n=0

An
(
d− 1

2

)
n(

d+ 1
2

)
n

(
xy

(1+
√

1−x)2

)n

(n+ a)sn!
. (3.8)

In (3.8) applying the formula (1.6), we obtain the result

φ1(A, d, d− 1/2; 2d;x, y; s, a) =

(
2

(1 +
√

1− x)

)2d−1

1K1

(
d− 1

2 ;
d+ 1

2 ;
A;

xy

(1 +
√

1− x)2
, s, a

)
,

in which making an appeal to the techniques of Lemma 3.1, we obtain the summation formula (3.6). Hence
the Theorem 3.1 is proved.

Corollary 3.1. If in the Theorem 3.1 put x = 1 and all y, s ∈ C; a, 2d ∈ C\Z−0 and An be bounded real or
complex sequences ∀n ∈ N0, then following summation formula exists

21−2dφ1(A, d, d−1/2; 2d; 1, y; s, a) =
A0

as
+
y(2d− 1)

(2d+ 1)

∞∑

r=0

(s)r
r!

(−a)r1K1

(
d+ 1

2 ;
d+ 3

2 ;
A+; y, s+ r + 1, 1

)
. (3.9)

Also there exists an identity

21−2dφ1(A, d, d− 1/2; 2d; 1, y; s, a) = 1K1

(
d− 1

2 ;
d+ 1

2 ;
A; y, s, a

)
. (3.10)

Proof. Considering the Eqn. (3.6) and putting x = 1, we obtain the summation formula (3.9). Further
making same process with an appeal to the Eqns. (1.6), (1.10) and (3.8), we find an identity (3.10).

Corollary 3.2. If R(s) > 0,R(a) > 0, then under the conditions of the Theorem 3.1 an Eulerian integral
representation of the double series (1.7) exists in the following form

φ1(A, d, d− 1/2; 2d;x, y; s, a) =
1

Γ(s)

(
2

(1 +
√

1− x)

)2d−1 ∫ ∞

0

e−atts−1
1G1

(
d− 1

2 ;
d+ 1

2 ;
A;

xye−t

(1 +
√

1− x)2

)
dt

(3.11)

Proof. Consider the formula (3.8) and then here under the conditions of the Theorem 3.1, use an Eulerian
integral formula and thus apply the techniques of Section 2, we get the formula

φ1(A, d, d−1/2; 2d;x, y; s, a) =

(
2

(1 +
√

1− x)

)2d−1 ∞∑

n=0

An
(
d− 1

2

)
n(

d+ 1
2

)
n
n!

1

Γ(s)

∫ ∞

0

e−atts−1

(
xye−t

(1 +
√

1− x)2

)n
dt.

(3.12)
Now in right hand side of (3.12) using the function (2.2), we obtain the result (3.11).

Theorem 3.2. If all x, y, s ∈ C; a, 2d ∈ C\Z−0 such that If R(s) > 0,R(a) > 0 and An be bounded real or
complex sequences ∀n ∈ N0, then by the function (1.7) under the conditions |x| ≤ 1, following summation
formula of (1.7) also exists

φ1(A, d, d− 1/2; 2d;x, y; s, a) =

∞∑

n=0

(d)n
(
d− 1

2

)
n

(2d)nn!
1K1

(
−n;

2d+ n;
A;−y, s, a

)
xn, (3.13)

where, the partial sum of the extended general hypergeometric type Hurwitz -Lerch Zeta function (1.6) is
defined by

1K1

(
−n;

2d+ n;
A;−y, s, a

)
=

1

Γ(s)

∫ ∞

0

e−atts−1
1G1

(
−n;

2d+ n;
A;−ye−t

)
dt,R(s) > 0,R(a) > 0, ∀n = 0, 1, 2, 3, . . . ,

(3.14)

1G1(·) is defined in (2.2).
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Proof. Considering the function (1.7) and applying the series rearrangement techniques, we find that

φ1(A, d, d− 1/2; 2d;x, y; s, a) =

∞∑

m=0

m∑

n=0

An(d)m
(
d− 1

2

)
m

(2d)m+n

xmyn

(n+ a)s(m− n)!n!
.

Now using the formula (1.12) and making an appeal to the Eulerian integral formula given in the Section 2
we find that

φ1(A, d, d− 1/2; 2d;x, y; s, a) =

∞∑

n=0

(d)n
(
d− 1

2

)
n
xn

(2d)nn!

1

Γ(s)

∫ ∞

0

e−atts−1

{
n∑

m=0

Am(−n)m
(2d+ n)m

(−ye−t)m
m!

}
dt.

(3.15)
In right hand side of the Eqn. (3.15) making an appeal to the formula (2.2), we derive (3.14) and from

which, we finally obtain the result (3.13).
In the similar manner, we obtain following results:

Theorem 3.3. If all x, y, s ∈ C; a, 2d ∈ C\Z−0 and An be bounded real or complex sequences ∀n ∈ N0, then
due to the function (1.8) under the conditions |x| < 1, following summation formula exists

φ2(A, d, d+ 1/2; 2d;x, y; s, a) =
A0

(a)s
1√

1− x

(
1 +
√

1− x
2

)1−2d

+
xy√
1− x

(
1 +
√

1− x
2

)−1−2d ∞∑

r=0

(s)r
r!

(−a)r0K0

(
−;
−;A

+;
xy

(1 +
√

1− x)2
, s+ r + 1, 1

)
(3.16)

Here, A+stands for An+1, a bounded real or complex sequences ∀n ∈ N0, follows certain restrictions.

Proof. Under the conditions given in the Theorem 3.3, for the double series (1.8), we write

φ2(A, d, d+ 1/2; 2d;x, y; s, a) =

∞∑

n=0

An(d)n
(
d+ 1

2

)
n

(xy)n

(2d)2nn!(n+ a)s
2F1

[
d+ n, d+ n+ 1

2 ;
2d+ 2n;

x

]
. (3.17)

Now in the Eqn. (3.17) using of the formulae (1.11)-(1.13) for |x| < 1, we obtain

φ2(A, d, d+ 1/2; 2d;x, y; s, a) =
1√

1− x

(
1 +
√

1− x
2

)1−2d ∞∑

n=0

An

(
xy

(1+
√

1−x)2

)n

n!(n+ a)s
. (3.18)

Now in Eqn. (3.18) making an appeal to formula (1.6) and the theory given in Theorem 3.1, we derive
the result (3.16).

Corollary 3.3. If R(s) > 0,R(a) > 0, then due to the function (1.8) following formula holds

φ2(A, d, d+ 1/2; 2d;x, y; s, a) =
1√

1− x

(
1 +
√

1− x
2

)1−2d
1

Γ(s)

∫ ∞

0

e−atts−1
0K0

(
−;
−;A;

xye−t

(1 +
√

1− x)2

)
dt.

(3.19)

Proof. In the Eqn. (3.18) of the Theorem 3.3 applying the Eulerian formula given in (2.1), we derive

φ2(A, d, d+1/2; 2d;x, y; s, a) =
1√

1− x

(
1 +
√

1− x
2

)1−2d
1

Γ(s)

∫ ∞

0

e−atts−1

{ ∞∑

n=0

An
n!

(
xye−t

(1 +
√

1− x)2

)n}
dt.

(3.20)
Now in (3.20), applying the formula (1.6) and same technique of proof of the Theorem 3.1, we obtain the

formula (3.19).

Theorem 3.4. If all x, y, s ∈ C; a, 2d ∈ C\Z−0 and An be bounded real or complex sequences ∀n ∈ N0, then
due to the function (1.8) under the conditions |x| < 1, following summation formula exists

ϕ2(A, d, d+
1

2
; 2d;x, y; s, a) =

∞∑

n=0

(d)n(d+ 1
2 )n

(2d)nn!
1K1

(
−n;

2d+ n;
A;−y, s, a

)
xn, (3.21)

where, the function 1K1

(
−n;

2d+ n;
A;−y, s, a;

)
is defined by (3.14).
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Proof. Making an appeal to the function (1.8), we get

φ2(A, d, d+ 1/2; 2d;x, y; s, a) =

∞∑

n=0

(d)n
(
d+ 1

2

)
n
xn

(2d)nn!

n∑

m=0

Am(−n)m
(2d+ n)m

(−y)m

(m+ a)ssm

=

∞∑

n=0

(d)n
(
d+ 1

2

)
n
xn

(2d)nn!

1

Γ(s)

∫ ∞

0

e−atts−1

{
n∑

m=0

Am(−n)m
(2d+ n)m

(−ye−t)m
m!

}
dt. (3.22)

Now in the second series of (3.22) making an appeal to the function (3.14), we obtain the summation
formula (3.21).

We present following applications of our results derived in the Sections 2 and 3 :

4 Applications
In this section, we make an application of the Theorems presented in the previous Sections 2 and 3 . Then
we obtain generating relations and the integral identities.
Application 4.1. If all conditions of the Theorems 3.1 and 3.2 are satisfied, then there exists a generating
relation of the extended general hypergeometric type Hurwitz -Lerch Zeta function
(

2

(1 +
√

1− x)

)2d−1

1K1

(
d− 1

2 ;
d+ 1

2 ;
A;

xy

(1 +
√

1− x)2
, s, a

)
=

∞∑

n=0

(d)n
(
d− 1

2

)
n
xn

(2d)nn!
1K1

(
−n;

2d+ n;
A;−y, s, a

)
.

(4.1)
Solution. Considering the Eqn. (3.8) of the Theorem 3.1 and applying (3.15) of the Theorem 3.2, we derive
the equality given by

φ1(A, d, d− 1/2; 2d;x, y; s, a) =

(
2

(1 +
√

1− x)

)2d−1 ∞∑

n=0

An
(
d− 1

2

)
n(

d+ 1
2

)
n

(
xy

(1+
√

1−x)2

)n

(n+ a)sn!

=

∞∑

n=0

(d)n
(
d− 1

2

)
n
xn

(2d)nn!

n∑

m=0

Am(−n)m
(2d+ n)m

(−y)m

(m+ a)sm!
. (4.2)

Now in the relation (4.2) making an appeal to the extended general hypergeometric type Hurwitz -Lerch
Zeta function (1.6) in the last two equalities, we obtain the generating relation (4.1).
Application 4.2. If all conditions of the Theorems 3.3 and 3.4 are satisfied, then there exists a generating
relation of the extended general hypergeometric type Hurwitz -Lerch Zeta function as

1√
1− x

(
2

(1 +
√

1− x)

)2d−1

0K0

(
−;
−;

A;
xy

(1 +
√

1− x)2
z, s, a

)
=

∞∑

n=0

(d)n
(
d+ 1

2

)
n

(2d)nn!
1K1

(
−n;

2d+ n;
A;−y, s, a

)
xn.

(4.3)
Proof. Making an appeal to the Theorems 3.3 and 3.4, we get the equalities

φ2(A, d, d+ 1/2; 2d;x, y; s, a) =
1√

1− x

(
1 +
√

1− x
2

)1−2d ∞∑

n=0

An

(
xy

(1+
√

1−x)2

)n

n!(n+ a)s

=

∞∑

n=0

(d)n
(
d+ 1

2

)
n
xn

(2d)nn!

n∑

m=0

Am(−n)m
(2d+ n)m

(−y)m

(m+ a)sm!
. (4.4)

Then in the relation (4.4) making an appeal to the extended general hypergeometric type Hurwitz-Lerch
Zeta function (1.6) in the last two equalities, we obtain the generating relation (4.3).
Application 4.3. If all conditions of the Theorems 3.1 and 3.2 are satisfied, then there exists an Eulerian
integral identity for the extended general hypergeometric type Hurwitz -Lerch Zeta function (1.7), given by

(
2

(1 +
√

1− x)

)2d−1 ∫ ∞

0

e−atts−1
1G1

(
d− 1

2 ;
d+ 1

2 ;
A;

xy

(1 +
√

1− x)2
e−t
)
dt

=

∞∑

n=0

(d)n(d− 1
2 )nx

n

(2d)nn!

∫ ∞

0

e−atts−1
1G1

(
−n;

2d+ n;
A;−ye−t

)
dt. (4.5)

Solution. Making an appeal to the methods given in the Eqn. (2.1) and the formula (2.2) in the relation
(4.1), we derive the Eulerian integral identity (4.5).
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Application 4.4. If all conditions of the Theorems 3.3 and 3.4 are satisfied, then there exists an Eulerian
integral identity for the extended general hypergeometric type Hurwitz -Lerch Zeta function (1.8), as

1√
1− x

(
2

(1 +
√

1− x)

)2d−1 ∫ ∞

0

e−atts−1
0G0

(
−;
−;

A;
xy

(1 +
√

1− x)2
e−t
)
dt

=

∞∑

n=0

(d)n(d+ 1
2 )nx

n

(2d)nn!

∫ ∞

0

e−atts−1
1G1

(
−n;

2d+ n;
A;−ye−t

)
dt (4.6)

Solution. Making an appeal to the same techniques given in the Eqn. (2.1) and the formula (2.2) in the
relation (4.3), we derive the Eulerian integral identity (4.6).
Application 4.5. If all conditions of the Theorems 3.1 and 3.2 are satisfied, then for the extended general
hypergeometric type Hurwitz -Lerch Zeta function (1.7), there exists a hypergeometric generating relation
(

2

(1 +
√

1− x)

)2d−1

1G1

(
d− 1

2 ;
d+ 1

2 ;
A;

xy

(1 +
√

1− x)2
e−t
)

=

∞∑

n=0

(d)n
(
d− 1

2

)
n
xn

(2d)nn!
1G1

(
−n;

2d+ n;
A;−ye−t

)
.

(4.7)
Solution. By the Eulerian integral identity (4.5), we find that

∫ ∞

0

e−atts−1R
(1)
d,A(x, y; t)dt = 0, (4.8)

where,

Rd,A
(1)(x, y; t) =

(
2

(1 +
√

1− x)

)2d−1

1G1

(
d− 1

2 ;
d+ 1

2 ;
A;

xy

(1 +
√

1− x)2
e−t
)

−
∞∑

n=0

(d)n
(
d− 1

2

)
n
xn

(2d)nn!
1G1

(
−n;

2d+ n;
A;−ye−t

)
.

Then, equating both sides of Eqn. (4.8), we obtain the result (4.7).
Application 4.6. If all conditions of the Theorems 3.3 and 3.4 are satisfied, then for the extended general
hypergeometric type Hurwitz -Lerch Zeta function (1.8), there exists the hypergeometric generating relation

1√
1− x

(
2

(1 +
√

1− x)

)2d−1

0G0

(
−;
−;

A;
xy

(1 +
√

1− x)2
e−t
)

=

∞∑

n=0

(d)n
(
d+ 1

2

)
n
xn

(2d)nn!
1G1

(
−n;

2d+ n;
A;−ye−t

)
.

(4.9)
Solution. By the Eulerian integral identity (4.6), we find that

∫ ∞

0

e−atts−1Rd,A
(2)(x, y; t)dt = 0, (4.10)

where,

R
(2)
d,A(x, y; t) =

1√
1− x

(
2

(1 +
√

1− x)

)2d−1

0G0

(
−;
−;

A;
xy

(1 +
√

1− x)2
e−t
)

−
∞∑

n=0

(d)n
(
d+ 1

2

)
n
xn

(2d)nn!
1G1

(
−n;

2d+ n;
A;−ye−t

)
.

Finally, equating both sides of Eqn. (4.10), we obtain the result (4.9).
In concluding remarks, we derive interesting summation formulae from our above obtained results.

5 Interesting Results as Special Cases

Particularly, in Eqn. (4.2) set An = (2)n ∀n ∈ N0, d = 3
2 , there exists an interesting summation formula in

terms of Hurwitz-Lerch Zeta function

φ1

(
2,

3

2
, 1; 3;x, y; s, a

)
=

∞∑

n=0

(
3
2

)
n
xn

(3)n

n∑

m=0

(2)n(−n)m
(3 + n)m

(−y)m

(m+ a)sm!

=

∞∑

n=0

(
3
2

)
n
xn

(3)n
2H1

(
2,−n;
3 + n;

− y, s, a
)

=

(
4

(1 +
√

1− x)2

)
φ

(
xy

(1 +
√

1− x)2
, s, a

)
, (5.1)
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where, all x, y, s ∈ C, |x| ≤ 1; a ∈ C\Z−0 .
In the result (5.1) for x = 1, we obtain the following identical formulae for Hurwitz-Lerch Zeta function

1

4
φ1

(
2,

3

2
, 1; 3; 1, y; s, a

)
=

1

4

∞∑

n=0

(
3
2

)
n

(3)n

n∑

m=0

(2)n(−n)m
(3 + n)m

(−y)m

(m+ a)sm!

=
1

4

∞∑

n=0

(
3
2

)
n

(3)n
2H1

(
2,−n;
3 + n;

− y, s, a
)

= φ(y, s, a), (5.2)

where, all y, s ∈ C; a ∈ C\Z−0 .
Again, in Eqn. (4.4) choosing An = (1)n ∀n ∈ N0, 2d 6= 0,−1,−2, . . ., there exists another interesting

summation formula in terms of Hurwitz-Lerch Zeta function

φ2(1, d, d+ 1/2; 2d;x, y; s, a) =

∞∑

n=0

(d)n
(
d+ 1

2

)
n
xn

(2d)nn!

n∑

m=0

(−n)m
(2d+ n)m

(−y)m

(m+ a)s

=

∞∑

n=0

(d)n(d+ 1
2 )nx

n

(2d)nn!
1H1

(
−n;

2d+ n;
− y, s, a

)

=
1√

1− x

(
1 +
√

1− x
2

)1−2d

ϕ

(
xy

(1 +
√

1− x)2
, s, a

)
. (5.3)

where, x, y, s ∈ C, |x| < 1; a, 2d ∈ Z−0 .
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Abstract

In this paper, we extend the concept of GG - convexity to GG- E - convexity and then we derived
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1 Introduction

Convexity contains a broad spectrum of significance in both applied and pure mathematics. Nowadays,

the concept of convexity is not confined to convex functions only, but it has also extended to non - convex

functions as well as convex programming.Minkowski [9] did the first methodical study of convexity. Convexity

plays an important role in convex - optimization. So Many problems of quasi - convex optimization arise in

spanning economics [8, 13], industrial organization [14]. Realted to quasi-convex optimization also available

In offline case [10, 11, 12, 19]. Convexity is also useful in concept of special means like arithmetic mean,

. geometric mean, harmonic mean, logarithmic mean and identric mean Anderson et al.[1] mentioned

mean function. Anderson et al. [1] derived similar results for some power series, especially hypergeometric

functions. Dragomir [5] gave inequalities at the same time Akdemir et al. [2] gave generalization in sense of

convex functions. Then new integral inequalities arise via GG - convexity and GA - convexity [3].

Hanson and Mond [6] extended the class of convex functions to the class of invex functions and showed

that programming problems that can be transformed in this way are a strict subset of invex programming

problems, then Bector and Singh [4] introduced B - vex functions and discussed differentiable and non

differentiable cases. Class of B - vex functions forms a subset of the sets of both semistrictly quasiconvex

as well as quasiconvex functions. For the first time Youness [17] provided the concept of well known class

of generalised convexity, namely E-convexity. Furthermore, he formulated some results from E - convex

functions in programming problems [18]. Yang [15] refined few results of E - convex programming, which

were obtained by Younness [17]. Over the past few years, many researchers have focused on the theory of

inequalities. Because of the wide range of ideas and applications, the theory of inequalities has become a

captivating, engrossing and gripping area for researchers.

In this paper, our aim is to establish some new inequalities for GG - E - convex function. Also we prove

that not only the inequalities of the convex function are possible through the mean function, but also the

composite functions in which one is convex and the other is non-convex obey the inequalities. The Interesting

techniques and the useful ideas of this paper may encourage further research in this dynamic area.
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2 Definitions and Preliminaries

Definition 2.1. The function f : I ⊂ R→ R is a convex function on I, if the inequality

f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y)

holds for all x, y ∈ I and t ∈ [0, 1]. We say that g is concave if - f is convex [3].

Let f : I ⊂ R → R be a convex function where a, b ∈ I with a < b. Then the following double inequality

holds :

f

(
a+ b

2

)
≤ 1

b− a

∫ b

a

f(x) dx ≤ f(a) + f(b)

2
.

This inequality is well - known in the literature as Hermite - Hadamard inequality [5].

Definition 2.2. A set N ⊂ Rn is said to be E - convex iff there is a map E : Rn → Rn such that

(1− t)E(x) + tE(y) ∈ N.
for each x, y ∈ N and 0 ≤ t ≤ 1[17].

Definition 2.3. A function f : Rn → Rn is said to be E - convex on a set N ⊂ Rn, iff there is a map

E : Rn → Rn such that N is an convex set and

f(tE(x) + (1− t)E(y)) ≤ tf(E(x)) + (1− t)f(E(y)).

for each x, y ∈ N and 0 ≤ t ≤ 1 on the other hand, if

f(tE(x) + (1− t)E(y)) ≥ tf(E(x)) + (1− t)f(E(y)).

then f is called E - concave on N. If the inequality signs in the previous two inequalities are strict, then f is

called strictly E convex and strictly E concave, respectively [17].

Definition 2.4. Let f : S → (0,∞) be continuous, where I is subinterval of (0,∞). Let N and P be any two

mean functions, T ⊂ R and there is a map E : R→ R then we say f is NP -E-convex(concave) on T if

f(N(E(x), E(y)) ≤ (≥)P (f(E(x), f(E(y)).

for all x, y ∈ S.

Definition 2.5. The GG - E - convex functions are those functions f : S ⊆ R+ → R and there is a map

E : R→ R such that x, y ∈ S and

t ∈ [0, 1]⇒ f((E(x))1−t(E(y))t) ≤ (f(E(x))1−t(f(E(y))t.

Definition 2.6. The GG - E - concave functions are those functions f : S ⊆ R+ → R and there is a map

E : R→ R such that x, y ∈ S and

t ∈ [0, 1]⇒ f((E(x))1−t(E(y))t) ≥ (f(E(x))1−t(f(E(y))t.

Lemma 2.1. Let g : S ⊆ R+ = (0,∞) → R be a differentiable function on So and x, y ∈ So, where So is

the interior set of S with α < β, and there is a map E : R→ R. If g
′ ∈ L([E(α)], [E(β)]), then the following

identity holds :

E(β)g(E(β))− E(α)g(E(α))−
∫ E(β)

E(α)
g(E(v))dE(v)

= lnE(β)−lnE(α)
2

[∫ 1

0

(
(E(β))t(E(α))(2−t)) g′

(
(E(β))

t
2 (E(α))

(2−t)
2

)
dt
]

+ lnE(β)−lnE(α)
2

[∫ 1

0

(
(E(α))t(E(β))(2−t)) g′

(
(E(α))

t
2 (E(β))

(2−t)
2

)
dt
]
.
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Proof. Let J1 =
∫ 1

0

(
(E(β))t(E(α))(2−t)) g′

(
(E(β))

t
2 (E(α))

(2−t)
2

)
dt and J2 =

∫ 1

0

(
(E(α))t(E(β))(2−t)) g′

(
(E(α))

t
2 (E(β))

(2−t)
2

)
dt.

Then we notice that

J1 =
∫ 1

0

(
(E(β))t(E(α))(2−t)) g′

(
(E(β))

t
2 (E(α))

(2−t)
2

)
dt

2
lnE(β)−lnE(α)

∫ 1

0

(
(E(β))

t
2 (E(α))

(2−t)
2

)
g
′
(

(E(β))
t
2 (E(α))

(2−t)
2

)
d
(
E(β))

t
2 (E(α))

(2−t)
2

)
.

Now by the change of variable E(v) = (E(β))
t
2 (E(α))

(2−t)
2 ) and integrating by parts, we have

J1 = 2
lnE(β)−lnE(α)

[√
(E(α)E(β))g

√
(E(α)E(β))− E(α)g(E(α))−

∫√(E(α)E(β))

E(α) g(E(v))dE(v)

]
.

Conformably, we have

J2 = 2
lnE(β)−lnE(α)

[
E(β)g(E(β))−

√
(E(α)E(β))g

√
(E(α)E(β))−

∫ E(β)√
(E(α)E(β))

g(E(v))dE(v)

]
.

Multiplying J1 and J2 by lnE(β)−lnE(α)
2 and adding the results we get the appealed identity.

Our first result is given in the following theorem.

Example 2.1. Let f :
[
0, π2

]
→ [0,∞) and n ∈ N− {1} such that

f(x) = −
∫ n
√
x

0

ln(cos(t))dt

is not GG − convex on
(
0, π2

)
and there is a map E :

[
0, n
√

π
2

]
→
[
0, π2

]
such that E(x) = xn, then the

function

f(E(x)) = −
∫ x

0

ln(cos(t))dt

is GG - E - convex function on
(
0, π2

)
.

Example 2.2. Let f :
[
0, (4n+1)π

2

]
→ [0,∞) where n ∈ Z such that

f(x) = ln(sinx)

is not GG - convex on
(

0, (4n+1)π
2

)
and there is a map E :

[
0, (4n+1)π

2

]
→
[
0, (4n+1)π

2

]
such that E(x) =

(4n+1)π
2 − x then the function

f(E(x)) = ln

(
sin

(
(4n+ 1)π

2
− x
))

f(E(x)) = ln (cosx)

is GG - E - convex function on
(

0, (4n+1)π
2

)
.

Example 2.3. Let E : < → < and f : < → < are defined as

E(x) =

{
2 x > 0

−x x ≤ 0
And

f(x) = x2

Then the function E(x) is not obeying our inequalities and the function f(x) is obeying our inequalities.

Also the composition foE will obey our inequalities.

Remark 2.1. Example 2.3 shows that a non convex function E(x) does not obey our inequalities, but a

convex function f(x) obey our inequalities. And also an E−convex function foE(x) obey our inequalities.

Example 2.4. Let the function E : < → < such that E(x) = lnx which is non convex, so this function is

not obeying our inequalities.

Example 2.5. Let the function F : < → < such that F (x) = ex which is convex, so this function is obeying

our inequalities.

Example 2.6. Let the composition of two functions E,F be defined as FoE : < → < such that F (E(x)) = x

which is E−convex, so this function is obeying our inequalities.
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3 Main Results

Theorem 3.1. Let g : S ⊆ R+ = (0,∞) → R be a differentiable function on So and α, β ∈ So with α < β

and E : R → R is a non decreasing function so E(α) < E(β). If g
′ ∈ L[E(α), E(β)]. If |g′| is GG − E −

Convex on [E(α), E(β)], then the following inequality holds:

|E(β)g(E(β))− E(α)g(E(α))−
∫ E(β)

E(α)
g(E(v))dE(v)|

≤ lnE(β)−lnE(α)
2

(
E(α)

√
|g′(E(α))|+ E(β)

√
|g′(E(β))|

)
L
(
E(α)

√
|g′(E(α))|, E(β)

√
|g′(E(β))|

)
.

Proof. From Lemma 2.1, using the property of the modulus and GG E convexity of |g′|, we can write

|E(β)g(E(β))− E(α)g(E(α))−
∫ E(β)

E(α)
g(E(v))dE(v)|

≤ lnE(β)−lnE(α)
2

[∫ 1

0

(
(E(β))t(E(α))(2−t))

∣∣∣g′
(

(E(β))
t
2 (E(α))

(2−t)
2

)∣∣∣ dt
]

+ lnE(β)−lnE(α)
2

[∫ 1

0

(
(E(α))t(E(β))(2−t))

∣∣∣g′
(

(E(α))
t
2 (E(β))

(2−t)
2

)∣∣∣ dt
]

≤ lnE(β)−lnE(α)
2

[
∫ 1

0

(
(E(β))t(E(α))(2−t))

∣∣∣g′(E(β))
∣∣∣
t
2
∣∣∣g′(E(α))

∣∣∣
(2−t)

2

dt

]

+ lnE(β)−lnE(α)
2

[
∫ 1

0

(
(E(α))t(E(β))(2−t))

∣∣∣g′(E(α))
∣∣∣
t
2
∣∣∣g′(E(β))

∣∣∣
(2−t)

2

dt

]

= lnE(β)−lnE(α)
2

[
(E(α))2

∣∣∣g′(E(α))
∣∣∣
∫ 1

0

(
E(β)
√
|g′ (E(β))|

E(α)
√
|g′ (E(α))|

)t
dt

]

+ lnE(β)−lnE(α)
2

[
(E(β))2

∣∣∣g′(E(β))
∣∣∣
∫ 1

0

(
E(α)
√
|g′ (E(α))|

E(β)
√
|g′ (E(β))|

)t
dt

]
.

Then we get the desired result.

Theorem 3.2. Let g : S ⊆ R+ = (0,∞) → R be a differentiable function on So and α, β ∈ So with α < β

and E : R → R is a non decreasing function so E(α) < E(β). If g
′ ∈ L[E(α), E(β)]. If |g′|n is GG - E -

Convex on [E(α), E(β)], for all E(γ) ∈ [E(α), E(β)],then the following inequality

|E(β)g(E(β))− E(α)g(E(α))−
∫ E(β)

E(α)
g(E(v))dE(v)|

≤ lnE(β)−lnE(α)
2

(
E(α)

√
|g′(E(α))|+ E(β)

√
|g′(E(β))|

)
(L ((E(α))m, (E(β))m))

1
m

×
[(
L
(√
|g′(E(α))|n,

√
|g′(E(β))|n

)) 1
n

]

holds, where n > 1 and 1
m + 1

n = 1.

Proof. From Lemma 2.1, using the property of the modulus, GG E convexity of |g′|n and Holder integral

inequality, we can write

|E(β)g(E(β))− E(α)g(E(α))−
∫ E(β)

E(α)
g(E(v))dE(v)|

= lnE(β)−lnE(α)
2

[∫ 1

0

(
(E(β))t(E(α))(2−t))

∣∣∣g′
(

(E(β))
t
2 (E(α))

(2−t)
2

)∣∣∣ dt
]

+ lnE(β)−lnE(α)
2

[∫ 1

0

(
(E(α))t(E(β))(2−t))

∣∣∣g′
(

(E(α))
t
2 (E(β))

(2−t)
2

)∣∣∣ dt
]

≤ lnE(β)−lnE(α)
2

[(∫ E(β)

E(α)
(E(β))tm(E(α))(2−t)mdt

) 1
m
(∫ 1

0

∣∣∣g′
(

(E(β))
t
2 (E(α))

(2−t)
2

)∣∣∣
n) 1

n

]

160



+ lnE(β)−lnE(α)
2

[(∫ E(β)

E(α)
(E(α))tm(E(β))(2−t)mdt

) 1
m
(∫ 1

0

∣∣∣g′
(

(E(α))
t
2 (E(β))

(2−t)
2

)∣∣∣
n) 1

n

]

≤ lnE(β)−lnE(α)
2


(E(α))2

(∫ 1

0

(
(E(β))m

(E(α))m

)t
dt

) 1
m

(
∫ 1

0

∣∣∣g′(E(β))
∣∣∣
tn
2
∣∣∣g′(E(α))

∣∣∣
(2−t)n

2

dt

) 1
n




+ lnE(β)−lnE(α)
2


(E(β))2

(∫ 1

0

(
(E(α))m

(E(β))m

)t
dt

) 1
m

(
∫ 1

0

∣∣∣g′(E(α))
∣∣∣
tn
2
∣∣∣g′(E(β))

∣∣∣
(2−t)n

2

dt

) 1
n


 .

Then we get the desired result.

Theorem 3.3. Under the assumptions of Theorem 3.2, the following inequality holds :

|E(β)g(E(β))− E(α)g(E(α))−
∫ E(β)

E(α)
g(E(v))dE(v)|

≤ lnE(β)−lnE(α)
2

(
L
(√
|g′(E(α))|n,

√
|g′(E(β))|n

)) 1
n

×
[(

(E(β))m+1−mE(β)−(E(β))
m+1

) 1
m

(E(α))2
√
|g′(E(α))|+

(
(E(α))m+1−mE(α)−(E(α))

m+1

) 1
m

(E(β))2
√
|g′(E(β))|

]
.

Proof. From Lemma 2.1, using the property of the modulus, GG E convexity of |g′|n and Holder integral

inequality, we can write

|E(β)g(E(β))− E(α)g(E(α))−
∫ E(β)

E(α)
g(E(v))dE(v)|

≤ lnE(β)−lnE(α)
2

[(∫ 1

0
(E(β))tmdt

) 1
m
(∫ 1

0
(E(β))(2−t)n

∣∣∣g′
(

(E(β))
t
2 (E(α))

(2−t)
2

)∣∣∣
n

dt
) 1
n

]

+ lnE(β)−lnE(α)
2

[(∫ 1

0
(E(α))tmdt

) 1
m
(∫ 1

0
(E(α))(2−t)n

∣∣∣g′
(

(E(α))
t
2 (E(β))

(2−t)
2

)∣∣∣
n

dt
) 1
n

]

≤ lnE(β)−lnE(α)
2



(∫ 1

0
(E(β))tmdt

) 1
m

(
∫ 1

0
(E(β))(2−t)n

∣∣∣g′ (E(β))
∣∣∣
t
2
∣∣∣g′ (E(α))

∣∣∣
(2−t)

2

dt

) 1
n




+ lnE(β)−lnE(α)
2



(∫ 1

0
(E(α))tmdt

) 1
m

(
∫ 1

0
(E(β))(2−t)n

∣∣∣g′ (E(α))
∣∣∣
t
2
∣∣∣g′ (E(β))

∣∣∣
(2−t)

2

dt

) 1
n


 .

If we calculate the integral above, we get the desired result.

Theorem 3.4. Under the assumptions of Theorem 3.2, the following inequality holds :

|E(β)g(E(β))− E(α)g(E(α))−
∫ E(β)

E(α)
g(E(v))dE(v)|

≤ lnE(β)−lnE(α)
2

(
E(α)

√
|g′(E(α))|+ E(β)

√
|g′(E(β))|

)

×
(
L
(

(E(α))n
√
|g′(E(α))|n, (E(β))n

√
|g′(E(β))|n

)) 1
n

.

Proof. From Lemma 2.1, using the property of the modulus, GG E - convexity of |g′|n and Power mean

integral inequality, we can write∣∣∣E(β)g(E(β))− E(α)g(E(α))−
∫ E(β)

E(α)
g(E(v))dE(v)

∣∣∣

≤ lnE(β)−lnE(α)
2

[(∫ 1

0
dt
)1− 1

n
(∫ 1

0
(E(β))tn(E(α))(2−t)n

∣∣∣g′
(

(E(β))
t
2 (E(α))

(2−t)
2

)∣∣∣
n

dt
) 1
n

]

+ lnE(β)−lnE(α)
2

[(∫ 1

0
dt
)1− 1

n
(∫ 1

0
(E(α))tn(E(β))(2−t)n

∣∣∣g′
(

(E(α))
t
2 (E(β))

(2−t)
2

)∣∣∣
n

dt
) 1
n

]
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≤ lnE(β)−lnE(α)
2


(E(α))2

∣∣∣g′(E(α))
∣∣∣
(
∫ 1

0

(
(E(β))n|g

′
(E(β))|

n
2

(E(α))n|g′ (E(α))|
n
2

)t
dt

) 1
n




+ lnE(β)−lnE(α)
2


(E(β))2

∣∣∣g′(E(β))
∣∣∣
(
∫ 1

0

(
(E(α))n|g

′
(E(α))|

n
2

(E(β))n|g′ (E(β))|
n
2

)t
dt

) 1
n


.

Then we get the desired result.

Theorem 3.5. Under the assumptions of Theorem 3.2, the following inequality holds :

|E(β)g(E(β))− E(α)g(E(α))−
∫ E(β)

E(α)
g(E(v))dE(v)|

≤ lnE(β)−lnE(α)
2

[(
E(β)−1
ln(E(β))

) 1
m

E(α)
√
|g′(E(α))|L 1

n

(
(E(α))n

√
|g′(E(α))|n, (E(β))

√
|g′(E(β))|n

)]

+ lnE(β)−lnE(α)
2

[(
E(α)−1
ln(E(α))

) 1
m

E(β)
√
|g′(E(β))|L 1

n

(
(E(α))n

√
|g′(E(α))|, (E(β))n

√
|g′(E(β))|n

)]
.

Proof. From Lemma 2.1, using the property of the modulus, GG E - convexity of |g′|n and Power mean

integral inequality, we can write

|E(β)g(E(β))− E(α)g(E(α))−
∫ E(β)

E(α)
g(E(v))dE(v)|

≤ lnE(β)−lnE(α)
2

[(∫ 1

0
(E(β))tdt

) 1
m

(∫ 1

0
(E(β))t(E(α))(2−t)n

∣∣∣g′(E(β))
∣∣∣
tn
2
∣∣∣g′(E(α))

∣∣∣
(1− t2 )n

dt

) 1
n

]

+ lnE(β)−lnE(α)
2

[(∫ 1

0
(E(α))tdt

) 1
m

(∫ 1

0
(E(α))t(E(β))(2−t)n

∣∣∣g′(E(α))
∣∣∣
tn
2
∣∣∣g′(E(β))

∣∣∣
(1− t2 )n

dt

) 1
n

]
.

Then we get the desired result.

Theorem 3.6. Under the assumptions of Theorem 3.2, the following inequality holds :

|E(β)g(E(β))− E(α)g(E(α))−
∫ E(β)

E(α)
g(E(v))dE(v)|

≤ lnE(β)−lnE(α)
2

(
(E(α))

m
n

√
g′(E(α)) + ((E(β))

m
n

√
g′(E(β))

)

×
(
L
(

(E(α))
n−m
n−1 , (E(β))

n−m
n−1

))1− 1
n
(
L
(

(E(α))m
√
|g′(E(α))|n + (E(β))m

√
|g′(E(β))|n

)) 1
n

.

Proof. From Lemma 2.1, using the property of the modulus, GG E convexity of |g′|n and Power mean

integral inequality, we can write

|E(β)g(E(β))− E(α)g(E(α))−
∫ E(β)

E(α)
g(E(v))dE(v)|

≤ lnE(β)−lnE(α)
2

[(∫ 1

0

(
(E(β))t(E(α))(2−t))

)n−m
n−1 dt

)1− 1
n

]

×
[(∫ 1

0

(
(E(β))t(E(α))(2−t))

)m ∣∣∣g′(E(α))
∣∣∣
( 2−t

2 )n ∣∣∣g′(E(β))
∣∣∣
tn
2

dt

) 1
n

]

+ lnE(β)−lnE(α)
2

[(∫ 1

0

(
(E(α))t(E(β))(2−t))

)n−m
n−1 dt

)1− 1
n

]

×
[(∫ 1

0

(
(E(α))t(E(β))(2−t))

)m ∣∣∣g′(E(β))
∣∣∣
( 2−t

2 )n ∣∣∣g′(E(α))
∣∣∣
tn
2

dt

) 1
n

]
.

Then we get the desired result.

Theorem 3.7. Let g : S ⊆ R+ = (0,∞) → R be a differentiable function on So and α, β ∈ So with α < β

and E : R → R is a non decreasing function so E(α) < E(β). If g
′ ∈ L[E(α), E(β)]. If |g′| is GG − E −

Convex on [E(α), E(β)], then the following inequality holds:

|E(β)g(E(β))− E(α)g(E(α))−
∫ E(β)

E(α)
g(E(v))dE(v)|

≤ lnE(β)−lnE(α)
2

(
E(α)

√
|g′(E(α))|+ E(β)

√
|g′(E(β))|

)
L
(
E(α)

√
|g′(E(α))|, E(β)

√
|g′(E(β))|

)
.
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4 Application Area

The concept of E - convexity is the generalizations of convex sets and convex functions, in a respective

manner. E - convexity is also used in the study of E-convex programming. We believe that our new class of

functions will have a very profound research in this entrancing domain of inequalities and also in the pure

and applied sciences. The interesting inequalities and successful ideas in this article can be extended to other

mean functions like harmonic mean, Arithmetic mean etc. As we move forward, we aim to continue that

research to find inequalities for non-convex functions as well.

5 Conclusions

In this paper, we derived the inequalities for GG - E - Convex function using Holder integral inequality. If

we take E(x) as an identity function then it shows the result of [16].

Acknowledgement. Authors are very much thankful to the Editor and Reviewer for their valuable

suggestions to bring the paper in its present form.
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Jñānābha, Vol. 53(1) (2023), 165-172
(Dedicated to Professor G. C. Sharma on His 85th Birth Anniversary Celebrations)

ON HOMOGENEOUS CUBIC EQUATION WITH FOUR UNKNOWNS (x3 + y3) = 7zw2

J. Shanthi, S. Vidhyalakshmi and M. A. Gopalan
Department of Mathematics, Shrimati Indira Gandhi College, Affiliated to Bharathidasan University,

Trichy, Tamil Nadu, India-620002
Email: shanthivishvaa@gmail.com, vidhyasigc@gmail.com and mayilgopalan@gmail.com

(Received: February 26, 2023; Informat: March 09, 2023; Revised: March 22, 2023; Accepted: May 20,
2023)

DOI: https://doi.org/10.58250/jnanabha.2023.53119

Abstract

This paper concerns with the problem of obtaining non-zero distinct integer solutions to homogeneous
cubic equation with four unknowns given by x3 + y3 = 7zw2. A few interesting properties among the
solutions are presented.
2020 Mathematical Sciences Classification: 11D25
Keywords and Phrases: homogeneous cubic, cubic with four unknowns, integer solutions

1 Introduction
The cubic diophantine equations are rich in variety and offer an unlimited field for research [1, 2]. In
particular refer [3]- [23] for a few problems on cubic equation with 3 and 4 unknowns. This paper concerns
with yet another interesting homogeneous cubic diophantine equation with four unknowns x3 +y3 = 7zw2 for
determining its infinitely many non-zero distinct integral solutions through employing linear transformations.
A few interesting relations among the solutions are presented.
Method of Analysis

The homogeneous cubic equation with four unknowns to be solved is represented by

x3 + y3 = 7zw2. (1.1)

Introduction of the linear transformations

x = u+ v, y = u− v, z = 2u, (1.2)

in (1.1) leads to
u2 + 3v2 = 7w2. (1.3)

Different methods of obtaining the patterns of integer solutions to (1.1) are illustrated below:

2 Patterns
Pattern 2.1. Let

w = a2 + 3b2, (2.1)

where a and b are non-zero integers.
Write 7 as

7 = (2 + i
√

3)(2− i
√

3). (2.2)

Using (2.1), (2.2) in (1.3) and applying the method of factorization, define

(u+ i
√

3v) = (2 + i
√

3)(a+ i
√

3b)2, (2.3)

from which, we have

u = 2a2 − 6ab− 6b2

v = a2 + 4ab− 3b2

}
. (2.4)

Using (2.4) and (1.2), the values of x, y and z are given by

x = x(a, b) = 3a2 − 2ab− 9b2

y = y(a, b) = a2 − 10ab− 3b2

z = z(a, b) = 4a2 − 12ab− 12b2




. (2.5)

Thus (2.1) and (2.5) represent the non-zero integer solutions to (1.1).
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Observation 2.1. 1. z(a, a+ 1)− 4y(a, a+ 1) = 56t3,a
2. z(a, 2a− 1)− 4y(a, 2a− 1) = 28t6,a
3. z(a, a)− 4y(a, a)− t58,a ≡ 0 (mod 3)
4. z(a, a)− 4y(a, a)− t34,a − t26,a ≡ 0 (mod 13)
5. 42[z(a, a)− 4y(a, a)] is a nasty number.

Pattern 2.2. Write 7 as

7 =
(5 + i

√
3)(5− i

√
3)

4
. (2.6)

Using (2.1), (2.6) in (1.3) and applying the method of factorization, define

(u+ i
√

3v) =
(5 + i

√
3)

2
(a+ i

√
3b)2, (2.7)

from which, we have

u =
1

2
(5a2 − 6ab− 15b2)

v =
1

2
(a2 + 10ab− 3b2)




, (2.8)

Using (2.8) and (1.2), the values of x, y and z are given by

x = x(a, b) = 3a2 + 2ab− 9b2

y = y(a, b) = 2a2 − 8ab− 6b2

z = z(a, b) = 5a2 − 6ab− 15b2




, (2.9)

Thus (2.1) and (2.9) represent the non-zero integer solutions to (1.1).

Observation 2.2. 1. x(a, a)− z(a, a)− t38,a ≡ 0 (mod 17)
2. y(a, a)− z(a, a) = t4,2a

Pattern 2.3. Write (1.3) as
u2 + 3v2 = 7w2 ∗ 1. (2.10)

Write 1 as

1 =
(1 + i

√
3)(1− i

√
3)

4
. (2.11)

Using (2.1), (2.2), (2.11) in (1.3) and applying the method of factorization, define

(u+ i
√

3v) = (
1 + i

√
3

2
)(2 + i

√
3)(a+ i

√
3b)2, (2.12)

from which, we have

u =
1

2
(−a2 − 18ab+ 3b2)

v =
1

2
(3a2 − 2ab− 9b2)




, (2.13)

Using (2.13) and (1.2), the values of x, y and z are given by

x = x(a, b) = a2 − 10ab− 3b2

y = y(a, b) = −2a2 − 8ab+ 6b2

z = z(a, b) = −a2 − 18ab+ 3b2




. (2.14)

Thus (2.1) and (2.14) represent the non-zero integer solutions to (1.1).

Observation 2.3. 1. y(a, a)− x(a, a)− t18,a ≡ 0 (mod 7)
2. y(b, b)− z(b, b)− tb,22 − tb,6 ≡ 0 (mod 2)

Pattern 2.4. Consider 1 as

1 =
(1 + i4

√
3)(1− i4

√
3)

49
. (2.15)

Using (2.1), (2.2), (2.15) in (1.3) and applying the method of factorization, define

(u+ i
√

3v) = (
1 + i4

√
3

7
)(2 + i

√
3)(a+ i

√
3b)2, (2.16)
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from which, we have

u =
1

7
(−10a2 − 54ab+ 30b2)

v =
1

7
(9a2 − 20ab− 27b2)




. (2.17)

Using (2.17) and (1.2), the values of x, y and z are given by

x = x(a, b) =
1

7
(−a2 − 74ab+ 3b2)

y = y(a, b) =
1

7
(−19a2 − 34ab+ 57b2)

z = z(a, b) =
1

7
(−20a2 − 10ab+ 60b2)





. (2.18)

Since our interest is on finding integer solutions, replacing a by 7A, b by 7B in (2.1) and (2.18), the
corresponding integer solutions to to (1.1) are given by

x = x(A,B) = 7(−A2 − 74AB + 3B2)

y = y(A,B) = 7(−19A2 − 34AB + 57B2)

z = z(A,B) = 7(−20A2 − 10AB + 60B2)

w = w(A,B) = 49(A2 + 3B2)




. (2.19)

Observation 2.4. 1. x(A,A)− z(A,A) + t38,A + t22,A ≡ 0 (mod 13)
2. y(A,A)− z(A,A)− 7[t62,A + t42,A + t26,A + t22,A] ≡ 0 (mod 7)

Pattern 2.5. Take 1 as

1 =
(1 + i15

√
3)(1− i15

√
3)

676
. (2.20)

Using (2.1), (2.2), (2.20) in (1.3) and applying the method of factorization, define

(u+ i
√

3v) = (
1 + i15

√
3

26
)(2 + i

√
3)(a+ i

√
3b)2, (2.21)

from which, we have

u =
1

26
(−43a2 − 186ab+ 129b2)

v =
1

26
(31a2 − 86ab− 93b2)




. (2.22)

Using (2.22) and (1.2), the values of x, y and z are given by

x = x(a, b) =
1

13
(−6a2 − 136ab+ 18b2)

y = y(a, b) =
1

13
(−37a2 − 50ab+ 111b2)

z = z(a, b) =
1

13
(−43a2 − 186ab+ 129b2)





. (2.23)

Since our interest is on finding integer solutions, replacing a by 13A, b by 13B in (2.1) and (2.23), the
corresponding integer solutions to to (1.1) are given by

x = x(A,B) = 13(−6A2 − 136AB + 18B2)

y = y(A,B) = 13(−37A2 − 50AB + 111B2)

z = z(A,B) = 13(−43A2 − 186AB + 129B2)

w = w(A,B) = 169(A2 + 3B2)




. (2.24)

Observation 2.5. 1. z(A,A)− x(A,A)− 13[t30,A + t14,A + t10,A] ≡ 0 (mod 13)
2. x(A,A)− y(A,A) + 15[t62,A + t16,A] = 35A

Pattern 2.6. Assume 1 as

1 =
(1 + i56

√
3)(1− i56

√
3)

9409
. (2.25)
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Using (2.1), (2.2), (2.25) in (1.3) and applying the method of factorization, define

(u+ i
√

3v) = (
1 + i56

√
3

97
)(2 + i

√
3)(a+ i

√
3b)2, (2.26)

from which, we have

u =
1

97
(−166a2 − 678ab+ 498b2)

v =
1

97
(113a2 − 332ab− 339b2)




. (2.27)

Using (2.27) and (1.2), the values of x, y and z are given by

x = x(a, b) =
1

97
(−53a2 − 1010ab+ 159b2)

y = y(a, b) =
1

97
(−279a2 − 346ab+ 837b2)

z = z(a, b) =
1

97
(−332a2 − 1356ab+ 996b2)





. (2.28)

Since our interest is on finding integer solutions, replacing a by 97A, b by 97B in (2.1) and (2.28), the
corresponding integer solutions to to (1.1) are given by

x = x(A,B) = 97(−53A2 − 1010AB + 159B2)

y = y(A,B) = 97(−279A2 − 346AB + 837B2)

z = z(A,B) = 97(−332A2 − 1356AB + 996B2)

w = w(A,B) = 9409(A2 + 3B2)




. (2.29)

Pattern 2.7. Using (2.1), (2.6), (2.11) in (1.3) and applying the method of factorization, define

(u+ i
√

3v) = (
5 + i

√
3

2
)(a+ i

√
3b)2(

1 + i
√

3

2
), (2.30)

from which, we have

u =
1

2
(a2 − 18ab− 3b2)

v =
1

2
(3a2 + 2ab− 9b2)




. (2.31)

Using (2.31) and (1.2), the values of x, y and z are given by

x = x(a, b) = 2a2 − 8ab− 6b2

y = y(a, b) = −a2 − 10ab+ 3b2

z = z(a, b) = a2 − 18ab− 3b2




. (2.32)

Thus (2.1) and (2.32) represent the non-zero integer solutions to to (1.1).

Observation 2.6. 1. x(b, b)− z(b, b) = 2t2b,4
2. x(a, a)− y(a, a) + t4,2a = 0

Pattern 2.8. Using (2.1), (2.6), (2.15) in (1.3) and applying the method of factorization, define

(u+ i
√

3v) = (
5 + i

√
3

2
)(a+ i

√
3b)2(

1 + i4
√

3

7
), (2.33)

from which, we have

u =
1

2
(−a2 − 18ab+ 3b2)

v =
1

2
(3a2 − 2ab− 9b2)




. (2.34)

Using (2.34) and (1.2), the values of x, y and z are given by

x = x(a, b) = a2 − 10ab− 3b2

y = y(a, b) = −2a2 − 8ab+ 6b2

z = z(a, b) = −a2 − 18ab+ 3b2




. (2.35)

Thus (2.1) and (2.35) represent the non-zero integer solutions to to (1.1).
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Observation 2.7. 1. x(b, b)− z(b, b)− tb,10 ≡ 0 (mod 3)
2. y(b, b)− z(b, b)− 2tb,14 ≡ 0 (mod 5)

Pattern 2.9. Using (2.1), (2.6), (2.20) in (1.3) and applying the method of factorization, define

(u+ i
√

3v) = (
5 + i

√
3

2
)(a+ i

√
3b)2(

1 + i15
√

3

26
), (2.36)

from which, we have

u =
1

13
(−10a2 − 114ab+ 30b2)

v =
1

13
(19a2 − 20ab− 57b2)




. (2.37)

Using (2.37) and (1.2), the values of x, y and z are given by

x = x(a, b) =
1

13
(9a2 − 134ab− 27b2)

y = y(a, b) =
1

13
(−29a2 − 94ab+ 87b2)

z = z(a, b) =
1

13
(−20a2 − 228ab+ 60b2)





. (2.38)

Since our interest is on finding integer solutions, replacing a by 13A, b by 13B in (2.1) and (2.38), the
corresponding integer solutions to (1.1) are given by

x = x(A,B) = 13(9A2 − 134AB − 27B2)

y = y(A,B) = 13(−29A2 − 94AB + 87B2)

z = z(A,B) = 13(−20A2 − 228AB + 60B2)

w = w(A,B) = 169(A2 + 3B2)




. (2.39)

Pattern 2.10. Using (2.1), (2.6), (2.25) in (1.3) and applying the method of factorization, define

(u+ i
√

3v) = (
5 + i

√
3

2
)(a+ i

√
3b)2(

1 + i56
√

3

97
), (2.40)

from which, we have

u =
1

194
(−163a2 − 1686ab+ 489b2)

v =
1

194
(281a2 − 326ab− 843b2)




. (2.41)

Using (2.41) and (1.2), the values of x, y and z are given by

x = x(a, b) =
1

97
(59a2 − 1006ab− 177b2)

y = y(a, b) =
1

97
(−222a2 − 680ab+ 666b2)

z = z(a, b) =
1

97
(−163a2 − 1686ab+ 489b2)





. (2.42)

Since our interest is on finding integer solutions, replacing a by 97A, b by 97B in (2.1) and (2.42), the
corresponding integer solutions to (1.1) are given by

x = x(A,B) = 97(59A2 − 1006AB − 177B2)

y = y(A,B) = 97(−222A2 − 680AB + 666B2)

z = z(A,B) = 97(−163A2 − 1686AB + 489B2)

w = w(A,B) = 9409(A2 + 3B2)




. (2.43)

Pattern 2.11. (1.3) is rewritten as
u2 = 7w2 − 3v2. (2.44)

In (2.44), taking

w = X + 3T

v = X + 7T

u = 2U




, (2.45)

169



it leads to
X2 − U2 = 21T 2, (2.46)

which is written as the system of double equations as shown in Table 2.1:

Table 2.1: System of Double Equations

SY STEM 1.1 1.2 1.3 1.4
X + U T 2 3T 2 7T 2 7T
X − U 21 7 3 3T

Consider system (1.1) in the Table 2.1: Solving the pair of equations, note that

X =
T 2 + 21

2

U =
T 2 − 21

2
.

The choice
T = 2k + 1, (2.47)

gives

X = 2k2 + 2k + 11

U = 2k2 + 2k − 10

}
. (2.48)

The substitution of (2.47) and (2.48) in (2.45) gives

u = 4k2 + 4k − 20

v = 2k2 + 16k + 18

w = 2k2 + 8k + 14




. (2.49)

In view of (1.2), one obtains

x = 6k2 + 20k − 2

y = 2k2 − 12k − 38

z = 8k2 + 8k − 40




. (2.50)

Thus (2.49) and (2.50) represent the non-zero integer solutions to (1.1).

Consider system (1.2) in the Table 2.1: Solving the pair of equations, note that

X =
3T 2 + 7

2

U =
3T 2 − 7

2
.

Using (2.47) the above equation become

X = 6k2 + 6k + 5

U = 6k2 + 6k − 2

}
. (2.51)

The substitution of (2.47) and (2.51) in (2.45) gives

u = 12k2 + 12k − 4

v = 6k2 + 20k + 12

w = 6k2 + 12k + 8




. (2.52)

In view of (1.2), one obtains

x = 18k2 + 32k + 8

y = 6k2 − 8k − 16

z = 24k2 + 24k − 8




. (2.53)

170



Thus (2.52) and (2.53) represent the non-zero integer solutions to (1.1).

Consider system (1.3) in the Table 2.1: Solving the pair of equations, note that

X =
7T 2 + 3

2

U =
7T 2 − 3

2
Using (2.47) the above equation become

X = 14k2 + 14k + 5

U = 14k2 + 14k + 2

}
. (2.54)

The substitution of (2.47) and (2.54) in (2.45) gives

u = 28k2 + 28k + 4

v = 14k2 + 28k + 12

w = 14k2 + 20k + 8




. (2.55)

In view of (1.2), one obtains

x = 42k2 + 56k + 16

y = 14k2 − 8

z = 56k2 + 56k + 8




. (2.56)

Thus (2.55) and (2.56) represent the non-zero integer solutions to (1.1).

Consider system (1.4) in the Table 2.1: On solving, it is seen that X = 5T,U = 2T .
In view of (2.45), we have

u = 4T

v = 12T

w = 8T




. (2.57)

Substituting the above values of u and v in (1.2), we get

x = 16T

y = −8T

z = 8T




. (2.58)

Thus (2.57) and (2.58) represent the non-zero integer solutions to (1.1).

Pattern 2.12. It is seen that (2.46) is satisfied by

T = 2rs

U = 21r2 − s2

X = 21r2 + s




. (2.59)

Substituting the values of T,U and X in (2.53), we get

u = 42r2 − 2s2

v = 21r2 + 14rs+ s2

w = 21r2 + 6rs+ s2




. (2.60)

Substituting the above values of u and v in (1.2), the non-zero distinct integral values of x, y and z are given
by

x = x(r, s) = 63r2 + 14rs− s2

y = y(r, s) = 21r2 − 14rs− 3s2

z = z(r, s) = 84r2 − 4s2




. (2.61)

Thus (2.60) and (2.61) represent the non-zero integer solutions to (1.1).
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3 Conclusion
In this paper, we have made an attempt to determine different patterns of non-zero distinct integer solutins
to the homogeneous cubic equation with four unknowns. As the cubic equations are rich in variety, one may
search for other forms of cubic equations with multivariables to obtain their corresponding solutions.
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Abstract

In this paper, we shall prove the generalized Hyers-Ulam stability of the additive-quartic functional
equation introduced by C. Muthamilarasi et al. [11] in Random Normed spaces by using direct and
fixed-point methods.
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1 Introduction
In the field of stability of functional equations, a type of stability named after the Mathematician Ulam
[15] is often considered. In 1940, Ulam [15], triggered the study of stability problems for various functional
equations. He presented a number of unsolved problems. Since then, this question has attracted the attention
of many researchers. In the next year, Hyers [9] gave answer of Ulams question in the case of approximately
additive mappings. Thereafter, Hyers result was generalized by Aoki [3] and improved for additive mappings,
and subsequently improved by Rassias [[6],[7]] for linear mappings by allowing the Cauchy difference to be
unbounded.
Since then, stability of functional equation had been discussed in various spaces by researchers [[2],[4],[5]].
In 1963, Serstnev [13] introduced the theory of random normed spaces (briefly, RN-spaces) which is
generalization of deterministic result of normed spaces and also in the study of random operator equations.
A number of papers and research monographs have been published on generalizations of the stability of
different functional equations in RN- spaces [12]. Recently, in 2017, Abdou et al. [1] discussed the stability
of a quintic functional equations in random normed space. In this paper, we shall discuss about the stability
of A-Quartic functional equation in random normed space.
To prove our main results, we need some notions and definitions from the literature as follows: A function
F : R ∪ {−∞,+∞} → [0, 1] is called a distribution function if it is nondecreasing and left -continuous with
F (0) = 0 and F (∞) = 1. The class of all probability distribution functions F with F (0) = 0 is denoted by
A.D+ is a subset of A consisting of all functions F ∈ A for which F (∞) = 1 , where l−F (x) = limt→x− F (t).
For any a ≥ 0, εa is the element of D+ , which is defined as{

0, if t ≤ 0

1, otherwise.

Definition 1.1 ([14]). A function T : [0, 1] × [0, 1] → [0, 1] is a continuous triangular norm (briefly, a
t-norm) if T satisfies the following conditions:

1. T is commutative and associative,
2. T is continuous,
3. T (a, 1) = 1 for all a[0, 1],
4. T (a, b) ≤ T (c, d) whenever a ≤ c and b ≤ d for all a, b, c, d ∈ [0, 1].

The examples of continuous t-norm are as follows:
TM (a, b) = min{a, b}, TP (a, b) = minab, TL(a, b) = max{a+ b− 1, 0}
Recall that, if T is a t-norm and {xn} is a sequence of number in [0, 1], then Tni=1xi is defined recurrently by
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T 1
i=1xi = x1andT

n
i=1xi = T (Tn−1

i=1 xi, xn) = T (x1, x2, , ..., xn) for each n ≥ 2 and T∞i=nxn is defined as
T∞i=1xn+i.

Definition 1.2 ([13]). Let X be a real linear space, µ be a mapping from X into D+(foranyxX, µ(x) is
denoted by µx and T be a continuous t norm. The triple (X,µ, t) is called a random normed space (briefly
RN -space) if µ satisfies the following conditions:

(RN 1) µx = ε0(t) for all t > 0 if and only if x = 0;

(RN 2) µαx(t) = µx( t
|α| ) for all x ∈ X,α 6= 0 and all t ≥ 0;

(RN 3) µx + y(t+ s) ≥ T (µx(t), µy(s)) for all x, y ∈ X and all t, s > 0.

Example 1.3. Every normed space (X, ‖.‖) defines a RN-space (X,µ, TM ), where µx(t) = t
t+‖x‖ , for all

t > 0 and TM is the minimum t-norm. This space is called induced random normed space.

Definition 1.3 ([13]). Let (X,µ, T ) be a RN-space.
1. A sequence {xn} in X is said to be convergent to a point x ∈ X if, for all t > 0 and λ > 0 there exists

a positive integer N such that µ(xn−x)(t) > 1− λ, whenever n ≥ N . In this case, x is called the limit
of the sequence {xn} and we denote it by limn→∞ µxn−x = 1.

2. A sequence {xn} in X is called a Cauchy sequence if, for all t > 0 and λ > 0, there exists a positive
integer N such that µxn−xm(t) > 1− λ, whenever n ≥ m ≥ N .

3. The RN -space (X,µ, T ) is said to be complete if every Cauchy sequence in X is convergent to a point
in X.

Theorem 1.1 ([14]). If (X,µ, T ) is a RN-space and {xn} is a sequence of X such that xn → x then
limn→∞ µxn(t) = µx(t) almost everywhere.

Recently in 2021, Muthamilarasi et al. [11] proved the general solution and generalized Hyers-Ulam
stability of additive quartic functional equation.

f(ax+ a2y + a3z) + f(−ax+ a2y + a3z) + f(ax− a2y + a3z) + f(ax+ a2y − a3z)

= 2[f(ax+ a2y) + f(a2y + a3z) + f(ax+ a3z)

+ f(ax− a2y) + f(a2y − a3z) + f(a3z − ax)]

− 2[a4(f(x) + f(−x)) + a8(f(y) + f(−y))

+ a12(f(z) + f(−z))]− [a(f(x)− f(−x))

+ a2(f(y)− f(−y)) + a3(f(z)− f(−z))]. (1.1)
for fixed a ∈ Z+ in Banach spaces.

Lemma 1.1. Let W and X be real vector spaces. If an odd mapping f : W → X satisfies (1.1), then f is
additive.

Lemma 1.2. Assume that W and X are real vector spaces. If an even mapping f : W → X satisfies the
quartic functional equation
f(2w + x) + f(2w − x) = 4f(w + x) + 4f(w − x) + 24f(w) − 6f(x), if and only if f : W → X satisfies the
functional equation (1.1) for all x, y, z, w ∈W.Throughout this paper,let X be a real linear space, (Z, µ′, TM )
be an RN -space and (Y, µ, TM ) be a complete RN -spaces. For mapping f : X → Y , we define

Df(x, y, z) = f(ax+ a2y + a3z) + f(−ax+ a2y + a3z) + f(ax− a2y + a3z)

+ f(ax+ a2y − a3z)− 2[f(ax+ a2y) + (a2y + a3z) + f(ax+ a3z)

+ f(ax− a2y) + f(a2y − a3z) + f(a3z − ax)]

+ 2[a4(f(x) + f(−x)) + a8(f(y) + f(−y)) + a12(f(z) + f(−z))]
+ [a(f(x)− f(−x)) + a2(f(y)− f(−y)) + a3(f(z)− f(−z))], (1.2)

(1.3)
for all x, y, z ∈ X.
In this paper, using the direct and fixed-point methods, we investigate the generalised Hyers -Ulam stability
of the A-Quartic functional equation (1.1) in random normed spaces under the minimum t-norm.
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2 Random stability of the functional equation
In this section, we investigate the generalized Hyers-Ulam stability problem of the A-Quartic functional
equation (1.1) in RN-spaces.

Theorem 2.1. . Let φ : X3 → Z be a function such that, for some 0 < α < a ,

µ′φ(ax,ay,az)(t) ≥ µ′α(φ(x,y,z))(t). (2.1)

and limn→∞ µ′φ(anx,any,anz)(a
nt) = 1. For all x, y, z ∈ X and t > 0.

If f : X → Y is an odd mapping with f(0) = 0 such that

µDf(x,y,z)(t) ≥ µ′φ(x,y,z)(t) (2.2)

for all x, y, z ∈ X and t > 0.
Then there exists a unique additive mapping A : X → Y such that,

µf(x)−A(x)(t) ≥ µ′φ(x,0,0)(2(a− α)t) (2.3)

for all x ∈ X and t > 0.

Proof. Putting y = z = 0 in equation (2.2), we get

µ2af(x)−2f(ax)(t) ≥ µ′φ(x,0,0)(t). (2.4)

µ
(f(x)− f(ax)a )

(t) ≥ µφ(x,0,0)(2at). (2.5)

for all x ∈ X and t > 0. Replacing x by ax in equation (2.4), we get

µ
(f(ax)− f(a

2x)
a )

(t)µ′φ(ax,0,0)(2at) ≥ µ′φ(x,0,0)(
2at

α
),

µ
(f(ax)− f(a

2x)
a )

(t) ≥ µ′φ(ax,0,0)(2at)µ
′
φ(x,0,0)(

2at

α
),

µ
(f(ax)/a− f(a

2x)

a2
)
(t/a) ≥ µ′φ(x,0,0)(

2at

α
)),

µ
(f(ax)/a− f(a

2x)

a2
)
(t) ≥ µ′φ(x,0,0)(t). (2.6)

for all x ∈ X and t > 0.
Continuing like this, we have

µ
(
f(anx)
an −f(

f(an+1x)

an+1 ))
(t) ≥ µ′φ(x,0,0)(

2an+1t

an
). (2.7)

Now, since

f(anx)

an
− f(x) = (

f(anx)

an
− f(an−1x))

an−1
)

+ (
(f(an−1x)

an−1
− f(an−2x)

an−2)

+ ...+ (
f(ax)

a
− f(x)),

=

n−1∑

j=0

(
f(aj+1x)

aj+1
− f(ajx)

aj
)

µ
(
f(anx)
an −f(x))

(

n−1∑

j=0

1

2a
(
α

a
)jt) ≥ TM (µ′φ(x,0,0)(t),

= µ′φ(x,0,0)(t). (2.8)

Now, replacing x by amx in equation (2.8), we get

µ
(
f(an+mx)

an )−f(amx)
(

n−1∑

j=0

1

2a
(
α

a
)jt) ≥ µ′φ(amx,0,0)(t),
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µ
(
f(an+mx)

an+m − f(a
mx)
am )

(

n−1∑

j=0

1

2aam
(
α

a
)jt) ≥ µ′φ(x,0,0)(

t

αm
),

µ
(
f(an+mx)

an+m − f(a
mx)
am )

)(t) ≥ µ′φ(x,0,0)(
t

αm(
∑n−1
j=0

t
2aam (αa )jt)

),

= µ′φ(x,0,0)

2at∑n−1
j=0 (αa )j

,

≥ µ′φ(x,0,0)

2at∑n+m−1
j=m (αa )j+m

. (2.9)

for all x ∈ X and m,n ∈ Z with n > m ≥ 0 since < a, the sequence { (f(anx))
an } is a Cauchy sequence in the

complete RN -spaces (Y, µ, TM ) and so it converges to some point A(x) ∈ Y . Fix x ∈ X and put m = 0 in
equation (2.9), we get

µ
(
(f(anx))

an −f(x))
(t) ≥ µ′φ(x,0,0)

2at∑n−1
j=0 (αa )j

,

So, for any δ > 0,
µ(A(x)−f(x))(δ + t) ≥ TM (µ

A(x)− f(a
nx)
an

(δ), µ f(anx)
an −f(x)

(t) (2.10)

≥ TM (µ
A(x)− f(a

nx)
an

(δ), µ′φ(x,0,0)

2at∑n−1
j=0 (αa )j

).

for all x ∈ X and t > 0.
Taking the limit in (2.10) as n→∞, we get

µ(A(x)−f(x))(δ + t) ≥ µ′φ(x,0,0)(
2at

1
1−αa

) = µ′φ(x,0,0)(2t(a− α)) (2.11)

Since δ is arbitrary, by taking δ → 0 in equation (2.11), we have

µ(A(x)−f(x))(t) ≥ µ′φ(x,0,0)(2(a− α)(t), (2.12)

for all x ∈ X and t > 0.
Therefore, we conclude that the condition of equation (2.3) holds.
Also, by replacing x, y and z by anx, any and anz in equation (2.2), we have

µDf(anx,any,anz
an

(t) ≥ µφ(anx,any,anz)(a
n)(t) = µ′φ(x,y,z)(

a

α
)n(t),

for all x, y, z ∈ X and t > 0.
It follows from limn→∞ µ′φ(anx,any,anz)(a

nt) = 1, that A satisfies the equation (1.1), which implies that A is
an additive mapping.
To prove the uniqueness of the quartic mapping A, let us assume that there exists another mapping A′X → Y
which satisfies equation (2.3). Fix x ∈ X, then A(anx) = anA(x) and A′(anx) = anA′(x) for all n ∈ Z+.
Thus it follows from the equation (2.3) that

µ(A(x)−A′(x))(t) = µ
(
A(anx)
an −A

′(anx)
an )

(t)

≥ TM (µA(anx)
an − f(a

nx)
an )

(
t

2
), µ f(anx)

an −A
′(anx)
an )

(
t

2
) (2.13)

≥ µ′φ(x,0,0)((a− α)(
a

α
)nt).

Since, limn→∞(a− α)( aα )nt =∞, we have µ(A(x)−A′(x))(t) = 1 for all t > 0.
Thus the additive mapping is unique.
This completes the proof.

Theorem 2.2. Let φ : X3 → Z be a function such that, for some 0 < α < a4,
µ′(φ(ax,ay,az))(t) ≥ µαφ(x,y,z)(t) (2.14)

and limn→∞ µ′anφ(anx,any,anz)(t) = 1 for all x, y, z ∈ X and t > 0. If f : X → Y is an even mapping with

f(0) = 0 which satisfies equation (2.2), then there exists a unique additive mapping Q : X → Y such that
µ(f(x)−A(x))(t) ≥ µ′φ(x,0,0)(4(a4 − α)t), (2.15)

for all x ∈ X and t > 0.
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Replace x, y, z by x, 0, 0 respectively in equation (2.14), we obtain

µ(4f(ax)−4a4f(x)(t) ≥ µ′φ(x,0,0)(t),

µ
4a4(

f(ax)

a4
−f(x)

(t) ≥ µ′φ(x,0,0)(t),

µ
(
f(ax)

a4
−f(x)

(
t

4a4
) ≥ µ′φ(x,0,0)(t),

µ f(ax)
a4
−f(x)

(t) ≥ µ′φ(x,0,0)(4a
4t). (2.16)

for all x ∈ X and t > 0 .
Replacing x by ax in equation (2.16), we get

µ f(a2x)
a4
−f(ax)

(t) ≥ µ′φ(ax,0,0)(4a
4t),

≥ µ′φ(x,0,0)(
4a4t

a
),

µ f(a2x)
a8
− f(ax)

a4

(t) ≥ µ′φ(x,0,0)(
4a4t

a
),

µ
(
f(a2x)

a8
)−(

f(ax)

a4
)
(t) ≥ µ′φ(x, 0, 0)(

4a8t

a
), (2.17)

for all x ∈ X and t > 0.
Now again, replacing x by ax in equation (2.17), we have

µ f(a3x)
a8
− f(a

2x)

a4

(t) ≥ µφ(ax,0,0)(
4a8t

a
),

µ f(a3x)
a12

− f(a
2x)

a8

(t) ≥ µ′φ(x,0,0)(
4a12t

2
),

Continuing this process, we get

µ f(anx)
a4n

− f(a
n−1x)

a4(n−1)

(t) ≥ µ′φ(x,0,0)

(4a4nt)
(n− 1)

,

Now, since

f(anx)

a4n
− f(x) =

n−1∑

j=0

f(aj+1x)

a4(j+1)
− f(ajx)

a4j
,

Now,

µ f(anx)
a4n

−f(x)
(

n−1∑

j=0

1

(4a4)
(
α

a4
)jt) ≥ TM (µ′φ(x,0,0)(t))

= µ′φ(x,0,0)(t). (2.18)

Now replacing x by amx in equation (2.18), we get

µ f(an+mx)

a4n

(

n−1∑

j=0

1

4a4
(
α

a4
)jt) ≥ µ′φ(amx,0,0)(t),

µ f(an+mx)

a4n+4m − f(a
mx)

a4m

(

n−1∑

j=0

1

4a4a4m
(
α

a4
)jt) ≥ µ′φ(x,0,0)(

t

αm
),

µ f(an+mx)

a4(n+m)
− f(a

mx)

a4m

(t) ≥ µ′
φ(x,0,0)( 4a4t∑n−1

j=0
( α
a4

)j+m
)

(2.19)
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for all x and m,n ∈ Z+ with n > m ≥ 0. Since < a4, the sequence ( f(anx)
a4n ) is a Cauchy sequence in the

complete RN -space (Y, µ, TM ) and it converge to a point Q(x) ∈ Y .
Fix x ∈ X and m = 0 in equation (2.19), we get

µ f(anx)
a4n

−f(x)
(t) ≥ µ′φ(x,0,0)

2a4t∑n+m−1
j=0 ( αa4 )j

,

and so, for any δ > 0,

µ(Q(x)−f(x))(δ + t) ≥ TMµ(Q(x)− f(a
nx)

a4n
)
(δ), µ

(
f(anx)

a4n
−f(x))

(t),

≥ TMµ(Q(x)− f(a
nx)

a4n
)
(δ), µ′φ(x,0,0)(

4a4t∑n+m−1
j=0 ( αa4 )j

), (2.20)

for all x ∈ X and t > 0. Taking the limit n→∞ in equation (2.20), we get

µ(Q(x)−f(x))(δ + t) =≥ µ′φ(x,0,0)(
4a4t

1
1− α

a4

)

= µ′φ(x,0,0)(4t(a
4 − α)). (2.21)

Since δ is arbitrary, by taking δ → 0 in equation (2.21), we have

µ(Q(x)−f(x))(t) ≥ µ′φ(x,0,0)(4t(a
4 − α)). (2.22)

for all x ∈ X, t > 0.
Therefore, we conclude that the condition of equation (2.15) holds.
Also replacing x, y, z by anx, any, az respectively in equation (2.15), we have

µ anx,any,az
an

(t) ≥ µ′φ(anx,any,az)(a
nt),

≥ µ′φ(x,y,z)((
a4

α
)nt).

It follows from limn→∞ µ′φ(anx,any,az)(a
4nt) = 1 that Q satisfies the equation (1.1), which implies Q is a

quartic mapping.

Lemma 2.1 ([8]). Suppose that (ω, d) is a complete generalized metric space and J : ω → ω is astrictly
contractive mapping with Lipschitz constant L < 1. Then for each x ∈ ω, either d(Jnx, Jn+1x) =∞. for all
non negative integers n ≥ 0 or there exists a natural numbaer n0 such that

1. d(Jnx, Jn+1x) <∞ for all n ≥ n0;
2. The sequence Jnx is convergent to a fixed point y∗ og J ;
3. y∗ is the unique fixed point of J in the set A = {y ∈ ω : d(Jn0x, y) <∞};
4. d(y, y∗) ≤ 1

1−Ld(y, Jy) for all y ∈ A.

Theorem 2.3. Let φ : X3 → D+ be a function such that, for some 0 < α < a4,

µ′φ(x,y,z)(t) ≤ µ′φ(ax,ay,az)(αt) (2.23)

for all x, y, z ∈ X and t > 0. If f : X → Y is an even mapping with f(0) = 0 such that

µD(x,y,z)(t) ≥ µ′φ(x,y,z)(t). (2.24)

for all x, y, z ∈ X and t > 0.
Then there exists a unique quartic mapping Q : X → Y such that

µ(f(x)−Q(x))(t) ≥ µ′φ(x,y,z)(2(a4 − α)t), (2.25)

for all x ∈ X, t > 0.

Proof. It follows from equation (2.24) that

µ
(f(x)− f(ax)

a4
)
(t) ≥ µ′φ(x,0,0)(4a

4t), (2.26)

for all x ∈ X, t > 0.
Let ω = {g : X → Y, g(x) = 0} and mapping d defined on ω by

d(g, h) = inf{c ∈ [0,∞) : µg(x)−h(x)}(ct) ≥ µ′φ(x,0)(t),∀x ∈ X}
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where as usual inf φ = −∞. Then (ω, d) is a generalized complete metric space. Now let us consider the
mapping J : ω → ω defined by
Jg(x) = 1

a4 g(ax), for all g ∈ ω and x ∈ X.
Let g, h ∈ ω and c ∈ [0,∞) be any arbitrary constant with d(g, h) < c.
Then µ(g(x)−h(x))(ct) ≥ µ′φ(x,0,0) for all x ∈ X, t > 0 and so,

µ(Jg(x)−Jh(x))(
αct

a4
) = µg(ax)−h(ax)(αct) ≥ µ′φ(x,0,0)(t) = µ′φ(αx,0,0), (2.27)

for all x ∈ X, t > 0. Hence we have d(Jg, Jh) ≤ αc
a4 ≤ αc

a4 d(g, h).
for all g, h ∈ ω.
Then J is a contractive mapping on ω with the Lipschitz constant L = α

a4 < 1.
Thus it follows from Lemma 2.1, that there exists a mapping Q : X → Y which is a unique fixed point of J
in the set ω1 = {g ∈ ω : d(g, h) <∞}, such that

Q(x) = limn→∞
f(anx)
a4n for all x ∈ X since limn→∞ d(Jf , Q) = 0. Also, using µ

(f(x)− f(ax)
a4

)
(t) ≥

µ′φ(x,0,0)(4(a4 − α)t), we have d(f, Jf) ≤ 1
4(a4−α) .

Therefore using Lemma 2.1, we get
d(f,Q) ≤ 1

1−Ld(f, Jf) ≤ 1
4(a4−α) .

This means that
µf(x)−Q(x)(t) ≥ µ′φ(x,0)(4(a4 − α)t),

for all x ∈ X, t > 0. Also by replacing x, y, z by 2nx, 2ny, 2nz in equation (2.4) respectively, we have

µDQ(x,y,z)(t) ≥ lim
n→∞

µ′φ(2nx,2ny,2z)(a
4nt) = lim

n→∞
µ′φ(x,y,z)((

a4

α
)nt) = 1,

for all x, y, z ∈ X and t > 0. By (RN1), the mapping is quartic.
To prove the uniqueness let us assume that there exists a quartic mapping Q′ : X → Y , which satisfies
equation (2.25). Then Q′ is a fixed point of J in ω1.
However it follows from the Lemma 2.3, that J has only one fixed point in ω1.
Hence Q = Q′.
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Abstract

In this paper, We established a new class of convex function (φ1, φ2) − β-convex, which includes
many well-known classes as its subclasses. We defined (φ1, φ2)−β-convex function and discussed various
properties with non-differentiable and differentiable cases.
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1 Introduction

Convexity has been of great importance in both applied and pure mathematics for the purpose of generalizing

existing results in work over the past 60 years. In recent years, several extensions of the concept of convexity

of a set and a function have been introduced. There are several inequalities introduced by Minkowski [14],

Dragomir [10] and Ardic et al. [4] etc. using convexity. A class of convex functions introduced by Bector

and Singh [5] called b-vex functions with differentiable and nondifferentiable cases were presented.

Hanson [11] introduced mathematical Programming Problem for invex functions with inequality

constraints. He considered differentiable functions and then proved that instead of assumption of convexity,

the objective function and each of the constraints function involved satisfy inequality with respect to the same

function. Then Craven [8], inspired by Hanson’s work, first systematically introduced the term ”invariant

convex”. After that Craven and Glover [9], Ben Israel and Mond [6] and Martin [13] showed that the class

of invex functions is equivalent to the class of functions whose stationary points are points of global minima.

Mishra [15] obtained optimality and duality results by combining the concepts of type I, type II, pseudo-

type I, quasi-type I, quasi-pseudo-type I, pseudo-quasi-type I, strictly pseudo-quasi-type I, and univex

functions. Mishra and Rueda [16] also introduced and discussed SFJ -univex programming problems then

Ojha [18] extended the SFJ -univex programming problems in complex spaces. Antczak [1] introduced several

nonlinear programming problems of (p, r)-invexity type. Antczak [2] elongated the idea of p-invex set and

defined (p, r)-pre-invex function (non-differentiable) and (p, r)-invex function (differentiable) and obtained

optimality conditions for nonlinear programming problem under the idea of those functions. Antczak [3]

defined r -preinvexity, r -invexity and obtained optimality criteria and duality relations for these functions in

programming problem. Antczak [3] also designed duality theorems for modified r -invex functions based on

function η.

Weir, Mond and Craven [25] and also [26, 27] showed that how and where pre-invex functions can replace

convex functions in multiple objective optimization. Then Bector - singh [5] and Suneja, Singh and Bector

[24] introduced a class of functions, called b-vex functions which forms a subset of the sets of both semi-

strictly quasi-convex and quasi-convex functions also.

Pini [19] introduced relations between invexity and generalized properties of convexity also gave a new

class of generalized convex sets. Pini and Singh [21, 22] established duality results also defined (φ1, φ2)−
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convexity which is an extremely powerful principle for characterization of generalized convexity from an

integrated point of view. Where φ1 is a continuous deformation of straight line segments and φ2 identifies

generalized convex combinations of values. So after that other type of convexity can be introduced.

φ1 : D ×D × [0, 1]→ <n, φ1 = φ1(x, y, λ),

φ1(x, y, 0) = y, φ1(x, x, λ) = x, ∀x, y ∈ D, λ ∈ [0, 1],

φ2 : D ×D × [0, 1]× F → Re, φ2 = φ2(x, y, λ, f),

φ2(x, y, 0, f) = f(y), φ2(x, x, λ, f) = f(x), ∀x, y ∈ D,λ ∈ [0, 1], f ∈ F.
In this paper, (φ1, φ2) − β− convexity is defined. It is a very powerful new principle for characterizing

the generalized convexity of sets and functions from a unified perspective.

In section 2, the definition of (φ1, φ2)−β−convex function is given; we show that to appropriate selection

of functions φ1 and φ2, some of the well-known classes of generalized convex functions are particular cases

of this new class. An example of a (φ1, φ2) − β−convex function is also provided that does not belong to

any of the known classes. We present some properties of nondifferentiable (φ1, φ2) − β−convex functions.

In this section, we also examine some properties of the solution of a mathematical programming problem

involving.(φ1, φ2)− β−convex functions; moreover, we state a senstivity result.

In section 3, we consider the differentible case. Here we state a natural necessary condition for

differentiable (φ1, φ2)−β−convex functions; in particular, we provided criteria under which the differentiable

and the nondifferentiable conditions are equivalent. we state a second order sufficient condition for

(φ1, φ2)− β−convexity.

2 The Nondifferentiable Case

Let G be a vector space of real valued functions defined on a set D ⊆ <n. We are assuming two maps φ1, φ2

which satisfy the following assumptions:

φ1 : D ×D × [0, 1]→ <n, φ1 = φ1(x, y, λ),

φ1(p, q, 0) = q, φ1(p, p, λ) = p, ∀p, q ∈ D, λ ∈ [0, 1],

φ2 : D ×D × [0, 1]× F → <, φ2 = φ2(p, q, λ, g),

φ2(p, q, 0, g) = g(y), φ2(p, p, λ, g) = g(p), ∀p, q ∈ D,λ ∈ [0, 1], g ∈ G,
φ2(p, q, λ, g) ≤ ln(λeβg(φ1(p,p,λ) + (1− λ)eβg(φ1(p,q,0))1/β , if β 6= 0,

φ2(p, q, λ, g) = λgφ1(p, p, λ) + (1− λ)gφ1(p, q, 0), if β = 0,

φ2(p, q, λ, g) = λg(p) + (1− λ)g(q), if β = 0. (2.1)

We will also assume that φ1 is continuous with respect to λ. We give the following definitions and

preliminaries:

Definition 2.1 (φ1-convex set). A set D is said to be φ1-convex if φ1(p, q, λ) ∈ D for all p, q ∈ D, λ ∈ [0, 1].

The intersection of φ1-convex sets is also φ1-convex.

From now onwards, we take D as a φ1-convex set [21].

Definition 2.2 ((φ1, φ2)-convex(concave) function). A function g ∈ G is (φ1, φ2)-convex(concave) if

f(φ1(p, q, λ)) ≤ φ2(p, q, λ, f) (≥),

for all p, q ∈ D and 0 ≤ λ ≤ 1.

If g = (g1, g2, ..., gk) : D → <k, gi ∈ G , and gi is (φ1, φ2)-convex(concave) for i=1,2,...,k, then the vector

valued function g is said to be (φ1, φ2)-convex(concave) [21].
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Definition 2.3 ((φ1, φ2) − β-convex(concave) function). A function g ∈ G is said to be (φ1, φ2) − β-

convex(concave) if

g(φ1(p, q, λ)) 5 φ2(p, q, λ, g) ≤ ln(λeβg(φ1(p,p,λ) + (1− λ)eβg(φ1(p,q,0))1/β

if β 6= 0 (≥),

f(φ1(p, q, λ)) 5 φ2(p, q, λ, g) = λg(p) + (1− λ)g(q)

if β = 0 (≥),
(2.2)

for all p, q ∈ D and 0 ≤ λ ≤ 1.

If g = (g1, g2, ..., gk) : D → <k, gi ∈ G , and gi is (φ1, φ2)−β-convex(concave) for i=1,2,...,k, then the vector

valued function g is said to be (φ1, φ2)− β-convex(concave).

Definition 2.4 (φ1-quasi-convex function). A function g ∈ G is said to be φ1-quasi-convex [21] on D if for

every p, q ∈ D,λ ∈ [0, 1]

g(φ1(p, q, λ)) 5 max{g(p), g(q)}.

Definition 2.5 (φ1 − β-quasi-convex function). A function g ∈ G is said to be φ1 − β-quasi-convex on D if

for every p, q ∈ D,λ ∈ [0, 1]

g(φ1(p, q, λ)) 5 φ2(p, q, λ, g) ≤ ln(λeβg(φ1(p,p,λ) + (1− λ)eβg(φ1(p,q,0))1/β

5 max{g(p), g(p)} if β 6= 0,

g(φ1(p, q, λ)) 5 φ2(p, q, λ, g) = λg(p) + (1− λ)g(q) 5 max{g(p), g(p)} if β = 0. (2.3)

Remark 2.1. We say that this definition is independent on the vector or topological structure on D; In fact,

D can be any set.

Remark 2.2. If φ1, φ2 satisfy the assumptions of (2.1), then every (φ1, φ2) − β- convex function is φ1 − β-

quasi-convex. We give some examples below.

Example 2.1. Let D be a convex subset of <n, and define φ1(p, q, λ) = λp + (1 − λ)q, φ2(p, q, λ, g) ≤
ln(λeβg(φ1(p,p,λ) + (1− λ)eβg(φ1(p,q,0))1/β if β 6= 0 and φ2(p, q, λ, g) = λg(p) + (1− λ)g(q) if β = 0,

then the convex function on D is (φ1, φ2)− β-convex.

Example 2.2. If η : <n × <n → <n, D is a pre-invex set with respect to η, then an η-pre-invex function

g : D → < is (φ1, φ2) − β-convex with φ1(p, q, λ) = λη(p, q) + q and φ2(p, q, λ, g) ≤ ln(λeβg(φ1(p,p,λ) + (1 −
λ)eβg(φ1(p,q,0))1/β if β 6= 0 also φ2(p, q, λ, g) = λg(p) + (1 − λ)g(q) if β = 0, where η(p, q) = p − q
[27].

Example 2.3. Let D ⊆ N where N is an Euclidean manifold and D is geodesically convex. A geodesically

convex function on D is (φ1, φ2)− β-convex, with φ1(p, q, λ) = γp,q(λ) and φ2(p, q, λ, g) ≤ ln(λeβg(γp,p(λ) +

(1−λ)eβg(γp,q(0))1/β if β 6= 0 also φ2(p, q, λ, g) = λg(γp,p(λ))+(1−λ)g(γp,q(0)) if β = 0, where γp,q

is the geodesic from q to p [23].

Example 2.4. Let D be a convex subset of <n, φ1(p, q, λ) = λη(p, q) + q and

φ2(p, q, λ, g) ≤ ln(a1(p, q, λ)eβg(φ1(p,p,a1(p,q,λ) + (1− a1(p, q, λ))eβg(φ1(p,q,0))1/β if β 6= 0

also

φ2(p, q, λ, g) = a1(p, q, λ)g(p) + (1− a1(p, q, λ))g(q) if β = 0.

Then every B-vex function on D (with respect to a1) is (φ1, φ2)− β-convex [5, 24].
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Example 2.5. Let I be a one - to - one mapping from D ⊆ <n to <n, and Φ a strictly monotone increasing

function mapping a subset
∑

of < onto <. A function g : D → ∑
is called (I,Φ) − β-convex if, for any

p, q ∈ D and λ ∈ [0, 1]

f(NI([p, q], λ)) 5 nΦ[(g(p), g(q)), λ],

provided that rangeg ⊂ domΦ. Here

NI([p, q], λ) ≤ I−1(ln(λeβI(φ(p,p,λ) + (1− λ)eβI(φ(p,q,0))1/β if β 6= 0,

also

NI([p, q], λ) = λI(p) + (1− λ)I(q) if β = 0,

nΦ[(g(p), g(q)), λ] ≤ Φ−1(ln(λeβΦ(g(φ(p,p,λ) + (1− λ)eβΦ(g(φ(p,q,0))1/β if β 6= 0,

nΦ[(g(p), g(q)), λ] = Φ−1(λΦ(g(p) + (1− λ)Φ(g(q)) if β = 0.

Choosing φ1(p, q, λ) = NI([p, q], λ) and φ2(p, q, λ, g) = nΦ[(g(p), g(q)), λ], we see that an (I,Φ) − β-convex

function is a particular (φ1, φ2)− β-convex function [7].

Remark 2.3. The functions φ1, φ2 of the Examples 1 - 5 satisfy (2.1).

Example 2.6. A function g : <n → <̄1 = < ∪ {−∞} is called G-convex on the convex set D if, for every

p, q ∈ D, p 6= q, λ ∈ (0, 1),

g((1− λ)q + λp) 5 G(g(p), g(q), ‖p− q‖, λ),

where G(m1,m2, δ, α) : <̄1 × <̄1 × <+ × <+ → <̄1 is continuous and non-decreasing in

(m1,m2) and ‖.‖ is an arbitrary norm on <n. If we take φ1(p, q, λ) = λp + (1 − λ)q and

φ2(p, q, λ, g) = G(g(p), g(q), ‖p − q‖, λ) ≤ ln(λeβg(φ1(p,p,λ) + (1 − λ)eβg(φ1(p,q,0))1/β , we get that a G-

convex function is an example of (φ1, φ2)− β-convex function [12].

Now we will give some examples of (φ1, φ2)− β-convex function that justify our results.

Example 2.7. Let D ⊂ < be the set D = (−∞,∞), and g : D → < be the function defined as follows:

g(p) =

{
4p, ifp > 0

p2 − p+ 1, ifp < 0
.

Define the functions φ1 : D ×D × [0, 1] and φ2 : D ×D × [0, 1]×G as follows:

φ1(p, q, λ) =

{
(1− λ)q + λp, ifpq > 0

q, ifpq < 0
,

φ2(p, q, λ, g) =

{
g(q), ifλ = 0

max{g(p), g(q)}, if0 < λ ≤ 1
.

This function is (φ1, φ2)− β− convex and also justify our results.
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Example 2.8. Let D ⊂ < be the set D = (−∞,−1) ∪ (1,∞), and g : D → < be the function defined as

follows:

g(p) =

{
|p| − 1, if |p| < 1

1, if |p| > 1
.

Define the functions φ1 : D ×D × [0, 1] and φ2 : D ×D × [0, 1]×G as follows:

φ1(p, q, λ) =

{
(1− λ)q + λp, ifpq > 0

q, ifpq < 0
,

φ2(p, q, λ, g) =

{
g(q), ifλ = 0

max{g(p), g(q)}, if0 < λ ≤ 1
.

This function is (φ1, φ2)− β− convex and also justify our results.

Now for suitable assumptions on φ1 and/or φ2, we will discuss some properties of the class of (φ1, φ2)−β-

convex functions.

Observation (a). We are assuming that, φ2 issuperlinear with respect to g ∈ G, that is φ2 is superadditive

and positively homogeneous. Then the class of (φ1, φ2)− β-convex functions is a convex cone. (Practically,

if g,h are (φ1, φ2)− β-convex, and α > 0.

(g + h)(φ1(p, q, λ)) 5 φ2(p, q, λ, g) + φ2(p, q, λ, h) 5 φ2(p, q, λ, g + h)

(g + h)(φ1(p, q, λ)) ≤ ln(λeβg(φ1(p,p,λ) + (1− λ)eβg(φ1(p,q,0))1/β

+ln(λeβh(φ1(p,p,λ) + (1− λ)eβh(φ1(p,q,0))1/β

≤ ln(λeβ(g+h)(φ1(p,p,λ) + (1− λ)eβ(g+h)(φ1(p,q,0))1/β if β 6= 0

(g + h)(φ1(p, q, λ)) ≤ φ2(p, q, λ, g) + φ2(p, q, λ, h)

= λg(p) + (1− λ)h(q) + λg(p) + (1− λ)h(q) = λ(g + h)(p) + (1− λ)(g + h)(q)

if β = 0

(αg)(φ1(p, q, λ)) = α(g(φ1(p, q, λ)) 5 αφ2(p, q, λ, g) = φ2(p, q, λ, αg)

≤ ln(λeβαg(φ1(p,p,λ) + (1− λ)eβαg(φ1(p,q,0))1/β if β 6= 0

(αg)(φ1(p, q, λ)) = α(g(φ1(p, q, λ)) 5 αφ2(p, q, λ, g)

= φ2(p, q, λ, αg) = λ(αg)(p) + (1− λ)(αg)(q) if β = 0.

Observation (b). We are also assuming that, g : D → < is (φ1, φ2)− β-convex, h : < → < is an increasing

function and (φ3, φ4)− β-convex and hog ∈ G. Then, if

φ2(p, q, λ, g) 5 φ3(g(p), g(q), λ),

φ4(g(p), g(q), λ, h) 5 φ2(p, q, λ, hog),

the function hog is (φ1, φ2)− β-pre convex.(Practically, we have that)

(hog)(φ1(p, q, λ)) 5 h(φ2(p, q, λ, g))

5 h(φ3(g(p), g(q), λ))

5 φ4(g(p), g(q), λ, h)

5 φ2(p, q, λ, hog)

≤ ln(λeβα(hog)(φ1(p,p,λ) + (1− λ)eβα(hog)(φ1(p,q,0))1/β if β 6= 0

= λ(hog)(p) + (1− λ)(hog)(q) if β = 0.
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Remark 2.4. In Examples 2.1 - 2.4, we see that φ2 is linear with respect to g. In Example 2.5, if Φ is

superlinear then φ2 will be superlinear.

Now we will consider a scalar value optimization problem, which can be expressed as

(P ) ming(p) s.t. h(p) ≤ 0,

where g : D → <, h : D → <k Denote the feasible set by D0, where

D0 = {p ∈ D : h(p) ≤ 0}.
Then the following holds:

Proposition 2.1. Suppose that

(i) h = (h1, h2, ..., hk) is (φ1, φ2) - β- convex(see Definition (2.3):

(ii) g is (φ1, φ2) - β- convex.

Then the set of solutions of problem (P) will be φ1- β- convex.

Proof. The feasible set D0 is φ1- β-convex; Practically, if p1, p2 ∈ D0, from (i) and (2.1) we have

hi(φ1(p1, p2, λ)) ≤ φ2(p1, p2, λ, hi) ≤ ln(λeβhi(φ1(p,p,λ) + (1− λ)eβhi(φ1(p,q,0))1/β

≤ max{hi(φ1(p1, p2, λ)), hi(φ1(p1, p2, 0))} ≤ 0

for any i = 1, 2, ..., k. Next, let minp∈D0
g(p) be attained at p0

1 and p0
2. By the hypothesis (ii) and (2.1)

f(φ1(p0
1, p

0
2, λ)) ≤ φ2(p0

1, p
0
2, λ, g) ≤ ln(λeβg(φ1(p01,p

0
1,λ) + (1− λ)eβg(φ1(p01,p

0
2,0))1/β

≤ max{g(φ1(p0
1, p

0
1, λ)), g(φ1(p0

1, p
0
2, 0))} = g(p0

1)

But g(p0
1) = g(p0

2) = minp∈D0
g(p), hence g(φ1(p0

1, p
0
1, λ)) = g(p0

1) which completes the proof.

Definition 2.6 ((φ1, φ2)−β - pre-strictly convex(concave) function). Let p0 ∈ D. We say that g is (φ1, φ2)−β
strictly convex(concave) at p0 if

g(φ1(q, p0, λ)) < φ2(q, p0, λ, g) (>)

≤ ln(λeβg(φ1(q,q,λ) + (1− λ)eβg(φ1(q,p0,0))1/β (>), (2.4)

we say that g is weakly (φ1, φ2)− β strictly convex(concave) at p0 if (4) holds for some λ ∈ (0, 1). If (4) is

satisfied at any p0 ∈ D, then g is (φ1, φ2)− β strictly convex(concave) on D.

Proposition 2.2. Suppose that D0 is a φ1 − β convex set, and

(i) g is (φ1, φ2)− β strictly convex at p0 ∈ D0.

(ii) p0 is a solution of problem (P).

Then p0 is the unique solution of problem (P).

Proof. Let p∗ be another solution of (P). p∗ 6= p0. Then, for all λ ∈ (0, 1)

g(φ1(p∗, p0, λ)) ≤ φ2(p∗, p0, λ, g) ≤ ln(λeβg(φ1(p∗,p∗,λ) + (1− λ)eβg(φ1(p∗,p0,0))1/β

≤ max{g(φ1(p∗, p∗, λ)), g(φ1(p∗, p0, 0))} = g(p0)

which contradicts hypothesis(ii).

In case of (φ1, φ2)− β concave functions(see Definition 3 ), we have the following:

Theorem 2.1. Suppose that

(i) g is (φ1, φ2)− β strictly concave in D;
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(ii) ∀p0 ∈ int(D0)∃p, q ∈ D0, p 6= q, λ ∈ (0, 1] such that φ1(p, q, λ) = p0;

(iii) D0 is φ1 − β convex;

(iv) φ2(p, q, λ, g) ≥ ln(λeβg(φ1(p,p,λ) + (1− λ)eβg(φ1(p,q,0))1/β ≥ min{g(φ1(p, p, λ)), g(φ1(p, q, 0))} for every

p, q ∈ D0, λ ∈ [0, 1].

Then there are no interior points of D0 which are solution of (P), i.e. if p0 is a solution of (P), then p0 is

a boundary point of D0.

Proof. If the solution set of (P ) is empty, or int(D0) is empty, there is nothing to prove. Let p0 is a solution

of (P), and p0 ∈ int(D0). Then by (ii) there exist p, q ∈ D0, p 6= q and λ ∈ (0, 1] such that p0 = φ1(p, q, λ).

By (i) we have that

g(p0) = g(φ1(p, q, λ)) > φ2(p, q, λ, g)

≥ ln(λeβg(φ1(p,p,λ) + (1− λ)eβg(φ1(p,q,0))1/β ≥ min{g(φ1(p, p, λ)), g(φ1(p, q, 0))} ≥ g(p0).

Contradiction, so it is concluded that p0 is not a solution of (P ). Let µδ(p0) denote a neighbourhood of p0

of radius δ.

Theorem 2.2. Suppose that

(i) g is (φ1, φ2)− β strictly convex;

(ii) p0 ∈ D0 is a local minimum of (P);

(iii) ∀δ1 > 0, and ∀p ∈ D0,∃λ ∈ (0, 1] such that φ1(p0, p, λ) ∈ µδ1(p0);

(iv) D0 is φ1 − β convex;

Then p0 is a strict global minimum of (P).

Proof. By hypothesis (iv), for every p ∈ D0, and for every λ ∈ [0, 1], φ1(p0, p, λ) ∈ D0. Since p0 is a local

minimum of (P ), there exists µδ2(p0) such that for every p ∈ µδ2(p0) ∩D0, g(p0) ≤ g(p). Now let p ∈ D0,

p 6= p0. Then, by hypothesis (ii) and (iii), with δ1 = δ2 we have that g(p0) ≤ φ1(p0, p, λ)) for some λ ∈ (0, 1].

Therefore, using (i) and (2.1), we have

g(p0) ≤ g(φ1(p0, p, λ)) < φ2(p0, p, λ, g)

≤ ln(λeβg(φ1(p0,p0,λ) + (1− λ)eβg(φ1(p0,p,0))1/β ≤ max{g(φ1(p0, p0, λ)), g(φ1(p0, p, 0))}

Obviously, max{g(φ1(p0, p0, λ)), g(φ1(p0, p, 0))} 6= g(p0) since g(p0) ≮ g(p0). Therefore g(p0) < g(p). Since

p is an arbitrary member of D0, the proof is complete.

On the basis of Theorem 2.2, the following results can be obtained.

Theorem 2.3. Suppose that

(i) g is (φ1, φ2)− β convex;

(ii) p0 ∈ D0 is a strict local minimum of (P);

(iii) ∀δ1 > 0, and ∀p ∈ D0,∃λ ∈ (0, 1] such that φ1(p0, p, λ) ∈ µδ1(p0) \ {p0};
(iv) D0 is φ1 − β convex;

Then p0 is a strict global minimum of (P).

Theorem 2.4. Suppose that

(i) g is (φ1, φ2)− β convex;

(ii) p0 ∈ D0 is a local minimum of (P);

(iii) ∀δ1 > 0, and ∀p ∈ D0,∃λ ∈ (0, 1] such that φ1(p0, p, λ) ∈ µδ1(p0);

(iv) D0 is φ1 − β convex;
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(v) φ2(p0, p, λ, g) ≤ ln(λeβg(φ1(p0,p0,λ) +(1−λ)eβg(φ1(p0,p,0))1/β 5 max{g(φ1(p0, p0, λ)), g(φ1(p0, p, 0))} for

every p ∈ D0 with g(p) 6= g(p0), and for all λ ∈ (0, 1).

Then p0 is a global minimum of (P).

Example 2.9. Let D ⊂ < be the set D = (−∞,−3) ∪ (3,∞), and g : D → < be the function defined as

follows:

g(p) =

{
|p| − 3, if |p| < 3

1, if |p| = 3
.

Define the functions φ1 : D ×D × [0, 1] and φ2 : D ×D × [0, 1]×G as follows:

φ1(p, q, λ) =

{
(1− λ)q + λp, ifpq > 0

q, ifpq < 0
,

φ2(p, q, λ, g) =

{
g(q), ifλ = 0

max{g(p), g(q)}, if0 < λ ≤ 1
.

This function is (φ1, φ2)− β− convex which verifies our results.

Now we will study a regularity property of the product of (φ1, φ2) − β convex functions (i=2,3). First,

we say the following

Lemma 2.1. Suppose that g,h are satisfying the conditions and also real valued functions defined on D,

(i) g(p) = 0, h(p) = 0

(ii) g(p)− g(q))(h(p)− h(q)) = 0 ∀ p, q ∈ D.

Then for every p, q ∈ D, either

g(p)h(p) = g(q)h(p) and g(p)h(p) = g(p)h(q)

or

g(q)h(q) = g(p)h(q) and g(q)h(q) = g(q)h(p).

Proof. Since, by (ii),

g(p)− g(q))(h(p)− h(q)) = 0 ∀p, q ∈ D

it follows that either

g(p) = g(q) and h(p) = h(q)

or

g(q) = g(p) and h(q) = h(p)

which further implies(in view of (i)) that either

g(p)h(p) = g(q)h(p) and g(p)h(p) = g(p)h(q)

or

g(q)h(q) = g(p)h(q) and g(q)h(q) = g(q)h(p).

Proposition 2.3. Suppose that

(i) g,h are nonnegative functions defined on D and satisfying the inequality

(g(p)− g(q))(h(p)− h(q)) = 0, ∀p, q ∈ D;

(ii) g is (φ1, φ2)− β convex, h is (φ1, φ2)− β convex.
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Then pq is φ1 − β quasi-convex.

Proof. For any p, q ∈ D and λ ∈ [0, 1],

(gh)(φ1(p, q, λ)) = g(φ1(p, q, λ))h(φ1(p, q, λ))

5 φ2(p, q, λ, g)φ2(p, q, λ, h)

≤ {ln(λeβf(φ1(p,p,λ) + (1− λ)eβf(φ1(p,q,0))1/β}

×{ln(λeβh(φ1(p,p,λ) + (1− λ)eβh(φ1(p,q,0))1/β}

5 max{g(p), g(q)}.max{h(p), h(q)}.

Now max{g(p), g(q)}.max{h(p), h(q)}, in view of lemma, is less than or equal to

max{g(p), g(q)}.max{h(p), h(q)}; hence it follows that

(gh)(φ1(p, q, λ)) ≤ ln(λeβ(gh)(φ1(p,p,λ) + (1− λ)eβ(gh)(φ1(p,q,0))1/β

≤ max{g(p)h(p), g(q)h(q)}

= max{(gh)(p), (gh)(q)}.

Therefore gh is φ1 − β-quasi-convex.

Now we will consider the following family of problems:

min g(p) s.t. h(p) 5 ε,

where g : <n → <, h : <n → <k, ε ∈ <k. Denote by g∗(ε) the function

g∗ : <k → <, g∗(ε) = inf{g(p) : h(p) 5 ε} ([25]).

Assume that g is (φ1, φ2)− β convex, where φ2(p1, p2, λ, g) = φ4(g(p1), g(p2), λ) and the vector function

h is (φ1, φ2)− β convex, where

φ̄2 : <n ×<n × [0, 1]×Gk → <k, φ̄2(p, q, λ, h) = φ3(h(p), h(q), λ),

and φ3(b1, b2, λ) is nondecreasing in (b1, b2) with respect to the component wise order (if bi1 5 ci1 and bj2 5 cj2,

∀i, j, then φ3(b1, b2, λ) 5 φ3(c1, c2, λ), for every λ ∈ [0, 1])

We have the following

Theorem 2.5. The function g∗ is a (φ3, φ4)−βconvex on <k (i.e. g∗(φ3(ε1, ε2, λ)) 5 φ4(g∗(ε1), g∗(ε2), λ)).

Proof. Notice that if h(p1) 5 ε1, h(p2) 5 ε2 then

h(φ1(p1, p2, λ)) 5 φ3(h(p1), h(p2), λ) 5 φ3(ε1, ε2, λ);

in particular,

{(p1, p2) : h(p1) 5 ε1, h(p2) 5 ε2} ⊆ {(p1, p2) : h(φ1(p1, p2, λ)) 5 φ3(ε1, ε2, λ)}
Hence

g∗(φ3(ε1, ε2, λ)) = inf{g(p) : h(p) 5 φ3(ε1, ε2, λ)}
5 inf{g(φ1(p1, p2, λ)) : h(φ1(p1, p2, λ)) 5 φ3(ε1, ε2, λ)}
5 inf{φ2(p1, p2, λ, g) : h(p1) 5 ε1, h(p2) 5 ε2} (from(2.6))

≤ inf{ln(λeβg(φ1(p,p,λ) + (1− λ)eβg(φ1(p,q,0))1/β : h(p1) 5 ε1, h(p2) 5 ε2}
= φ4(g∗(ε1), g∗(ε2), λ).
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3 The Differentiable Case

Let us assume that φ1, φ2 have right partial derivative with respect to λ at λ = 0, for all p, q ∈ D, for all

g ∈ G. If we consider a differentiable (φ1, φ2)−β convex function g, defined on D ⊆ <n, taking into account

(1), for p, q ∈ D and λ ∈ (0, 1] we get that

g(φ1(p, q, λ) 5 φ2(p, q, λ, g)

=⇒ g(φ1(p, q, λ)− g(q) 5 φ2(p, q, λ, g)− g(q)

=⇒ g(φ1(p, q, λ)− g(φ1(p, q, 0) 5 φ2(p, q, λ, g)− φ2(p, q, 0, g)

=⇒ 1
λ (g(φ1(p, q, λ)− g(φ1(p, q, 0)) 5 1

λ (φ2(p, q, λ, g)− φ2(p, q, 0, g))

=⇒ 1
λ (g(φ1(p, q, λ)− g(φ1(p, q, 0))

=⇒ 5 1
λ (ln(λeβg(φ1(p,p,λ) + (1− λ)eβg(φ1(p, q, 0))1/β − φ2(p, q, 0, g))

and, taking the limit of both sided for λ→ 0+ (and since φ1(p, q, 0) = q), we have

∇qg(φ1(p, q, 0))
∂+φ1

∂λ
(p, q, λ)

∣∣∣∣
λ=0

5
∂+φ2

∂λ
(p, q, λ, g)

∣∣∣∣
λ=0

∇qg(φ1(p, q, 0))
∂+φ1

∂λ
(p, q, λ)

∣∣∣∣
λ=0

5
∂+(ln(λeβg(φ1(p,p,λ) + (1− λ)eβg(φ1(p,q,0))1/β)

∂λ

∣∣∣∣
λ=0

We therefore have the following.

Proposition 3.1. We are assuming that φ1, φ2 have right partial derivative with respect to λ at λ = 0.

Then a differentiable (φ1, φ2)− β convex function g satisfies the inequality

φ2(p, q, g) = ∇qg(q)φ1(p, q),

for every p, q ∈ D, where

φ1(p, q) =
∂+φ1

∂λ
(p, q, λ)

∣∣∣∣
λ=0

, φ2(p, q, f) =
∂+φ2

∂λ
(p, q, λ, g)

∣∣∣∣
λ=0

φ1(p, q) =
∂+φ1

∂λ
(p, q, λ)

∣∣∣∣
λ=0

,

φ2(p, q, g) =
∂+(ln(λeβg(φ1(p,p,λ) + (1− λ)eβg(φ1(p,q,0))1/β)

∂λ

∣∣∣∣
λ=0

.

Remark 3.1. The same result holds in a more general setting, where D is a subset of a Riemannian manifold,

and the r.h.s. of (2.4) is defined as dgq(φ1(p, q)).

It is easy to verify that a φ1 − β quasi-convex function h satisfies the condition

h(p) 5 h(q) =⇒ ∇qh(q)φ1(p, q) 5 0,

for every p, q ∈ D.

Definition 3.1. Let ψ : D×D → D. We say that ψ is skew-symmetric on D×D if ψ(p, q) = −ψ(q, p) for

every (p,q) ∈ D ×D.

Corollary 3.1. (To Proposition 3.1) Suppose that g is differentiable and (φ1, φ2) − β convex; if φ1, φ2

are related to φ1, φ2 as in (Proposition 3.1), and skew-symmetric for any (p,q) ∈ D × D, then ∇g is

φ1 − β−monotone on D, i.e.

(∇pg(p)−∇qg(q))φ1(p, q) = 0 ∀(p, q) ∈ D ×D.

Proof. By (Proposition 3.1) we have that

φ2(p, q, g) = ∇qg(q)φ1(p, q) φ2(q, p, g) = ∇pg(p)φ1(q, p)

and the conclusion follows from the skew-symmetry.

The local condition expressed by (Proposition 3.1) is usually not sufficient to guarantee the (φ1, φ2) − β−
convexity of g, unless we specify some more restrictive and global properties of the functions φ1 and φ2.

Indeed, consider φ1(p, q, λ) = q + λη(p, q), φ2(p, q, λ, g) = (1− λ)g(q) + λg(p)
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In Mohan and Neogy provided a counterexample, showing that the condition

f(x)− f(y) = ∇yf(y)η(x, y)

does not imply in general that

g(q + λη(p, q)) 5 (1− λ)g(q) + λg(p) ∀λ ∈ [0, 1].

We will assume that the function g is differentiable on D. The following results relate the necessary condition

for a differentiable φ1, φ2)−β-convex function g, and the definition of φ1, φ2)−β−convexity. In the first result

we assume that a ”regularity condition” is satisfied by φ1, whereas φ2 is the usual r.h.s. of the definition of

convexity, providing a slight extension of the ordinary convex case.

Proposition 3.2. Assume that φ1 is differentiable with respect to λ in [0, 1]: if the following are satisfied

(i) φ1(p, q, 0) = q, φ1(p, q, 1) = p;

(ii) ∂φ1

∂v (p, q, v)(t′ − v) = φ1(φ1(p, q, t′), (φ1(p, q, v));

(iii) φ2(p, q, λ, g) = (1− λ)g(q) + λg(p)

for every p, q ∈ D, v, t′, λ ∈ [0, 1], then a function f satisfying (Proposition 3.1) is φ1, φ2 − β-convex.

Proof. By Proposition 3.1 and condition (i), it follows that g(p) − g(q) = ∇qg(q)φ1(p, q), and for every

p, q ∈ D, we get that the function h(w) = f(φ1(p, q, w)) is convex ; indeed

h(t′)− h(v) = g(φ1(p, q, t′))− g(φ1(p, q, v))

= ∇φ1
g(φ1(p, q, v))φ1(φ1(p, q, t′), (φ1(p, q, v)) (by Proposition 3.1 )

= ∇φ1
g(φ1(p, q, v))

∂φ1

∂v
(p, q, v)(t′ − v) (by (ii))

h′(v)(t′ − v).

It follows that h is convex. Hence, h(λ) 5 (1− λ)h(0) + λh(1). Now by hypotheses (i) and (ii) we get that

g(φ1(p, q, λ) 5 (1− λ)g(q) + λg(p) = φ2(p, q, λ, g),

(see [26], where a special case of the Proposition 3.2 is proved).

More generally, the following result relating Proposition 3.1 and φ1, φ2 − β−convexity holds.

Theorem 3.1. We are assuming that, g is a differentiable function on D, where D is a φ1− convex subset

of <n. Let φi(i = 1, 2) be the function associated with φi as in (Proposition 3.1). Then we are assuming that

there exists a function H ′ : <×<× [0, 1]→ <, H ′ = H ′(w, t′, λ), and the following conditions are satisfied:

(i) H ′(φ2(p, φ1(p, q, λ), g), φ2(q, φ1(p, q, λ), g), λ) 5 φ2(p, q, λ, g)− g(φ1(p, q, λ));

(ii) H’ is non decreasing in (w,t’), for every λ fixed (if w1 5 w2, t
′
1 5 t′2. we have that H ′(w1, w1, λ) 5

H ′(w2, t
′
2, λ));

(iii) H ′(∇φ1(g(φ1(p, q, λ))φ1(p, φ1(p, q, λ)),∇φ1(g(φ1(p, q, λ))φ1(q, φ1(p, q, λ)) = 0 for every λ ∈ [0, 1], g ∈
G, p, q ∈ D;

(iv) φ2(p, r, g) = ∇rg(r)φ1(p, r), ∀p, r ∈ D.
Then g is (φ1, φ2)− β−convex on D.

Proof. From (iv), with r = φ1(p, q, λ) we have that

φ2(p, φ1(p, q, λ), g) = ∇φ1
(g(φ1(p, q, λ))φ1(p, φ1(p, q, λ)),

φ2(q, φ1(p, q, λ), g) = ∇φ1
(g(φ1(p, q, λ))φ1(q, φ1(p, q, λ)).

Let w = φ2(p, φ1(p, q, λ), g), t′ = φ2(q, φ1(p, q, λ), g); from (ii) and (iii), we get that

H ′(w, t′, λ) = H ′(∇φ1
g(φ1(p, q, λ))φ1(p, φ1(p, q, λ)),
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∇φ1g(φ1(p, q, λ))φ1(q, φ1(p, q, λ)), λ) = 0,

Finally, by (i), we have that

φ2(p, q, λ, g)− g(φ1(p, q, λ)) = 0, ∀p, q ∈ D,λ ∈ [0, 1],

that is g is (φ1, φ2)− β−convex. Notice that Condition C in [27] is a particular case of Theorem 3.1 where

φ1(p, q, λ) = q + λη(p, q), φ2(p, q, λ, g) = (1− λ)g(q) + λg(p), and H ′(w, t′, λ) = λw + (1− λ)t′.

Example 3.1. Let D ⊂ < be the set D = [0, 2], and f : D → [0, 1] be the function defined as follows:

f(x) =

{√
x, ifx ∈ [0, 1]√
2− x, ifx ∈ (1, 2]

.

Define the functions φ1 : D ×D × [0, 1] and φ2 : D ×D × [0, 1]× F as follows:

φ1(x, y, λ) =

{
(1− λ)(2(2−√y)) + λ(2−√x), ifxy > 0

2(2−√y), ifxy < 0
,

φ2(x, y, λ, f) =

{
f(2(2−√y)), ifλ = 0

max{f(2−√x), f(2(2−√y))}, if0 < λ ≤ 1
.

This function is (φ1, φ2)− β− convex which verifies our results.

Proposition 3.3. If g : D → < is differentiable, and Φ1 satisfies assumptions (ii) and (iii) in Theorem 3.1,

then g is Φ1-quasi-convex if and only if (Remark 3.1) holds.

Proof. Similar to the proof given in [27].

Under appropriate assumptions on Φ2, a differentiable (φ1, φ2)− β−convex function, turns out to be invex,

and we can guarantee that a stationary point is a global minimum. Here is a sufficient condition. Assume

that φ2 satisfies the inequality

c(p, q, λ, g)φ2(p, q, λ, g) 5 (1− λ)g(q) + λg(p), (3.1)

for all p, q ∈ D,λ ∈ [0, 1], g ∈ G, and for some function c = c(p, q, λ, g) : D × D × [0, 1] × G → <, with

c(p, q, 0, g) = 1, ∂c
∂λ (p, q, λ, g)

∣∣
λ=0

= 0. Then we have the following.

Proposition 3.4. Let g be a differentiable (φ1, φ2)− β−convex function, where φ1 and φ2 are differentiable

with respect to λ at λ = 0, for every p, q ∈ D. Assume that condition (3.1) holds. Then g is invex with

respect to η(p, q) = φ1(p, q). In particular, every stationary point of g is a global minimum.

Proof. From (3.1), we have that

(1− λ)g(q) + λg(p)− g(q) = c(p, q, λ, g)φ2(p, q, λ, g)− c(p, q, 0, g)φ2(p, q, 0, g).

Adding and subtracting c(p, q, 0, g)φ2(p, q, λ, g) to the right hand side of the above inequality and then

dividing both sides by λ and taking the limit λ→ 0+, we get

g(p)− g(q) =
∂c

∂λ
(p, q, λ, t′)

∣∣∣∣
λ=0

φ2(p, q, 0, g) + c(p, q, 0, g)φ2(p, q, g) = φ2(p, q, g)

Since, by Proposition 3.1, φ2(p, q, g) = ∇qg(q)φ1(p, q), we have that

g(p)− g(q) = φ2(p, q, g) = ∇qg(q)φ1(p, q).

This proves that g is φ1(p, q)− invex and hence every stationary point is a global minimum point.

Now we will assume that g : D → R and φ1 : D ×D × [0, 1]→ D satisfy the assumptions

(i) g ∈ C2(D);

(ii) φ1(p, q) ∈ C2([0, 1]).
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After that we have the following sufficient condition for (φ1, φ2)− β− convexity:

Proposition 3.5. In our previous assumptions, g is (φ1, φ2) − β− convex for every φ2(p, q, t′, g) =∫ t′
0
g(p, q, w)dw + g(q), where h is any solution of the differential inequality

∂h

∂t′
(p, q, t′) =

(
∂φ1

∂t′

)T ′
(p, q, t′)H ′φ1

g(φ1(p, q, t′))
∂φ1

∂t′
(p, q, t′)

+∇φ1g(φ1(p, q, t′))
∂2φ1

∂t′
(p, q, t′)

h(p, q, 0) = ∇qg(q)φ1(p, q) (3.2)

(
H ′φ1

denotes the Hessian of the function φ1, and

(
∂φ1

∂t′

)T ′
the transpose of

(
∂φ1

∂t′

))

Proof. Consider, for every p, q ∈ D,

s(t′) = g(φ1(p, q, t′))− φ2(p, q, t′, g),

where φ2(p, q, t′, g) =
∫ t′

0
h(p, q, w)dw + g(q), and h satisfies (Proposition 3.4). We prove that s(t′) 5 0 for

every t′ ∈ [0, 1]. We have that

s(0) = g(q)− g(q) = 0,

s
′
(0) = ∇qg(q)φ1(p, q)−∇qg(q)φ1(p, q) = 0,

s
′′
(t′) =

(
∂φ1

∂t′

)T ′
(p, q, t′)H ′φ1

f(φ1(p, q, t′))
∂φ1

∂t′

+∇φ1
g(φ1(p, q, t′))

∂2φ1

∂t′
(p, q, t′)− h′(t′) 5 0.

Therefore, s(t) 5 0 for every t′ ∈ [0, 1], and g(φ1(p, q, t′) 5 φ2(p, q, t′, g) for every p, q ∈ D, t′ ∈ [0, 1].

4 Conclusions

In this paper, we established a new class of convexity named (φ1, φ2)−β-convexity. Our new class is a super

class of many well-known classes.

• When we take φ1(p, q, λ) = λη(p, q) + q and φ2(p, q, λ, g) = λg(p) + (1 − λ)g(q) then it shows the

result of [16]

• When we take φ1(p, q, λ) = γp,q(λ) and φ2(p, q, λ, g) = λg(γp,p(λ)) + (1 − λ)g(γp,q(0)) then it shows

the result of [23]

• If a1(p, q, λ) = λ then it shows the result of [4, 19]

• When we take φ1(p, q, λ) = NI([p, q], λ) and φ2(p, q, λ, g) = nΦ[(g(p), g(q)), λ], we see that an (I,Φ)−β-

convex function is a particular (φ1, φ2)− β-convex function, which shows the result of [24]

• If we take φ1(p, q, λ) = λp+ (1− λ)q and φ2(p, q, λ, g) = G(g(p), g(q), ‖p− q‖, λ) ≤ ln(λeβg(φ1(p,p,λ) +

(1− λ)eβg(φ1(p,q,0))1/β , we get that a G-convex function is an example of (φ1, φ2)− β-convex function,

which shows the result of [25]

• If we take β = 0 then this function is convert into (φ1, φ2)-convex function, which shows the result of

[22]

We can extend results of our paper for interval-valued function under the assumptions of (φ1, φ2) − β-

convexity.
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Abstract

In this paper we prove a common fixed point theorem for four selfmaps of a S -metric space. Also we
deduce a common fixed point theorem for four selfmaps of a complete S-metric space. Moreover we show
that a common fixed point theorem for four selfmaps of a metric space proved by Brian Fisher follows
as a particular case.
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1 Introduction
Fixed point theorems are extensively studied in the literature for several reasons and one of the reason is
that there are a quite number of problems in integral and differential equations, for which solutions can be
equivalently formulated as a fixed point of some operator on a suitable space. In an attempt to generalize
fixed point theorems proved for selfmaps of metric spaces, Dhage [2,3] has introduced generalized metric
spaces called D-metric space in his Ph.D. thesis [1] in the year 1984 which is a landmark in the history
of metric fixed point theory in higher dimensional metric spaces. As a probable modification to D-metric
spaces, Sedghi, Shobe and Zhou [11] introduced D∗-metric spaces. In 2006, Mustafa and Sims [10] initiated
G-metric spaces; while Sedghi, Shobe and Aliouche [12] considered S-metric spaces in 2012. Hereafter we
consider, in this paper, only S-metric spaces and common fixed point theorems on such spaces.

The notion of commutativity of self maps on a metric space has been generalized to weakly commuting by
Sessa [13], which is further generalized to compatibility by Jungck [9]. These common fixed point theorems
on the lines of Sessa [13] and Jungck[9] are further extended to D-metric spaces by Dhage [4,5] and Dhage
et al. [6] under the meaningful terminology “coincidently commuting mappings” and “limit coincidently
commuting mappings.”

In this paper, we establish a common fixed point theorem for four limit coincidently commuting selfmaps
of a S-metric space. Further we generalize a common fixed point theorem of Fisher [8].

2 Preliminaries
Definition 2.1 ([12]). Let X be a non empty set. By S-metric we mean a function
S : X3 → [0,∞) which satisfies the following conditions for x, y, z, w ∈ X
(a) S(x, y, z) ≥ 0.
(b) S(x, y, z) = 0 if and only if x = y = z.
(c) S(x, y, z) ≤ S(x, x, w) + S(y, y, w) + S(z, z, w).
An ordered pair (X,S) is called a S-metric space.

Remark 2.1. It was shown in ([12], Lemma 2.5) that S(x, x, y) = S(y, y, x) for all x, y ∈ X.

Definition 2.2 ([12]). Let (X,S) be a S-metric space. A sequence {xn} in X is said to converge, if there is
a x ∈ X such that S(xn, xn, x) → 0 as n → ∞; that is, for ε > 0, there exists an n0 ∈ N such that for all
n ≥ n0, we have S(xn, xn, x) < ε and in this case we write lim

n→∞
xn = x.

Definition 2.3 ([12]). Let (X,S) be a S-metric space. A sequence {xn} in X is called a Cauchy sequence if
for ε > 0, there exists an n0 ∈ N such that S(xn, xn, xm) < ε for all n,m ≥ n0.
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Definition 2.4 ([12]). A S-metric space (X,S) is said to be complete if every Cauchy sequence in it converges
to some point in X.

Definition 2.5 ([1]). Let (X, d) be any metric space then Sd(x, y, z) = d(x, y)+d(y, z)+d(z, x) is a S-metric
on X. We call this S-metric as the S-metric induced by d ( we denote this by Sd).

Remark 2.2. Let (X, d) be any metric space and Sd be the S-metric induced by d. For any sequence {xn} in
(X,Sd) is a Cauchy sequence if and only if {xn} is a Cauchy sequence in (X, d). Thus (X,Sd) is complete
if and only if (X, d) is complete.

Definition 2.6. Let (X,S) be a S-metric space. If there exists sequences {xn} and {yn} such that lim
n→∞

xn =

x and lim
n→∞

yn = y then lim
n→∞

S(xn, xn, yn) = S(x, x, y), then we say that S(x, y, z) is continuous in x and y.

Definition 2.7. If g and f are self maps of a S-metric space (X,S) such that for every sequence {xn} in X
with lim

n→∞
gxn = lim

n→∞
fxn = t for some t ∈ X we have

lim
n→∞

S(gfxn, gfxn, fgxn) = 0 then g and f are said to be limit coincidently commuting.

Trivially commuting self maps of a S-metric space are limit coincidently commuting but not conversely.

Definition 2.8 ([7]). An upper semi-continuous nondecreasing function φ : [0,∞) → [0,∞) is called D-
function if φ(0) = 0.φ is called contractive if φ(t) < t for t > 0.

Definition 2.9. Let g, f, h and p be self maps of a S-metric space such that g(X) ⊆ p(X) and f(X) ⊆ h(X).
Then for any x0 ∈ X, if {xn} is a sequence in X such that gx2n = px2n+1 and fx2n+1 = hx2n+2 for n ≥ 0,
then {xn} is called an associated sequence of x0 relative to self maps g, f, h and p.

3 Main Result
Theorem 3.1. Let g, f, h and p be self maps of a S- metric space (X,S) satisfying the following conditions

(i) g(X) ⊆ p(X) and f(X) ⊆ h(X),
(ii) S(gx, gx, fy) ≤ φ(µ(x, y)) for all x, y ∈ X where φ is a contractive D-function and µ(x, y) =

max{S(hx, hx, py), S(hx, hx, gx), S(py, py, fy)} for x, y ∈ X,
(iii) one of g, f, h and p is continuous

and
(iv) the pairs (g, h) and (f, p) are limit coincidently commuting.

Further if
(v) there exists a point x0 ∈ X and an associated sequence {xn} relative to selfmaps such that

gx0, fx1, gx2, fx3, · · · , gx2n, fx2n+1 · · · converges to some z ∈ X,
then g, f, h and p have a unique common fixed point z ∈ X. Also there is no other common fixed point for g
and h; and that there is no other common fixed point for f and p.

Before proving the theorem, we establish some Lemmas which are noteworthy.

Lemma 3.1. Suppose that g, f, h and p are self maps of a S-metric space satisfying the conditions (i),(ii)
and (v) of Theorem 3.1 with the pair (g, h) is limit coincidently commuting. Then
(a) lim

n→∞
µ(hx2n, x2n+1) = S(hz, hz, z) whenever h is continuous,

(b) lim
n→∞

µ(gx2n, x2n+1) = S(gz, gz, z) whenever g is continuous.

Proof. In view of (v), the sequences {gx2n} and {fx2n+1} converge to some z ∈ X and
since gx2n = px2n+1 and fx2n+1 = hx2n+2, we have

gx2n, fx2n+1, hx2n, p2n+1 → z as n→∞. (3.1)

(a) If h is continuous, then we have

h2x2n → hz, hgx2n → hz as n→∞. (3.2)

Also the limit coincidently commutativity of the pair (g, h) implies

lim
n→∞

S(ghx2n, ghx2n, hgx2n) = 0. (3.3)
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From (3.2) and (3.3) we get
ghx2n → hz as n→∞. (3.4)

Now from (ii), we have

µ(hx2n, x2n+1) = max{S(h2x2n, h
2x2n, px2n+1),

S(h2x2n, h
2x2n, ghx2n), S(px2n+1, px2n+1, fx2n+1)}.

(3.5)

Letting n→∞ in (3.5) and using the continuity of S(x, y, z) in x and y and (3.1), (3.2) and (3.4), we get
lim
n→∞

µ(hx2n, x2n+1) = max{S(hz, hz, z), S(hz, hz, hz), S(z, z, z)} = S(hz, hz, z)

This proves (a).

(b) If g is continuous, by (3.1) we have

g2x2n → gz, ghx2n → gz as n→∞. (3.6)

Therefore in view of (3.3), we get
hgx2n → gz. (3.7)

Now we have
µ(gx2n, x2n+1) = max{S(hgx2n, hgx2n, px2n+1), S(hgx2n, hgx2n, gx2n+1), S(px2n+1, px2n+1, fx2n+1)}

= max{S(gz, gz, z), S(gz, gz, z), S(z, z, z)}
= S(gz, gz, z).

(3.8)
This proves (b).

Lemma 3.2. Suppose that g, f, h and p are self maps of a S-metric space (X,S) such that the pair (f,p) is
limit coincidently commuting and the conditions (i),(ii) and (v) of Theorem 3.1, then
(a) lim

n→∞
µ(x2n, px2n+1) = S(z, z, pz) whenever p is continuous,

(b) lim
n→∞

µ(x2n, fx2n+1) = S(z, z, fz) whenever f is continuous.

Proof. The proof of Lemma 3.2 is similar to the proof of Lemma 3.1 with appropriate changes.

Proof of Theorem 3.1.

We first establish the existence of a common fixed point in case if h is continuous.
The proof is similar in other cases of condition (iii) of Theorem 3.1 with suitable changes.
Suppose that h is continuous.
Taking x = hx2n and y = x2n+1 in condition (ii) of Theorem 3.1, we have

S(ghx2n, ghx2n, fx2n+1) ≤ φ(µ(hx2n, x2n+1)). (3.9)

Also the continuity of S(x, y, z) in x and y gives

S(hz, hz, z) = lim
n→∞

S(ghx2n, ghx2n, fx2n+1).

Therefore by Lemma 3.1, we get

S(hz, hz, z) = lim sup
n→∞

S(ghx2n, ghx2n, fx2n+1)

≤ lim sup
n→∞

φ(µ(hx2n, x2n+1))

= φ(lim sup
n→∞

µ(hx2n, x2n+1))

= φ( lim
n→∞

µ(hx2n, x2n+1))

= φ(S(hz, hz, z)).

(3.10)

Hence
S(hz, hz, z) ≤ φ(S(hz, hz, z). (3.11)

We now claim that hz = z.
In fact, if hz 6= z, then S(hz, hz, z) > 0 so that φ(S(hz, hz, z)) < S(hz, hz, z) and this contradicts (3.11),
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therefore hz = z.
Now the continuity of S(x, y, z) in x and y gives

S(gz, gz, z) = lim
n→∞

S(gz, gz, fx2n+1)

= lim sup
n→∞

S(gz, gz, fx2n+1).

Using condition (ii) of Theorem 3.1 and the upper semicontinuity of φ in the above, we get

S(gz, gz, z) ≤ lim sup
n→∞

φ(µ(z, x2n+1))

= φ(lim sup
n→∞

µ(z, x2n+1)).
(3.12)

But

lim
n→∞

µ(z, x2n+1) = lim
n→∞

max{S(hz, hz, px2n+1, S(hz, hz, gz), S(px2n+1, px2n+1, fx2n+1)}

= max{S(hz, hz, z), S(z, z, gz), S(z, z, z)}
= S(z, z, gz) = S(gz, gz, z), since hz = z, px2n+1 → z and fx2n+1 → z as n→∞.

Therefore we get
S(gz, gz, z) ≤ φ(S(gz, gz, z)). (3.13)

If gz 6= z then S(gz, gz, z) > 0 and by the definition of φ we get φ(S(gz, gz, z) < S(gz, gz, z), contradicting
(3.13),hence gz = z
Thus we have gz = hz = z.
Now since g(X) ⊆ p(X), there is a u ∈ X with z = gz = pu and we have gz = hz = pu = z.
We now claim that fu = z.
In fact if fu 6= z, then S(z, z, fu) > 0 and therefore by (ii) of Theorem 3.1 we get

S(z, z, fu) = S(gz, gz, fu) ≤ φ(µ(z, u))

= φ(max{S(gz, gz, pu), S(hz, hz, gz), S(pu, pu, fu)})
= φ(S(z, z, fu)),

since gz = hz = pu = z and above result implies S(z, z, fu) ≤ φ(S(z, z, fu)) < S(z, z, fu) which is
contradiction. Therefore fu = z.
Hence we have gz = hz = pu = fu = z.
Now taking yn = u for all n ≥ 1, it follows that fyn → fu = z and pyn → pu = z as n→∞.
Also since the pair (f, p) is limit coincidently commuting,
we have lim

n→∞
S(fpyn, fpyn, pfyn) = 0 which gives S(fpu, fpu, pfu) = 0 implies fpu = pfu so that fz = pz.

Now by condition (ii) of Theorem 3.1, we have

S(z, z, fz) = S(gz, gz, fz) ≤ φ(µ(z, z))

= φ(max{S(hz, hz, pz), S(hz, hz, gz), S(pz, pz, fz)}
= φ(S(hz, hz, fz)) = φ(S(z, z, fz)),

(3.14)

since gz = hz = z and pz = fz.
Therefore we get S(z, z, fz) ≤ φ(S(z, z, fz)) which yields fz = z.
Hence gz = hz = pz = fz = z, proving z is a common fixed point of g, f, h and p.
Now we prove uniqueness of common fixed point.
If possible let z′( 6= z) be another common fixed point of g, f, h and p.
Then from condition (ii) of Theorem 3.1 we have

S(z, z, z′) = S(gz, gz, gz′) ≤ φ(µ(z, z′)). (3.15)

Since µ(z, z′) = S(z, z, z′) from (ii) of Theorem 3.1, (3.15) gives S(z, z, z′) ≤ φ(S(z, z, z′)) and this will be a
contradiction if z 6= z′.
Hence z is unique common fixed point of f, g, h and p.
Now we prove that z is unique common fixed point of g and h and of f and p.
Let w be another fixed point of g and h. Then z = hz = fz = gz = pz and w = hw = gw.
Now from condition (ii) of Theorem 3.1 we have

S(z, z, w) = S(w,w, z) = S(gw, gw, fz) ≤ φ(µ(w, z)), (3.16)
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since µ(w, z) = S(w,w, z). Therefore (3.16) gives S(w,w, z) ≤ φ(S(w,w, z)) and this will be a contradiction
if w 6= z.
Hence w = z
Therefore z is unique common fixed point of g and h. Similarly we can show that z is unique common fixed
point of f and p.
Hence Theorem 3.1 is completely proved.

4 Common fixed point Theorem for four self maps of a complete S-metric space
Before proving the main result in this section, first we establish a preparatory Lemma.

Lemma 4.1. Let (X,S) be a S- metric space and g, f, h and p be self maps of X such that
(i) g(X) ⊆ p(X) and f(X) ⊆ h(X),

(ii) S(gx, gx, fy) ≤ c.µ(x, y) for all x, y ∈ X where 0 ≤ c < 1 and
µ(x, y) = max{S(hx, hx, py), S(hx, hx, gx), S(py, py, fy)}.
Further if

(iii) (X,S) is complete, then for any x0 ∈ X and for any associated sequence {xn} relative to four self maps
the sequence gx0, fx1, gx2, fx3, · · · , gx2n, fx2n+1 · · · converges to some z ∈ X.

Proof. Suppose that g, f, h and p are self maps of a S-metric space (X,S) for which conditions (i) and (ii)
holds. Let a point x0 ∈ X and {xn} be any associated sequence of x0 relative to four selfmaps. Then since
gx2n = px2n+1 and fx2n+1 = hx2n+2 for all n ≥ 0 .
Note that

µ(x2n, x2n+1) = max{S(hx2n, hx2n, px2n+1), S(hx2n, hx2n, gx2n), S(px2n+1, px2n+1, fx2n+1)}
= max{S(hx2n, hx2n, gx2n), S(hx2n, hx2n, gx2n), S(px2n+1, px2n+1, fx2n+1)}
= max{S(hx2n, hx2n, gx2n), S(px2n+1, px2n+1, fx2n+1)}
= max{S(hx2n, hx2n, gx2n), S(gx2n, gx2n, fx2n+1)}
= max{S(gx2n, gx2n, fx2n−1), S(gx2n, gx2n, fx2n+1)}.

This together with (ii) of Lemma 4.1 gives

S(gx2n, gx2n, fx2n+1) ≤ cµ(x2n, x2n+1)

≤ cmax{S(gx2n, gx2n, fx2n−1), S(gx2n, gx2n, fx2n+1)}
and since 0 ≤ c < 1, it follows from the above inequality that

max{S(gx2n, gx2n, fx2n−1), S(gx2n, gx2n, fx2n+1)} = S(gx2n, gx2n, fx2n−1).

Therefore
S(gx2n, gx2n, fx2n+1) ≤ cS(gx2n, gx2n, fx2n−1). (4.1)

Similarly
S(gx2n, gx2n, fx2n−1) ≤ cS(gx2n−2, gx2n−2, fx2n−3). (4.2)

From (4.1) and (4.2), we get

S(gx2n, gx2n, fx2n+1) ≤ c2S(gx2n−2, gx2n−2, fx2n−1)

≤ c4S(gx2n−4, gx2n−4, fx2n−3)

· · · · · · · · ·
· · · · · · · · ·

≤ c2nS(gx0, gx0, fx1)→ 0,

as c2n → 0 as n → ∞ (because c < 1), therefore the sequence gx0, fx1, gx2, fx3, · · · , gx2n, fx2n+1 · · · is a
Cauchy sequence in (X,S) and since X is complete, it converges to a point say z ∈ X, proving lemma.

Theorem 4.1. Suppose that (X,S) is a S-metric space satisfying conditions (i) to (v) of Theorem 3.1.
Further if
(v)’ (X,S) is complete,
then g, f, h and p have a unique common fixed point z ∈ X. Also there is no other common fixed point for g
and h and that there is no other common fixed point for f and p.
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Proof. In view of Lemma 4.1, the condition (v) of the Theorem follows from Theorem 3.1 because of (v)’,
hence Theorem 4.1 follows from Theorem 3.1.

Corollary 4.1 ([8] Theorem 2). Let g, f, h and p be self maps of a metric space (X, d) satisfying the
conditions

(i) g(X) ⊆ p(X) and f(X) ⊆ h(X),
(ii) d(gx, fy) ≤ c.µ0(x, y) for all x, y ∈ X where

µ0(x, y) = max{d(hx, py), d(hx, gx), d(py, fy)} for all x, y ∈ X and 0 ≤ c < 1,
(iii) one of g, f, h and p is continuous and
(iv) gh = hg and fp = pf .

Further if
(v) X is complete.

Then the four self maps g, f, h and p have a unique common fixed point. Also there is no other common
fixed point for g and h and that there is no other common fixed for f and p.

Proof. Given that (X, d) is a metric space satisfying conditions (i) to (v) of Corollary 4.1.
Defining S(x, y, z) = d(x, y) + d(y, z) + d(z, x) for x, y, z ∈ X, it follows that (X,S) is a S-metric space. Also
condition (ii) can be written as S(gx, gx, fy) ≤ cµ(x, y) for all x, y ∈ X,
where µ(x, y) = max{S(hx, hx, py), S(hx, hx, gx), S(py, py, fy)} which is the same as condition(ii) of
Theorem 4.1.
Since (X, d) is complete, we have (X,S) is complete by Remark 2.2.
Now g, f, h and p are self maps of S-metric space (X,S) satisfying conditions of Theorem 4.1 and hence
Corollary 4.1 follows from Theorem 4.1.

5 Conclusion
we proved a common fixed point theorem for four limit coincidently commuting selfmaps of a S-metric space.
Also we deduced a common fixed point theorem for four limit coincidently commuting selfmaps of a complete
S-metric space. Moreover a common fixed point theorem for four self maps of a metric space proved by Brian
Fisher follows as a particular case of our theorem.
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Abstract
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1 Introduction
A recursively defined sequence of positive integers that has been extensively studied is the well-known
Fibonacci sequence {Fn}. Fibonacci sequence has been extended in many directions depending upon its
recurrence relation as well as seed values[6, 8]. This sequence has wonderful and amazing properties and
has found to be useful in different fields of knowledge[2, 4, 5, 7]. In this paper we look at the following
application of Fibonacci numbers in a different manner.

Let us suppose that there are six steps with ground being first step and top being sixth. A person
standing on the top (sixth step) wants to come down on the ground (first step) with the restriction that at
a time he can take either one or two steps only. In how many ways he can come to the ground ? It is known
that this can be done in F6 ways. In [1], this has been established by the method of tilng. We shall arrive
at the answer by using a novel approach.

We first introduce some terms and notations to be used.
Terms and Notations.

1.1 For a positive integer n, let Ωn denotes set of tuples (u1, u2, · · · , uk) of natural numbers with the
property that u1 = n, uk = 1 and 0 < ui − ui+1 ≤ 2, 1 ≤ i ≤ k − 1.

1.2 Let |Ωn| denotes the cardinality of the set Ωn.
1.3 Let Rank Ωn denotes the number of tuples (u1, u2, · · · , uk) in Ωn such that exactly even number of u′is

are odd.
1.4 For λ = (u1, u2, · · · , uk) ∈ Ωn, let Sign λ = (−1)(u1+u2+···+uk).
1.5 Let ∧n denotes a set of all elements η which is obtained by replacing 1 by 0 in elements of the type

(n, · · · , 2, 1) ∈ Ωn.
We illustrate the above defined terms by following example.

Example 1.1 Let n = 6. Then
Ω6 = {(6, 5, 4, 3, 2, 1), (6, 5, 4, 3, 1), (6, 5, 3, 1), (6, 5, 3, 2, 1), (6, 4, 2, 1), (6, 4, 3, 1),
(6, 4, 3, 2, 1), (6, 5, 4, 2, 1)}. Thus |Ω6| = 8 and Rank Ω6 = 3.
For λ = (6, 5, 4, 3, 1) ∈ Ω6, Sign λ = −1.
∧6 = {(6, 5, 4, 3, 2, 0), (6, 5, 3, 2, 0), (6, 4, 2, 0), (6, 4, 3, 2, 0), (6, 5, 4, 2, 0)};
| ∧6 | = 5, Rank ∧6 = 2 and for η = (6, 5, 3, 2, 0) ∈ ∧6, Sign η = 1.

2 Identities involving Fibonacci numbers

In this section, we shall obtain some identities for Fibonacci numbers. The well-known Fibonacci sequence
{Fn} is defined by F0 = 0, F1 = 1 and for n ≥ 2, Fn = Fn−1 +Fn−2. Fn is called the nth Fibonacci number.
We first have the following proposition.
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Proposition 2.1. For n ≥ 1, |Ωn| = Fn.

Proof. Let in = 1,∀ n ≥ 0. For λ = (u1, u2, · · · , uk) ∈ Ωn, let iλ denote the product iu1
iu2
· · · iuk .Using

Fibonacci recurrence relation, we have for n ≥ 2,

Fn = in−1Fn−1 + in−2Fn−2. (2.1)

So that inFn = inin−1Fn−1 + inin−2Fn−2. Using (2.1) with n replaced by n− 1 and n− 2 on the right
hand side, we get
inFn = inin−1in−2Fn−2 + inin−1in−3Fn−3 + inin−2in−3Fn−3 + inin−2in−4Fn−4.

Continuing this way, using (2.1) repeatedly, we get

inFn =
∑

(λ∈Ωn)

iλF1 +
∑

(λ∈Ωn)

iλF0. (2.2)

From definitions and seed values, it follows that Fn =
∑
λ∈Ωn

1 = |Ωn|.
This completes the proof.

Remark 2.1 Observe that Ω6 is the set of all possible ways in which the task, given in our question, can be
carried out. Hence the number of ways is equal to |Ω6| = 8 = F6.

Let
(
n
r

)
denote the binomial coefficient, that is

(
n
r

)
= n!

(n−r)!r! . We give an alternative proof of the

following result in ([1, 3, 8]) by using above arguments.

Proposition 2.2. For n ≥ 1, Fn =
∑[n−1

2 ]

(s=0)

(
n−1−s

s

)
.

Proof. For n ≥ 1 and λ = (u1, u2, · · · , uk) ∈ Ωn, let εi = ui − ui+1, (1 ≤ i ≤ k − 1).
From the construction of Ωn, it is clear that εi = 1 or 2 and that

n− 1 = ε1 + ε2 + · · ·+ εk−1.

First let us consider the case when all εi’s are equal to 1. Here we have

n− 1 = 1 + 1 + · · ·+ 1, (n− 1 summands) (2.3)

and there is exactly 1(=
(
n−1

0

)
) way to write this. Next suppose exactly one of εi is 2. Now in this case, we

have n− 2 positions with one 2 and so there are
(
n−2

1

)
ways to choose position of that 2. Next, there will be

(n− 3) positions with two 2 ’s. This can be achieved in
(
n−3

2

)
ways.

Proceeding this way we get, in general, that exactly s number of positions will be there with (n− 1− s)
2’s and is obtained in

(
n−1−s

s

)
ways. Also

(
n−1−s

s

)
will be non zero for (n− 1− s) ≥ s; that is (n− 1) ≥ 2s.

Thus, we have |Ωn| =
∑[n−1

2 ]
s=0

(
n−1−s

s

)
. Now the result follows from Proposition 2.1.

Next we have the following result.

Proposition 2.3. For n ≥ 1, | ∧n | = Fn−1 .

Proof. For n ≥ 1 and λ = (u1, u2, · · · , uk) ∈ ∧n, let εi = ui − ui+1, (1 ≤ i ≤ k − 1). From the construction
of ∧n, it is clear that εi = 1 or 2 and that

n− 2 = ε1 + ε2 + · · ·+ εk−1.

First consider the case when all εi’s are equal to 1. We shall have

n− 2 = 1 + 1 + · · ·+ 1, (n− 2 summands) (2.4)

and there is exactly 1 (=
(
n−2

0

)
) way to write this. Next suppose exactly one of εi is 2. Now in this case we

have n− 3 positions with one 2 and so there are
(
n−3

1

)
ways to choose position of that 2. Next there will be

(n− 4) positions with two 2’s. This can be achieved in
(
n−4

2

)
ways.

Proceeding this way we get, in general, that exactly s number of positions will be there with (n− 2− s)
2’s and is obtained in

(
n−2−s

s

)
ways. Also

(
n−2−s

s

)
will be non zero for (n− 2− s) ≥ s; that is (n− 2) ≥ 2s.

Thus we have | ∧n | =
∑[n−2

2 ]
s=0

(
n−2−s

s

)
= Fn−1 (by Proposition 2.3).
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3 Identities involving Lucas numbers
In this section, we shall obtain some identities involving Lucas numbers. Lucas sequence {Ln} is defined by
L0 = 2, L1 = 1 and for n ≥ 2, Ln = Ln−1 + Ln−2. Ln is called the nth Lucas number. We first give the
following result proved alternatively in [6, 8].

Proposition 3.1. For n ≥ 1, Ln = Fn + 2Fn−1.

Proof. Let in = 1 for all n ≥ 0. For λ = (u1, u2, · · · , uk) ∈ Ωn or ∧n, let i denote the product iu1
iu2
· · · iuk .

Now we have Ln = Ln−1 + Ln−2, (n ≥ 2), which may be written as

Ln = in−1Ln−1 + (n− 2)Ln−2, (3.1)

so that, using (3.1) with n replaced by n− 1 and n− 2, we get

inLn = inin−1Ln−1 + inin−2Ln−2

= inin−1in−2Ln−2 + inin−1in−3Ln−3 + inin−2in−3Ln−3 + inin−2in−4Ln−4.

Continuing this way, using (3.1) repeatedly, we get

inLn =
∑

λ∈Ωn

iλL1 +
∑

λ∈∧n

iλL0, (3.2)

Using seed values for Lucas sequence, we get

inLn =
∑

λ∈Ωn

1 + 2
∑

λ∈∧n

1,

= |Ωn|+ 2| ∧n |
= Fn + 2Fn−1 (Using Propositions 2.1 and 2.4 ).

(3.3)

Hence the result.

Next if Gn is the nth generalized Fibonacci or Gibonacci number satisfying the relation
Gn = Gn−1 +Gn−2, (n ≥ 2) with G0 = a and G1 = b, then arguing as in Proposition 3.1, we get

Proposition 3.2. For n ≥ 1, Gn = bFn + aFn−1.

4 Some Properties of Ωn and ∧n
In this section we discuss some properties of Ωn and ∧n. First we define a Fibonacci type sequence {Sn}.

Let jn = (−1)n, ∀ n ≥ 0. For λ = (u1, u2, · · · , uk) ∈ Ωn or ∧n, let jλ denote the product ju1
ju2
· · · juk .

Define a sequence

Sn = jn−1Sn−1 + jn−2Sn−2, (n ≥ 2) with S0 = 2 and S1 = 1, (4.1)

which implies

jnSn = jnjn−1Sn−1 + jnjn−2Sn−2

= jnjn−1jn−2Sn−2 + jnjn−1jn−3Sn−3 + jnjn−2jn−3Sn−3 + jnjn−2jn−4Sn−4,

where last expression is obtained by using (4.1) with n replaced by n− 1 and n− 2.
Continuing this way, using (4.1) repeatedly, we get

jnSn =
∑

λ∈Ωn

jλS1 +
∑

λ∈∧n

jλS0. (4.2)

Using seed values, we get

jnSn =
∑

λ∈Ωn

(Sign λ) + 2
∑

λ∈∧n

(Sign λ). (4.3)

In view of (3.3), this gives the following:

Proposition 4.1. For n ≥ 1, Ln + (−1)nSn = 2(Rank Ωn) + 4(Rank ∧n).

Next we have ,

Proposition 4.2. For m ≥ 0, S2m+1 = S2m+4.
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Proof. Note that equation (4.1) can be rewritten as

Sn = (−1)n(Sn−2 − Sn−1). (4.4)

So that S2m+4 = S2m+2 − S2m+3 and S2m+3 = −S2m+1 + S2m+2, which in turn gives
S2m+1 = S2m+4.

Proposition 4.3. For m ≥ 0, S2m+1 = (−1)mFm−1 and S2m+4 = (−1)mFm−1.

Proof. First note that if S2m+1 = (−1)m Fm−1 is true then, by Proposition 4.2,
S2m+4 = (−1)mFm−1.

For m = 0, since F−1 = 1, S1 = 1 which is true.
Suppose S2m+1 = (−1)mFm−1,∀ m < n.Then

S2n+1 = S2n − S2n−1

= S2(n−2)+4 − S2(n−1)+1

= (−1)n−2Fn−3 − (−1)n−1Fn−2

= (−1)n[Fn−3 + Fn−2] = (−1)nFn−1.

This completes the proof.

5 Computation of Rank Ωn and Rank ∧n
In this section, we shall obtain some recurrence relations for Rank Ωn and Rank ∧n.

Proposition 5.1. For m ≥ 2,
(a) Rank Ω2m = Rank Ω2m−1+ Rank Ω2m−2.
(b) Rank Ω2m−1 = F2m−1 − ( Rank Ω2m−2+ Rank Ω2m−3).

Proof. Define An = {(u1, u2, · · · , uk) ∈ Ωn | u1 = n and u2 = n− 1} and
Bn = {(u1, u2, · · · , uk) ∈ Ωn | u1 = n and u2 = n− 2}.
Note that Ωn is a disjoint union of An and Bn.

(a) If n = 2m , then Rank An = Rank Ωn−1 and Rank Bn = Rank Ωn−2.
Hence Rank Ωn = Rank An+ Rank Bn = Rank Ωn−1+ Rank Ωn−2 as required.

(b) If n = 2m− 1, then Rank An = |Ωn−1|− Rank Ωn−1 and
Rank Bn = |Ωn−2|− Rank Ωn−2. Then

Rank |Ωn| = Rank An + Rank Bn

= (Fn−1 − Rank Ωn−1 + (Fn−2 − Rank Ωn−2)

= Fn − (Rank Ωn−1 + Rank Ωn−2).

as required.

Proceeding in the same way as above, we can prove the following relations for Rank ∧n.

Proposition 5.2. For m ≥ 2,
(a) Rank ∧2m = Rank ∧2m−1+ Rank ∧2m−2.
(b) Rank ∧2m−1 = F2m−2 − ( Rank ∧2m−2+ Rank ∧2m−3).

Next we have following representation for Rank Ωn.

Proposition 5.3. For m ≥ 2,

(a) Rank Ω2m =
∑[

(2m−1)
4 ]

s=0

(
2m−2−2s

2s+1

)
.

(b) Rank Ω2m−1 =
∑[

(2m−2)
4 ]

s=0

(
2m−1−2s

2s

)
.
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Proof. (a) If m ≥ 2, and λ = (u1, u2, · · · , uk) ∈ Ω2m, let εi = ui − ui+1, (1 ≤ i ≤ k − 1). From the
construction of Ω2m it is clear that εi = 1 or 2 and that

2m− 1 = ε1 + ε2 + · · ·+ εk−1.

First consider the case when all εi’s are equal to 1. In this case we will have

2m− 1 = 1 + 1 + · · ·+ 1, (n− 2 summands) (5.1)

and there is exactly 1 (=
(

2m−1
0

)
) way to write this. In this case there are odd number of odd entries. So we

do not count this case. Next suppose exactly one of εi is 2. Now in this case we have n − 2 positions with
one 2 and so there are

(
n−2

1

)
ways to choose position of that 2. Here there are even number of odd entries.

Counting this we have the required result.
Similarly we can prove (b).

Arguing as in above proposition, we can prove the following:

Proposition 5.4. For m ≥ 2,

(a) Rank ∧2m =
∑[

(2m−2)
4 ]

s=0

(
2m−3−2s

2s+1

)
.

(b) Rank ∧2m−1 =
∑[

(2m−3)
4 ]

s=0

(
2m−2−2s

2s

)
.

6 Conclusion
In this paper we have used simple combinatorial arguments to prove some known results. For this purpose
we have defined two sets and some properties of these sets are discussed. The technique can be extended to
other Fibonacci like numbers to obtain the known results in a simple way.

Acknowledgement. Authors are thankful to the Editor for suggestions made to improve the presentation
of the paper.

References
[1] A. T. Benjamin and Jennifer J. Quinn, Proofs that Really Counts: The Art of Combinatorial Proof, The

Mathematical Association of America, Washington D. C., 2003.
[2] V. R. Gend, The Fibonacci sequence and the golden ratio in music, Notes on Number Theory and

Discrete Mathematics, 20(1) (2014), 72-77.
[3] H. H. Gulec and N. Taskara, On the properties of Fibonacci numbers with binomial coefficients,

International Journal of Contemporary Mathematical Sciences, 4(25) (2009), 1251-1256.
[4] V. E. Hoggatt, Fibonacci and Lucas Numbers. A publication of the Fibonacci Association, Santa Clara,

1969.
[5] F. T. Howard, Applications of Fibonacci Numbers, 9, Proceedings of the Tenth International Research

Conference on Fibonacci Numbers and their Applications, Springer, New York, 2004.
[6] T. Koshy, T. Fibonacci and Lucas Numbers with Applications, John Wiley and Sons, INC., New York,

2001.
[7] J. A. Raphael and V. Sundaram, Secured communication through Fibonacci numbers and unicode

symbols, International Journal of Scientific and Engineering Research, 3(4) (2012), 1-5.
[8] S. Vajda, Fibonacci and Lucas numbers and the Golden section: Theory and Applications, Dover

Publications, New York, 2008.

206



ISSN 0304-9892 (Print) ISSN 2455-7463 (Online)
www.vijnanaparishadofindia.org/jnanabha
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Abstract

In this paper, we consider the Diophantine equations x2 + 139m = yn and x2 + 499m = yn n ≥ 3,
m > 0 and determine solutions of the equations.
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1 Introduction
The problem of solving the equation x2 +7 = 2n was proposed by Ramanujan [13] in 1913. This equation was
solved perfectly by Nagell [11] in 1960 using techniques from algebraic number theory. In the generalized
form, this equation is called generalized Ramanujan- Nagell equation x2 + k = yn, k, x, y, n belongs to
integers, n ≥ 3, a kind of exponent type equation. This equation has been studied extensively. When n = 3,
it is an elliptic curve. Mordell studied this type of equation carefully and collected most of the important
results in his book [10]. However, when n ≥ 3, it is a hyperelliptic curve which seems to be more difficult to
study, but there is now a vast body of literature on it also.

For some small positive integers k, the solutions have been determined. Lebesgue [8] and Nagell [12]
showed that there are no non-trivial solutions when k = 1 and k = 3, 5, respectively.

Ljungrren [7] proved in the case of k = 2 that the equation has only one positive solution. Several special
case of the Diophantine equation x2 + qm = yn where q is a prime and m,n, x and y are positive integers
have been studied in the last few years. When q = 2 and m is an odd integer, it was proved by Cohn [5] that
this equation has exactly three families of solutions. When q = 3, and m is an odd integer, the equation has
three families of solution as proved by Arif and Abu Muriefah [1]. It was shown by Luca [9] that there exists
only one family of solution when q = 3 and m is an even integer. Tao [14] solved the equation when q = 5
and showed that there is no solution. J. H. E. Cohn [6] refined the earlier elementary approaches and solved
the equation for 77 values of q under 100. Using advanced methods, Bugeaud et al. [4] solved this kind of
equation for 1 ≤ k ≤ 100.

In this short communication, we consider the Diophantine equations x2 +139m = yn and x2 +499m = yn,
n ≥ 3, m > 0 and determine solutions of the equations.

2 Main Results
Theorem 2.1. Let m be odd. Then the Diophantine equation

x2 + 139m = yn, (2.1)

has only one solution in positive integers x, y, m and the unique solution is given by x = 322, y = 47, m = 1
and n = 3.

We start by stating the following lemma which will be used further.

Lemma 2.1. The equation 139x2 + 1 = yn where n is an odd integer ≥ 3 has no solution in integers x and
y for y odd and ≥ 1.

The proof of the Theorem 2.1 is divided into two cases (139, x) = 1 and 139|x. It is sufficient to consider
x a positive integer.
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Proof. Suppose m = 2k + 1, k ≥ 0. Then equation (2.1) becomes

x2 + 1392k+1 = yn, n ≥ 3. (2.2)

If x is odd and y is even, then x2 +1392k+1 ≡ 4(mod 8), but yn ≡ 0(mod 8), which is not possible. Thus
x is even and y is odd.

Case (i) Let (139, x) = 1. Let n be odd , then there is no loss of generality in considering n = p, an odd
prime.Then from [Theorem 6, [6]] we have only two possibilities and they are

x+ 139k
√
−139 = (s+ t

√
−139)p, (2.3)

where y = s2 + 139t2, for some rational integers s and t and

x+ 139k
√
−139 = (

s+ t
√
−139

2
)3, (2.4)

because 139 ≡ 3(mod 8), s ≡ t ≡ 1(mod 2) where y = (s2 + 139t2)/4 for some rational integers s and

t and x = | s3−417st2

8 |.
In (2.3), since y = s2 + 139t2 and y is odd and so only one of s or t is odd and other is even. Equating
imaginary parts of 2.3, we get

139k = t

p−1
2∑

r=0

(
p

2r + 1

)
sp−2r−1(−139t2)

r
. (2.5)

So t is odd and s is even. Since 139 does not divide the term inside summation, we get t = ±139k.

±1 =

p−1
2∑

r=0

(
p

2r + 1

)
sp−2r−1(−1392k+1)

r
. (2.6)

This is equation (1) in [6] and Lemmas 4 and 5 in [6] show that both the signs are impossible. Hence
(2.3) gives rise to no solution.

Now let us consider equation (2.4). By equating imaginary parts , we obtain,

8 · 139k = t(3s2 − 139t2). (2.7)

If t = ±1 in (2.7), we have
±8 · 139k = 3s2 − 139. (2.8)

When we consider k = 0, then ±8 = 3s2 − 139.

First we consider negative sign,
−8 = 3s2 − 139.

Then
3s2 = 131,

which is not possible.

Now we consider the positive sign,

8 = 3s2 − 139. (2.9)

This implies that
3s2 = 147

or,
s = ±7.

This equation has only solution when

t = ±1, s = ±7, k = 0 and y = s2+139t2

4 = 47.
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Hence from (2.4), we have x = | s3−417st2

8 | = 322.

Finally if t = ±139k, then from equation (2.7), we have

±8 = 3s2 − 1392k+1, (2.10)

where k > 0, which is impossible modulo 139. Hence there is no solution of this equation.

Now if n is even, then it is sufficient to consider n = 4, hence the equation (2.2) becomes

x2 + 1392k+1 = y4

or,

y4 − x2 = 1392k+1

or,
(y2 − x)(y2 + x) = 1392k+1.

Since (139, x) = 1, we have
y2 + x = 1392k+1 (2.11)

and
y2 − x = 1. (2.12)

Eliminating x from equations (2.11) and (2.12), we get

2y2 = 1392k+1 + 1.

Then 2y2 ≡ 4 (mod 8) i.e.y2 ≡ 2 (mod 4) as y is odd, which is impossible.

Case (ii) Suppose that 139|x, then x = 139u ·X ; so that, 139|y, then y = 139v · Y , where u > 0, v > 0
and (139, X) = (139, Y ) = 1. Then

1392uX2 + 1392k+1 = 139nvY n.

There are following possibilities for solving this equation as discussed below:

1) 2u = min(2u, 2k + 1, nv). Then by cancelling 1392u, we get

X2 + 1392(k−u)+1 = 139nv−2uY n.

If nv− 2u = 0, then we get X2 + 1392(k−u)+1 = Y n with (139, X) = 1. If k−u = 0, this equation
has the only solution x = 322 and n = 3. If k − u > 0, then it has no solution.

2) 2k + 1 = min(2u, 2k + 1, nv). Then 1392u−2k−1 · X2 + 1 = 139nv−2k−1Y n and considering this
equation modulo 139, which is not possible. Hence this equation has no solution.

3) nv = min(2u, 2k + 1, nv). Then 1392u−nv ·X2 + 1392k+1−nv = Y n. This is possible modulo 139
only if 2u− nv = 0 or 2k + 1− nv = 0 and both cases are not possible. This completes the proof
of the theorem.

Theorem 2.2. The equation
x2 + 499m = yn, n ≥ 3, m > 0 (2.13)

has only one solution in positive integers (x, y,m) and the solution is given by

x = 2158, y = 167, m = 1, n = 3.

Lemma 2.2. The equation 499x2 + 1 = yn where n is an odd integer ≥ 3 has no solution in integers x and
y for y odd and ≥ 1

The proof of the theorem is divided into two cases (499, x) = 1 and 499|x. It is sufficient to consider x a
positive integer.

Proof. Let us suppose that m = 2k + 1. We shall assume that k > 0, n > 3 .
If x is odd and y even, we get x2 + 4992k+1 ≡ 4 (mod 8), but yn ≡ 0 (mod 8). Hence, we suppose that x

is even and y is odd.
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Case (i) Let (499, x) = 1. Let n be odd , then there is no loss of generality in considering n = p, an odd
prime.Then from [ [6], Theorem 6] we have only two possibilities and they are

x+ 499k
√
−499 = (a+ b

√
−499)p, (2.14)

where
y = a2 + 499b2,

and
x+ 499k

√
−499 = (a+ b

√
−499/2)3, (2.15)

because 499 ≡ 3(mod 8), a ≡ b ≡ 1(mod 2), where y = a2+499b2

4 for some rational integers a and b

and x = |a3−1497ab2

8 |.
In (2.14), since y = a2 +499b2 and y is odd and so only one of a or b is odd and other is even. Equating
imaginary parts, we get

499k = b

p−1
2∑

r=0

(
p

2r + 1

)
ap−2r−1(−499b2)

r
. (2.16)

So b is odd and a is even. Since 499 does not divide the term inside summation, we get b = ±499k.

±1 =

p−1
2∑

r=0

(
p

2r + 1

)
ap−2r−1(−499b2k+1)

r
. (2.17)

This is Cohn [6, eqn (1)]. Therefore, Lemmas 4 and 5 due to Cohn [6] show that both the signs are
impossible. Hence (2.14) gives rise no solution.

Now let us consider equation (2.15). By equating imaginary parts, we obtain,

8 · 499k = b(3a2 − 499b2). (2.18)

If b = ±1 in (2.18), we have
±8 · 499k = 3a2 − 499. (2.19)

When we consider k = 0, we get ±8 = 3a2 − 499. We consider negative sign

−8 = 3a2 − 499

or,
3a2 = −8 + 499

or,
3a2 = 491,

which is not possible.
Now we consider positive sign

8 = 3a2 − 499 (2.20)

or,
3a2 = 507

or,
a = ±13.

This equation has only solution when b = ±1, a = ±13, k = 0 and y = a2+499b2

4 = 167. Hence from (2.15),

we have x = |a3−1497ab2

8 | = 2158. Hence x = 2158.
Finally if b = ±499k, then we have

±8 = 3a2 − 4992k+1, (2.21)

where k > 0, which is impossible modulo 499. Hence there is no solution of this equation.
Now if x is even, then from the equation (2.13), it is sufficient to consider n = 4, hence

(y2 + x)(y2 − x) = 4992k+1.
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Since (499, x) = 1, we have
y2 + x = 4992k+1, (2.22)

and
y2 − x = 1. (2.23)

Eliminating x from both equations (2.22) and (2.23), we get

2y2 = 4992k+1 + 1.

Then 2y2 ≡ 4 (mod 8) i.e. y2 ≡ 2 (mod 4), which is impossible.

Case (ii) Let 499|x. Then, of course, 499|y. Suppose that x = 499u ·X, y = 499v · Y , where u > 0, v > 0
and (499, X) = (499, Y ) = 1. Then

4992u ·X2 + 4992k+1 = 499nv · Y n,
i) 2u = min(2u, 2k + 1, nv). Then by cancelling 4992u, we get

X2 + 4992k+1−2u = 499nv−2uY n

If nv−2u = 0, then we get X2 +4992(k−u)+1 = Y n, with (499, X) = 1. If k−u = 0, this equation
has only solution x = 2158 and n = 3. If k − u > 0, then it has no solution.

ii) 2k + 1 = min(2u, 2k + 1, nv). Then 4992u−2k−1 · X2 + 1 = 499nv−2k−1Y n and considering this
equation modulo 499, we get nv − 2k − 1 = 0, so n is odd, 499(499k−u−1X)2 + 1 = Y n. By the
Lemma 2.2 this equation has no solution.

iii nv = min(2u, 2k + 1, nv). Then 4992u−nv ·X2 + 4992k+1−nv = Y n. This is possible modulo 499
only if 2u− nv = 0 or 2k + 1− nv = 0 and both cases are not possible. Hence this completes the
proof of the Theorem 2.2.
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Abstract

In this paper, the solutions of two sets of triple series equations involving generalized Laguerre
polynomials have been obtained by reducing them to a Fredholm integral equation of second kind.
In each case, the problem is reduced to the solution of a Fredholm integral equation of the second
kind. We consider certain triple series equations involving generalized Laguerre polynomials which are
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1 Introduction
The problem of dual and triple series equations arises during solving many boundary value problems in
Sneddon [17, Chap.5] and Srivastava [20] of Mathematical physics. Earlier Lowndes [5-8] has also obtained
solutions for some dual and triple series equations involving Jacobi and Laguerre polynomials. Chandel
[3] discussed a problem on Heat conduction employing dual series equation involving Legendre polynomials.
Lowndes and Srivastava [9] have shown that a certain class of triple series equations involving the generalized
Laguerre polynomials can be reduced to some triple integral equations. Srivastava [18-24] and Srivastava -
Panda [25] have investigated the solutions of some dual and triple series equations involving the generalized
Laguerre polynomials, Bateman-k functions and the Konhauser biorthogonal polynomials. Ashour , Ismail
and Mansour [1] have solved dual and triple series equations involving q-orthogonal polynomials with some
examples. Recently, Mudaliar and Narain [11] have solved certain dual and quadruple series equations
involving generalized Laguerre polynomials and also Narain [13] has solved triple series equations involving
Laguerre polynomials with Matrix Augument. Certain quadruple series equations involving Laguerre
polynomials are solved by Shrivastava and Narain [15] recently.Closed-form solutions of triple series equations
involving Laguerre polynomials are recently obtained by Singh, Rokne and Dhaliwal [16]. Dwivedi and
Trivedi [4] have obtained the solution of triple series equations involving Jacobi and Laguerre polynomials
by reducing them to a Fredholm integral equation of second kind. We consider certain triple series equations
involving generalized Laguerre polynomials which are generalization of those considered by Sneddon, Lowndes
and Srivastava , Dwivedi and Trivedi, Singh et al., Narain, Srivastava - Panda etc. connected to this work. In
present paper, the solutions of two sets of triple series equations involving generalized Laguerre polynomials
have been obtained. The triple series equations of the first kind

∞∑

n=0

An
Γ(β + n+ 1)

L(σ)
n (x) = g1(x), 0 ≤ x < a, (1.1)
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∞∑

n=0

An (1 +Hn)

Γ(α+ n+ 1)
L(ν)
n (x) = f(x), a < x < b, (1.2)

∞∑

n=0

An
(β + n+ 1)

L(σ)
n (x) = h1(x), b < x <∞, (1.3)

and the triple series equations of the second kind
∞∑

n=0

An (1 +Hn)

Γ(α+ n+ 1)
L(ν)
n (x) = g(x), 0 ≤ x < a, (1.4)

∞∑

n=0

An
Γ(β + n+ 1)

L(σ)
n (x) = f1(x), a < x < b, (1.5)

∞∑

n=0

An (1 +Hn)

Γ(α+ n+ 1)
L(ν)
n (x) = h(x), b < x <∞, (1.6)

where, An is an unknown coefficient, L
(α)
n (x) is the generalized Laguerre polynomial

f(x), f1(x), g(x), g1(x), h(x) and h1(x) are known functions of x and the parameters α, β, ν, σ all are
> −1; can be reduced to that of solving a Fredholm integral equation of second kind. It is assumed that the
series (1.1) to (1.6) are uniformly convergent and the known functions f, f1, g, g1, h, h1 and their derivatives
are continuous bounded and integrable in the interval of their definition.

The analysis throughout is formal and no attempt has been made to justify the various limiting processes.

2 Some Useful Results
Here are some useful results for ready reference:

The orthogonality relation for the Laguerre polynomials is∫ ∞

0

xα e−xLm(α;x)Ln(α;x)dx =
Γ(α+ 1 + n)

Γ(n+ 1)
δm,n, α > −1, (2.1)

where δm,n is Kronecker delta.
From equations (2.6) and (3. 7) due to Srivastava ( [18],p.589 and p.591]) it is easily shown that

(λ)Γ(1− λ)S(r, x) = Γ(λ)Γ(1− λ)rσxν
∞∑

n=0

Γ(β + n+ 1)

Γ(α+ n+ 1)
.

Γ(n+ 1)

Γ(σ + 1 + n)
L(σ)
n (r)L(ν)

n (x), (2.2)

= a∗n

∫ t

0

n(ξ)(r − ξ)λ−1(x− ξ)λ+ν−σ−1dξ = a∗nSt(r, x), (2.3)

where n(ξ) = eξ.ξσ−λ, t = min(r, x)
α, β, σ < −1, λ+ ν > σ and

a∗n =
Γ(1− λ)Γ(β + n+ 1)Γ(ν + n+ 1)

Γ(λ+ ν − σ)Γ(α+ n+ 1)Γ(σ − λ+ n− 1)
.

It is further assumed that the parameters α, β, λ, ν and σ are so constrained that a∗n is independent of
n. This of course is possible when, for instance α = ν, λ = σ − β, the parameter β and σ remains free.

3 Solution of the Equations of First Kind
Let us assume that

∞∑

n=0

An
Γ(β + n+ 1)

L(σ)
n (x) = ϕ(x), a < x < b, (3.1)

where, β > −1 and ϕ(x) is bounded and integrable in the interval (a, b). On making use of the orthogonality
relation (2.1), we find that

An =
Γ(β + n+ 1)Γ(n+ 1)

Γ(α+ n+ 1)

∫ b

a

rσe−rL(σ)
n (r)φ(r)dr, n = 0, 1, 2, . . . ; (3.2)

provided β > −1 and σ > −1. Substituting for An in eqn. (1.2) and since the series in eqn. (1.2) is uniformly
convergent, we can change the order of the summation and integration and thus we have∫ b

a

e−rφ(r)S(r, x)dr +

∫ b

a

e−rφ(r)T (r, x)dr = xνf(x), a < x < b, (3.3)
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where, S(r, x) is defined by eqn. (2.2) and

T (r, x) = rσxv
∞∑

n=0

Γ(β + n+ 1)

Γ(σ + 1 + n)
.

Γ(n+ 1)

Γ(σ + 1 + n)
H
n

L(σ)
n (r)L(ν)

n (x). (3.4)

Using the notation of eqn. (2.3) this can be written as:
∫ x

a

e−rφ(r)Sr(r, x)dr +

∫ b

x

e−rφ(r)Sx(r, x)dr +

∫ b

a

e−rφ(r)T (r, x)dr =
xνf(x)Γ(λ)Γ(1− λ)

a∗n
, (3.5)

a < x < b

provided α, β, σ < −1, 0 < λ < 1, ν + λ > σ.
Inverting the order of integration in Carslow [2, eqn. (3.5)], we get

∫ x

a

n(ξ)

(x− ξ)1+σ−λ−ν φ(ξ)dξ +

∫ b

a

e−rφ(r)T (r, x)dr =

Γ(λ)Γ(1− λ)

a∗n
xνf(x)−

∫ a

0

n(ξ)

(x− ξ)1+σ−λ−ν dξ

∫ b

a

e−rφ(r)

(r − ξ)1−λ dr, a < x < b, (3.6)

where

φ(ξ) =

∫ b

ξ

e−rφ(r)

(r − ξ)1−λ dr, a ≤ ξ < b, (3.7)

provided α, β, σ > − 1,0 < λ < 1, 0 < 1− λ− ν + σ < 1 and φ(r) being continuous and integrable in (a, b).
If φ(ξ) and φ(ξ) are continuous in a ≤ ξ ≤ b and 0 < λ < 1, then (3.7) is an Abel integral equation and

its solution is given by

e−rφ(r) = − sin(1− λ)π

π

d

dr

∫ b

r

φ(ξ)

(ξ − r)λ dξ. (3.8)

Similarly, when σ, β, σ > −1, 0 < λ < 1, 0 < 1+σ−λ−ν < 1 and f(x), f ′(x) are continuous in a ≤ x ≤ b,
then from eqn. (3.1) and (3.3), we have

n(ξ)φ(ξ) +
sin(1 + σ − λ− ν)π

π

∫ b

a

e−rφ(r)dr
d

dξ

∫ ξ

a

T (r, x)dx

(ξ − x)λ+ν−σ

= F (ξ)− sin(1 + σ − λ− ν)π

π

∫ a

0

n(ξ)l(ξ, n)dη.

∫ b

a

e−rφ(r)dr

(r − η)1−λ , a < ξ < b, (3.9)

where

F (ξ) =
sin(1 + σ − λ− ν)π

π
.
Γ(λ)Γ(1− λ)

a∗n

d

dξ

∫ ξ

a

xνf(x)

(ξ − x)λ+ν−σ dx, (3.10)

is a known function and

l(ξ, n) =
d

dξ

∫ ξ

a

dx

(ξ − x)λ+ν−σ.(x− η)1+σ−λ−ν . (3.11)

By Lowndes ([8],p.276, eqn.26)

l(ξ, n) =
(a− η)λ+ν−σ

(ξ − η)(ξ − a)λ+ν−σ , 0 < 1 + σ − λ− ν < 1, (3.12)

eqn.(3.9) becomes

n(ξ)φ(ξ) +
sin(1 + σ − λ− ν)π

π

∫ b

a

e−rφ(r)dr
d

dξ

∫ ξ

a

T (r, x)dx

(ξ − x)λ+ν−σ

= F (ξ)− sin(1 + σ − λ− ν)π

π(ξ − a)
λ+ν−σ

∫ a

0

(a− η)λ+ν−ση(ξ)dη

(ξ − η)
.

∫ b

a

e−rφ(r)dr

(r − η)1−λ . (3.13)

Using (3.8), we can write

∫ b

a

e−rφ(r)dr

(r − η)1−λ = − sin(1− λ)π

π

∫ b

a

dr

(r − η)1−λ
d

dr

∫ b

r

φ(ξ)dξ

(ξ − r)λ
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=
sin(1− λ)π

π
.

1

(a− η)1−λ .

∫ b

a

φ(ξ)dξ

(ξ − a)λ
− (1− λ)

∫ b

a

dr

(r − η)2−λ .

∫ b

r

φ(ξ)

(ξ − r)λ dξ. (3.14)

Inverting the order of integration in the last term of eqn. (3.14) and using the result of Lowndes ([9],
p.276, eqn. 27)

β

∫ y

a

dr

(r − ξ)1+β(y − r)1−β =
(y − a)β

(y − ξ)(a− ξ)β , 0 < β < 1, (3.15)

we get ∫ b

a

e−rφ(r)dr

(r − η)1−λ =
sin(1− λ)π(a− η)λ

π

∫ b

a

φ(ξ)dξ

(ξ − η)(ξ − a)λ
, (3.16)

provided 0 < λ < 1 and φ(ξ) is bounded and integrable.
Substituting the expression in eqn. (3.13), φ(ξ) is given by

n(ξ)φ(ξ) +
sin(1 + σ − λ− ν)π

π

∫ b

a

e−rφ(r)dr.
d

dξ

∫ ξ

a

T (r, x)dx

(ξ − x)λ+ν−σ

+

∫ b

a

φ(ξ)M(x, ξ)dx = F (ξ), a < ξ < b, (3.17)

where

M(x, ξ) =
sin(1− λ)πsin(1 + σ − λ− ν)π

π2(x− a)λ(ξ − a)λ+ν−σ

∫ a

0

n(ξ)(a− n)λ+ν−σ

(x− n)
.
(a− n)λ

(ξ − n)
dη. (3.18)

Eqn. (3.17) is a Fredholm integral equation which determines, φ(ξ). Thus ϕ(r) is then obtained from
eqn. (3.8) and the coefficients An, which satisfy eqns. (1.1), (1.2) and (1.3) can be found from eqn. (3.2).

4 Solutions of the Equations of Second Kind
To solve the triple series equations (1.4), (1.5) and (1.6), we put

∞∑

n=0

An
Γ(β + n+ 1)

L(σ)
n (x) = ψ1(x), 0 ≤ x < a

= ψ2(x), b < x <∞ (4.1)

where ψ1(x) and ψ2(x) are bounded and integrable in the interval of their definitions. Using the orthogonality
relation, we get from eqn. (1.5) and eqn. (4.1).

An =
Γ(β + n+ 1)Γ(n+ 1)

Γ(σ + n+ 1)

{∫ a

0

ψ1(r) +

∫ ∞

b

ψ2(r).rσe−rLn(σ; r)dr, n = 0, 1, 2, . . . (4.2)

provided β > −1, σ > −1.
Substituting An in eqns. (1.4) and (1.6) and since these series are uniformly convergent, we get on

interchanging the order of summation and integration, that{∫ a

b

ψ1(r) +

∫ ∞

b

ψ2(r)

}
e−r {S(r, x) + T (r, x)} dr = xνg(x).0 ≤ x < a

= xνh(x), b < x <∞, (4.3)

where S(r, x) is given by eqn. (2.3) and T (r, x) is given by eqn. (3.4).
These equations may be written as:
∫ x

0

e−rψ1(r)Sr(r, x)dr +

∫ a

x

e−rψ2(r)Sr(r, x)dr +

∫ ∞

b

e−rψ2(r)Sx(r, x)dr

+

∫ a

0

e−rψ1(r)T (r, x)dr +

∫ ∞

b

e−rψ2(r)T (r, x)dr =
Γ(λ)Γ(1− λ)

axn
.xνg(x), 0 ≤ x < a, (4.4)

∫ a

0

e−rψ1(r)Sr(r, x)dr +

∫ x

b

e−rψ2(r)Sr(r, x)dr +

∫ ∞

x

e−rψ2(r)Sx(r, x)dr +

∫ a

0

e−rψ1(r)T (r, x)dr

+

∫ ∞

b

e−rψ2(r)T (r, x)dr =
Γ(λ)Γ(1− λ)

axn
xνh(x), b < x <∞, (4.5)
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provided α, β, σ > −1, 0 < λ < 1, λ + ν > σ. Since ψ1(x) and ψ2(x) are bounded and integrable in their
interval of definitions, we get on interchanging the order of integration that
∫ x

a

n(ξ)

(x− ξ)1+σ−λ−ν

{
ψ1(ξ) +

∫ ∞

b

e−rψ2(r)

(r − ξ)1−λ dr

}
dξ +

∫ a

0

e−rψ1(r)T (r, x)dr +

∫ ∞

b

e−rψ2(r)T (r, x)

=
Γ(λ)Γ(1− λ)

ax
xνg(x), 0 ≤ x < a, (4.6)

∫ x

b

n(ξ)ψ2(ξ)dξ

(x− ξ)1+σ−λ−ν +

∫ a

0

e−rψ1(r)T (r, x)dr +

∫ ∞

b

e−rψ2(r)T (r, x)dr =
Γ(λ)Γ(1− λ)

axn
, xνh(x)

−
∫ a

0

n(ξ)ψ1(ξ)dξ

(x− ξ)1+σ−λ−ν −
∫ b

0

n(ξ)dξ

(x− ξ)1+σ−λ−ν .

∫ ∞

b

e−rψ2(r)dr

(r − ξ)1−λ , b < x <∞, (4.7)

where, {
(i) ψ1(ξ) =

∫ a
ξ
e−rψ1(r)dr
(r−ξ)1−λ

(ii )ψ2(ξ) =
∫∞
ξ

e−rψ2(r)dr
(r−ξ)1−λ

(4.8)

provided α, β, σ > −1, 0 < λ < 1, 0 < 1 − λ− ν + σ < 1, when 0 < 1 + σ − λ− ν < 1. On using equations
(10) to (14) of Lowndes ( [8],p.168) with the help of eqns. (4.6), (4.7), (4.8) in a similar manner as to obtain
eqns. (3.8) and (3.13) , we find that

n(ξ)ψ1(ξ) +
sin(1 + σ − λ− ν)π

π

d

dΨ

∫ ξ

a

{∫ a

0

e−rψ1(r)dr

∫ ∞

b

e−rψ2(r)dr

}
T (r, x)

dx

(ξ − x)λ+ν−σ

= G(ξ)− n(ξ)

∫ ∞

b

e−rψ2(r)dr

(r − ξ)1−λ , (4.9)

n(ξ)ψ2(ξ) +
sin(1 + σ − λ− ν)π

π

d

dξ

∫ ξ

a

{∫ a

0

e−rψ1(r)dr +

∫ ∞

b

e−rψ2(r)dr

}
T (r, x)

dx

(ξ − x)λ+ν−σ

= H(ξ)− sin(1 + σ − λ− ν)

π(ξ − b)λ+ν−σ

∫ a

0

(b− η)λ+ν−σn(η)ψ1(ξ)dη − sin(1 + σ − λ− ν)π

π(ξ − b)λ+ν−σ

×
∫ b

a

(b− η)λ+ν−σ

(ξ − η)
.n(η)dη

∫ ∞

0

e−rψ2(r)dr

(ξ − n)1−λ , (4.10)

e−rψ1(r) = − sin(1− λ)

π

d

dr

∫ a

r

ψ1(ξ)dξ

(ξ − r)λ , 0 < r < a, (4.11)

e−rψ2(r) = − sin(1− λ)

π

d

dr

∫ ∞

r

ψ2(ξ)

(ξ − r)λ , b < r <∞, (4.12)

where, G(ξ) and H(ξ) are known functions, defined as

G(ξ) =
sin(1 + σ − λ− ν)π

π
.

{
Γ(λ)Γ(1− λ)

axn

}
.
d

dξ

∫ ξ

0

xvg(x)dx

(ξ − x)λ+ν−σ , 0 < ξ < a, (4.13)

H(ξ) =
sin(1 + σ − λ− ν)π

π
.
{Γ(λ)Γ(1− λ)}

axn
.
d

dξ

∫ ξ

b

xvh(x)dx

(ξ − x)λ+ν−σ , b < ξ <∞, (4.14)

By a method similar to that used to obtain eqn. (3.16), we can show that∫ ∞

b

e−rψ2(r)dr

(r − ξ)1−λ =
sin(1− λ)π

π(b− ξ)−λ
∫ ∞

b

(η − b)−λψ2(η)dη

(η − ξ) . (4.15)

Using this result and eqn. (4.9), it can be shown after some manipulation, that eqn. (4.10) can be written
as

n(ξ)ψ2(ξ) +

∫ ∞

b

ψ2(x)N(x, ξ) dx = H(ξ)− sin(1 + σ − λ− ν)π

π(ξ − b)σ+ν−λ

∫ a

0

(b− η)λ+ν−σ

(ξ − η)
G(η)dη, (4.16)

where N(x, ξ) is the kernel

N(x, ξ) =
sin(1 + σ − λ− ν)π.sin(1− λ)π

π2(x− a)λ(ξ − a)λ+ν−σ .

∫ b

a

n(η)(a− η)λ(a− η)λ+ν−σ

(x− η)(ξ − η)
dη, b < ξ <∞, (4.17)
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provided α, β, σ < 1, 0 < λ < 1 and 0 < 1−λ− ν + σ <1.
Equation (4.16) is a Fredhelm integral equation of second kind which determines ψ2(ξ), ψ2(r), can be

found from eqn. (4.12) and ψ1(r) from

e−rψ(r) = − sin(1 + σ − λ− ν)π

π

d

dr

∫ a

r

G(ξ)dξ

n(ξ)(ξ − r)λ +
sin(1 + σ − λ− ν)π

π(a− r)λ

×
∫ ∞

b

e−n(n− a)λψ2(ξ)

(r − η)
dξ, 0 < r < a. (4.18)

Finally the coefficients An which satisfy the triple series equations of second kind when α, β, σ > −1, 0 <
λ < 1, 0 < 1−λ− ν + σ <1 are given by eqn. (4.2).

5 Conclusion
The generalized Laguerre polynomials have been applied by many authors like Lowndes [7,8], Srivastava
[18,19,21], Srivastava- Panda[25] and Mudaliar-Narain [11] to solve dual, triple and quadruple series
equations. The solutions presented in this paper are obtained by employing the techniques of Sneddon[17],
Lowndes[8,9]and Srivastava[19]. Method of this paper, involving different boundary conditions, has a distinct
advantage over that by the multiplying factor technique. These solutions are useful in Mathematical Physics,
Mixed Boundary Problems in Potential Theory, Quantum Physics etc.We have obtained the solution of two
sets of triple series equations involving generalized Laguerre polynomials by reducing them to the solution
of a Fredholm integral equation of the second kind.
Acknowledgement. The authors express their sincere gratitude to the editors and referees for carefully
reading the manuscript and for their valuable comments and suggestions which greatly improved this paper.
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Abstract

The present paper is devoted to derive a generalized Oberhettinger-type integral formula. The derived
form of the integral involves a finite product of the Srivastava polynomials with the first-kind Bessel
functions. The outcomes are obtained in terms of the Srivastava and Daoust functions. Some of the
significant particular cases are also determined.
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1 Introduction
The Bessel function frequently appears in a wide variety of problems pertaining to applied Sciences. The
theory of the Bessel function is extensively used to solve several problems including radio physics, nuclear
physics, atomic, acoustics, information theory and hydrodynamics. These functions can also be used to solve
problems in the fields of mechanics and elasticity. In some recent investigations [7, 8, 9, 10, 13, 14, 15, 17, 18],
several authors have proposed a number of interesting integral formulas associated with Bessel functions.

Srivastava [22] introduced a general class of polynomials defined by

Sml [x] =

[ lm ]∑

k=0

(−l)mk
k!

Al,kx
k, l = 0, 1, 2, ..., (1.1)

where m is an arbitrary positive integer and the coefficients Al,k (l, k ≥ 0) are arbitrary constants may be
real or complex. Also (%)l represents the Pochhammer’s symbol or rising factorial [23] defined by

(%)l =
Γ(%+ l)

Γ(%)
=

{
1 if l = 0,

%(%+ 1)...(%+ l − 1) if l ∈ N.

For applications of generalized polynomials of Srivastava [22], among others we may also refer to Chaurasia
and Pandey [6], Chandel and Sengar [3, 4] and Chandel and Chauhan [5]. On suitably specializing the
coefficients Al,k in the definition of Sml [x] one can yields several known polynomials as its special cases
including, the Jacobi polynomials, the Hermite polynomials, the Legendre polynomials, the Chebyshev
polynomials of the first kind and the Chebyshev polynomials of the second kind, the Ultraspherical
polynomials, the Gould-Hopper polynomials, the Laguerre polynomials and the Bessel polynomials. For
more detail we refer [26].

The classical Jacobi polynomial P
(α,β)
n (x) can be presented in the following series form (see [20, 25])

P (τ,ς)
n (x) =

n∑

k=0

(1 + τ)n(1 + τ + ς)n+k

(n− k)!k!(1 + τ)k(1 + τ + ς)n

(
x− 1

2

)k
, (1.2)

which equivalently can be expressed in terms of the Gauss function as follows

P (τ,ς)
n (x) =

(1 + τ)n
n!

2F1

[
−n, (n+ τ + ς + 1);

(1 + τ);

(
1− x

2

)]
. (1.3)

219



The generalized Wright function pΨq(x) defined by [11, 24]

pΨq(x) = pΨq

[
(αi, ai)1,p;
(βi, bi)1,q;

x

]
=

∞∑

k=0

∏p
i=1 Γ(αi + aik)∏q
j=1 Γ(βj + bjk)

xk

k!
, (1.4)

the coefficients a1, ..., ap and b1, ..., bq, involved in (1.4), are positive real numbers such that
p∑

i=1

ai ≤ 1 +

q∑

j=1

bj ,

and Γ(.) is the standard Gamma function (see, for more details, [16, 25]).
The Bessel function Jν(x) of first kind is defined by (see [2, 20, 27])

Jν(x) =

∞∑

k=0

(−1)k

Γ(1 + ν + k)

(
x
2

)ν+2k

k!
, (1.5)

where Re(ν) > −1, ν ∈ C and x ∈ C \ {0}.
Srivastava and Daoust [24] proposed multivariable generalized hypergeometric function, given as

FA:B
′
;...;B(n)

C:D′ ;...;D(n)

(
x1...
xn

)
= FA:B

′
;...;B(n)

C:D′ ;...;D(n)

[
[(a) : θ

′
, ..., θ(n)] : [(b

′
) : φ

′
]; ...;

[(c) : ψ
′
, ..., ψ(n)] : [(d

′
) : δ

′
]; ...;

[(b(n)) : φ(n)];

[(d(n)) : δ(n)];
x1, ..., xn

]
=

∞∑

m1, ...,mn=0

Ω(m1, ...,mn)
xm1

m1!
...
xmn

mn!
, (1.6)

where, for convenience

Ω(m1, ...,mn) =

∏A
j=1(aj)m1θ

′
j+...+mnθ

(n)
j

∏B
′

j=1(b
′

j)m1φ
′
j
...
∏B(n)

j=1 (b
(n)
j )

mnφ
(n)
j∏C

j=1(cj)m1ψ
′
j+...+mnψ

(n)
j

∏D′

j=1(d
′
j)m1δ

′
j
...
∏D(n)

j=1 (d
(n)
j )

mnδ
(n)
j

,

the coefficients θ
(k)
j , j = 1, ..., A; φ

(k)
j , j = 1, ..., B(k); ψ

(k)
j , j = 1, ..., C; δ

(k)
j , j = 1, ..., D(k) are real

and positive, and (a) abbreviates the array of A parameters a1, ..., aA, (b(k)) abbreviates the array of B(k)

parameters b
(k)
j , j = 1, ..., B(k); ∀k ∈ {1, ..., n}, with similar interpretations for (c) and (d(k)), ∀k ∈ {1, ..., n};

etcetera.
In the present work, we recall the following integral mentioned in the classical monograph by

Oberhettinger (see [19], p. 22)
∫ ∞

0

xδ−1
(
x+ h+

√
x2 + 2hx

)−η
dx = 2ηh−η

(
h

2

)δ
Γ(2δ)Γ(η − δ)
Γ(1 + δ + η)

, (1.7)

provided 0 < Re(δ) < Re(η).
The intention of this paper is to propose a unified integral involving the Oberhettinger-type that includes a

finite product of the Bessel functions and Srivastava polynomials. The main result in the current investigation
is presented in terms of a Theorem. Further, two Corollaries of the main result are derived. Some other
interesting well-known special cases of the main result are also determined.

2. Main results

In this section, we derive an integral formula involving a finite product of general class of polynomials and
Bessel functions. The outcome is expressed in terms of an elegant form Srivastava and Daoust function,
defined above in (1.6).

Theorem 2.1. For µ, λi, νq ∈ C, lp, sp ≥ 0, Re(νq) > −1, Re(σ
(p)
j ) > Re(ηp) > 0 and

Re
(
λi +

∑w
q=1 λ

(q)
k νq

)
> Re

(
µ+

∑w
q=1 δqνq

)
> 0 (i = 1, 2, ..., n1, j = 1, 2, ..., n2, k = 1, 2, ..., n3, p =

1, 2, ..., v, q = 1, 2, ..., w) the following integral formula holds true:

∫ ∞

0

xµ−1
n1∏

i=1

(
x+ a+

√
x2 + 2ax

)−λi v∏

p=1

S
mp
lp


ξpxηp

n2∏

j=1

(
x+ a+

√
x2 + 2ax

)−σ(p)
j
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×
w∏

q=1

Jνq

[
ζqx

δq

n3∏

k=1

(
x+ a+

√
x2 + 2ax

)−λ(q)
k

]
dx

=
ζν11 ... ζνww

Γ(1 + ν1) ...Γ(1 + νw)
2[1−µ−

∑w
q=1(1+δq)νq]

n1∏

i=1

n2∏

j=1

n3∏

k=1

(a)

[
µ−λi−

∑w
q=1 νq

(
λ
(q)
k −δq

)] [ l1m1

]
∑

s1=0

...

[ lvmv ]∑

sv=0

× (−l1)m1s1(A)l1,s1
s1!

(
ξ1

2η1a

(
σ
(1)
j −η1

)
)s1

...
(−lv)mvsv (A)lv,sv

sv!

(
ξv

2ηva

(
σ
(v)
j −ηv

)
)sv

×
Γ
{

1 + λi +
∑v
p=1 σ

(p)
j sp +

∑w
q=1 λ

(q)
k νq

}
Γ
{

2µ+ 2
∑v
p=1 ηpsp + 2

∑w
q=1 δqνq

}

Γ
{
λi +

∑v
p=1 σ

(p)
j sp +

∑w
q=1 λ

(q)
k νq

}

×
Γ
{
−µ+ λi +

∑v
p=1

(
σ

(p)
j − ηp

)
sp +

∑w
q=1(λ

(q)
k − δq)νq

}

Γ
{

1 + µ+ λi +
∑v
p=1

(
σ

(p)
j + ηp

)
sp +

∑w
q=1(λ

(q)
k + δq)νq

}

×F 3:0;...;0
2:1;...;1




[
−µ+ λi +

∑v
p=1

(
σ

(p)
j − ηp

)
sp +

∑w
q=1(λ

(q)
k − δq)νq : 2(λ

(1)
k − δ1),

[
1 + µ+ λi +

∑v
p=1

(
σ

(p)
j + ηp

)
sp +

∑w
q=1(λ

(q)
k + δq)νq : 2(λ

(1)
k + δ1),

..., 2(λ
(w)
k − δw)

]
,
[
1 + λi +

∑v
p=1 σ

(p)
j sp +

∑w
q=1 λ

(q)
k νq : 2λ

(1)
k , ..., 2λ

(w)
k

]
,

..., 2(λ
(w)
k + δw)

]
,
[
λi +

∑v
p=1 σ

(p)
j sp +

∑w
q=1 λ

(q)
k νq : 2λ

(1)
k , ..., 2λ

(w)
k

]
:

[
2µ+ 2

∑v
p=1 ηpsp + 2

∑w
q=1 δqνq : 4δ1, ..., 4δw

]
: −; ...;−;

[
1 + ν1 : 1

]
, ...,

[
1 + νw : 1

]
;

−ζ2
1

4(1+δ1)(a)
2
(
λ
(1)
k −δ1

) ,

...,
−ζ2

w

4(1+δw)(a)
2
(
λ
(w)
k −δw

)

 . (2.1)

Proof. To prove Theorem 2.1, we first express Srivastava polynomials and Bessel functions in series forms
given by (1.1) and (1.5) respectively, we have

L.H.S. of (2.1) =

∫ ∞

0

xµ−1

{(
x+ a+

√
x2 + 2ax

)−λ1

...
(
x+ a+

√
x2 + 2ax

)−λn1

}

×

[
l1
m1

]
∑

s1=0

...

[ lvmv ]∑

sv=0

(−l1)m1s1(A)l1,s1
s1!

(ξ1x
η1)

s1

{(
x+ a+

√
x2 + 2ax

)−σ(1)
1 s1

...

(
x+ a+

√
x2 + 2ax

)−σ(1)
n2
s1
}
...

(−lv)mvsv (A)lv,sv
sv!

(ξvx
ηv )

sv

{(
x+ a+

√
x2 + 2ax

)−σ(v)
1 sv

...
(
x+ a+

√
x2 + 2ax

)−σ(v)
n2
sv

} ∞∑

r1=0

...

∞∑

rw=0

(−1)r1

r1!Γ(1 + ν1 + r1)

(
ζ1x

δ1

2

)ν1+2r1
{(

x+ a+
√
x2 + 2ax

)−λ(1)
1 (ν1+2r1)

...

(
x+ a+

√
x2 + 2ax

)−λ(1)
n3

(ν1+2r1)
}
...

(−1)rw

rw!Γ(1 + νw + rw)

(
ζwx

δw

2

)νw+2rw
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{(
x+ a+

√
x2 + 2ax

)−λ(w)
1 (νw+2rw)

...
(
x+ a+

√
x2 + 2ax

)−λ(w)
n3

(νw+2rw)
}
dx.

Now, we interchange the order of summations and integration (permissible with the uniform convergence
of the series forms under the given conditions), we obtain

=

(
ζ1
2

)ν1
...
(
ζw
2

)νw

Γ(1 + ν1) ...Γ(1 + νw)

[
l1
m1

]
∑

s1=0

...

[ lvmv ]∑

sv=0

(−l1)m1s1Al1,s1
s1!

ξs11 ...
(−lv)mvsvAlv,sv

sv!
ξsvv

×
∞∑

r1=0

...

∞∑

rw=0

(
−ζ21

4

)r1

r1!(1 + ν1)r1
...

(
−ζ2w

4

)rw

rw!(1 + νw)rw

n1∏

i=1

n2∏

j=1

n3∏

k=1

∫ ∞

0

x[µ+
∑v
p=1 ηpsp+

∑w
q=1 δq(νq+2rq)−1]

×
(
x+ a+

√
x2 + 2ax

)−[λi+∑v
p=1 σ

(p)
j sp+

∑w
q=1 λ

(q)
k (νq+2rq)

]
dx.

Now, using the Oberhettinger’s integral Eq.(1.7) formula, we get

=

(
ζ1
2

)ν1
...
(
ζw
2

)νw

Γ(1 + ν1)...Γ(1 + νw)

[
l1
m1

]
∑

s1=0

...

[ lvmv ]∑

sv=0

(−l1)m1s1(A)l1,s1
s1!

ξs11 ...
(−lv)mvsv (A)lv,sv

sv!
ξsvv

×
∞∑

r1=0

...

∞∑

rw=0

(
−ζ21

4

)r1

r1!(1 + ν1)r1
...

(
−ζ2w

4

)rw

rw!(1 + νw)rw
2[1−µ−

∑v
p=1 ηpsp−

∑w
q=1 δq(νq+2rq)]

×
n1∏

i=1

n2∏

j=1

n3∏

k=1

(a)

[
µ+
∑v
p=1 ηpsp+

∑w
q=1 δq(νq+2rq)−λi−

∑v
p=1 σ

(p)
j sp−

∑w
q=1 λ

(q)
k (νq+2rq)

]




Γ
{

1 + λi +
∑v
p=1 σ

(p)
j sp +

∑w
q=1 λ

(q)
k (νq + 2rq)

}
Γ
{

2
∑w
q=1 δq(νq + 2rq)

Γ
{
λi +

∑v
p=1 σ

(p)
j sp +

∑w
q=1 λ

(q)
k (νq + 2rq)

}

+2µ+ 2
∑v
p=1 ηpsp

}
Γ
{
λi +

∑v
p=1

(
σ

(p)
j − ηp

)
sp −

∑w
q=1 δq(νq + 2rq)

Γ
{

1 + λi +
∑v
p=1

(
σ

(p)
j + ηp

)
sp +

∑w
q=1 δq(νq + 2rq)

−µ+
∑w
q=1 λ

(q)
k (νq + 2rq)

}

+µ+
∑w
q=1 λ

(q)
k (νq + 2rq)

}


 .

=
ζν11 ...ζνww

Γ(1 + ν1)...Γ(1 + νw)
2[1−µ−

∑w
q=1(1+δq)νq]

n1∏

i=1

n2∏

j=1

n3∏

k=1

(a)

[
µ−λi−

∑w
q=1 νq

(
λ
(q)
k −δq

)]

×

[
l1
m1

]
∑

s1=0

...

[ lvmv ]∑

sv=0

(−l1)m1s1(A)l1,s1
s1!

(
ξ1

2η1a

(
σ
(1)
j −η1

)
)s1

...
(−lv)mvsv (A)lv,sv

sv!

(
ξv

2ηva

(
σ
(v)
j −ηv

)
)sv

×
∞∑

r1=0

...

∞∑

rw=0

1

r1!(1 + ν1)r1

(
−ζ2

1

4(1+δ1)a
2
(
λ
(1)
k −δ1

)
)r1

...
1

rw!(1 + νw)rw

(
−ζ2

w

4(1+δw)a
2
(
λ
(w)
k −δw

)
)rw

×
Γ
{

1 + λi +
∑v
p=1 σ

(p)
j sp +

∑w
q=1 λ

(q)
k νq

}
Γ
{

2µ+ 2
∑v
p=1 ηpsp + 2

∑w
q=1 δqνq

}

Γ
{
λi +

∑v
p=1 σ

(p)
j sp +

∑w
q=1 λ

(q)
k νq

}
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×
Γ
{
−µ+ λi +

∑v
p=1

(
σ

(p)
j − ηp

)
sp +

∑w
q=1(λ

(q)
k − δq)νq

}

Γ
{

1 + µ+ λi +
∑v
p=1

(
σ

(p)
j + ηp

)
sp +

∑w
q=1(λ

(q)
k + δq)νq

}




(
1 + λi +

∑v
p=1 σ

(p)
j sp +

∑w
q=1 λ

(q)
k νq

)
2
∑w
q=1 λ

(q)
k rq

(
2
∑v
p=1 ηpsp + 2

∑w
q=1 δqνq

(
λi +

∑v
p=1 σ

(p)
j sp +

∑w
q=1 λ

(q)
k νq

)
2
∑w
q=1 λ

(q)
k rq

+2µ
)

4
∑w
q=1 δqrq

(
−µ+ λi +

∑v
p=1

(
σ

(p)
j − ηp

)
sp +

∑w
q=1

(
λ

(q)
k − δq

)
νq

)
2
∑w
q=1

(
λ
(q)
k −δq

)
rq(

1 + µ+ λi +
∑v
p=1

(
σ

(p)
j + ηp

)
sp +

∑w
q=1

(
λ

(q)
k + δq

)
νq

)
2
∑w
q=1

(
λ
(q)
k +δq

)
rq


 .

Now, using the Srivastava and Daoust function Eq.(1.6), we arrive at the desire form given in RHS of
(2.1).

On substituting lp = 0 ( for p = 1, 2, ..., v) in Theorem 2.1 the Srivastava polynomial S
mp
lp

(x) reduces to

unity, i.e., S
mp
0 (x) = 1 and we can deduce the following Corollary 2.1 based on the main integral presented

in Theorem 2.1.
Corollary 2.1. For µ, λi, νq ∈ C,Re(νq) > −1 and Re

(∑w
q=1 λ

(q)
k νq + λi

)

> Re
(∑w

q=1 δqνq + µ
)
> 0 (i = 1, 2, ..., n1, k = 1, 2, ..., n3, q = 1, 2, ..., w), the following integral formula

holds true:
∫ ∞

0

xµ−1
n1∏

i=1

(
x+ a+

√
x2 + 2ax

)−λi w∏

q=1

Jνq

[
ζqx

δq

n3∏

k=1

(
x+ a+

√
x2 + 2ax

)−λ(q)
k

]
dx

=
ζν11 ... ζνww

Γ(1 + ν1) ...Γ(1 + νw)
2[1−µ−

∑w
q=1(1+δq)νq]

n1∏

i=1

n3∏

k=1

(a)

[
µ−λi+

∑w
q=1 νq

(
δq−λ(q)

k

)]

×
Γ
{

2µ+ 2
∑w
q=1 δqνq

}
Γ
{

1 + λi +
∑w
q=1 λ

(q)
k νq

}
Γ
{
−µ+ λi +

∑w
q=1(λ

(q)
k − δq)νq

}

Γ
{
λi +

∑w
q=1 λ

(q)
k νq

}
Γ
{

1 + µ+ λi +
∑w
q=1(λ

(q)
k + δq)νq

}

×F 3:0;...;0
2:1;...;1




[
−µ+ λi +

∑w
q=1(λ

(q)
k − δq)νq : 2(λ

(1)
k − δ1), ..., 2(λ

(w)
k − δw)

]
,

[
1 + µ+ λi +

∑w
q=1(λ

(q)
k + δq)νq : 2(λ

(1)
k + δ1), ..., 2(λ

(w)
k + δw)

]
,

[
1 + λi +

∑w
q=1 λ

(q)
k νq : 2λ

(1)
k , ..., 2λ

(w)
k

]
,
[
2µ+ 2

∑w
q=1 δqνq :

[
λi +

∑w
q=1 λ

(q)
k νq : 2λ

(1)
k , ..., 2λ

(w)
k

]
:
[
1 + ν1 : 1

]
, ...,

4δ1, ..., 4δv

]
: −; ...;−;

[
1 + νw : 1

]
;

−ζ2
1

4(1+δ1)(a)
2
(
λ
(1)
k −δ1

) , ..., −ζ2
w

4(1+δw)(a)
2
(
λ
(w)
k −δw

)

 . (2.2)

On setting n1 = 1,n2 = 1,n3 = 1, v = 1,w = 1 in Theorem 2.1, we arrive at the following Corollary 2.2,
where the outcome is computed in the form of generalized Wright function.

Corollary 2.2. For η, λ1, ν1 ∈ C, l1, s1 ≥ 0, Re(ν1) > −1, Re(σ
(1)
1 ) > Re(η1) > 0, and Re

(
λ1 + λ

(1)
1 ν1

)
>

Re (µ+ δ1ν1) > 0, the following integral formula holds true:
∫ ∞

0

xµ−1
(
x+ a+

√
x2 + 2ax

)−λ1

Sm1

l1

[
ξ1x

η1
(
x+ a+

√
x2 + 2ax

)−σ(1)
1

]

× Jν1

[
ζ1x

δ1
(
x+ a+

√
x2 + 2ax

)−λ(1)
1

]
dx =

ζν11

Γ(1 + ν1)
2[1−µ−(1+δ1)ν1]
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× (a)

[
µ−λ1+ν1

(
δ1−λ(1)

1

)] [ l1m1

]
∑

s1=0

(−l1)m1s1Al1,s1
s1!

(
ξ1

2η1a

(
σ
(1)
1 −η1

)
)s1

× 3Ψ3




[
−µ+ λ1 + (σ

(1)
1 − η1)s1 + (λ

(1)
1 − δ1)ν1, 2(λ

(1)
1 − δ1)

]
,

[
1 + µ+ λ1 + (σ

(1)
1 + η1)s1 + (λ

(1)
1 + δ1)ν1, 2(λ

(1)
1 + δ1)

]
,

[
1 + λ1 + σ

(1)
1 s1 + λ

(1)
1 ν1, 2λ

(1)
1

]
,
[
2µ+ 2η1s1 + 2δ1ν1, 4δ1

]
;

[
λ1 + σ

(1)
1 s1 + λ

(1)
1 ν1, 2λ

(1)
1

]
,
[
1 + ν1, 1

]
;

−ζ2
1

4(1+δ1)a
2
(
λ
(1)
1 −δ1

)

 . (2.3)

3. Special Cases

In this section, we present some of the well-known and interesting special cases which can be determined by
specializing the parameters of the Corollaries 2.1 and 2.2.

(i) For n1 = 1,n3 = 1, δq = 0 and λ
(q)
1 = 1 (q = 1, 2, ..., w), Corollary 2.1 reduces to an interesting result

given by Choi and Agarwal [7, Theorem 1, p. 671, (2.1)].

(ii) Assuming n1 = 1, δq = 1 and λ
(q)
1 = 1 (q = 1, 2, ..., w), Corollary 2.1 produces another known result of

Choi and Agarwal [7, Theorem 2, p. 671, (2.2)].

(iii) Substituting l1 = 0,Sm1

l1
[x] = 1, δ1 = 0 and λ

(1)
1 = 1, Corollary 2.2 reduces in to [8, Theorem

1, p. 3, (2.1)] investigated by Choi and Agarwal.

(iv) Taking l1 = 0,Sm1

l1
[x] = 1, δ1 = 1 and λ

(1)
1 = 1, Corollary 2.2 reduces to another result due to Choi

and Agarwal [8, Theorem 2, p. 3, (2.2)].

(v) Also, for η1 = 0, δ1 = 0, ξ1 = ξ
2 ,m1 = 1,λ

(1)
1 = 1,σ

(1)
1 = 1,Al1,s1 =

(
l1+τ
l1

) (l1+τ+ς+1)s1
(τ+1)s1

,S1
l1

(x) =

P
(τ,ς)
l1

(1 − 2x) and using equation (1.3) and (1.2), the Corollary 2.2 reduces to [13, Theorem
1, p. 341, (2.1)] and [13, Theorem 2, p. 343, (2.5)] respectively, presented by Khan et al.

Remark: For the appropriate settings of parameters in the proposed integral, i.e., Theorem 2.1, one can
derive a number of interesting integrals. Further, an interesting form involving the product of several Bessel
functions established by Exton and Srivastava [12, p. 4, (2.8)] can be deduced as a particular case of the
Theorem 2.1. Furthermore, one can also obtain the legendary and classical integral formulas investigated by
Bailey [1, p. 38, (1.2)] and Rice [21, p. 60, (2.6), (2.8)] for proper choice of parameter in the Theorem 2.1.

4. Conclusion

By the use of Oberhettinger type integral formula, in the current investigation by the applications of the
Oberhettinger integral formula we have establised some of the results involving the Bessel functions and
general class of polynomial whose outcomes in terms of the Srivastava and Daoust functions and also the
Bessel function of the first kind is a special case of Fox H-function [8, p. 9, (4.1)]. Consequently, all the result
of this paper can easily converted in terms of the Fox H-function for the appropriate settings of parameters.
We can find some other results in terms of the Srivastava and Daoust functions for the proper settings of
parameters in the general class of polynomial.
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Abstract

A Fibonacci coding method is introduced using Extended Generalized Fibonacci Polynomials in this
paper. A new square matrix Qn

m(a, b), the nth power of Qm(a, b) of order m × m is defined whose
elements are based on extended Generalized Fibonacci Polynomial. Matrix Qn

m(a, b) for integer x ≥ 1,
a ≥ 1 and b ≥ 1 is considered as the encoding matrix and a matrix Q−n

m (a, b) is considered as decoding
matrix. An error-detection and error-correction method is also defined in Extended Generalized Fibonacci
polynomials.
2020 Mathematical Sciences Classification: 11C08, 11C20, 11H71.
Keywords and Phrases: Extended Generalized Fibonacci Polynomial, Extended Generalized
Fibonacci Polynomial matrices, Error detection and Error correction.

1 Introduction
The Fibonacci sequence is one of the most well-known sequences, with numerous intriguing aspects and major
applications in a variety of fields including Mathematics,Statistics, Biology, Physics, Finance, Architecture
and Computer Sciences. The Fibonacci sequences and golden ratio have rich history, features and uses. This
sequence has been modified in a variety of ways.
The Fibonacci Polynomial [5] and the Extended Generalized Fibonacci Polynomial [8] are two such extensions
that will be used in this paper. The Fibonacci Polynomial Fn(x) is defined by the recurrence relation shown
below,

fn(x) =





1 n = 1;

x n = 2;

xfn−1(x) + fn−2(x) n ≥ 3.

(1.1)

There is no restriction on Fibonacci Polynomials for n ≤ 0.
one such extension of Fibonacci Polynomial is the Extended Generalized Fibonacci Polynomial which is
defined by the recurrence relation

gn(x) =





1 n = 1;

a(x) n = 2;

a(x)gn−1(x) + b(x)gn−2(x) n ≥ 3.

(1.2)

where a(x), b(x), g0(x) and g1(x) are arbitrary real Polynomials and n ≥ 0. A non-recursive expression for
gn(x), given below is introduced in [14].

gn+1(x) =

bn2 c∑

i=0

(
n− i
i

)
an−2ibi n ≥ 0. (1.3)
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This expression will appear several times in this paper. The first five Extended Generalized Fibonacci
Polynomials are shown below.

gn(x) =





1 n = 1;

a(x) n = 2;

[a(x)]2 + b(x) n = 3;

[a(x)]3 + 2a(x)b(x) n = 4;

[a(x)]4 + 3[a(x)]2b(x) + [b(x)]2 n = 5.

(1.4)

There is no restriction on Extended Generalized Fibonacci Polynomial for n ≤ 0. In this paper, we set
g0(x) = 0 and gn(x) = 1 for n ≤ −1. It’s worth nothing that the classical Fibonacci Polynomial can be
created by substituting a(x) = x and b(x) = 1 in the Extended Generalized Fibonacci Polynomial and the
classical Jacobsthal Polynomial can be created by substituting a(x) = 1 and b(x) = x in the Extended
Generalized Fibonacci Polynomial. A Square matrices Qnm of order m ×m, n ≥ 1, Properties, coding and
decoding method, relation between code elements of message matrix and error-detection error-correction
method has been introduced in Extended Generalized Fibonacci polynomials. This result,s is an extension
of the result’s [5]. For simplicity, we denote gn(x),a(x), b(x), g0(x) and g1(x) by gn, a, b, g0 and g1

respectively.

2 Main Results
2.1 Extended Generalized Fibonacci Polynomial matrices of order m
The Extended Generalized Fibonacci Polynomials generated by the matrix given below.

Q2(a, b) =

(
a b
1 0

)
. (2.1)

For any a and b, we have det(Q2(a, b)) = −b. Setting g0 = 0 and applying induction on n ≥ 1, it is easily
verified that

Qn2 (a, b) =

(
gn+1 bgn
gn bgn−1

)
. (2.2)

By using the determinant theorem, we see that det(Qn2 (a, b)) = (−b)n. The following defines the m × m
matrix Qm(a, b) .

Qm(a, b) =




a b 0 0 · · · 0
0 a b 0 · · · 0
...

...
. . .

. . .
. . .

...
0 0 · · · 0 a b

0 0
... 0 1 0



m×m

.

Thus Qm(a, b) has a recursive expression and det(Qm(a, b)) = −am−2b. The nth, n ≥ 2, power of Qm(a, b)
is given by the following theorem.

Theorem 2.1. For n ≥ 2 and m ≥ 2, we have
Qnm(a, b)

=



(n
0

)
an

(n
1

)
an−1b · · ·

( n
m−3

)
an−m+3bm−3

bn−m+2
2

c∑
i=0

( n−i
i+m−2

)
an−m+2−2ibi+m−2

bn−m+1
2

c∑
i=0

(n−1−i
i+m−2

)
an−m+1−2ibi+m−1

0
(n
0

)
an · · ·

( n
m−4

)
an−m+4bm−4

bn−m+3
2

c∑
i=0

( n−i
i+m−3

)
an−m+3−2ibi+m−3

bn−m+2
2

c∑
i=0

(n−1−i
i+m−3

)
an−m+2−2ibi+m−2

.

.

.
. . .

. . .
.
.
.

.

.

.
.
.
.

0 0 · · ·
(n
0

)
an

bn−1
2
c∑

i=0

(n−i
i+1

)
an−1−2ibi+1

bn−2
2
c∑

i=0

(n−1−i
i+1

)
an−2−2ibi+2

0 0 · · · 0
bn

2
c∑

i=0

(n−i
i

)
an−2ibi

bn−1
2
c∑

i=0

(n−1−i
i

)
an−1−2ibi+1

0 0 · · · 0
bn−1

2
c∑

i=0

(n−1−i
i

)
an−1−2ibi

bn−2
2
c∑

i=0

(n−2−i
i

)
an−2−2ibi+1



.

(2.3)
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Proof. For the sake of simplicity, assume m = 4. The proof is based on induction. The following equality
shows that eq.(2.3) holds for n = 1.

Q1
4(a, b) =




(
1
0

)
a
(

1
1

)
b

−1∑
i=0

(
1−i
i+2

)
a−1−2ibi+2

−1∑
i=0

( −i
i+2

)
a−2−2ibi+3

0
(

1
0

)
a

0∑
i=0

(
1−i
i+1

)
a2ibi+1

−1∑
i=0

( −i
i+1

)
a−1−2ibi+2

0 0 g2(x) bg1(x)
0 0 g1(x) bg0(x)




=




a b 0 0
0 a b 0
0 0 a b
0 0 1 0


 .

Suppose the statement holds for n = k. Therefore, for n = k + 1 we have,

Q
k+1
4 (a, b) =

a b 0 0
0 a b 0
0 0 a b
0 0 1 0




(k
0

)
ak

(k
1

)
ak−1b

b k−2
2
c∑

i=0

(k−i
i+2

)
ak−2−2ibi+2

b k−3
2
c∑

i=0

(k−1−i
i+2

)
ak−3−2ibi+3

0
(k
0

)
ak

b k−1
2
c∑

i=0

(k−i
i+1

)
ak−1−2ibi+1

b k−2
2
c∑

i=0

(k−1−i
i+1

)
ak−2−2ibi+2

0 0 gk+1 bgk
0 0 gk bgk−1



=



(k
0

)
ak+1

(k
1

)
akb+

(k
0

)
akb q1,3 q1,4

0
(k
0

)
ak+1 a

b k−1
2
c∑

i=0

(k−i
i+1

)
ak−1−2i + bgk+1 a

b k−2
2
c∑

i=0

(k−1−i
i+1

)
ak−2−2ibi+2 + b2gk

0 0 agk+1 + bgk b(agk + bgk−1)
0 0 gk+1 bgk

 ,

where,





q1,3 = a
b k−2

2 c∑
i=0

(
k−i
i+2

)
ak−2−2ibi+2 + b

b k−1
2 c∑
i=0

(
k−i
i+1

)
ak−1−2ibi+1

q1,4 = a
b k−3

2 c∑
i=0

(
k−1−i
i+2

)
ak−3−2ibi+3 + b

b k−2
2 c∑
i=0

(
k−1−i
i+1

)
ak−2−2ibi+2.

Consider the first row of the last matrix. We need to show that the following four cases





(
k
0

)
ak+1 =

(
k+1

0

)
ak+1

(
k
1

)
akb+

(
k
0

)
akb = kakb+ akb =

(
k+1

1

)
akb

q1,3 =
b k−1

2 c∑
i=0

(
k+1−i
i+2

)
ak−1−2ibi+2

q1,4 =
b k−2

2 c∑
i=0

(
k−i
i+2

)
ak−2−2ibi+3

, (2.4)

hold.
The first two cases of eq.(2.4)are easily verified. We will prove the third case of equation (2.4); fourth case
is proved in a similar way. For the third case, there are two cases arise.
Case 1. Suppose k is even, so that k = 2l.Therefore

⌊
k − 2

2

⌋
=

⌊
2l − 2

2

⌋
= l − 1,

⌊
k − 1

2

⌋
=

⌊
2l − 1

2

⌋
= l − 1. (2.5)

By substituting these relations in the L.H.S. of third case of equation (2.4), we get

q1,3 = a

l−1∑

i=0

(
2l − i
i+ 2

)
a2l−2−2ibi+2 + b

l−1∑

i=0

(
2l − i
i+ 1

)
a2l−1−2ibi+1

=

l−1∑

i=0

[(
2l − i
i+ 2

)
+

(
2l − i
i+ 1

)]
a2l−1−2ibi+2

=

l−1∑

i=0

(
2l + 1− i
i+ 2

)
a2l−1−2ibi+2
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=

⌊
k−1
2

⌋
∑

i=0

(
k + 1− i
i+ 2

)
ak−1−2ibi+2.

Case 2. Now assuming k = 2l + 1, we have

⌊
k − 2

2

⌋
=

⌊
2l − 1

2

⌋
= l − 1,

⌊
k − 1

2

⌋
=

⌊
2l

2

⌋
= l. (2.6)

By substituting these relations in the L.H.S. of third case of equation (2.4), we get

q1,3 = a

l−1∑

i=0

(
2l + 1− i
i+ 2

)
a2l−1−2ibi+2 + b

l∑

i=0

(
2l + 1− i
i+ 1

)
a2l−2ibi+1

=

l−1∑

i=0

(
2l + 1− i
i+ 2

)
a2l−2ibi+2 +

l∑

i=0

(
2l + 1− i
i+ 1

)
a2l−2ibi+2

=

l−1∑

i=0

[(
2l + 1− i
i+ 2

)
+

(
2l + 1− i
i+ 1

)]
a2l−2ibi+2 + bl+2

=

l−1∑

i=0

(
2l + 2− i
i+ 2

)
a2l−2ibi+2 + bl+2

=

l∑

i=0

(
2l + 2− i
i+ 2

)
a2l−2ibi+2

=

⌊
k−1
2

⌋
∑

i=0

(
k + 1− i
i+ 2

)
ak−1−2ibi+2.

Further, other rows of Qk+1
4 (a, b) can also be solved using above process.

This completes the proof.

Example 2.1. For m = 6 and n=5 we have

Q5
6(a, b) =




a5 5a4b 10a3b2 10a2b3 5ab4 b5

0 a5 5a4b 10a3b2 10a2b3 + b4 4ab4

0 0 a5 5a4b 10a3b2 + 4ab3 6a2b3 + b4

0 0 0 a5 5a4b+ 6a2b2 + b3 4a3b2 + 3ab3

0 0 0 0 a5 + 3a3b+ a2b+ 3b2 a4b+ 3a2b2 + b2

0 0 0 0 a4 + 3a2b2 + b2 a3b+ 2ab2



.

2.2 Properties of Extended Generalized Fibonacci Polynomial
Lemma 2.1. For n ≥ k and k ≥ 1 we have

gn =
1

an−k

n−k∑

i=0

(−1)i
(
n− k
i

)
g2n−k−2ib

i, (2.7)

where gn is the nth Extended Generalized Fibonacci Polynomial.

Proof. Let k be a fixed number. The proof is by induction on n ≥ k. Suppose that the equation holds for
k ≤ n ≤ l. we show that (2.7) holds for n = l + 1.
Then by the recurrence relation, we have

gl+1 = agl + bgl−1

= a

(
1

al−k

l−k∑

i=0

(−1)i
(
l − k
i

)
g2l−k−2ib

i

)
+ b

(
1

al−k−1

l−1−k∑

i=0

(−1)i
(
l − 1− k

i

)
g2l−2−k−2ib

i

)
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=
1

al−k−1

( l−k∑

i=1

(−1)i
(
l − k
i

)
g2l−k−2ib

i +

l−1−k∑

i=0

(−1)i
(
l − 1− k

i

)
g2l−2−k−2ib

i+1 + g2l−k

)

=
1

al−k−1

( l−k−1∑

i=0

(−1)i+1

(
l − k
i+ 1

)
g2l−2−k−2ib

i+1 +

l−1−k∑

i=0

(−1)i
(
l − 1− k

i

)
g2l−2−k−2ib

i+1 + g2l−k

)

=
1

al−k−1

( l−k−1∑

i=0

(−1)i
((

l − 1− k
i

)
−
(
l − k
i+ 1

))
g2l−2−k−2ib

i+1 + g2l−k

)

=
1

al−k−1

( l−k−2∑

i=0

(−1)i+1

(
l − 1− k
i+ 1

)
g2l−2−k−2ib

i+1 + g2l−k

)

=
1

al−k−1

( l−k−1∑

i=1

(−1)i
(
l − 1− k

i

)
g2l−k−2ib

i + g2l−k

)

=
1

al−k−1

l−k−1∑

i=0

(−1)i
(
l − 1− k

i

)
g2l−k−2ib

i.

Expanding this relation using (1.2), we get

=
ak+1

al

l−k−1∑

i=0

(−1)i
(
l − 1− k

i

)
g2l−k−2ib

i

=
ak−1

al

l−k−1∑

i=0

(−1)i
(
l − k − 1

i

)(
g2l−k−2i+2b

i − 2g2l−k−2ib
i+1 + g2l−k−2−2ib

i+2

)

=
ak−1

al

( l−k−1∑

i=2

(−1)i
((

l − k − 1

i

)
+ 2

(
l − k − 1

i− 1

)
+

(
l − k − 1

i− 2

))
g2l+2−k−2ib

i + g2l+2−k

− (l − k − 1)g2l−kb− 2g2l−kb− 2(−1)l−k+1gk+2b
l−k − (−1)l−k+1(l − k − 1)gk+2b

l−k

+ (−1)l−k+1gkb
l+1−k

)

=
1

al+1−k

l+1−k∑

i=0

(−1)i
(
l + 1− k

i

)
g2l+2−k−2ib

i.

This completed the proof.

Lemma 2.2. Binet formula:- The nth Extended generalized Fibonacci polynomial is given by

gn =
zn1 − zn2
z1 − z2

,

where z1, z2 are the roots of the characteristic equation (1.2) and z1 > z2.

Proof. We can express the recurrence relation (1.2) into the function of roots of z1 and z2 and the
characteristic equation of recurrence relation (1.2) is z2 = az + b. The roots of the characteristic equation

are z1 = a+
√
a2+4b
2 and z2 = a−

√
a2+4b
2 .

Note that z2 < 0 < z1 and |z2| < |z1|.Also z1 + z2 = a, z1z2 = −b and z1 − z2 =
√
a2 + 4b.

Therefore, the general terms of Extended Generalized Fibonacci Polynomial may be expressed in the form
gn = P1z

n
1 +P2z

n
2 , for some coefficient P1 and P2, for the value n = 0 and n = 1, we have P1 = 1

z1−z2 = −P2,

so that gn =
zn1−z

n
2

z1−z2 .

Lemma 2.3. lim
n→∞

gn
gn−1

= z1

Where z1 is the positive root of characteristic equation (1.2).
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Proof. By using Binet formula (see, Lemma 2.2), we have

lim
n→∞

gn
gn−1

= lim
n→∞

(
zn1 − zn2
z1 − z2

× z1 − z2

zn−1
1 − zn−1

2

)
= lim
n→∞

1− ( z2z1 )n

1
z1
− ( z2z1 )n( 1

z2
)

and taking into account that lim
n→∞

( z2z1 )n = 0, Since |z2| < |z1| then we get our result.

2.3 The inverse Extended Generalized Fibonacci polynomial matrices
Now, by use of lemma 2.1, the next theorem establishes the structure of the inverse Extended Generalized
Fibonacci Polynomial Matrix Q−nm (a, b).

Theorem 2.2. For m ≥ 2, n ≥ 1 ,a 6= 0and b 6= 0, the matrix Q−nm (a, b) is in the form
Q−nm (a, b) = (AB)m×m
where

A =



(
n−1
0

)
an

−
(
n
1

)
b

an+1 −
(
n+1
2

)
b2

an+2 · · ·
(
n+m−4
m−3

)
bm−3

an−m+3

0

(
n−1
0

)
an

−
(
n
1

)
b

an+1 · · ·
(
n+m−5
m−4

)
bm−4

an−m+4

...
...

. . .
. . .

...

0 0 · · · · · ·
(
n−1
0

)
an

0 0 · · · · · · 0
0 0 · · · · · · 0


m×m−2

,

B =



(−a)m−2a(m−3)(n−2)

(−am−2)n

n−2∑
i=0

(−1)i
(n+m−4

i

)
g2n−3−2ib

i+m−n−1 (am−3)n−1

(−am−2)n

n−1∑
i=0

(−1)i
(n+m−3

i

)
g2n−1−2ib

i+m−n−1

(−a)m−3a(m−4)(n−2)

(−am−3)n

n−2∑
i=0

(−1)i
(n+m−5

i

)
g2n−3−2ib

i+m−n−2 (am−4)n−1

(−am−3)n

n−1∑
i=0

(−1)i
(n+m−4

i

)
g2n−1−2ib

i+m−n−2

...
...

−a
(−a)n

n−2∑
i=0

(−1)i
(n−1

i

)
g2n−3−2ib

i+2−n 1
(−a)n

n−1∑
i=0

(−1)i
(n
i

)
g2n−1−2ib

i+2−n

(−1)ngn−1b1−n (−1)n−1gnb1−n

(−1)n−1gnb−n (−1)ngn+1b−n


m×2

.

Proof. For the simplicity we prove the statement for m = 3. We show that Qn3 (a, b)×Q−n3 (a, b) = I3×3 holds
for any n, where I3×3 is the identity matrix of order 3.

Qn3 (a, b)×Q−n3 (a, b) =




(
n
0

)
an

bn−1
2 c∑
i=0

(
n−i
i+1

)
an−1−2ibi+1

bn−2
2 c∑
i=0

(
n−1−i
i+1

)
an−2−2ibi+2

0 gn+1 bgn
0 gn bgn−1




×




(n−1
0 )
an

−a
(−a)n

n−2∑
i=0

(−1)i
(
n−1
i

)
g2n−3−2ib

i+2−n 1
(−a)n

n−1∑
i=0

(−1)i
(
n
i

)
g2n−1−2ib

i+2−n

0 (−1)n

bn−1 gn−1
(−1)n−1

bn−1 gn

0 (−1)n−1

bn gn
(−1)n

bn gn+1


 .

Using the relation gn+1gn−1−g2
n = (−1)nbn−1, it is easily verified that all the diagonal entries of this matrix

are one. Now we have to show that all the other entries of this matrix are zero.for this, consider the elements
of first row and second column.

q(1,2) =

(
n

0

)
an
−a

(−a)n

n−2∑

i=0

(−1)i
(
n− 1

i

)
g2n−3−2ib

i+2−n +
(−1)n

bn−1
gn−1

bn−1
2 c∑

i=0

(
n− i
i+ 1

)
an−1−2ibi+1

+
(−1)n−1

bn
gn

bn−2
2 c∑

i=0

(
n− 1− i
i+ 1

)
an−2−2ibi+2.
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For an even integer n = 2l, using (2.5) and (2.7), we have

q(1,2) = (−a)

2l−2∑

i=0

(−1)i
(

2l − 1

i

)
g4l−3−2ib

i+2−2l +
g2l−1

b2l−1

l−1∑

i=0

(
2l − i
i+ 1

)
a2l−1−2ibi+1

− g2l

b2l

l−1∑

i=0

(
2l − 1− i
i+ 1

)
a2l−2−2ibi+2

= (−a)

2l−2∑

i=0

(−1)i
(

2l − 1

i

)
g4l−3−2ib

i+2−2l +
g2l−1

b2l−1

l−1∑

i=0

(
2l − i
i+ 1

)
a2l−1−2ibi+1

− g2l−1

b2l

l−1∑

i=0

(
2l − 1− i
i+ 1

)
a2l−1−2ibi+2 − g2l−2

b2l

l−1∑

i=0

(
2l − 1− i
i+ 1

)
a2l−2−2ibi+3

= (−a)

2l−2∑

i=0

(−1)i
(

2l − 1

i

)
g4l−3−2ib

i+2−2l +
g2l−1

b2l

l−1∑

i=0

(
2l − 1− i

i

)
a2l−1−2ibi+2

− g2l−2

b2l

l−1∑

i=0

(
2l − 1− i
i+ 1

)
a2l−2−2ibi+3

= (−a)

2l−2∑

i=0

(−1)i
(

2l − 1

i

)
g4l−3−2ib

i+2−2l +
g2l−1

b2l−2

l−1∑

i=0

(
2l − 1− i

i

)
a2l−1−2ibi

− g2l−2

b2l−2

(
g2l+1 − a2l

)

= (−a)

2l−2∑

i=0

(−1)i
(

2l − 1

i

)
g4l−3−2ib

i+2−2l +
g2l−1g2l

b2l−2
− g2l−2g2l+1

b2l−2
+
g2l−2a

2l

b2l−2

= (−a)

2l−2∑

i=0

(−1)i
(

2l − 1

i

)
g4l−3−2ib

i+2−2l + a+
g2l−2a

2l

b2l−2

= a

(
1− 1

b2l−2

2l−2∑

i=0

(−1)i
(

2l − 1

i

)
g4l−3−2ib

i

)
+
g2l−2a

2l

b2l−2

= a

(
1− a2l−1g2l−2

b2l−2
− 1

)
+
g2l−2a

2l

b2l−2

= 0.

Now for odd number n = 2l + 1, using the equations (2.6) and (2.7), we have

q(1,2) = (a)

2l−1∑

i=0

(−1)i
(

2l

i

)
g4l−1−2ib

i+1−2l − g2l

b2l

l∑

i=0

(
2l + 1− i
i+ 1

)
a2l−2ibi+1

+
g2l+1

b2l+1

l−1∑

i=0

(
2l − i
i+ 1

)
a2l−1−2ibi+2

= (a)

2l−1∑

i=0

(−1)i
(

2l

i

)
g4l−1−2ib

i+1−2l − g2l

b2l

l∑

i=0

(
2l + 1− i
i+ 1

)
a2l−2ibi+1

+
g2l

b2l+1

l−1∑

i=0

(
2l − i
i+ 1

)
a2l−2ibi+2 +

g2l−1

b2l+1

l−1∑

i=0

(
2l − i
i+ 1

)
a2l−1−2ibi+3

= (a)

2l−1∑

i=0

(−1)i
(

2l

i

)
g4l−1−2ib

i+1−2l − g2l

b2l−1

l∑

i=0

(
2l − i
i

)
a2l−2ibi +

g2l−1

b2l−1

l−1∑

i=0

(
2l − i
i+ 1

)
a2l−1−2ibi+1

= (a)

2l−1∑

i=0

(−1)i
(

2l

i

)
g4l−1−2ib

i+1−2l − g2lg2l+1

b2l−1
+
g2l−1

b2l−1

(
g2l+2 − a2l+1

)
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= (a)

2l−1∑

i=0

(−1)i
(

2l

i

)
g4l−1−2ib

i+1−2l + a− g2l−1a
2l+1

b2l−1

= (a)

(
1 +

2l−1∑

i=0

(−1)i
(

2l

i

)
g4l−1−2ib

i+1−2l

)
− g2l−1a

2l+1

b2l−1

= a

(
1 +

a2lg2l−1

b2l−2
− 1

)
− g2l−1a

2l+1

b2l−1

= 0.

Similarly, we can shown that any other non-diagonal entries of the matrix is also zero.
This completes the proof.

2.4 The Extended Generalized Fibonacci Polynomial based coding algorithm
The Extended Generalized Fibonacci Polynomial coding algorithm is described in detail in this section.For
coding and decoding algorithm Extended Generalized Fibonacci polynomials is converted into integer, for
that we choose a 6= 0 and b 6= 0 for integer x such that a and b also gives non zero integer values. The initial
message needs to be represented in the form of a square matrix M of order m, referred as the message-matrix,
in order to employ this type of coding. This representation has no constraints and the user is free to arrange
it how they want. For instance, the message 283954267 can be represented by the message matrix of order
2:

M =

(
283 95
42 67

)
.

The encoding matrix Qnm(a, b) is obtained from (2.3). Once the sender and receiver agree on above parameters
and an integer n. To get the message matrix E, multiply the encoding matrix by the message matrix M
from right side. For example, for m = 3 and n = 2 we have
E = Q2

3(a, b)M3×3

=



a2 2ab b2

0 a2 + b ab
0 a b





m11 m12 m13

m21 m22 m23

m31 m32 m33


 =



e11 e12 e13

e21 e22 e23

e31 e32 e33



.

The elements of E are delivered by the channel in the following order e11, e12, e13, · · · , e33, followed by the
value of det(M). Assuming that the send sequence is received without error, the original message matrix is
produced by multiplying E and Q−2

3 (a, b):
M = Q−2

3 (a, b)E

=




1
a2 − 1

a 1− b
a2

0 1
b −ab

0 − a
b2

a2+b
b2





e11 e12 e13

e21 e22 e23

e31 e32 e33


 =



m11 m12 m13

m21 m22 m23

m31 m32 m33



.

2.5 A relation among the elements of a code message-matrix
Inside this part, we develop a fascinating relationship between the components of a code message matrix E,
which plays an important role in the error-correction process. Let m = 3 for the sake of simplicity. Assume
that all values of M are positive and a, b ≥ 1 for (x ≥ 1). Therefore,

M = Q
−n
3 (a, b)× E

=


(
n−1
0

)
an

−a
(−a)n

n−2∑
i=0

(−1)i
(n−1
i

)
g2n−3−2ib

i+2−n 1
(−a)n

n−1∑
i=0

(−1)i
(n
i

)
g2n−1−2ib

i+2−n

0
(−1)n

bn−1 gn−1
(−1)n−1

bn−1 gn

0
(−1)n−1

bn gn
(−1)n

bn gn+1

×
e11 e12 e13
e21 e22 e23
e31 e32 e33



=

m11 m12 m13

m21 m22 m23

m31 m32 m33

 .

For the elements of the first columns of M , we have



m11 = e11 + (−1)n−1ae21

n−2∑
i=0

(−1)i
(
n−1
i

)
g2n−3−2ib

i+2−n + (−1)ne31

n−1∑
i=0

(−1)i
(
n
i

)
g2n−1−2ib

i+2−n ≥ 0;

m21 = (−1)n

bn−1 e21gn−1 + (−1)n−1

bn−1 e31gn ≥ 0;

m31 = (−1)n−1

bn e21gn + (−1)n

bn e31gn+1 ≥ 0.
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Using (2.7) for an even integer n = 2l, we obtain the following inequalities.





e11 − ae21

(
a2l−1g2l−2

b2l−2 + 1
)

+ be31

(
a2lg2l−1

b2l−1 − 1
)
≥ 01 (a)

e21g2l−1

b2l−1 − e31g2l
b2l−1 ≥ 0 (b)

− e21g2l
b2l

+ e31g2l+1

b2l
≥ 0 (c)

. (2.8)

From (2.8)(b) and (2.8)(c), we have
g2l

g2l−1
≤ e21

e31
≤ g2l+1

g2l
. (2.9)

It follows from 2.8(a) that

e11

e31
≥ ae21

e31

(a2l−1g2l−2

b2l−2
+ 1
)
− b
(a2lg2l−1

b2l−1
− 1
)
.

This together with (2.9) gives

e11

e31
≥ a g2l

g2l−1

(a2l−1g2l−2

b2l−2
+ 1
)
− b
(a2lg2l−1

b2l−1
− 1
)

≥ a2l

b2l−2g2l−1

(
g2lg2l−2 − g2

2l−1

)
+

ag2l

g2l−1
+ b

≥ − a2lb

g2l−1
+
ag2l + bg2l−1

g2l−1

e11

e31
≥ g2l+1 − a2lb

g2l−1
. (2.10)

Similarly, dividing (2.8)(a) by e11 results in

b
e31

e11

(a2lg2l−1

b2l−1
− 1
)
≥ ae21

e11

(a2l−1g2l−2

b2l−2
+ 1
)
− 1.

It follows from this and (2.9) that

b
e31

e11

(a2lg2l−1

b2l−1
− 1
)
≥ a g2l

g2l−1

(a2l−1g2l−2

b2l−2
+ 1
)
− 1 (2.11)

and hence

e11

e31
≤ g2l+1 − a2lb

g2l−1
. (2.12)

Using (??) and (2.12), we get

e11

e31
=
g2l+1 − a2lb

g2l−1
. (2.13)

For l large enough, we have from equation (2.9) and (2.13)
e11

e31
≈ σ2,

e21

e31
≈ σ,

where,

σ =
a+
√
a2 + 4b

2
.

Therefore,
e11

e21
≈ σ.

Similarly, assuming that (2.8) for n = 2l + 1, we obtain,
g2l+2

g2l+1
≤ e21

e31
≤ g2l+1

g2l

g2l+2 − a2l+1b

g2l
≤ e11

e31
≤ g2l+2 − a2l+1b

g2l
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For l large enough, we have
e11

e31
≈ σ2,

e21

e31
≈ σ.

Therefore,
e11

e21
≈ σ.

The result is that for large values of n, the following equation holds.
e11

e21
≈ e21

e31
≈ σ.

In general, for 1 ≤ i ≤ m we get

e1,i

e2,i
≈ e2,i

e3,i
≈ · · · ≈ em−1,i

em,i
≈ σ, (2.14)

where ei,j is the element of ith row and jth column of message matrix.
2.6 Error-detection and error-correction
The Fibonacci Polynomial based coding error-correction technique has been developed in [5]. This approach
is used in Extended Generalized Fibonacci Polynomial based coding method described. We will start with
error detection.From E = Qnm(a, b)M we have,

det(E) = det(M)× (−am−2b)n (2.15)

Using determinant theorem, we have det(Qnm(a, b)) = (−am−2b)n. Relation (2.15) is controlled when an
estimation matrix Ê is rebuilt using the received elements. If the relation is satisfied, we claim there was no
error. otherwise, either the components of E or det(M) are incorrect. We may presume that the number
det(M) was received correctly after sending it many times and utilising majority logic decoding. As a result,
relation (2.15) is regarded as criterion for detecting errors. Assume that some of elements of E are incorrect.
Of course, this matrix might have one-fold, two-fold,· · · , or m2-fold errors.
For simplicity consider a 2× 2 receiving matrix to demonstrate how to remedy these problem. Three cases
are examined.
Case1. Assume that one of the elements was delivered incorrectly. Then one of the four cases below is
feasible, where p, q, r and s are the incorrect elements.(

p e12

e21 e22

) (
e11 q
e21 e22

) (
e11 e12

r e22

) (
e11 e12

e21 s

)
.

It follows from (2.15) and det(Qn2 (a, b)) = (−b)n that
pe22 − e12e21 = (−b)ndet(M),
e11e22 − qe21 = (−b)ndet(M),
e11e22 − re12 = (−b)ndet(M),
se11 − e12e21 = (−b)ndet(M),
or equivalently

p =
(−b)ndet(M) + e12e21

e22
,

q =
−(−b)ndet(M) + e11e22

e21
,

r =
−(−b)ndet(M) + e11e22

e12
,

s =
(−b)ndet(M) + e12e21

e11
.

The above equation provides four alternative single-error variations, but we must select the right variant
only from the instance of integer solutions p, q, r and s; moreover, we must select solutions that satisfy the
relation (2.14). Note that only numbers that are integers and satisfy (2.14) are the elements of E.If no such
elements is obtained from these equations, we must conclude that our single-error hypothesis is false and we
have to consider multiple-fold error cases.
Case 2. Suppose that two elements of E was delivered incorrectly as shown below:
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(
p e12

q e22

)
.

From (2.15) we have pe22−e12q = (−b)ndet(M). Since above equation has many solutions, we have to choose
solutions of p and q, which satisfy (2.14). Again only integer solutions are acceptable. It’s worth nothing
that if the two errors occur in the same row or in one of the matrix’s two diagonals, they may be readily
fixed by just applying (2.14). Two-fold error do not arise if no integer solution is discovered. If none of
the cases above produce solutions that fulfil the criteria, then all of the elements of E have been received
incorrectly. Errors cannot be remedied in this case.
Case 3. Assume that three elements of E was delivered incorrectly as shown below(
p q
r e22

)
.

From (2.14), q can be obtained. Now remaining errors can be corrected by case2 solution.
If none of the cases above produce solutions that fulfil the criteria, then all of the elements of E have been
received incorrectly. Errors cannot be remedied in this case.
According to the method described in [11], there are consequently 15 error conditions in the elements
of E. Since 14 cases between them can be corrected, the approach’s correctable probability is equal to
14
15 = 0.9333 = 93.33%. Capability to fix errors: Because only m2-fold faults may notbe rectified, As in

[2], the method’s error-correction capacity is 2m
2
−2

2m2−1
, where m is the message-matrix order. As a result, the

probability of decoding mistake is nearly nil for large values of m.

3 Conclusion
We presented a coding scheme based on Extended Generalized Fibonacci polynomials. The encoder matrix
for integers m ≥ 2, a, b ≥ 1 and n ≥ 1 is a matrix Qnm(a, b), the nth power of Qm(a, b) with Extended
Generalized Fibonacci polynomial elements.Further, established some properties of Extended Generalized
Fibonacci polynomial. Each source word is represented by a matrix M that has been encoded into a code
message matrix E = MQnm(a, b). The suggested coding scheme was given a basic error-correcting algorithm.

We demonstrated that this approach can correct up to 2m
2
−2

2m2−1
mistakes, implying that the chance of decoding

error is nearly nil for large values of m.
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Abstract

In the present paper we have obtained the one parameter groups and symmetry transformations
associated to the classical symmetries of the Klein-Gordon (KG) equation, we have also constructed
an optimal system of two dimensional sub-algebras of the KG equation which provides the preliminary
classification of group invariant solutions and yield the most general group invariant solution.
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1 Introduction
Symmetry method for differential equations, was originally developed by Lie [8] these methods without any
doubt are very useful and algorithmic for analyzing and solving linear and nonlinear differential equations.
Classification of differential equation as well as linearization of them are some other important applications of
symmetry transformation approach. Symmetry groups of a system of partial differential equation is a group
of transformations G on the space of independent and dependent variables which has the property that the
elements of G transform solution of the system to other solution of the system. The general prolongation
formula for computing the symmetry groups for infinitesimal generators of a group of transformations was
given by Olver [11, 12, 13] for obtaining the group invariance solution of linear and non-linear differential
equation. The group invariant solution of complex modified KdV equation has been studied by Hyzel [3]
and for the differential equation describing the radial jet having finite fluid velocity at orifice has been
studied by Naeem & Naz [9]. Pal et al. [14, 15] obtained the group invariant solution with the help of
infinitesimal parameter. Hereman et al. [5], obtained the exact travelling wave solutions of KG equation
with cubic nonlinearity by using direct algebraic method. Ye and Zhang [16], obtained exact travelling wave
solutions of KG equation with cubic nonlinearity by using the bifurcation method and qualitative theory of
dynamical systems. Dehghan and Ali [2], obtained numerical solutions of KG equation with quadratic and
cubic nonlinearity by using radial basis function and analyze the accuracy of their results with the analytical
solutions. Jang [6], obtained the travelling wave solutions of nonlinear KG equations. Gupta and Sharma
[4] obtained the exact travelling wave solutions for the KG equation with cubic nonlinearity by using First
Integral Method. Other researcher also applied the different approaches to obtain the invariant solution of
KG equation [7, 10].

In this paper we extend the application of general prolongation formula to find the most general solution
of the KG equation (

1/c2
)
utt = uxx + uyy −

(
m2c2/~2

)
u

which use to model the two dimensional motion of free particle with mass m (Bates[1]), where u is wave
function, c denotes the velocity of light and ~ is plank constant.

2 Solution of Klein-Gordon Equation
We find the group invariant solution by calculating the symmetries for two-dimensional KG equation for the
motion of free particle with mass m. The equation

(
1/c2

)
utt − uxx − uyy +

(
m2c2/~2

)
u = 0 (2.1)
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which is the second order differential equation with three independent variables and one dependent variable.
A vector field on X×U takes the form

v = ξ(x, y, t, u)∂x + η(x, y, t, u)∂y + τ(x, y, t, u)∂t + φ(x, y, t, u)∂u, (2.2)

where ξ, η, τ and φ are the smooth coefficient functions. Using General Prolongation formula (Olver[13],
equation (2.38), page 110) the second prolongation of v

pr(2)v = v + φx (∂/∂ux) + φy (∂/∂uy) + φt (∂/∂ut) + φxx (∂/∂uxx) + φxy (∂/∂uxy)

+ φxt (∂/∂uxt) + φyy (∂/∂uyy) + φyt (∂/∂uyt) + φtt (∂/∂utt) , (2.3)

and the coefficients present in (2.3) are calculated by using (Olver[13], equation (2.39), page 110), and by
the use of infinitesimal criterion of invariance (Olver[13], equation (2.26), page 104) the two-dimensional KG
equation takes the form(

φtt/c2
)
− φxx − φyy +

(
m2c2/~2

)
φ = Q

((
utt/c

2
)
− uxx − uyy +

(
m2c2/~2

)
u
)
, (2.4)

in which Q
(
x, y, t, u(2)

)
depend up-to second order derivatives of u. By substituting the values of φtt, φxx, φyy

and φ in equation (2.4) and equating the coefficients of the terms in the first and second order partial
derivatives of u, the determining equations for the symmetry group of the two-dimensional KG equation for
a free particle are found as follows

Table 2.1
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The requirement for equations (1) to (15) is that ξ, η and τ are independent of u, equations (16), (17) and
(18) give ξx = τt = ηy, equations (19), (20) and (21) give

(
ξt/c

2
)

= τx,
(
ηt/c

2
)

= τy and ηx = −ξy, equations
(34), (35) and (36) give φ = βu+α where α = α(x, y, t) and β = β(x, y, t) are functions. From the equation
(37), (38) and (39) we get βx = 0, βy = 0 and βt = 0, from (40) we find β = Q = c4

(
~2/m2c2

)
. The most

general infinitesimal symmetry of the two-dimensional KG equation in ideal fluid has coefficient function of
the form ξ = c5y+ (c6t+ c2) /c2, η = −c5 x+ (c7t+ c2) /c2, τ = c6x+ c7y+ c1c

2 and φ = c4
(
~2/m2c2

)
u+α

where c1, . . . , c7 are arbitrary constant and α is an arbitrary solution of the KG equation. The Lie algebras
of infinitesimal symmetries of two-dimensional KG equation for a free particle with mass m is spanned
by the seven vector fields v1 = c2∂t, v2 = c2∂x, v3 = c2∂y, v4 =

(
~2/m2c2

)
u∂u, v5 = y∂x − x∂y, v6 = c2

t∂x + x∂t, v7 = c2t∂x + x∂t, and the infinite-dimensional sub-algebra vα = α∂u where α is an arbitrary
solution of two-dimensional KG equation. The commutation relation between these vector fields are given
by the following

Table 2.2: Commutation-Relation

v1 v2 v3 v4 v5 v6 v7 vα
v1 0 0 0 0 0 c2v2 c2v3 c2vαt
v2 0 0 0 0 −v3 v1 0 c2vαx
v3 0 0 0 0 v2 0 v1 c2vαy

v4 0 0 0 0 0 0 0 −
(

~2

m2c2

)
vα

v5 0 v3 −v2 0 0 v7 −v6 vα1

v6 −c2v2 −v1 0 0 −v7 0 −c2v5 vα2

v7 −c2v3 0 −v1 0 v6 c2v5 0 vα3

vα −c2vαt −c2vαx −c2vαy
(

~2

m2c2

)
vα −vα1

−vα2
−vα3

0

where α1 = yαx − xαy, α2 = tc2αx + xαt, α3 = tc2αy + yαt.
The one-parameter groups Gi generated by the vi are given as follows
G1 :

(
x, y, t+ c2ε, u

)
, G2 :

(
x+ c2ε, y, t, u

)
, G3 :

(
x, y + c2ε, t, u

)
,

G4 :

(
x, y, t, e

(
~2ε
m2c2

)
u

)
, G5 : (x cos ε+ y sin ε, y cos ε− x sin ε, t, u),

G6 : (x cosh cε+ tc sinh cε, y, t cosh cε+ (x/c) sinh cε, u),
G7 : (x, y cosh cε+ tc sinh ε, t cosh cε+ (y/c) sinh c, ε),
Gα : (x, y, t, u+ εα) where each Gi is a symmetry group.
If we take u = f(x, y, t) be a solution of the KG equation then the functions
u(1) = f

(
x, y, t− c2ε

)
, u(2) = f

(
x− c2ε, y, t

)
, u(3) = f

(
x, y − c2ε, t

)
,

u(4) = e

(
~2ε
m2c2

)
f(x, y, t), u(5) = f(x cos ε− y sin ε, y cos ε+ x sin ε, t),

u(6) = f(x cosh cε− tc sinh cε, y, t cosh cε− (x/c) sinh cε),
u(7) = f(x, y cosh cε− tc sinh cε, t cosh cε− (y/c) sinh ε),
u(α) = f(x, y, t) + εα(x, y, t) where ε is any real number and α(x, y, t) is any other solution to two

dimensional KG equation for a free particle with mass m. At the end the most general solution that we can
obtain from a given solution u = f(x, y, t), by group transformations is in the form given below

u = e

(
~2ε4
m2c2

)
f
(
x cosh cε6 · cos ε5 − tc sinh cε6 − y sin ε5 − c2ε2,

y cosh cε7 · cos ε5 − tc sinh cε7 + x sin ε5 − c2ε3,

t cosh cε7 · cosh cε6 − (y/c) sinh cε7 − (x/c) sinh cε6 − c2ε1

)
+ α(x, y, t), (2.5)

where ε1, . . . , ε7 are real constant and α be an arbitrary solution to two-dimensional KG equation for free
particle with mass m.

3 Special Case
If we take ~ = c = 1 then equation (2.5) reduces to
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u = e(
ε4
m2 )f (x cosh ε6 · cos ε5 − t sinh ε6 − y sin ε5 − ε2,

y cosh ε7 · cos ε5 − t sinh ε7 + x sin ε5 − ε3,

t cosh ε7 · cosh ε6 − y sinh ε7 − x sinh ε6 − ε1)

+ α(x, y, t),

where ε1, . . . ε7 are real constant and α be an arbitrary solution to two-dimensional KG equation for free
particle with ~ = c = 1 and mass m.

If we take y = 0 and ~ = c = 1 then equation (2.5) reduces to

u = e(
ε4
m2 )f (x cosh ε6 − t sinh ε6 − ε2, t cosh cε6 − x sinh ε6 − ε1) + α(x, t),

where ε1, . . . ε7 are real constant and α be an arbitrary solution to one-dimensional KG equation for free
particle with ~ = c = 1 and mass m.

4 Conclusion
In our investigation the symmetry group G4 and Gα reflects the linearity of two-dimensional KG equation
for free particle with mass m. The group G1 is space invariance symmetry group. The group G2 and G3

are time invariance group. The group G5 represent rotational symmetry group. The group G6 and G7 are
well-known hyperbolic rotational symmetry group.
Acknowledgement. We are very much thankful to the Editor and Reviewer for their valuable suggestions
to bring the paper in its present form.
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Abstract

In this article, stretch esteemed Interval Valued Intuitionistic Trapezoidal Neutrosophic Fuzzy Graph
(IVITrNFG) of SPP, which is drew on trapezoidal numbers and IVITrNFG. Hear a genuine application is
given an illustrative model for IVITrNFG. Additionally Shortest way is determined for this model. This
present Dijkstra’s Algorithm briefest way was checked.
2010 Mathematics Subject Classification: 05C85
Keywords and Phrases: Interval-Valued Intuitionistic Fuzzy Number (IVIFN), Trapezoidal Fuzzy
Number (TrFN), Shortest Path (SP), Interval-Valued Intuitionistic Trapezoidal Neutrosophic Fuzzy
Graph(IVITrNFG).

1 Introduction
The creators Ahuja et al. [1] examined systematic execution of Dijkstra’s calculation. Arsham [2] introduced
another crucial arrangement calculation which permits affectability examination without utilizing any
counterfeit, slack or surplus factors. Anusuya et al. [3] apply positioning capacity for briefest way issue.
Broumi et al. [4] proposed for extend esteemed neutrosophic number. Broumi [5] presented neutrosophic
charts with most limited way issues. Broumi [6] proposed calculation gives Shortest way issue on single
esteemed neutrosophic charts. Broumi [7] proposed the Shortest way under Bipolar Neutrosophic setting.
Broumi [8] gave the Shortest way issue under span esteemed neutrosophic setting. Chiranjibe Jana et al. [9]
Presented Trapezoidal neutrosophic aggregation operators and its application in multiple attribute decision
making process. De et al. [10] Computation of Shortest Path in a fuzzy organization. De et al. [11] study
on ranking of trapezoidal intuitionistic fuzzy numbers. Enayattabar [12] introduced Dijkstra calculation
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g − tUg T
U
g , tUh + TU

h − tUh T
U
h )],

[(iLa I
L
a , i

L
b I

L
b , i

L
c I

L
c , i

L
d I

L
d ), (iLe I

L
e , i

L
f I

L
f , i

L
g I

L
g , i

L
hI

L
h )],

[(iUa I
U
a , i

U
b I

U
b , i

U
c I

U
c , i

U
d I

U
d ), (iUe I

U
e , i

U
f I

U
f , i

U
g I

U
g , i

U
h I

U
h )],

[(fL
a F

L
a , f

L
b F

L
b , f

L
c F

L
c , f

L
d F

L
d ), (fL

e F
L
e , f

L
f F

L
f , f

L
g F

L
g , f

L
h F

L
h )],

[(fU
a F

U
a , fU

b F
U
b , fU

c F
U
c , fU

d F
U
d ), (fU

e F
U
e , fU

f F
U
f , fU

g F
U
g , fU

h F
U
h )]
〉

We propose definition of score and accuracy functions for an Interval-Valued Trapezoidal
Neutrosophic Number.

Definition 2.2. Let

n̄1 =
〈
([(tLa , t

L
b , t

L
c , t

L
d ), (tLe , t

L
f , t

L
g , t

L
h )], [(tUa , t

U
b , t

U
c , t

U
d ), (tUe , t

U
f , t

U
g , t

U
h )]),

([(iLa , i
L
b , i

L
c , i

L
d ), (iLe , i

L
f , i

L
g , i

L
h )], [(iUa , i

U
b , i

U
c , i

U
d ), (iUe , i

U
f , i

U
g , i

U
h )]),

([(fL
a , f

L
b , f

L
c , f

L
d ), (fL

a , f
L
b , f

L
c , f

L
d )], [(fU

e , f
U
f , f

U
g , f

U
h ), (fU

e , f
U
f , f

U
g , f

U
h )])

〉

and be an Interval-Valued, Intuitionistic Trapezoidal Neutrosophic Number, then their score
functions are defined as

S(n̄) =
1

3




2 +
[(tUa + tUb + tUc + tUd + tLe + tLf + tLg + tLh )− (tLa + tLb + tLc + tLd + tUe + tUf + tUg + tUh )]

8

−
[(iUa + iUb + iUc + iUd + iLe + iLf + iLg + iLh )− (iLa + iLb + iLc + iLd + iUe + iUf + iUg + iUh )]

8

−
[(fUa + fUb + fUc + fUd + fLe + fLf + fLg + fLh )− (fLa + fLb + fLc + fLd + fUe + fUf + fUg + fUh )]

8



, S(n̄) ∈ [−1, 1]

where the higher value of S(n̄), larger the Interval-Valued Intuitionistic Trapezoidal Number
n̄.

3 Interval-Valued Intuitionistic Trapezoidal Neutrosophic Fuzzy Graph
In this research, we using proposed algorithm for finding shortest path.
Step 3.1 Let

d1 = 〈[(0, 0, 0, 0), (0, 0, 0, 0)], [(0, 0, 0, 0), (0, 0, 0, 0)], [(1, 1, 1, 1), (1, 1, 1, 1)],
[(1, 1, 1, 1), (1, 1, 1, 1)], [(1, 1, 1, 1), (1, 1, 1, 1)], [(1, 1, 1, 1), (1, 1, 1, 1)]〉

and the source node as

d1 = 〈[(0, 0, 0, 0), (0, 0, 0, 0)], [(0, 0, 0, 0), (0, 0, 0, 0)], [(1, 1, 1, 1), (1, 1, 1, 1)],
[(1, 1, 1, 1), (1, 1, 1, 1)], [(1, 1, 1, 1), (1, 1, 1, 1)], [(1, 1, 1, 1), (1, 1, 1, 1)]〉

Step 3.2 Find dj = minimum{di ⊕ dij}; j = 2, 3, . . . , n.

3

and the source node as
Step 3.2 Find dj = minimum{di ⊕ dij}; j = 2, 3, . . . , n.
Step 3.3 If the minimum value of i, ie., i = r then the lable node j as [dj , r]. If minimum arise related to
more than one values of i. Their position we choose minimum value of i.
Step 3.4 Let the destination node be [dn, l]. Here source node is dn. We conclude a score function and we
finds minimum value of Interval-Valued Trapezoidal Neutrosophic Number.
Step 3.5 We calculate shortest path problem between source and destination node. Review the label of
node 1. Let it be as [dn, A]. Now review the label of node A and so on. Replicate the same procedure until
node 1 is procured.
Step 3.6 The shortest path can be procured by combined all the nodes by the Step 3.5.

4 Data Analysis
To find shortest path on India famous seven tourist place using Interval-Valued Intuitionistic Trapezoidal
Neutrosophic Fuzzy Graph.

Figure 4.1: The Beaches of Goa Figure 4.2: Gate way of India

Figure 4.3: Mecca Masjid Figure 4.4: Holy City of Varanasi
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Figure 4.5: Taj mahal Figure 4.6: The Golden City (Jaisalmer)

Figure 4.7: Harmandir Sahib

Here we consider source node is The Beaches of Goa and destination node is Sri Harmandir Sahib. To
find Shortest Path on The Beaches of Goa to Sri Harmandir Sahib. Here distance between one tourist place

Figure 4.8: A Graph Of India Famous Seven Tourist Place

to another tourist place is calculated in kilometers. The numerical value of the distance is converted to
IVITrNFG with the help of through trapezoidal signed distance.

The given distance (kilometer) converted to neutrosophic number. We converted neutrosophic number
as (a1, a2, a3, a4) are membership function & (a∗1, a

∗
2, a
∗
3, a
∗
4) are non-membership function. These functions

converted to fuzzy trapezoidal numbers using trapezoidal signed distance
a1 + a2 + a3 + a4

4
. Finally
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converted Interval-Valued Intuitionistic Trapezoidal Neutrosophic Fuzzy Number.
Here, Apply the IVITrNFN in our algorithm to find shortest path to India famous seven tourist place.

Edges Interval-Valued, Intuitionistic Trapezoidal Fuzzy Neutrosophic Numbers

1-2 〈([(0.20, 0.29, 0.35, 0.56), (0.49, 0.59, 0.65, 0.87)]), ([(0.8, 0.71, 0.65, 0.44), (0.51,
0.41, 0.35, 0.13)]), ([(0.11, 0.13, 0.16, 0.2), (0.79, 0.83, 0.86, 0.92)]), ([(0.89, 0.87,

0.84, 0.8), (0.21, 0.17, 0.14, 0.08)]), ([(0.003, 0.005, 0.03, 0.08), (0.9615, 0.9699,

0.9705, 0.9801)]), ([(0.997, 0.995, 0.97, 0.92), (0.0385, 0.0301, 0.0295, 0.0199)])〉

1-3 〈([(0.91, 0.92, 0.94, 0.99), (0.02, 0.04, 0.06, 0.12)]), ([(0.09, 0.08, 0.06,
0.01), (0.98, 0.96, 0.94, 0.88)]), ([(0.52, 0.55, 0.6, 0.69), (0.35, 0.4, 0.42,

0.47)])([(0.48, 0.45, 0.4, 0.31), (0.65, 0.6, 0.58, 0.53)]), ([(0.09, 0.12, 0.15, 0.24),

(0.80, 0.83, 0.86, 0.91)]), ([(0.91, 0.88, 0.85, 0.76), (0.2, 0.17, 0.14, 0.09)])〉

2-4 〈([(0.82, 0.86, 0.89, 0.91), (0.09, 0.11, 0.13, 0.19)]), ([(0.18, 0.14, 0.11,
0.09), (0.91, 0.89, 0.87, 0.81)]), ([(0.17, 0.2, 0.23, 0.32), (0.72, 0.76, 0.79,

0.81)])([(0.83, 0.8, 0.77, 0.68), (0.28, 0.24, 0.21, 0.19)]), ([(0.14, 0.16, 0.18, 0.24),

(0.79, 0.81, 0.83, 0.85)]), ([(0.86, 0.84, 0.82, 0.76), (0.21, 0.19, 0.17, 0.15)])〉

2-5 〈([(0.92, 0.94, 0.96, 0.98), (0.02, 0.04, 0.06, 0.08)]), ([(0.08, 0.06, 0.04, 0.02),
(0.98, 0.96, 0.94, 0.92)]), ([(0.32, 0.39, 0.45, 0.64), (0.49, 0.52, 0.58, 0.61)])([(0.68,

0.61, 0.55, 0.36), (0.51, 0.48, 0.42, 0.39)]), ([(0.11, 0.059, 0.08, 0.16), (0.899,

0.919, 0.923, 0.951)]), ([(0.989, 0.941, 0.92, 0.84), (0.101, 0.081, 0.077, 0.049)])〉

2-6 〈([(0.84, 0.86, 0.89, 0.97), (0.07, 0.09, 0.11, 0.17)]), ([(0.16, 0.14, 0.11,
0.03), (0.93, 0.91, 0.89, 0.83)]), ([(0.1, 0.2, 0.3, 0.6), (0.4, 0.7, 0.8,

0.9)])([(0.9, 0.8, 0.7, 0.4), (0.6, 0.3, 0.2, 0.1)]), ([(0.21, 0.25, 0.27, 0.35),

(0.65, 0.71, 0.74, 0.82)]), ([(0.79, 0.75, 0.73, 0.65), (0.35, 0.29, 0.26, 0.18)])〉

2-4 〈([(0.94, 0.95, 0.96, 0.99), (0.02, 0.03, 0.04, 0.07)]), ([(0.06, 0.05, 0.04,
0.01), (0.98, 0.97, 0.96, 0.93)]), ([(0.23, 0.27, 0.35, 0.51), (0.52, 0.57, 0.66,

0.89)])([(0.77, 0.73, 0.65, 0.49), (0.48, 0.43, 0.34, 0.11)]), ([(0.17, 0.21, 0.26,

0.32), (0.59, 0.68, 0.79, 0.98)]), ([(0.83, 0.79, 0.74, 0.68), (0.41, 0.32, 0.21, 0.02)])〉

4-5 〈([(0.79, 0.85, 0.89, 0.91), (0.07, 0.09, 0.15, 0.25)]), ([(0.21, 0.15, 0.11,
0.09), (0.930.91, 0.85, 0.75)]), ([(0.25, 0.31, 0.37, 0.51), (0.47, 0.58, 0.64,

0.87)])([(0.75, 0.69, 0.63, 0.49), (0.53, 0.42, 0.36, 0.13)]), ([(0.09, 0.15, 0.26,

0.5), (0.59, 0.67, 0.75, 0.99)]), ([(0.91, 0.85, 0.74, 0.5), (0.41, 0.33, 0.25, 0.01)])〉

5-7
〈([(0.79, 0.86, 0.89, 0.98), (0.06, 0.09, 0.12, 0.21)]), ([(0.21, 0.14, 0.11, 0.02),
(0.94, 0.91, 0.88, 0.79)]), ([(0.4, 0.5, 0.6, 0.9), (0.2, 0.3, 0.4, 0.7)]), ([(0.6,

0.5, 0.4, 0.1), (0.8, 0.7, 0.6, 0.3)]), ([(0.065, 0.085, 0.127, 0.277), (0.79,

0.81, 0.86, 0.98)]), ([(0.935, 0.915, 0.873, 0.723), (0.21, 0.19, 0.14, 0.02)])〉

6-7

〈([(0.85, 0.87, 0.89, 0.95), (0.07, 0.09, 0.11, 0.17)]), ([(0.15, 0.13, 0.11,
0.05), (0.93, 0.91, 0.89, 0.83)]), ([(0.29, 0.37, 0.41, 0.57), (0.37, 0.48, 0.59,

0.92)])([(0.71, 0.63, 0.59, 0.43), (0.63, 0.52, 0.41, 0.08)]), ([(0.09, 0.17, 0.23,

0.43), (0.59, 0.68, 0.87, 0.94)]), ([(0.91, 0.83, 0.77, 0.57), (0.41, 0.32, 0.13, 0.06)])〉
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Iteration 4.1 Assume the initial value

2-4

〈([(0.94, 0.95, 0.96, 0.99), (0.02, 0.03, 0.04, 0.07)]), ([(0.06, 0.05, 0.04,
0.01), (0.98, 0.97, 0.96, 0.93)]), ([(0.23, 0.27, 0.35, 0.51), (0.52, 0.57, 0.66,

0.89)])([(0.77, 0.73, 0.65, 0.49), (0.48, 0.43, 0.34, 0.11)]), ([(0.17, 0.21, 0.26,

0.32), (0.59, 0.68, 0.79, 0.98)]), ([(0.83, 0.79, 0.74, 0.68), (0.41, 0.32, 0.21, 0.02)])〉

4-5

〈([(0.79, 0.85, 0.89, 0.91), (0.07, 0.09, 0.15, 0.25)]), ([(0.21, 0.15, 0.11,
0.09), (0.930.91, 0.85, 0.75)]), ([(0.25, 0.31, 0.37, 0.51), (0.47, 0.58, 0.64,

0.87)])([(0.75, 0.69, 0.63, 0.49), (0.53, 0.42, 0.36, 0.13)]), ([(0.09, 0.15, 0.26,

0.5), (0.59, 0.67, 0.75, 0.99)]), ([(0.91, 0.85, 0.74, 0.5), (0.41, 0.33, 0.25, 0.01)])〉

5-7

〈([(0.79, 0.86, 0.89, 0.98), (0.06, 0.09, 0.12, 0.21)]), ([(0.21, 0.14, 0.11, 0.02),
(0.94, 0.91, 0.88, 0.79)]), ([(0.4, 0.5, 0.6, 0.9), (0.2, 0.3, 0.4, 0.7)]), ([(0.6,

0.5, 0.4, 0.1), (0.8, 0.7, 0.6, 0.3)]), ([(0.065, 0.085, 0.127, 0.277), (0.79,

0.81, 0.86, 0.98)]), ([(0.935, 0.915, 0.873, 0.723), (0.21, 0.19, 0.14, 0.02)])〉

6-7

〈([(0.85, 0.87, 0.89, 0.95), (0.07, 0.09, 0.11, 0.17)]), ([(0.15, 0.13, 0.11,
0.05), (0.93, 0.91, 0.89, 0.83)]), ([(0.29, 0.37, 0.41, 0.57), (0.37, 0.48, 0.59,

0.92)])([(0.71, 0.63, 0.59, 0.43), (0.63, 0.52, 0.41, 0.08)]), ([(0.09, 0.17, 0.23,

0.43), (0.59, 0.68, 0.87, 0.94)]), ([(0.91, 0.83, 0.77, 0.57), (0.41, 0.32, 0.13, 0.06)])〉

Table 4.1: Interval-Valued Intuitionistic Trapezoidal Fuzzy Neutrosophic Edge Weight.

Iteration 4.1 Assume the initial value

d1 = 〈[(0, 0, 0, 0), (0, 0, 0, 0)], [(0, 0, 0, 0), (0, 0, 0, 0)], [(1, 1, 1, 1), (1, 1, 1, 1)],
[(1, 1, 1, 1), (1, 1, 1, 1)], [(1, 1, 1, 1), (1, 1, 1, 1)], [(1, 1, 1, 1), (1, 1, 1, 1)]〉

Here we assume d1 is the beaches of Goa.

Iteration 4.2 In this iteration was calculated through proposed algorithm from the tourist
place The Beaches of Goa to Gate Way of India. The labeled node is Gate Way of India and
minimum provided corresponding node is The Beaches of Goa.

Minimum Node Labeled Node Path Node

The Beaches of Goa Gate Way of India

〈([(0.20, 0.29, 0.35, 0.56), (0.49, 0.59, 0.65, 0.87)]),
([(0.8, 0.71, 0.65, 0.44), (0.51, 0.41, 0.35, 0.13)]), ([(0.11,

0.13, 0.16, 0.2), (0.79, 0.83, 0.86, 0.92)]), ([(0.89, 0.87,

0.84, 0.8), (0.21, 0.17, 0.14, 0.08)]), ([(0.003, 0.005,

0.03, 0.08), (0.9615, 0.9699, 0.9705, 0.9801)]), ([(0.997,

0.995, 0.97, 0.92), (0.0385, 0.0301, 0.0295, 0.0199)])〉

7

Here we assume d1 is the beaches of Goa.

Iteration 4.2 In this iteration was calculated through proposed algorithm from the tourist place The
Beaches of Goa to Gate Way of India. The labeled node is Gate Way of India and minimum provided
corresponding node is The Beaches of Goa.

2-4

〈([(0.94, 0.95, 0.96, 0.99), (0.02, 0.03, 0.04, 0.07)]), ([(0.06, 0.05, 0.04,
0.01), (0.98, 0.97, 0.96, 0.93)]), ([(0.23, 0.27, 0.35, 0.51), (0.52, 0.57, 0.66,

0.89)])([(0.77, 0.73, 0.65, 0.49), (0.48, 0.43, 0.34, 0.11)]), ([(0.17, 0.21, 0.26,

0.32), (0.59, 0.68, 0.79, 0.98)]), ([(0.83, 0.79, 0.74, 0.68), (0.41, 0.32, 0.21, 0.02)])〉

4-5

〈([(0.79, 0.85, 0.89, 0.91), (0.07, 0.09, 0.15, 0.25)]), ([(0.21, 0.15, 0.11,
0.09), (0.930.91, 0.85, 0.75)]), ([(0.25, 0.31, 0.37, 0.51), (0.47, 0.58, 0.64,

0.87)])([(0.75, 0.69, 0.63, 0.49), (0.53, 0.42, 0.36, 0.13)]), ([(0.09, 0.15, 0.26,

0.5), (0.59, 0.67, 0.75, 0.99)]), ([(0.91, 0.85, 0.74, 0.5), (0.41, 0.33, 0.25, 0.01)])〉

5-7

〈([(0.79, 0.86, 0.89, 0.98), (0.06, 0.09, 0.12, 0.21)]), ([(0.21, 0.14, 0.11, 0.02),
(0.94, 0.91, 0.88, 0.79)]), ([(0.4, 0.5, 0.6, 0.9), (0.2, 0.3, 0.4, 0.7)]), ([(0.6,

0.5, 0.4, 0.1), (0.8, 0.7, 0.6, 0.3)]), ([(0.065, 0.085, 0.127, 0.277), (0.79,

0.81, 0.86, 0.98)]), ([(0.935, 0.915, 0.873, 0.723), (0.21, 0.19, 0.14, 0.02)])〉

6-7

〈([(0.85, 0.87, 0.89, 0.95), (0.07, 0.09, 0.11, 0.17)]), ([(0.15, 0.13, 0.11,
0.05), (0.93, 0.91, 0.89, 0.83)]), ([(0.29, 0.37, 0.41, 0.57), (0.37, 0.48, 0.59,

0.92)])([(0.71, 0.63, 0.59, 0.43), (0.63, 0.52, 0.41, 0.08)]), ([(0.09, 0.17, 0.23,

0.43), (0.59, 0.68, 0.87, 0.94)]), ([(0.91, 0.83, 0.77, 0.57), (0.41, 0.32, 0.13, 0.06)])〉

Table 4.1: Interval-Valued Intuitionistic Trapezoidal Fuzzy Neutrosophic Edge Weight.

Iteration 4.1 Assume the initial value

d1 = 〈[(0, 0, 0, 0), (0, 0, 0, 0)], [(0, 0, 0, 0), (0, 0, 0, 0)], [(1, 1, 1, 1), (1, 1, 1, 1)],
[(1, 1, 1, 1), (1, 1, 1, 1)], [(1, 1, 1, 1), (1, 1, 1, 1)], [(1, 1, 1, 1), (1, 1, 1, 1)]〉

Here we assume d1 is the beaches of Goa.

Iteration 4.2 In this iteration was calculated through proposed algorithm from the tourist
place The Beaches of Goa to Gate Way of India. The labeled node is Gate Way of India and
minimum provided corresponding node is The Beaches of Goa.

Minimum Node Labeled Node Path Node

The Beaches of Goa Gate Way of India

〈([(0.20, 0.29, 0.35, 0.56), (0.49, 0.59, 0.65, 0.87)]),
([(0.8, 0.71, 0.65, 0.44), (0.51, 0.41, 0.35, 0.13)]), ([(0.11,

0.13, 0.16, 0.2), (0.79, 0.83, 0.86, 0.92)]), ([(0.89, 0.87,

0.84, 0.8), (0.21, 0.17, 0.14, 0.08)]), ([(0.003, 0.005,

0.03, 0.08), (0.9615, 0.9699, 0.9705, 0.9801)]), ([(0.997,

0.995, 0.97, 0.92), (0.0385, 0.0301, 0.0295, 0.0199)])〉

7Iteration 4.3 The node Mecca Masjid was forerunner node of The Beaches of Goa. Here the labeled node
is Mecca Masjid and the minimum provided corresponding node is The Beaches of Goa.

Iteration 4.3 The node Mecca Masjid was forerunner node of The Beaches of Goa. Here
the labeled node is Mecca Masjid and the minimum provided corresponding node is The
Beaches of Goa.

Minimum Node Labeled Node Path Node

The Beaches of Goa Mecca Masjid

〈([(0.91, 0.92, 0.94, 0.99), (0.02, 0.04, 0.06, 0.12)]), ([(0.09,
0.08, 0.06, 0.01), (0.98, 0.96, 0.94, 0.88)]), ([(0.52, 0.55, 0.6,

0.69), (0.35, 0.4, 0.42, 0.47)])([(0.48, 0.45, 0.4, 0.31), (0.65,

0.6, 0.58, 0.53)]), ([(0.09, 0.12, 0.15, 0.24), (0.80, 0.83, 0.86,

0.91)]), ([(0.91, 0.88, 0.85, 0.76), (0.2, 0.17, 0.14, 0.09)])〉

Iteration 4.4 The node Holy City of Varanasi has two forerunner node , they are Mecca
Masjid and Gate Way of India. IVITrNSP is calculated to Holy City of Varanasi from Mecca
Masjid and Gate Way of India. Here, the labeled node is Holy City of Varanasi and the
minimum provided corresponding node is Gate Way of India.

Minimum Node Labeled Node Path Node

Gate Way of India Holy City of Varanasi

〈([(0.856, 0.901, 0.928, 0.96), (0.535, 0.635, 0.695, 0.895)]),
([(0.836, 0.751, 0.688, 0.490), (0.956, 0.935, 0915, 0.835)]),

([(0.0187, 0.026, 0.0368, 0.064), (0.5688, 0.6308, 0.6794,

0.7452)]), ([(0.7387, 0.696, 0.6468, 0.544), (0.0588,

0.0408, 0.0294, 0.0152)]), ([(0.00042, 0.0008, 0.0054,

0.0192), (0.7596, 0.7856, 0.8055, 0.833)]), ([(0.8574,

0.8358, 0.7954, 0.6992), (0.008, 0.0057, 0.005, 0.0029)])〉

Iteration 4.5 The node Taj Mahal has two forerunner node, they are Gate Way of India
and Holy City of Varanasi. IVITrNSP is calculated to Taj Mahal from Gate Way of India
and Holy City of Varanasi. Here, the labeled node is Taj Mahal and the minimum provided
corresponding node is Gate Way of India.

Minimum Node Labeled Node Path Node
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Iteration 4.6 The node The Golden City was forerunner node of Gate Way of India. Here the labeled
node is The Golden City and the minimum provided corresponding node is Gate Way of India.

the labeled node is The Golden City and the minimum provided corresponding node is Gate
Way of India.

Minimum Node Labeled Node Path Node

Gate Way of India The Golden City

〈([(0.872, 0.9, 0.9285, 0.9868), (0.5257, 0.6269, 0.6885,
0.8921)]), ([(0.832, 0.75, 0.6885, 0.4568), (0.9657, 0.947,

0.928, 0.852)]), ([(0.011, 0.026, 0.048, 0.12), (0.316,

0.581, 0.688, 0.828)]), ([(0.801, 0.696, 0.588, 0.32),

(0.126, 0.051, 0.028, 0.008)]), ([(0.00063, 0.00125,

0.0081, 0.028), (0.6249, 0.6886, 0.718, 0.8036)]), ([(0.787,

0.746, 0.708, 0.598), (0.0135, 0.0087, 0.0077, 0.0036)])〉

Iteration 4.7 The node Sri Harmandir Sahib has two forerunner node , they are Taj Mahal
and The Golden City. IVITrNSP is calculated to Sri Harmandir Sahib from Taj Mahal
and The Golden City. The labeled node is Sri Harmandir Sahib and the minimum provided
corresponding node is Taj Mahal.

Minimum Node Labeled Node Path Node

Taj Mahal Sri Harmandir Sahib

〈([(0.9874, 0.9944, 0.9967, 0.9998), (0.53, 0.636, 0.7096,
0.9052)]), ([(0.8546, 0.7678, 0.6974, 0.461), (0.9994,

0.9982, 0.9952, 0.9853)]), ([(0.014, 0.0255, 0.0432,

0.1152), (0.0774, 0.1296, 0.1995, 0.3928)]), ([(0.36312,

0.2655, 0.1848, 0.0288), (0.0856, 0.05712, 0.03528,

0.00936)]), ([(0.000002145, 0.000024, 0.0003, 0.0035),

(0.6828, 0.72195, 0.77, 0.9134)]), ([(0.9219, 0.856,

0.779, 0.559), (0.0008, 0.00045, 0.000322, 0.0000194)])〉

Since Sri Harmandir Sahib is the destination node.

We calculate SP to destination node to source node. Since
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Sri Harmandir Sahib Taj Mahal

Taj Mahal Gate Way of India

Gate Way of India The Beaches of Goa

Therefore the seven wonders Interval-Valued Nether Trapezoidal Neutrosophic Fuzzy Graph
Shortest Path is
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We calculate SP to destination node to source node. Since
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Therefore the seven wonders Interval-Valued Nether Trapezoidal Neutrosophic Fuzzy Graph Shortest Path
is

Figure 4.9: SP from The Beaches of Goa to Sri Harmandir Sahib

5 Shortest Path On Dijkstra’s Algorithm
In the above real life application, we clarify another method of SPP using Dijkstras algorithm. In this SPP,
we use direct method of Dijkstras algorithm and we assume edge weight is India famous seven tourist place
km.

Figure 5.1: SP for Dijkstra’s Algorithm

Here, we verify India famous seven tourist place shortest path through Dijkstras Algorithm. We have
the paths are

1→ 2→ 5→ 7
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Here these two paths Interval-Valued Intuitionistic Trapezoidal Neutrosophic Fuzzy Graphs and Dijkstra’s
Algorithm are same. The shortest path is

1→ 2→ 5→ 7

6 Conclusion
In this article, discovering SP on India famous seven tourist place using Interval-Valued Intuitionistic
Trapezoidal Neutrosophic Fuzzy Graph. A genuine application is given to act as an IVITrNFG. Finally
checked most brief way SP on India famous seven tourist place with Dijkstra’s algorithm.
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Abstract

In this paper, we have presented an analytical model of two electron systems consisting of a many
particle correlated wave function with some variational parameters α, λ and µ and used it to quantify
the electron-electron correlation described by the wave function containing explicitly r12 (inter atomic
distance between two electrons) dependent term. The single particle wave functions and the charge
densities have been extracted from the said correlated wave function both for the uncorrelated and
correlated systems in coordinate space and its momentum analogs have been obtained by taking the
Fourier transform of the coordinate analogs. We have computed and presented the results of the numerical
values of the theoretic information entropies of the Shannon entropy, Fisher information entropy, Shannon
power and the FisherShannon product. The numerical values are consistently found to satisfy the
Beckner, Bialynicki-Birula and Mycielski (BBM ) inequality relation; Stam-Cramer-Rao inequalities or
Fisher based uncertainty relation and Fisher-Shannon product relation for the uncorrelated and correlated
systems in both the coordinate and momentum spaces.
2020 Mathematical Sciences Classification: 62B10, 94A15, 94A17.
Keywords and Phrases: Coordinate and momentum space; uncorrelated and correlated system;
Shannon information entropy; Fisher information entropy; uncertainty relations; Fisher-Shannon
product.

1 Introduction
The electron correlation is a major problem in physics of atoms, molecules, and clusters as a consequence
of the electronelectron repulsion. The correlation effect has a major influence on measureable quantities in
atomic systems. The correlation energy (Ecorr) [9] of a many-electron system is defined by the difference
between the exact total energy (the exact non-relativistic energy) and Hartree-Fock energy, as well as by
some statistical correlation coefficients [15] which assess radial and angular correlation in both the coordinate
and momentum density distributions. The correlation energy had been used as a guide [16] for the amount
of correlation in a given system. Recently, some information-theoretic measures of the electron correlation in
atomic systems have been proposed: the so-called correlation entropy [30] which is the information entropy
of the one-particle density matrix, and the sum of the Shannon information entropies of the electron density
in coordinate and momentum spaces [20]. The entropic uncertainty relation has many applications both
in physics and chemistry [27, 28] and because of their many applications in different areas of physics and
chemistry, there have been a growing interest by many researchers in studying Shannon entropy and Fisher
information in recent years. The two most important measures of the information theories are the Shannon
entropy(S ) [25] and Fisher information entropy(I ) [10]. These two information entropies carry out a vital
role in different areas of physics and chemistry. The entropic uncertainty relations in quantum information
theory have been proved to be an alternative to the Heisenberg uncertainty relation in quantum mechanics
[14, 17]. On one hand, the Shannon entropic uncertainty relation in coordinate and momentum spaces satisfy
the Beckner, Bialynicki-Birula and Mycielski (BBM ) inequality relation as [4, 6],

ST = (Sρ + Sγ) > D(1 + lnπ), (1.1)

where D represents the spatial dimension, Sρ is the Shannon entropy in the coordinate space, Sγ is the
corresponding Shannon entropy in the momentum space and ST is the Shannon entropy sum. The entropies
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Sρ and Sγ are defined as [4,6,21,22],

Sρ = −
∫
ρ(~r)ln[ρ(~r)]d3r, (1.2)

Sγ = −
∫
γ(~p)ln[γ(~p)]d3p, (1.3)

where d3r = r2drdΩ , d3p = p2dpdΩ and dΩ = sin θdθdϕ is the solid angle with ψ(~r1, ~r2, ..., ~rN ) being the
normalized wave function in the spatial coordinate, ρ(~r) =

∫
|ψ(~r, ~r2, ..., ~rN )|2d3r2...

d3rN is the single particle charge density in the spatial coordinate and γ(~p) =
∫
|φ(~p, ~p2, ..., ~pN |2

d3p2...d
3pN is the single particle charge density in momentum space. The Shannon information entropy is

usually regarded as the measure of the spatial spread of the wave function for different states [12]. One of the
consequences of the BBM inequality is that represents the lower bound values of the Shannon entropy sum
[4,6] such that if the coordinate entropy increases, then the momentum entropy will decrease in such a way
that their sum bounds above (BBM ) inequality. On the other hand, Fisher information is a local measure
since it is sensitive to local rearrangement of the density. It has been reported that the higher the Fisher
information, the more localized is the charge density [2,18], and conversely, the smaller the uncertainty the
higher the accuracy in predicting the localization of the particles [2,18]. The Fisher information is defined
as the gradient functional of the charge density of the system and is given in the coordinate and momentum
spaces as [1,19]

Iρ =

∫
1

ρ(~r)
[~∇ρ(~r)]2d3r, (1.4)

Iγ =

∫
1

γ(~p)
[~∇γ(~p)]2d3p. (1.5)

The disorder aspect of Fisher information entropy has been studied in some length by Frieden [11].
The uncertainty properties are clearly delineated by the Stam inequalities [26]. The product IρIγ has been
conjectured to exhibit a nontrivial lower bound [7] such that for three-dimensional systems it reads as:

IρIγ > 36. (1.6)

Unlike, the Shannon entropy that satisfy the BBM inequality, the Fisher information fulfills the Stam
inequalities [23], Iρ 6 4 < p2 > , Iγ 6 4 < r2 > and the Cramer-Rao inequalities [8] Iρ > 9

<r2> , Iγ > 9
<p2> .

Generally, for an arbitrary angular momentum quantum number ‘l’ of any central potential model, the two
products of the Fisher information must satisfied the relation [24],

IρIγ > 4 < r2 >< p2 > [2− 2l + 1

l(l + 1)
|m|]2, (1.7)

where m = 0,±1,±2 . . . is the magnetic quantum number. With the help of the definitions of equations
(1.1) to (1.5), we can define the Shannon power (J ) in coordinate and momentum space as

Jρ =
1

2πe
e

2Sρ
D , (1.8)

Jγ =
1

2πe
e

2Sγ
D , (1.9)

and the Fisher-Shannon product(P) in coordinate and momentum space are defined as

Pρ =
IρJρ
D

, (1.10)

and

Pγ =
IγJγ
D

, (1.11)

which must satisfy the following relation
Pργ = PρPγ > 1, (1.12)

where D is the spatial dimensions [29]. It is necessary to mention that throughout our all calculations, we
shall use D=3 and m=~=e=1. In this paper, we are going to study an analytical model of two electron
system consisting of ‘Hartree and Ingman(1933)’ [13] type correlated wave function with some variational
parameters α, λ and µ. The aim of our present work is to use the derived analytical model to quantify
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the correlation in two electron systems described by wave function containing explicitly r12 (inter atomic
distance between two electrons) dependent term and thereafter present the results of our numerical analysis
for the theoretic information entropies such as the Shannon entropy, Fisher information entropy and the
Fisher-Shannon product. To begin with, we shall take an account of the effect of correlation on two electron
systems using the ‘Hartree and Ingman (1933)’ [13] type trial wave function which can be written as

ψ(~r1, ~r2, r12) = ce−α(r1+r2)χ(r12), (1.13)

where, r12 = (~r1 − ~r2), ‘c’ is the normalization constant and the correlated function χ(r12) is written as

χ(r12) = (1− λe−µr12). (1.14)

A few years ago, attempts were made by Bhattacharyya et al [5] to find out the ground-state energy of the
two-electron system working with the ‘Hartree and Ingman(1933)’[13] type trial wave function, ψ(~r1, ~r2, r12)
= e−α(r1+r2) (1 - λe−µr12) with the variation parameters α, λ and µ. After minimizing the Hamiltonian
with respect to the variations in the parameters of ψ(~r1, ~r2, r12), they obtained the values, α = 1.8395,
λ = 0.586 and µ = 0.379. It is necessary to mention that we shall use these standard values for our
computational purposes. It is to note that when λ = 1 and r12 = 0, the wave function takes the form as
ψ(~r1, ~r2, r12) = 0 and the system becomes explicitly r12 dependent which is then referred to as the correlated
system. Physically, this implies that two electrons in the atom cannot occupy the same position. And, when
λ = 1 and r12 = ∞, the wave function leads to ψ(~r1, ~r2, r12) = c e−α(r1+r2). Mechanistically, this implies
when the inter-electronic separation is very large, the system becomes uncorrelated. The subscripts marked
with ‘uc’ and ‘c’ has been used to indicate the ‘uncorrelated’ and ‘correlated’ systems respectively in all the
sections of this paper. We shall use our model to compute the uncorrelated and correlated Shannon, Fisher
information entropies and the Fisher-Shannon product both in the coordinate and momentum spaces for the
uncorrelated and correlated systems. In applicative context it will, therefore, be quite interesting to examine
how Shannon (S ) and Fisher (I ) information entropies along with the Fisher-Shannon product respond to
important physical effects like the electron-electron correlation which plays an important role in the physics
of many electron systems. To the best of our knowledge, the Shannon entropy, Shannon information and
Fisher-Shannon product of the ‘Hartree and Ingman (1933)’ [13] type trial wave function have not been
reported before in the literature.

Section 2 has been focused on obtaining the expressions for single particle wave functions [ψ(~r), φ(~p)]
and single particle charge densities [ρ(~r),γ(~p)] both in coordinate and momentum space for the uncorrelated
and correlated systems.

In Section 3, we have used the expressions for single particle charge densities in both coordinate and
momentum space to calculate uncorrelated [Sρuc ,Sγuc ] and correlated [Sρc ,Sγc ] Shannon entropies. Similarly
we have calculated uncorrelated [Iρuc ,Iγuc ] and correlated [Iρc ,Iγc ] Fisher entropies. Consequently, the Fisher-
Shannon products both in coordinate and momentum space for the uncorrelated and correlated systems have
also been computed. We have also shown that the sum of correlated Shannon entropies is greater than that
of the sum of the uncorrelated Shannon entropies in coordinate and momentum space i.e. (Sρc + Sγc)
>(Sρuc + Sγuc). Each of the sums also satisfies the BBM inequality i.e. (Sρ + Sγ)> 3(1+lnπ). In case of
Fisher information entropies, it has been observed that the product of correlated Fisher information entropies
in coordinate and momentum space IρcIγc is greater than that of the product of the uncorrelated Fisher
entropies in coordinate and momentum space IρucIγuc . Both the products IρucIγuc and IρcIγc also satisfy
the Fisher based uncertainty relation Iρ Iγ > 36. The inequality relation for the Fisher-Shannon products
for the uncorrelated and correlated systems is Pργ = Pρ Pγ > 1 and the corresponding numerical results
along with the verification of the relation are presented in the Table 3.5.

Finally, Section 4 has been devoted for summarizing the present work with relevant inferences.

2 Extraction of single particle wave function and single particle charge density from the
correlated wave function

In this Section, we shall extract the expressions for the single particle wave function from the expression
of the many particle correlated wave function expressed in equation (1.13) and equation (1.14) involving
some adjustable parameters in coordinate and momentum spaces for both the correlated and uncorrelated
systems and hence the single particle charge density. In this purpose, the many particles correlated trial
wave function i.e. the ‘Hartree and Ingman (1933)’ [13] type wave function can be written as follows:

ψ(~r1, ~r2, r12) = ce−α(r1+r2)(1− λe−µr12). (2.1)
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Now integrating the wave function of equation (2.1) over d~r2 we have,∫
ψ(~r1, ~r2, r12)d~r2 = ce−αr1

∫
e−αr2d~r2 − cλe−αr1

∫
e−αr2e−µr12d~r2.

The above integral can be written as∫
ψ(~r1, ~r2, r12)d~r2 = ce−αr1I1 − cλe−αr1I2 (2.2)

where

I1 =

∫
e−αr2d~r2 (2.3)

and

I2 =

∫
e−αr2e−µr12d~r2. (2.4)

Here ‘c’ is the normalization constant.
Finally, the complete coordinate space wave function ψ(~r) can be written as follows

ψ(~r) = ψ1(~r) + ψ2(~r)

= ce−αr1I1 − cλe−αr1I2

=
8e−rαcπ

α3
+ [

4πcλe−rα[ 8(e−rα−e−rµ)αµ
(−α2+µ2)3 − 2(e−rµ)rα

(−α2+µ2)2 −
2(e−rα)rµ
(−α2+µ2)2 ]

r
], (2.5)

where

ψ1(~r) =
8e−rαcπ

α3
(2.6)

and

ψ2(~r) = [
4πcλe−rα[ 8(e−rα−e−rµ)αµ

(−α2+µ2)3
− 2(e−rµ)rα

(−α2+µ2)2
− 2(e−rα)rµ

(−α2+µ2)2
]

r
]. (2.7)

We have used the standard values of the variational parameters (λ, α and µ) throughout our all
calculations as λ = 0.586, α = 1.8395 and µ = 0.379.

The uncorrelated and correlated wave functions in coordinate-space are represented as

ψuc(~r) = ψ1(~r) =
8e−rαcπ

α3
, (2.8)

with normalization constant c = 0.3486
and

ψc(~r) = ψ(~r) =
8e−rαcπ

α3
+ [

4πcλe−rα[ 8(e−rα−e−rµ)αµ
(−α2+µ2)3 − 2(e−rµ)rα

(−α2+µ2)2 −
2(e−rα)rµ
(−α2+µ2)2 ]

r
], (2.9)

with normalization constant c = 0.5031.
To study the properties of Shannon information entropy (S ) and Fisher information entropy (I ) in the

momentum space, the Fourier transform of the coordinate space wave function is taken. For analytically
calculating the required transformations the following standard integrals [3] have been used,∫

e−γξei~µ·
~ξ =

8πγ

(γ2 + µ2)2
, (2.10)

∫
1

ξ
e−γξei~µ·

~ξ =
4π

(γ2 + µ2)2
. (2.11)

Taking recourse of the Fourier transform of the coordinate space wave function ψ(~r), the momentum
space wave function φ(~p) can be written as φ(~p) = φ1(~p) + φ2(~p).

The complete momentum space wave function φ(~p) can be written as follows:

φ(~p) = φ1(~p) + φ2(~p)

=
64π2c̃

(2π)
3
2α2(α2 + p2)2

+
128π2c̃λαµ

(2π)
3
2 (−α2 + µ2)3

[
1

(4α2 + p2)
− 1

((α+ µ)2 + p2)
]− 64π2c̃λα(α+ µ)

(2π)
3
2 (−α2 + µ2)2((α+ µ)2 + p2)

2
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− 128π2c̃λαµ

(2π)
3
2 (−α2 + µ2)2(4α2 + p2)

2 (2.12)

The expressions for the uncorrelated and correlated wave function in momentum space are given as
follows:

φuc(~p) = φ1(~p) =
64π2c̃

(2π)
3
2α2(α2 + p2)2

, (2.13)

with the normalization constant c̃ = 0.3486
and

φc(~p) = φ(~p) =
64π2c̃

(2π)
3
2α2(α2 + p2)2

+
128π2c̃λαµ

(2π)
3
2 (−α2 + µ2)3

[
1

(4α2 + p2)
− 1

((α+ µ)2 + p2)
]

− 64π2c̃λα(α+ µ)

(2π)
3
2 (−α2 + µ2)2((α+ µ)2 + p2)

2 −
128π2c̃λαµ

(2π)
3
2 (−α2 + µ2)2(4α2 + p2)

2 , (2.14)

with the normalization constant c̃ = 0.5031.
Now we shall find the expressions for the single particle charge densities in coordinate and momentum

spaces for both the correlated and uncorrelated systems. The uncorrelated and correlated single-particle
charge densities in coordinate space can simply be expressed as follows:

ρuc = |ψuc(~r)|2, (2.15)

and
ρc = |ψc(~r)|2. (2.16)

Similarly the uncorrelated and correlated single particle charge densities in momentum space are written
as follows:

γuc = |φuc(~p)|2, (2.17)

and
γc = |φc(~p)|2. (2.18)

3 Computation of Shannon entropy, Fisher information entropy and the Fisher-Shannon
product

In this section we present the results for the Shannon information entropy (S ), Fisher information
entropy (I ) and Fisher-Shannon product both in coordinate and momentum space for uncorrelated and
correlated systems. The expressions of uncorrelated Shannon information entropies in coordinate space
[Sρuc ] and momentum space [Sγuc ] are computed using the expressions from the equation (1.2) and equation
(1.3) respectively. Similarly the uncorrelated Fisher information entropies in coordinate space [Iρuc ] and
momentum space [Iγuc ] are computed using the expressions from the equation (1.4) and equation (1.5)
respectively. Now for computing the expressions for correlated Shannon information entropies in coordinate
space [Sρc ] and momentum space [Sγc ] the corresponding correlated wave functions have been used in the
expressions of equation (1.2) and equation (1.3) respectively. Similarly we have also done for the correlated
Fisher information entropies in coordinate space [Iρc ] and momentum space [Iγc ] respectively using the
equation (1.4) and equation (1.5).

Moreover, the expressions for uncorrelated Fisher-Shannon product in coordinate space [Pρuc ] and
momentum space [Pγuc ] and correlated Fisher-Shannon product in coordinate space [Pρc ] and momentum
space [Pγc ] are computed from the equation (1.10) and equation (1.11) respectively with the help of the
corresponding equation (1.8) and equation (1.9) for the Shannon power in coordinate space (Jρ) and
momentum space (Jγ) for the uncorrelated and correlated systems.

The calculated values for the uncorrelated and correlated Shannon information entropies in coordinate
and momentum space at different r and p values are presented in Table 3.1 respectively as follows:
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Table 3.1: Shannon information entropies in coordinate and momentum space for uncorrelated and correlated
systems

Sl.
No.

r varies
from 0 to
(in a.u.) Coordinate space

p varies
from 0 to
(in a.u.) Momentum space (Sρuc + Sγuc) (Sρc + Sγc)

Sρuc Sρc Sγuc Sγc

1 5 2.316 2.442 5 4.134 4.024 6.450 6.466
2 10 2.316 2.442 10 4.243 4.123 6.559 6.565
3 100 2.316 2.442 100 4.250 4.130 6.566 6.572
4 1000 2.316 2.442 1000 4.250 4.130 6.566 6.572
5 5000 2.316 2.442 5000 4.250 4.130 6.566 6.572
6 10000 2.316 2.442 10000 4.250 4.130 6.566 6.572
7 100000 2.316 2.442 100000 4.250 4.130 6.566 6.572
8 1000000 2.316 2.442 1000000 4.250 4.130 6.566 6.572
9 5000000 2.316 2.442 5000000 4.250 4.130 6.566 6.572
10 Infinity 2.316 2.442 Infinity 4.250 4.130 6.566 6.572

From Table 3.1, it is observed that correlation augments the Shannon entropies in coordinate space as
Sρc > Sρuc and diminishes it in momentum space as Sγc < Sγuc. It is also evident that sum of correlated
Shannon entropies i.e. (Sρc + Sγc) is greater than the sum of uncorrelated Shannon entropies i.e. (Sρuc +
Sγuc). Thus we have verified the uncertainty relation,(Sρc + Sγc) > (Sρuc + Sγuc).

The calculated values for the uncorrelated and correlated Fisher information entropies for the coordinate
and momentum space at different r and p values are presented in Table 3.2 respectively as follows:

Table 3.2: Fisher information entropies in coordinate and momentum space for uncorrelated and correlated systems

Sl.
No.

r varies
from 0 to
(in a.u.) Coordinate space

p varies
from 0 to
(in a.u.) Momentum space Iρuc Iγuc Iρc Iγc

Iρuc Iρc Iγuc Iγc

1 5 13.535 12.588 5 3.539 3.862 47.901 48.615
2 10 13.535 12.588 10 3.546 3.868 47.995 48.690
3 100 13.535 12.588 100 3.546 3.822 47.995 48.111
4 1000 13.535 12.588 1000 3.546 3.868 47.995 48.690
5 5000 13.535 12.588 5000 3.546 3.868 47.995 48.690
6 10000 13.535 12.588 10000 3.546 3.868 47.995 48.690
7 100000 13.535 12.588 100000 3.546 3.867 47.995 48.678
8 1000000 13.535 12.588 1000000 3.546 3.861 47.995 48.602
9 5000000 13.535 12.588 5000000 3.546 3.831 47.995 48.225
10 Infinity 13.535 12.588 Infinity 3.546 3.869 47.995 48.703

From Table 3.2 it is observed that correlation diminishes the Fisher entropies in coordinate space and
augments it in momentum space. We have also verified from Table 3.2 that the product of correlated
[IρcIγc ] and the product of uncorrelated [IρucIγuc ] Fisher entropies satisfy the inequality condition Iρc Iγc
> IρucIγuc . It is also verified in general that the products of Fisher entropies (IρcIγc and IρucIγuc) satisfy
the Fisher-based uncertainty relation
Iρ Iγ > 36.
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To calculate the values of the uncorrelated and correlated Shannon power in coordinate space (Jρuc ,Jρc)
and momentum space (Jγuc ,Jγc) following equation (1.8) and equation (1.9), we have used the values for the
Shannon information entropies of the Table 3.1 for different r and p values and presented them in Table 3.3
as follows:

Table 3.3: Shannon information entropies, Shannon power in coordinate and momentum space for uncorrelated and
correlated systems

Sl.
No.

r and p
varies from

0 to
(in a.u.) Shannon information entropies Shannon Power

Coordinate space Momentum space Coordinate space Momentum space
Sρuc Sρc Sγuc Sγc Jρuc Jρc Jγuc Jγc

1 5 2.316 2.442 4.134 4.024 0.745 0.810 2.504 2.327
2 10 2.316 2.442 4.243 4.123 0.745 0.810 2.693 2.486
3 100 2.316 2.442 4.250 4.130 0.745 0.810 2.705 2.498
4 1000 2.316 2.442 4.250 4.130 0.745 0.810 2.705 2.498
5 5000 2.316 2.442 4.250 4.130 0.745 0.810 2.705 2.498
6 10000 2.316 2.442 4.250 4.130 0.745 0.810 2.705 2.498
7 100000 2.316 2.442 4.250 4.130 0.745 0.810 2.705 2.498
8 1000000 2.316 2.442 4.250 4.130 0.745 0.810 2.705 2.498
9 5000000 2.316 2.442 4.250 4.130 0.745 0.810 2.705 2.498
10 Infinity 2.316 2.442 4.250 4.130 0.745 0.810 2.705 2.498

Moreover, to calculate the values for the uncorrelated and correlated Fisher-Shannon product in
coordinate space (Pρuc ,Pρc) and momentum space (Pγuc ,Pγc) at different r and p values following equation
(1.10) and equation (1.11), we have used the values for the Fisher information entropies and Shannon power
from Table 3.2 and Table 3.3 respectively and presented them in Table 3.4 as follows:

Table 3.4: Fisher information entropies, Shannon power and Fisher-Shannon product in coordinate and momentum
space for uncorrelated and correlated systems

Sl.
No.

r and p
varies from

0 to
(in a.u.) Fisher information entropies Shannon power Fisher-Shannon product

Coordinate
space

Momentum
space

Coordinate
space

Momentum
space

Coordinate
space

Momentum
space

Iρuc Iρc Iγuc Iγc Jρuc Jρc Jγuc Jγc Pρuc Pρc Pγuc Pγc

1 5 13.535 12.588 3.539 3.862 0.745 0.810 2.504 2.327 3.361 3.399 2.954 4.283
2 10 13.535 12.588 3.546 3.868 0.745 0.810 2.693 2.486 3.361 3.399 3.183 3.205
3 100 13.535 12.588 3.546 3.822 0.745 0.810 2.705 2.498 3.361 3.399 3.197 3.446
4 1000 13.535 12.588 3.546 3.868 0.745 0.810 2.705 2.498 3.361 3.399 3.197 3.488
5 5000 13.535 12.588 3.546 3.868 0.745 0.810 2.705 2.498 3.361 3.399 3.197 3.488
6 10000 13.535 12.588 3.546 3.868 0.745 0.810 2.705 2.498 3.361 3.399 3.197 3.488
7 100000 13.535 12.588 3.546 3.867 0.745 0.810 2.705 2.498 3.361 3.399 3.197 3.487
8 1000000 13.535 12.588 3.546 3.861 0.745 0.810 2.705 2.498 3.361 3.399 3.197 3.481
9 5000000 13.535 12.588 3.546 3.831 0.745 0.810 2.705 2.498 3.361 3.399 3.197 3.454
10 Infinity 13.535 12.588 3.546 3.869 0.745 0.810 2.705 2.498 3.361 3.399 3.197 3.489

Let us now verify the values obtained in the Table 3.4 for the Fisher-Shannon product, as per the
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requirement of the equation (1.12) the Fisher-Shannon product must satisfy the inequality relation Pργ =
Pρ Pγ > 1. Following is the Table of verification for the Fisher-Shannon product:

Table 3.5: Verification Table for Fisher-Shannon product in coordinate and momentum space for uncorrelated and
correlated systems

Sl.
No. Fisher-Shannon product

Uncorrelated
system

Correlated
system

The inequality relation to
verify Pρ Pγ > 1

Coordinate space Momentum space

Pρuc Pρc Pγuc Pγuc Pρuc Pγuc Pρc Pγc Pρuc Pγuc > 1 or Pρc Pγc > 1

1 3.361 3.399 2.954 4.283 9.928 14.558 Yes
2 3.361 3.399 3.183 3.205 10.698 10.894 Yes
3 3.361 3.399 3.197 3.446 10.745 11.713 Yes
4 3.361 3.399 3.197 3.488 10.745 11.856 Yes
5 3.361 3.399 3.197 3.488 10.745 11.856 Yes
6 3.361 3.399 3.197 3.488 10.745 11.856 Yes
7 3.361 3.399 3.197 3.487 10.745 11.852 Yes
8 3.361 3.399 3.197 3.481 10.745 11.832 Yes
9 3.361 3.399 3.197 3.454 10.745 11.740 Yes
10 3.361 3.399 3.197 3.489 10.745 11.859 Yes

4 Concluding remarks
In the present work, we have used the r12- dependent two electron ‘Hartree and Ingman(1933)’ type trial
wave function to construct a single particle wave function ψ(~r). By taking the Fourier transform of ψ(~r),
the wave function in momentum space i.e. φ(~p) has been constructed. The wave functions ψ(~r) and φ(~p)
are used to evaluate the expressions for the single particle charge densities in coordinate and momentum
spaces. These expressions have been further used to construct the analytical expressions for Shannon and
Fisher entropies, Shannon power and the Fisher-Shannon product and hence to compute their values in
both coordinate and momentum spaces. The expressions have been constructed by taking the correlation
into account as well as without it. In Table 3.1 and Table 3.2 we have provided the values of Shannon
and Fisher entropies for different values of r and p. In coordinate space, the correlation augments the
values of Shannon entropies and in momentum space the correlation plays just the opposite role. In case
of Fisher entropies, the correlation diminishes the values in coordinate space and augments in momentum
space. Thus from the data of the two Tables we observe that correlation plays just the opposite roles in
case of Shannon and Fisher information entropies. In addition to this, we have verified from Table 3.1
the uncertainty relation (Sρ + Sγ)> 3(1+lnπ)and the inequality condition (Sρc + Sγc) >(Sρuc + Sγuc) for
Shannon entropy. Simultaneously, for Fisher entropies we have verified the relations from Table 3.2 that
IρcIγc >IρucIγuc and Iρ Iγ > 36. In Table 3.3 the numerical values relating to Shannon power for the
uncorrelated and correlated systems in coordinate space (Jρuc ,Jρc) and momentum space (Jγuc ,Jγc) have
been demonstrated. And Table 3.4 depicts altogether the numerical values of Fisher information entropies
for the uncorrelated and correlated systems, Shannon power and Fisher-Shannon product in coordinate and
momentum space. Moreover, the verification of Fisher-Shannon product has been checked and confirmed by
the data presented in Table 3.5. Since our computed values of Shannon, Fisher information entropies and
Fisher-Shannon product satisfy their respective uncertainty relationships; it validates our results obtained
in a consistent way. Further the variation of information entropic measurements with coordinate (r) and
momentum (p) values give us an insight into the dynamics of evolution of the system in the coordinate
and momentum spaces respectively and that can easily be analyzed from the difference of numerical values
computed separately for the Fisher-Shannon product in respect of the uncorrelated and correlated systems.
It thus provides important evidence that the Fisher-Shannon product can be regarded as an appropriate
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measure of electron correlation. A more systematic and extensive analysis of this new correlation measure
in many other N -electron systems is needed to get a deeper insight into it. It thus remains an interesting
curiosity to investigate the efficacy of this method for studying higher electronic systems. In our further
works we shall try to investigate such systems.
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Abstract

Impact of melting on MHD heat and mass transfer of Casson fluid flow over a stretching sheet
in porous media with thermal radiation and viscous dissipation have been investigated in this article.
Governing PDE’s are change into coupled ODE ’s using a set of proper similarity transformation.
Resultant equations are solved by efficient numerical scheme Runge kutta- 4th order allied with shooting
method. Impact of several flow parameters on flow fields are interpreted via tables and graphs. Present
outcomes compared with existing results and observed excellent validation.
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1 Introduction
Investigation of non-Newtonian fluids have diverse applications in geoscience, petroleum industry, atmo-
spheric sciences, oceanography, aeromechanics etc. Principle of fluid movement, heat and mass transmission
via porous media plays an important role in different fields. Various properties of non-Newtonian fluids make
their fundamental equations nonlinear and non-uniform. Several models have been developed to characterize
attributes of non-Newtonian fluids. One of them is the Casson model. Casson [2] introduced first Casson fluid
model to characterize flow of pigment oil suspensions of printing ink type and until today many investigations
regarding Casson fluid have been conducted. Casson fluid is shear thinning fluid. At zero shear rate it has
infinite viscosity and zero viscosity at infinite shear rate, i.e. it performs as solid if a shear stress less than
yield stress is enforced to fluid and it starts to flow when shear stress is more than yield stress. Tomato
sauce, jelly, chocolate, soup, honey, human blood etc. are considered as Casson fluid. At a very high shear
stress Casson fluid reduced to Newtonian fluid.

Currently heat and mass transfer through porous media is centre of comprehensive research because in
laminar boundary layer flow, heat-mass and momentum transfer over stretching sheet have many applications
for example in increase effectiveness of paints and lubrication, in production of fiber-glass and glass blowing, in
paper making industry, plastic shaping, crystallization, extrusion rubber sheets, aerodynamics etc. Mabood
et al. [4] studied melting heat transfer impact on MHD Casson fluid flow through porous media. Reddy et
al. [7] investigated MHD mass and heat transfer characteristic of Casson fluid over exponentially permeable
stretching surface with viscous dissipation, thermal radiation and chemical reaction. Raju et al. [5] studied
melting heat transfer effect on MHD Casson fluid flow through porous media with radiation in presence of
first order chemical reaction. Krishnamurthy et al. [3] analyzed impact of melting heat transfer and velocity
slip boundary layer flow with thermal radiation and chemical reaction on MHD nanofluid past a nonlinear
stretching sheet. Yacoob et al. [8] examine stagnation-point boundary layer flow of micropolar fluid past
a linearly shrinking/stretching sheet. Bachok et al. [1] investigate time independent two-dimensional flow
and heat transfer to melting shrinking/stretching sheet. Lorenzini et al. [6] investigate effect of melting heat
transfer in MHD Casson fluid through moving surface in porous media with radiation.

Aim of this study is to analyze impact of melting on MHD heat and mass transfer of Casson fluid flow
over a stretching sheet in porous media in presence of thermal radiation and viscous dissipation.
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2 Mathematical Formulation
In present study two-dimensional time independent stagnation point flow of Casson fluid past a linear
stretching sheet in porous media is considered. Permeability of porous media is Kp. Sheet is melting at
constant rate into warm liquid of same material, as demonstrated in figure 2.1. Transverse magnetic field B0

is applied uniformly to fluid. Let velocity of fluid is ue(x) = ax and stretching sheet velocity is uw(x) = cx,
where a and c are positive constant and x coordinate considered along the stretching sheet. Let Tm represent
melting temperature and T∞ represent free stream temperature of the fluid, where T∞ > Tm.

Figure 2.1: Sketch of physical model

τij =





(
µB + (2π)

1
2Py

)
2eij π > πc(

µB + (2πc)
1
2 Py

)
2eij π < πc

(2.1)

where µB represent plastic dynamic viscosity, π = eijeij and (i, j)th element of deformation rate is eij , π
represent rate of deformation, πc is critical value of Casson fluid model, yield stress of fluid is Py. Considering
above postulation the governing equations of present flow are given below:

∂u

∂x
+
∂v

∂y
= 0 (2.2)

u
∂u

∂x
+ v

∂u

∂y
= ue

due
dx

+ v

(
1 +

1

β

)
∂2u

∂y2
− σB2

0

ρ
(u− ue)−

v

Kp
(u− ue) (2.3)

ρcp

(
u
∂T

∂x
+ v

∂T

∂y

)
= κ

∂2T

∂y2
+ µ

(
1 +

1

β

)(
∂u

∂y

)2

− ∂qr
∂y

, (2.4)

u
∂c

∂x
+ v

∂c

∂y
= D∗

∂2c

∂y2
. (2.5)

Boundary conditions are:

u = uw(x) = cx, T = Tm, C = Cm at y = 0, (2.6)

u→ Ue(x) = ax, T → T∞, C → C∞ as y →∞. (2.7)

and

k

(
∂T

∂y

)
= [ρcs (Tm − T0) + ρλ] v(x, 0). (2.8)
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Here β is Casson fluid parameter, v is kinematic viscosity, µ is factor of viscosity, Kp represent
permeability of porous media, κ is thermal conductivity, σ is fluid electrical conductivity, at constant pressure
specific heat is Cp, ρ is the density of fluid, radiative heat flux is qr, D

∗ is molecular diffusivity, latent heat
of fluid is λ.

Using Roseland’s approximation for radiation, we obtain qr = −
(

4
3
σ∗

k1

)
∂T 4

∂y , where σ∗ represents Stefan-

Boltzmann constant, k1 represents mean absorption factor. By using Taylor series about the free stream
temperature, we have

T 4 = 4TT 3
∞ − 3T∞

4. (2.9)

Now eqn. (2.4) converts to

ρcp

(
u
∂T

∂x
+ v

∂T

∂y

)
= κ

∂2T

∂y2
+ µ

(
1 +

1

β

)(
∂u

∂y

)2

+
16σ∗T 3

∞
3k1ρcp

∂2T

∂y2
. (2.10)

3 Problem Solution
Introducing similarity transformation and dimensionless parameters

Ψ = x(av)
1
2 f(η), η =

(a
v

) 1
2

y, θ(η) =
T − Tm
T∞ − Tm

, φ(η) =
C − Cm
C∞ − Cm

. (3.1)

where Ψ is stream function interpreted as u = ∂Ψ
∂v and v = −∂Ψ

∂x .
Using equation 2.10 into equations 2.2− 2.5), we get

(
1 +

1

β

)
f ′′′ − f ′2 + ff ′′ − (M +K1) (f ′ − 1) + 1 = 0, (3.2)

(1 +R)θ′′ + PrEc

(
1 +

1

β

)
f ′′2 + Pr fθ′ = 0, (3.3)

φ′′ + Scfφ′ = 0. (3.4)

Equation (2.6) and (2.7) reduce to

f(0) = −Me

Pr
θ′(0), f ′(0) = ε, θ(0) = 0, φ(0) = 0, (3.5)

f ′(∞) = 1, θ(∞) = 1, φ(∞) = 1, (3.6)

where β = µB(2πc)
1/2

Py
is Casson fluid parameter, magnetic parameter M =

σB2
0

ρa ,K1 = v
Kpa

permeability

parameter, radiation parameter R =
16σ∗T 3

∞
3k∗κ , ε = c

a stretching parameter, Pr =
ρcpv
κ Prandtl number,

combination of stefan numbers cs(Tm−T0)
λ and

cp(T∞−Tm)
λ respectively for solid and liquids phases is melting

parameter Me =
cp(T∞−Tm)
λ+cs(Tm−T0) .

The physical parameters of attention are skin friction factor Cf , Nusselt number Nux and Sherwood
number Shx are described as

Cf =
τW
ρU2

e

, (3.7)

Nux =
xqW

κ (T∞ − Tm)
, (3.8)

Shx =
xLW

D∗ (C∞ − Cm)
, (3.9)

where τW represents surface shear stress, qW denote surface heat flux and mass flux LW are described as

τW =

(
1 +

1

β

)(
∂u

∂y

)

y=0

, (3.10)

qW = −κ
(
∂T

∂y

)

y=0

+ qr, (3.11)

LW = −D∗
(
∂C

∂y

)

y=0

. (3.12)
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From equations (3.12) to 3.15 with applications of similarity transformations, we get

Cf =

(
1 +

1

β

)
Re
− 1

2
x f ′′(0), (3.13)

Nux = −(1 +R)Re
1
2
x θ
′(0), (3.14)

Shx = −φ′(0)Re
1
2
x , (3.15)

where Rex = uex
v represents Reynolds number.

It is remarkable observation that if we put M = K1 = R = Ec = Sc = 0 and β →∞ in equations (3.1)
to (3.3), our problem converts into model taken by Mabood et al. [4].

4 Numerical Solution
Equations (3.2) to (3.4) are solved numerically with boundary conditions (3.5) and (3.6) by applying the
shooting method together with RK4 scheme. For calculations we utilize MATLAB computer programming.
Appropriate estimates of f ′′, θ′ and φ′ at η = 0 are taken with shooting method to obtain boundary conditions
at η →∞ which all are one. We assume ∆η = 0.01 and value for ηmax = 5.

In Tables 4.1, 4.2 and 4.3 validation of present method is established by comparing with results of Mabood
et al. [4]

Table 4.1: For varying values of ε and Me comparison of numeric values of f ′′(0) and θ′(0), when M = K1 = R =
Ec = Sc = 0,Pr = 1, and β →∞.

Parameters Mabood et al. [4] Present outcomes
ε Me f ′′(0) −θ′(0) f ′′(0) −θ′(0)

0.0 0 1.232588 -0.570465 1.232588 -0.570465
1 1.037003 -0.361961 1.037003 -0.361961

0.5 0 0.713295 -0.692064 0.713295 -0.692064
1 0.599090 -0.438971 0.599090 -0.438971

2.0 0 -1.887307 -0.979271 -1.887307 -0.979271
1 -1.580484 -0.621187 -1.580484 -0.621187

5.0 0 -10.264749 -1.396355 -10.264749 -1.396355
1 -8.5746752 -0.886425 -8.5746752 -0.886425

6.0 0 -13.774813 -1.511165 -13.774813 -1.511165
1 -11.501531 -0.959514 -11.501531 -0.959514

Table 4.2: For varying values of ε and Me comparison of numeric values of f ′′(0), when Pr = 1, M = K1 = R =
Ec = Sc = 0 and β →∞.

ε Mabood et al. [4] Present outcomes
Me = 0 Me = 1 Me = 2 Me = 0 Me = 1 Me = 2

0.0 1.232588 1.037003 0.946851 1.232588 1.037003 0.956851
0.1 1.146561 0.964252 0.880442 1.146561 0.964252 0.880442
0.5 0.713295 0.599089 0.547021 0.713295 0.599089 0.547021
1.0 0 0 0 0 0 0
2.0 -1.887307 -1.580484 -1.442747 -1.887307 -1.580484 -1.442747
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Table 4.3: For varying values of Pr andMe comparison of numeric values of θ′(0), whenM =K1 = R = Ec = Sc = 0
and β →∞.

Parameters Mabood et al. [4] Present outcomes
Pr Me −θ′(0) −θ′(0)
1 0 -0.7978846 -0.7978846

1 -0.5060545 -0.5060545
2 -0.3826383 -0.3826383

7 0 -2.1110042 -2.1110042
1 -1.3388943 -1.3388943
2 -1.0123657 -1.0123657

5 Discussion of the Results
For computation default values are taken ε = 0.5 or 1.5,M = 0.5,K1 = 0.2,Pr = 25, R = 1, β = 1,
Me = 1, Ec = 0.2, Sc = 1.

Fig. 5.1 depicts impact of Magnetic parameter M on velocity, for ε = 1.3 velocity decreases with increasing
values of M , this is because of Lorentz force which is retarded force for velocity. Effect is opposite for ε = 0.3.
Influence of permeability parameter is illustrated in Fig. 5.2. It is concluded that with increasing values of K1

velocity profile decrease because with increasing values of K1 permeability decrease. Inverse effect found for
ε = 0.3. From Fig. 5.3 fluid velocity is a decreasing function of Casson fluid parameter β because viscosity
increased with increment in values of β and reverse results exist for ε = 0.3. Fig. 5.4 shows influence
of β on temperature profile, here we conclude that fluid temperature decreases with increasing values of
β due to the fact that increment in β signifies a reduction in yield stress. From Fig. 5.5 we observed
that temperature increase with increment in values of Pr, according to definition of Prandtl number large
values of Pr has lower thermal diffusivity. Because of the melting parameter, thickness of thermal boundary
layer increases with increasing values of Pr. From Fig. 5.6 we observed that with increasing values of
radiation parameter R temperature decrease. Fig. 5.7 depicts effect of melting parameter on temperature.
Temperature profile decrease with increasing melting parameter because plunges of cold sheet in hot fluid,
this starts to melt due to this temperature decreases. Fig. 5.8 shows the effect of Eckert number Ec on
temperature profile, temperature increase due to viscous dissipation. Effect of Schmidt number shows in
Fig. 5.9 which is analogous to effect of Prandtl number. Fig. 5.10 depicts impact of melting parameter Me
on concentration. Concentration profile decrease with increasing values of Me.

Figure 5.1: Distribution of velocity for variations in M Figure 5.2: Distribution of velocity for variations in K1
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Figure 5.3: Distribution of velocity for variations in β
Figure 5.4: Distribution of temperature for variations in
β

Figure 5.5: Distribution of temperature for variations in
Pr

Figure 5.6: Distribution of temperature for variations in
R
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Figure 5.7: Distribution of temperature for variations in
Me

Figure 5.8: Distribution of temperature for variations in
Ec

Figure 5.9: Distribution of concentration for variations
in Sc

Figure 5.10: Distribution of concentration for variations
in Me
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Table 5.1: For variations in values of ε,M,K1, P r,R, β,Me,Ec and Sc, Values of f ′′(0), θ′(0) and φ′(0).

𝜀 𝑀 𝐾1 𝑃𝑟 𝑅 𝛽 𝑀𝑒 𝐸𝑐  𝑆𝑐 𝑓′′(0) 𝜃′(0) 𝜙′(0) 
0.3 0        0.689560 1.962200 0.571600 

 1        0.844058 2.140100 0.581800 

 2        0.974919 2.294100 0.588610 

1.3 0        -0.362260 2.536900 0.801900 

 1        -0.418174 2.553700 0.797700 

 2        -0.467735 2.569500 0.794210 

0.3  0       0.739190 2.018800 0.575110 

  1       0.885303 2.188400 0.584100 

  2       1.010939 2.337000 0.590250 

1.3  0       -0.379850 2.542000 0.800530 

  1       -0.433612 2.558400 0.796560 

  2       -0.481646 2.574100 0.793300 

0.3   20      0.768913 1.819100 0.572000 

   23      0.769968 1.963200 0.575340 

   25      0.770562 2.054900 0.577220 

1.3   20      -0.390260 2.265200 0.792670 

   23      -0.390836 2.436900 0.797180 

   25      -0.391160 2.545400 0.799670 

0.3    0     0.767515 2.459900 0.567530 

    0.5     0.769195 2.236400 0.572900 

    1     0.770562 2.054900 0.577220 

1.3    0     -0.389714 3.004400 0.788400 

    0.5     -0.390500 2.754800 0.794500 

    1     -0.391160 2.545400 0.799670 

0.3     1    0.770562 2.054900 0.577220 

     2    0.887272 2.028200 0.589700 

     ∞    1.081560 1.997400 0.606880 

1.3     1    -0.391160 2.545400 0.799670 

     2    -0.450310 2.529000 0.795800 

     ∞    -0.548753 2.505400 0.790200 

0.3      0   0.786170 2.727100 0.627570 

      0.5   0.777282 2.332700 0.598750 

      1   0.770562 2.054900 0.577220 

1.3      0   -0.399250 3.329300 0.863780 

      0.5   -0.394662 2.874700 0.827300 

      1   -0.391160 2.545400 0.799670 

0.3       0  0.775080 1.456900 0.591700 

       0.2  0.770562 2.054900 0.577220 

       0.4  0.766326 2.618400 0.563800 

1.3       0  -0.391540 2.424300 0.802700 

       0.2  -0.391160 2.545400 0.799670 

       0.4  -0.390780 2.665400 0.796700 

0.3        1 0.770562 2.054900 0.577220 

        1.5 0.770562 2.054900 0.673100 

        2 0.770562 2.054900 0.747800 

1.3        1 -0.391160 2.545400 0.799670 

        1.5 -0.391160 2.545400 0.969400 

        2 -0.391160 2.545400 1.108200 
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6 Conclusions
In this paper a theoretical analysis of impact of melting on MHD heat and mass transfer of Casson fluid
flow over a stretching sheet in porous media in the presence of thermal radiation and viscous dissipation
have been done. We have acquired following results:

6.1 An increase in Magnetic parameter M , Casson fluid parameter β and Permeability parameter K1

causes decreases in velocity profile.
6.2 Temperature profile decrease with increasing Casson fluid parameter, Melting parameter, Radiation

parameter and reverse effect for Prandtl number and Eckert number.
6.3 Concentration profile increase for increasing Schmidt number and decrease for Melting parameter.
6.4 Increment in values of Magnetic parameter and Permeability parameter skin friction coefficient

increase.
6.5 Local Nusselt number decrease with increasing values of radiation and melting parameter.
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the paper in the present form.
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Abstract

In the present paper, we show that the partial Bell polynomials allow for obtaining identities involving
the generalized Bernoulli numbers. Then, on applying these identities we derive different generating and
bilateral generating functions.
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1 Introduction
In [18], the partial Bell polynomials Bn,k(., ., . . . , .) ∀n, k ≥ 0 are represented in the following series expansion

1

k!




∞∑

m≥1

xm
tm

m!





k

=

∞∑

n≥k

Bn,k(x1, x2, . . . , xn−k+1)
tn

n!
∀k = 0, 1, 2, . . . , (1.1)

where, Bn,k(x1, x2, . . . , xn−k+1) =
∑∞
n1,n2,...,nr,...=0

n!
n1!n2!..nr!... (

x1

1! )n1(x2

1! )n2 . . . (xrr! )nr . . . ; along with n1 +
n2 + . . .+ nr + . . . = k and n1 + 2n2 + . . .+ rnr + . . . = n.

Recently, Pathan et al. [11] obtained the connections between partial Bell polynomials, partition function
and q-hypergeometric series.

On the other hand in [7], a generalization of (1.1) is introduced to prove the following relation

Qn+1

(
1

x

)
= (n+ 1)

n∑

k=0

(−1)kk!

xn+k+1
Bn,k

(
1

2
Q2(x),

1

3
Q3(x), . . . ,

1

n− k + 2
Qn−k+2(x)

)
, n ≥ 0, (1.2)

in terms of the partial Bell polynomials [2,3,4,14,18] and the Bernoulli polynomials [1,13,16]
Qm(y) = Bm(y)−Bm, Bm = Bm(0),m ≥ 0, (1.3)

from (1.3), we get the polynomials

Q0(y) = 0, Q1(y) = y,Q2(y) = y2 − y,Q3(y) = y3 − 3

2
y2 +

1

2
y,

Q4(y) = y4 − 2y3 + y2, ... . (1.4)
Then we employ (1.3) to find the property

limx→0
1

x
Qm(x) = limx→0

Bm(x)−Bm(0)

x

=

[
d

dx
Bm(x)

]
(0) = mBm−1. (1.5)

Here in this research work, we make an appeal to the results (1.2)-(1.5) and then for n, k ≥ 0 deduce

various results involving identities between the generalized Bernoulli numbers B
(k)
n (see in [6,8,9,10,16]) and

the partial Bell polynomials Bn,k(., . . . , .) (see [11,18]). Later on applying these results we obtain many
generating and bilateral generating functions.
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2 Some identities involving Bn,k and B(j)
m

In this section for n, k ≥ 0, we derive certain identities between the generalized Bernoulli numbers B
(k)
n and

the partial Bell polynomials Bn,k (B1, B2, . . . , Bn−k+1).

Theorem 2.1. For all n, k ≥ 0, the partial Bell polynomials Bn,k (B1, B2, . . . , Bn−k+1) involving Bernoulli
numbers Bn, (n ≥ 0) give following identities

n∑

k=0

(−1)
k
k!Bn,k (B1, B2, . . . , Bn−k+1) =

1

n+ 1
, n ≥ 0, (2.1)

and
n∑

k=0

(−1)
k
k!Bn,k

(
1

2
,

1

3
, . . . ,

1

n− k + 2

)
= Bn, n ≥ 0. (2.2)

Proof. Consider the expression (1.2) and then write it in the form

(n+ 1)

n∑

k=0

(−1)
k
k!Bn,k

(
1

2x
Q2(x),

1

3x
Q3(x), . . . ,

1

(n− k + 2)x
Qn−k+2(x)

)
= xn+1Qn+1

(
1

x

)
. (2.3)

Then in the formula (2.3) apply the results (1.2) and limx→0eq.(1.5), we obtain the identity (2.1) because
of the limiting case limx→0x

mQm
(

1
x

)
= 1.

Again, the inversion of (2.1) gives us the identity (2.2).

Remark 2.1. It is remarked that Zhang-Yang [18] deduced the relation

Bn,k (B1, B2, . . . , Bn−k+1) =
1

k!
B(k)
n , (n, k ≥ 0), (2.4)

involving the generalized Bernoulli numbers ([6, 8, 9, 10, 16]), however, (2.4) is incorrect, it must be

Bn,k (B1, B2, . . . , Bn−k+1) =
1

k!

k∑

j=0

(−1)
k−j
(
k

j

)
B(j)
n . (2.5)

Theorem 2.2. For the generalized Bernoulli numbers B
(k)
n (n, k ≥ 0), there exists an identity

n∑

j=0

(−1)j
(
n+ 1

j + 1

)
B(j)
n =

1

n+ 1
, for all n ≥ 0. (2.6)

Proof. Make an appeal to the results (2.1) and (2.5), immediately we obtain the identity (2.6).

Theorem 2.3. For all n, k ≥ 0, an identity between the generalized Bernoulli numbers B
(k)
n and the partial

Bell polynomials Bn,k(., . . . , .) exists as
k∑

j=0

(
k

j

)
j!Bn,j (B1, B2, . . . , Bn−j+1) = B(k)

n , n, k ≥ 0. (2.7)

Proof. Make an appeal to the Theorems 2.1 and 2.3 and the corrigendum in the Remark 2.2 and then in it
use the property due to [13] as given by

n∑

k=j

(
k

j

)
=

(
n+ 1

j + 1

)
. (2.8)

Finally, the binomial inversion [5] of (2.5) gives the expression (2.7).

Theorem 2.4. For all n ≥ 0, there exists following identities

(−1)
k
k!Bn,k (B1, B2, . . . , Bn−k+1) =

1

2

(
n− 1

k − 1

)(
2n− 1

k

)−1

= (−1)k
(
n+ 1

k + 1

)
B(k)
n . (2.9)

Proof. In the Theorems 2.1 and 2.3, make an appeal to the formula given by
n∑

k=0

k

n

(
n

k

)(
2n− 1

k

)−1

=
2

n+ 1
, (2.10)

and thus use the reduction formula for binomial coefficients we arrive the identities in (2.9).

Remark 2.2. The relation (1.2) is equivalent to the following identity [7] (Cauchy convolution [15])
n−1∑

k=1

xk

k!(n− k)!
Qk

(
1

x

)
Qn−k(x) = 0, n ≥ 3. (2.11)
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3 Applications
In this section on application of the identities obtained in the Section 2 and the formula due to [12, p. 348,
Problem 212] and see also in [17, p. 355, Eqn. (9)] given by

∞∑

n=0

α

α+ (β + 1)n

(
α+ (β + 1)n

n

)
tn = (1 + w)α, |t| < 1,

w = w(t) = t (1 + w(t))
β+1

, w(0) = 0, (3.1)

we obtain various generating and bilateral generating functions:

Example 3.1. If α > 0 and for n ≥ 0

Ψn =

n∑

k=0

(−1)kk!Bn,k (B1, B2, . . . , Bn−k+1) . (3.2)

Then in the disk |t| < 1, there exists a generating formula
∞∑

n=0

(
α+ αn

n

)
Ψnt

n = α(1 + ζ)α, (3.3)

where, ζ = ζ(t) = t (1 + ζ(t))
α
, ζ(0) = 0.

Solution. In the Eqns. (3.2) and (3.3) make an application of the Theorem 2.1, we get
∞∑

n=0

(
α+ αn

n

)
Ψnt

n = α

∞∑

n=0

(
α+ αn

n

)
1

α+ αn
tn. (3.4)

Finally in the result (3.4), apply the formula (3.1) for β = α− 1 we obtain the formula (3.3).

Example 3.2. If α > 0,

ψn =

n∑

k=0

(
α+ αn

n− k

)(
α+ (β + 1)k

k

)(
k + 1

k

)
ϕk, (3.5)

Then by (3.2) and (3.5), there exists a bilateral generating formula
∞∑

n=0

ψnΨnt
n = (1 + ζ)α

∞∑

n=0

(
α+ (β + 1)n

n

)
ϕnζ

n. (3.6)

Solution. In the left hand side of (3.6) on considering (3.2) and (3.5), then on use of (2.1), we get
∞∑

n=0

ψnΨnt
n =

∞∑

n=0

1

α+ αn

n∑

k=0

(
α+ αn

n− k

)(
α+ (β + 1)k

k

)
(αk + α)ϕkt

n

=

∞∑

n=0

∞∑

k=0

(
α+ αn+ αk

n

)
αk + α

α+ αn+ αk

(
α+ (β + 1)k

k

)
ϕkt

n+k

=

∞∑

k=0

(
α+ (β + 1)k

k

)
ϕkt

k
∞∑

n=0

α+ αk

α+ αk + αn

(
α+ αk + αn

n

)
tn

= (1 + ζ)α
∞∑

k=0

(
α+ (β + 1)k

k

)
ϕk {t(1 + ζ)α}k (on use of (3.1)). (3.7)

Finally on use of (3.3) and (3.7), we find right hand side of (3.6).

Example 3.3. In (3.5) if

ϕk = p+1Fq+1

[
−k, α1, . . . , αp;

α+ βk + 1, β1, . . . , βq;
x

]
, (3.8)

where, the generalized hypergeometric function pFq(.) is defined by [17, p. 42]

pFq

[
α1, . . . , αp;
β1, . . . , βq;

z

]
=

∞∑

n=0

∏p
i=1 (αi)n∏q
i=1 (γi)n

zn

n!
, (3.9)
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where p, q∈ N∪{0} , αi∈ C(i = 1, 2, 3, . . . , p); γi∈ C(i = 1, 2, 3, . . . , q); z∈ C; also all

γi 6= 0,−1,−2, . . . , (i = 1, 2, 3, . . . , q).

The series in (3.9) (i) converges for |z| <∞, if p ≤ q; (ii) converges for |z| < 1, if p = q+1; (iii) diverges for
all z, z 6= 0, if p > q+1; (iv) converges absolutely for |z| = 1, if p = q+1, and R(ω) > 0, ω =

∑q
i=1 γi−

∑p
i=1 αi;

(v) converges conditionally for |z| = 1, z 6= 1, if p = q + 1, and −1 < R(ω) ≤ 0; (vi) diverges for |z| = 1, if
p = q + 1, and R(ω) < −1.

Then on application of the example 3.2, there exists a bilateral generating function
∞∑

n=0

ψnΨnt
n =

(1 + ζ)α (1 +W (ζ))
α+1

1− βW (ζ)
pFq

[
α1, . . . , αp;
β1, . . . , βq;

− xW (ζ)

]
, (3.10)

where W (ζ) is given in following (3.12).

Solution. Make an appeal to the functions (3.8) and (3.9) in Example (3.2) we find
∞∑

n=0

ψnΨnt
n = (1 + ζ)α

∞∑

n=0

(
α+ (β + 1)n

n

)
p+1Fq+1

[
−n, α1, . . . , αp;

α+ βn+ 1, β1, . . . , βq;
x

]
ζn

= (1 + ζ)α
∞∑

k=0

(α1)k . . . (αp)k
(β1)k . . . (βq)k

(−xζ)k

k!

∞∑

n=0

(
α+ (β + 1)k + (β + 1)n

n

)
ζn

= (1 + ζ)α
(1 +W (ζ))

α+1

1− βW (ζ)

∞∑

k=0

(α1)k . . . (αp)k
(β1)k . . . (βq)k

(
−xζ (1 +W (ζ))

β+1
)k

k!
. (3.11)

Now in (3.11) define

W (ζ) = ζ (1 +W (ζ))
β+1

, W (0) = 0, (3.12)

we derive the bilateral generating function (3.10).

4 Concluding remarks
The identities obtained in the Section 2 are very powerful tool to derive different results involving generalized

Bernoulli numbers B
(k)
n and the partial Bell polynomials Bn,k(B1, B2, . . . , Bn−k+1) .

We derive various generating and bilateral generating functions which are applicable in computing of many
problems occurring in the science and technology. The polynomials in form of generalized hypergeometric
functions are specialized in Legendre, Bessel, Hermite, Laggurre and Jacobi polynomials etc. found in the
literature of generating functions. Hence Section 3 has very important and applicable techniques.
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Abstract

In this paper, we establish a couple of approximation results for local existence and uniqueness of
the solution of an IVP of nonlinear second order ordinary hybrid integrodifferential equations by using
the Dhage monotone iteration method based on the recent hybrid fixed point theorems of Dhage (2022)
and Dhage et al. (2022). An approximation result for Ulam-Hyers stability of the local solution of the
considered hybrid differential equation is also established. Finally, our main abstract results are also
illustrated with a couple of numerical examples.
2020 Mathematical Sciences Classification: 34A12, 34A34, 34A45, 47H10
Keywords and Phrases: Ordinary differential equation; Dhage iteration method; Approximation
theorems; Local existence and uniqueness; Ulam-Hyers stability.

1 Introduction
Given a closed and bounded interval J = [t0, t0 + a] in R for some t0, a ∈ R with a > 0, we consider the IVP
of nonlinear second order hybrid ordinary differential equation (HIGDE),

x′′(t) = f
(
t, x(t),

∫ t

t0

g(s, x(s)) ds
)
, t ∈ J,

x(t0) = α0, x′(t0) = α1,





(1.1)

where α0, α1 are real numbers and the function f : J × R × R → R satisfies some hybrid, that is, mixed
hypotheses from algebra, analysis and topology to be specified later.

Definition 1.1. A function x ∈ C1(J,R) is said to be a solution of the HIGDE (1.1) if it satisfies the
equations in (1.1) on J , where C1(J,R) is the space of continuously differentiable real-valued functions
defined on J . If the solution x lies in a closed ball Br(x0) centered at some point x0 ∈ C(J,R) of radius
r > 0, then we say it is a local solution or neighborhood solution (in short nbhd solution) of the HIGDE
(1.1) on J .

Remark 1.1. The present idea of local or nbhd-solution is different from the usual notion of a local solution
solution as mentioned in Coddington and Levinson [1]. See Dhage and Dhage [12, 13] and references given
therein.

The HIGDE (1.1) is familiar in the subject of nonlinear analysis and can be studied for a variety of
different aspects of the solution by using different methods form nonlinear functional analysis. The existence
of local solution can be proved by using the Schauder fixed point principle, see for example, Coddington
and Levinson [1], Lakshmikantham and Leela [17], Granas and Dugundji [15] and references therein. The
approximation result for uniqueness of solution can be proved by using the Banach fixed point theorem
under a Lipschitz condition which is considered to be very strong in the area of nonlinear analysis. But to
the knowledge the present authors, the approximation result for local existence and uniqueness theorems
without using the Lipschitz condition is not discussed so far in the theory of nonlinear differential and integral
equations. In this paper, we discuss the approximation results for local existence and uniqueness of solution
under weaker partial Lipschitz condition but via construction of the algorithms based on monotone iteration
method and a hybrid fixed point theorem of Dhage [4]. Also see Dhage et al. [10, 11] and references therein.
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The rest of the paper is organized as follows. Section 2 deals with the auxiliary results and main hybrid
fixed point theorems involved in the Dhage iteration method. The hypotheses and main approximation
results for the local existence and uniqueness of solution are given in Section 3. The approximation of the
Ulam-Hyer stability is discussed in Section 4 and a couple of illustrative examples are presented in Section
5. Finally, some concluding remarks are mentioned in Section 6.

2 Auxiliary Results
We place the problem of HIGDE (1.1) in the function space C(J,R) of continuous, real-valued functions
defined on J . We introduce a supremum norm ‖ · ‖ in C(J,R) defined by

‖x‖ = sup
t∈J
|x(t)|. (2.1)

and an order relation � in C(J,R) by the cone K given by

K = {x ∈ C(J,R) | x(t) ≥ 0 ∀ t ∈ J}. (2.2)

Thus,
x � y ⇐⇒ y − x ∈ K, (2.3)

or equivalently,
x � y ⇐⇒ x(t) ≤ y(t) ∀ t ∈ J.

It is known that the Banach space C(J,R) together with the order relations � becomes an ordered Banach
space which we denote for convenience, by

(
C(J,R),K

)
. We denote the open and closed spheres centered

at x0 ∈ C(J,R) of radius r, for some r > 0, by

Br(x0) = {x ∈ C(J,R) | ‖x− x0‖ < r} = B(x, r)

and
Br[x0] = {x ∈ C(J,R) | ‖x− x0‖ ≤ r} = B(x, r)

receptively. It is clear that Br[x0] = Br(x0). Let M > 0 be a real number. Denote

BMr [x0] =
{
x ∈ Br[x0]

∣∣ |x(t1)− x(t2)| ≤M |t1 − t2| for t1, t2 ∈ J
}
. (2.4)

Then, we have the following result.

Lemma 2.1. The set BMr [x0] is compact in C(J,R).

Proof. By definition, Br[x0] is a closed and bounded subset of the Banach space C(J,R). Moreover, BMr [x0]
is an equicontinuous subset of C(J,R) in view of the condition (2.1). Now, by an application of Arzelá-Ascoli
theorem, BMr [x0] is compact set in C(J,R) and the proof of the lemma is complete.

It is well-known that the hybrid fixed point theoretic technique is very much useful in the subject of
nonlinear analysis for dealing with the nonlinear equations qualitatively. See Granas and Dugundji [15] and
the references therein. Here, we employ the Dhage monotone iteration method or simply Dhage iteration
method based on the following two hybrid fixed point theorems of Dhage [4] and Dhage et al. [10].

Theorem 2.1 (Dhage [4]). Let S be a non-empty partially compact subset of a regular partially ordered
Banach space

(
E, || · ‖,�,

)
with every chain C in S is Janhavi set and let T : S → S be a monotone

nondecreasing, partially continuous mapping. If there exists an element x0 ∈ S such that x0 � T x0 or
x0 � T x0, then the hybrid mapping equation T x = x has a solution ξ∗ in S and the sequence {T nx0}∞n=0 of
successive iterations converges monotonically to ξ∗.

Theorem 2.2 (Dhage [4]). Let Br[x] denote the partial closed ball centered at x of radius r for some real
number r > 0, in a regular partially ordered Banach space

(
E, || · ‖,�,

)
and let T : E → E be a monotone

nondecreasing and partial contraction operator with contraction constant q. If there exists an element x0 ∈ X
such that x0 � T x0 or x0 � T x0 satisfying

‖x0 − T x0‖ ≤ (1− q)r
for some real number r > 0, then T has a unique comparable fixed point ξ∗ in Br[x0] and the sequence
{T nx0}∞n=0 of successive iterations converges monotonically to ξ∗. Furthermore, if every pair of elements in
X has a lower or upper bound, then ξ∗ is unique.
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If a Banach X is partially ordered by an order cone K in X, then in this case we simply say X is an
ordered Banach space which we denote it by (X,K). Then, we have the following useful results proved in
Dhage [2, 3].

Lemma 2.2 (Dhage [2, 3]). Every ordered Banach space (X,K) is regular.

Lemma 2.3 (Dhage [2, 3]). Every partially compact subset S of an ordered Banach space (X,K) is a Janhavi
set in X.

As a consequence of Lemmas 2.2 and 2.3, we obtain the following hybrid fixed point theorem which we
need in what follows.

Theorem 2.3 (Dhage [4] and Dhage et al. [10]). Let S be a non-empty partially compact subset of an ordered
Banach space (X,K) and let T : S → S be a partially continuous and monotone nondecreasing operator. If
there exists an element x0 ∈ S such that x0 � Tx0 or x0 � Tx0, then T has a fixed point ξ∗ ∈ S and the
sequence {T nx0}∞n=0 of successive iterations converges monotonically to ξ∗.

Theorem 2.4 (Dhage [4]). Let Br[x] denote the partial closed ball centered at x of radius r for some real
number r > 0, in an ordered Banach space

(
X,K

)
and let T : (X,K)→ (X,K) be a monotone nondecreasing

and partial contraction operator with contraction constant q. If there exists an element x0 ∈ X such that
x0 � T x0 or x0 � T x0 satisfying

‖x0 − T x0‖ ≤ (1− q)r (2.5)

for some real number r > 0, then T has a unique comparable fixed point x∗ in Br[x0] and the sequence
{T nx0}∞n=0 of successive iterations converges monotonically to ξ∗. Furthermore, if every pair of elements in
X has a lower or upper bound, then ξ∗ is unique.

The details of the notions of partial order, Janhavi set, regularity of an ordered space, monotonicity of
mappings, partial continuity, partial closure, partial compactness and partial contraction etc. and related
applications appear in Dhage [2, 3, 4, 5, 6], Dhage and Dhage [8], Dhage et al. [10, 11, 14] and references
therein.

3 Local Approximation Results
We consider the following set of hypotheses in what follows.
(H1) The function f is continuous and bounded on J × R× R with bound Mf .
(H2) f(t, x, y) is nondecreasing in x and y for each t ∈ J .
(H3) g(t, x) is nondecreasing in x for each t ∈ J .
(H4) f(t, α0, y) ≥ 0 and α1 ≥ 0 for all t ∈ J and y ≥ 0.
(H5) g(t, α0) ≥ 0 for all t ∈ J .

Then we have the following useful lemma.

Lemma 3.1. If h ∈ L1(J,R), then the IVP of ordinary second order linear differential equation

x′′(t) = h(t), t ∈ J, x(t0) = α0, x′(t0) = α1, (3.1)

is equivalent to the integral equation

x(t) = α0 + α1(t− t0) +

∫ t

t0

(t− s)h(s) ds, , t ∈ J. (3.2)

Theorem 3.1. Sppose that the hypotheses (H1), (H3) and (H4) hold. Furthermore, if the inequalities
|α1| a+Mf a

2 ≤ r and |α1|+ 2Mf a ≤M hold, then the HIGDE (1.1) has a solution x∗ in BMr [α0], where
x0 ≡ α0, and the sequence {xn}∞n=0 of successive approximations defined by

x0(t) = α0, t ∈ J,

xn+1(t) = α0 + α1(t− t0) +

∫ t

t0

(t− s) f
(
s, xn(s),

∫ s

t0

g(τ, xn(τ)) dτ
)
ds, t ∈ J,





(3.3)

where n = 0, 1, . . .; converges monotone nondecreasingly to x∗.
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Proof. Set X = C(J,R). Clearly, (X,K) is a partially ordered Banach space. Let x0 be a constant function
on J such that x0(t) = α0 for all t ∈ J and define a closed ball BMr [x0] in X defined by (2.3). By Lemma 2.1,
BMr [x0] is a compact subset of X. By Lemma 3.1, the HIGDE (1.1) is equivalent to the nonlinear hybrid
integral equation (HIE)

x(t) = α0 + α1(t− t0) +

∫ t

t0

(t− s) f
(
s, x(s),

∫ s

t0

g(τ, x(τ)) dτ
)
ds, t ∈ J. (3.4)

Now, define an operator T on BMr [x0] into X by

T x(t) = α0 + α1(t− t0) +

∫ t

t0

(t− s) f
(
s, x(s),

∫ s

t0

g(τ, x(τ)) dτ
)
ds, t ∈ J. (3.5)

We shall show that the operator T satisfies all the conditions of Theorem 2.3 on BMr [x0] in the following
series of steps.
Step I: The operator T maps BMr [x0] into itself.

Firstly, we show that T maps BMr [x0] into itself. Let x ∈ BMr [x0] be arbitrary element. Then,

|T x(t)− x0(t)| ≤ |α1(t− t0)|+
∣∣∣∣
∫ t

t0

(t− s) f
(
s, x(s),

∫ s

t0

g(τ, x(τ)) dτ
)
ds

∣∣∣∣

≤ |α1| a+

∫ t

t0

|t− s|
∣∣∣ f
(
s, x(s),

∫ s

t0

g(τ, x(τ)) dτ
)∣∣∣ ds

= |α1| a+Mf a

∫ t0+a

t0

ds

= |α1| a+Mf a
2

≤ r.
for all t ∈ J . Taking the supremum over t in the above inequality yields

‖T x− x0‖ ≤ |α1| a+Mf a
2 ≤ r

which implies that T x ∈ Br[x0] for all x ∈ BMr [x0]. Next, let t1, t2 ∈ J be arbitrary. Then, we have∣∣T x(t1)− T x(t2)
∣∣

≤ |α1| |t1 − t2|+
∣∣∣∣
∫ t1

t0

(t1 − s) f
(
s, x(s),

∫ s

t0

g(τ, x(τ)) dτ
)
ds

−
∫ t2

t0

(t2 − s) f
(
s, x(s),

∫ s

t0

g(τ, x(τ)) dτ
)
ds

∣∣∣∣

≤ |α1| |t1 − t2|+ +

∣∣∣∣
∫ t1

t0

(t1 − s) f
(
s, x(s),

∫ s

t0

g(τ, x(τ)) dτ
)
ds

−
∫ t2

t0

(t2 − s) f
(
s, x(s),

∫ s

t0

g(τ, x(τ)) dτ
)
ds

∣∣∣∣

+

∣∣∣∣
∫ t1

t0

(t1 − s) f
(
s, x(s),

∫ s

t0

g(τ, x(τ)) dτ
)
ds

−
∫ t2

t0

(t2 − s) f
(
s, x(s),

∫ s

t0

g(τ, x(τ)) dτ
)
ds

∣∣∣∣

≤ |α1| |t1 − t2|+
∫ t1

t0

|t1 − t2|
∣∣∣f
(
s, x(s),

∫ s

t0

g(τ, x(τ)) dτ
)∣∣∣ ds

+

∣∣∣∣
∫ t2

t1

|t2 − s|
∣∣∣f
(
s, x(s),

∫ s

t0

g(τ, x(τ)) dτ
)∣∣∣ ds

∣∣∣∣

≤ |α1| |t1 − t2|+
∫ t0+a

t0

|t1 − t2|Mf ds+

∣∣∣∣
∫ t2

t1

aMf ds

∣∣∣∣
≤ |α1| |t1 − t2|+ 2Mf a |t1 − t2|
=
(
|α1|+ 2Mf a

)
|t1 − t2|
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≤M |t1 − t2|
where, |α1| + 2Mf a ≤ M . Therefore, T x ∈ BMr [x0] for all x ∈ BMr [x0] As a result, we have T (BMr [x0]) ⊂
BMr [x0].
Step II: T is a monotone nondecreasing operator.

Let x, y ∈ BMr [x0] be any two elements such that x � y. Then, by hypotheses (H2) and (H3),

T x(t) = α0 + α1(t− t0) +

∫ t

t0

(t− s) f
(
s, x(s),

∫ s

t0

g(τ, x(τ)) dτ
)
ds

≥ α0 + α1(t− t0) +

∫ t

t0

(t− s) f
(
s, y(s),

∫ s

t0

g(τ, x(τ)) dτ
)
ds

= T y(t)

for all t ∈ J . So, T x � T y, that is, T is monotone nondecreasing on BMr [x0].
Step III: T is partially continuous operator.

Let C be a chain in BMr [x0] and let {xn} be a sequence in C converging to a point x ∈ C. Then, by
dominated cnonvergence theorem, we have

lim
n→∞

T xn = lim
n→∞

[
α0 +

∫ t

t0

(t− s) f
(
s, xn(s),

∫ s

t0

g(τ, xn(τ)) dτ
)
ds

]

= α0 + α1(t− t0) + lim
n→∞

∫ t

t0

(t− s) f
(
s, xn(s),

∫ s

t0

g(τ, xn(τ)) dτ
)
ds

= α0 + α1(t− t0) +

∫ t

t0

(t− s)
[

lim
n→∞

f
(
s, xn(s),

∫ s

t0

g(τ, xn(τ)) dτ
)]

ds

= α0 + α1(t− t0) +

∫ t

t0

(t− s) f
(
s, x(s),

∫ s

t0

g(τ, x(τ)) dτ
)
ds

= T x(t)

for all t ∈ J . Therefore, T xn → T x pointwise on J . As {T xn} ⊂ BMr [x0], {T xn} is an equicontinuous
sequence of points in X. As a result, we have that T xn → T x uniformly on J . Hence T is partially
continuous operator on BMr [x0].
Step IV: The element x0 ∈ BMr [x0] satisfies the relation x0 � T x0 .

Since the hypotheses (H4) and (H5) hold, one has

x0(t) = α0 + α1(t− t0) +

∫ t

t0

(t− s)f
(
s, x0(s),

∫ s

t0

g(τ, x0(τ)) dτ
)
ds

≤ x0(t) + α1(t− t0) +

∫ t

t0

(t− s)f
(
s, α0(s),

∫ s

t0

g(τ, α0) dτ
)
ds

= α0 + α1(t− t0) +

∫ t

t0

(t− s)ff
(
s, x0(s),

∫ s

t0

g(τ, x0(τ)) dτ
)
ds

= T x0(t)

for all t ∈ J . This shows that the constant function x0 in BMr [x0] serves as to satisfy the operator inequality
x0 � T x0.

Thus, the operator T satisfies all the conditions of Theorem 2.3, and so T has a fixed point x∗ in
BMr [x0] and the sequence {T nx0}∞n=0 of successive iterations converges monotone nondecreasingly to x∗.
This further implies that the HIE (3.4) and consequently the HIGDE (1.1) has a local solution x∗ and the
sequence {xn}∞n=0 of successive approximations defined by (3.3) is monotone nondecreasing and converges
to x∗. This completes the proof.

Next, we prove an approximation result for existence and uniqueness of the solution simultaneously under
weaker form of Lipschitz condition. We need the following hypotheses in what follows.
(H6) There exists a constant k > 0 such that

0 ≤ f(t, x1, x2)− f(t, y1, y2) ≤ `1(x1 − y1) + `2(x2 − y2)

for all t ∈ J and x1, y1, x2, y2 ∈ R with x1 ≥ y1, x2 ≥ y2, where
(
`1a+ `2k a

2
)
< 1.
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(H7) There exists a constant k > 0 such that

0 ≤ g(t, x)− g(t, y) ≤ k (x− y)

for all t ∈ J and x, y ∈ R with x ≥ y.

Theorem 3.2. Suppose that the hypotheses (H1), (H6) and (H7) hold. Furthermore, if

|α1| a+Mf a
2 ≤

[
1−

(
`1a

2 + `2k a
3
)]
r,

(
`1a

2 + `2k a
3
)
< 1, (3.6)

for some real number r > 0, then the HIGDE (1.1) has a unique solution x∗ in Br[x0] defined on J and the
sequence {xn}∞n=0 of successive approximations defined by (3.3) is monotone nondecreasing and converges to
x∗.

Proof. Set (X,K) =
(
C(J,R),�

)
which is a lattice w.r.t. the lattice join and meet operations defined by

x ∨ y = max{x, y} and x ∧ y = min{x, y}, and so every pair of elements of X has a lower and an upper
bound. Let r > 0 be a fixed real number and consider closed sphere Br[x0] centred at x0 of radius r in the
partially ordered Banach space (X,K).

Define an operator T on X into X by (3.5). Clearly, T is monotone nondecreasing on X. To see this,
let x, y ∈ X be two elements such that x � y. Then, by hypotheses (H6) and (H7), we obtain

T x(t)− T y(t)

=

∫ t

t0

(t− s)
[
f
(
s, x(s),

∫ s

t0

g(τ, x(τ)) dτ
)
ds− f

(
s, y(s),

∫ s

t0

g(τ, y(τ)) dτ
)]

ds

≥ 0,

for all t ∈ J . Therefore, T x � T y and consequently T is monotone nondecresing on X.
Next, we show that T is a partial contraction on X. Let x, y ∈ X be such that x � y. Then, by

hypotheses (H6) and (H7), we obtain

|T x(t)− T y(t)| =
∣∣∣∣
∫ t

t0

(t− s)f
(
s, x(s),

∫ s

t0

g(τ, x(τ)) dτ
)
ds

−
∫ t

t0

(t− s)f
(
s, y(s),

∫ s

t0

g(τ, y(τ)) dτ
)
ds

∣∣∣∣

≤
∣∣∣∣
∫ t

t0

(t− s)
[
f
(
s, x(s),

∫ s

t0

g(τ, x(τ)) dτ
)
ds

− f
(
s, y(s),

∫ s

t0

g(τ, y(τ)) dτ
)]
ds

∣∣∣∣

≤
∣∣∣∣
∫ t

t0

(t− s)
[
`1
(
x(s)− y(s)

)
+ `2

∫ s

t0

k (t− s)
(
x(τ)− y(τ)

)
dτ
]
ds

∣∣∣∣

= `1

∫ t

t0

a |x(s)− y(s)| ds+ `2k

∫ t

t0

a
(
x(s)− y(s))

)

≤ `1a
∫ t0+a

t0

‖x− y‖ ds+ `2 k a
2

∫ t0+a

t0

‖x− y‖ ds

=
[
`1a

2 + `2k a
3
]
‖x− y‖

= λ‖x− y‖
for all t ∈ J , where λ = `1a

2 + `2k a
3 < 1. Taking the supremum over t in the above inequality yields

‖T x− T y‖ ≤ λ ‖x− y‖
for all comparable elements x, y ∈ X. This shows that T is a partial contraction on X with contraction
constant k a. Furthermore, it can be shown as in the proof of Theorem 3.1 that the element x0 ∈ BMr [x0]
satisfies the relation x0 � T x0 in view of hypothesis (H4). Finally, by hypotheses (H4)− (H5) and condition
(3.6), one has

‖x0 − T x0‖ ≤ |α1| a+ sup
t∈J

∣∣∣∣
∫ t

t0

(t− s) f
(
s, α0,

∫ s

t0

g(τ, α0) dτ
)
ds

∣∣∣∣
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≤ |α1| a+ sup
t∈J

∫ t

t0

|t− s|
∣∣∣f
(
s, α0,

∫ s

t0

g(τ, α0) dτ
)∣∣∣ ds

≤ |α1| a+Mf a
2

≤
[
1−

(
`1a

2 + `2k a
3
)]
r

which shows that the condition (2.5) of Theorem 2.4 is satisfied. Hence T has a unique fixed point x∗ in
Br[x0] and the sequence {T nx0}∞n=0 of successive iterations converges monotone nondecreasingly to x∗. This
further implies that the HIE (3.4) and consequently the HIGDE (1.1) has a unique local solution x∗ defined
on J and the sequence {xn}∞n=0 of successive approximations defined by (3.3) is monotone nondecreasing
and converges to x∗. This completes the proof.

Remark 3.1. The conclusion of Theorems 3.1 and 3.2 also remains true if we replace the hypothesis (H4)
with the following one.
(H4’) f(t, α0, y) ≤ 0 and α1 ≤ 0 for all t ∈ J and y ≥ 0.
In this case, the HIGDE (1.1) has a local solution x∗ defined on J and the sequence {xn}∞n=0 of successive
approximations defined by (3.3) is monotone nonincreasing and converges to x∗.

Remark 3.2. If the initial condition in the equation (1.1) is such that α0 > 0, then under the conditions
of Theorem 3.1, the HIGDE (1.1) has a local positive solution x∗ defined on J and the sequence {xn}∞n=0

of successive approximations defined by (3.3) converges monotone nondecreasingly to the positive solution
x∗. Similarly, under the conditions of Theorem 3.2, the HIGDE (1.1) has a unique local positive solution x∗

defined on J and the sequence of successive approximations defined by (3.3) {xn}∞n=0 converges monotone
nondecreasingly to the unique positive solution x∗.

4 Approximation of Local Ulam-Hyers Stability
The Ulam-Hyers stability for various dynamic systems has already been discussed by several authors under
the conditions of classical Schauder fixed point theorem (see Tripathy [18], Huang et al. [16] and references
therein). Here, in the present paper, we discuss the approximation of the Ulam-Hyers stability of local
solution of the HIGDE (1.1) under the conditions of hybrid fixed point principle stated in Theorem 2.4. We
need the following definition in what follows.

Definition 4.1. The HIGDE (1.1) is said to be locally Ulam-Hyers stable if for ε > 0 and for each solution
y ∈ Br[x0] of the inequality

∣∣∣y′′(t)− f
(
t, y(t),

∫ t

t0

g(s, y(s)) ds
)∣∣∣ ≤ ε, t ∈ J,

y(t0) = α0, y′(t0) = α1,





(∗)

there exists a constant Kf > 0 such that ∣∣y(t)− ξ(t)
∣∣ ≤ Kf ε (∗∗)

for all t ∈ J , where ξ ∈ Br[x0] is a local solution of the HIGDE (1.1) defined on J . The solution ξ of the
HIGDE (1.1) is called Ulam-Hyers stable local solution on J .

Theorem 4.1. Assume that all the hypotheses of Theorem 3.2 hold. Then the HIGDE (1.1) has a unique
Ulam-Hyers stable local solution x∗ ∈ Br[x0] and the sequence {xn}∞n=0 of successive approximations given
by (3.3) converges monotone nondecreasingly to x∗.

Proof. Let ε > 0 be given and let y ∈ Br[x0] be a solution of the functional inequality (4.1) on J , that is,
we have ∣∣∣y′′(t)− f

(
t, y(t),

∫ t

t0

g(s, y(s)) ds
)∣∣∣ ≤ ε, t ∈ J,

y(t0) = α0, y′(t0) = α1,





(4.1)

By Theorem 3.2, the HIGDE (1.1) has a unique local solution ξ ∈ Br[x0]. Then by Lemma 2.1, one has

ξ(t) = xo + α1(t− t0) +

∫ t

t0

(t− s) f
(
s, ξ(s),

∫ s

t0

g(τ, ξ(τ)) dτ
)
ds, t ∈ J. (4.2)
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Now, by integration of (4.1) yields the estimate:
∣∣∣∣y(t)− α0 − α1(t− t0)−

∫ t

t0

(t− s) f
(
s, y(s),

∫ s

t0

g(τ, y(τ)) dτ
)
ds

∣∣∣∣ ≤
a2

2
ε, (4.3)

for all t ∈ J .
Next, from (4.2) and (4.3) we obtain∣∣y(t)− ξ(t)

∣∣

=

∣∣∣∣y(t)− α0 − α1(t− t0)−
∫ t

t0

(t− s)f
(
s, ξ(s),

∫ s

t0

g(τ, ξ(τ)) dτ
)
ds

∣∣∣∣

≤
∣∣∣∣y(t)− α0 − α1(t− t0)−

∫ t

t0

(t− s)f
(
s, y(s),

∫ s

t0

g(τ, y(τ)) dτ
)
ds

∣∣∣∣

+

∣∣∣∣
∫ t

t0

(t− s)
[
f
(
s, y(s),

∫ s

t0

g(τ, y(τ)) dτ
)
− f

(
s, ξ(s),

∫ s

t0

g(τ, ξ(τ)) dτ
)]
ds

∣∣∣∣

≤ a2

2
ε+

∣∣∣∣
∫ t

t0

a
[
`1
(
y(s)− ξ(s)

)
+ `2

∫ t

t0

k (t− s)
(
y(τ)− ξ(τ)

)
dτ
]
ds

∣∣∣∣

=
a2

2
ε+ `1a

∫ t

t0

|y(s)− ξ(s)| ds+ `2k a
2

∫ t

t0

|y(s)− ξ(s)| ds

≤ a2

2
ε+ +`1a

∫ t0+a

t0

‖y − ξ‖ ds+ `2 k a
2

∫ t0+a

t0

‖y − ξ‖ ds

=
a2

2
ε+ a2

(
`1 + `2k a

)
‖y − ξ‖

=
a2

2
ε+ λ‖y − ξ‖

for all t ∈ J , where λ = a2
(
`1 + `2k a

)
< 1. Taking the supremum over t, we obtain

‖y − ξ‖ ≤ a2

2
ε+ a2

(
`1 + `2k a

)
‖y − ξ‖

or

‖y − ξ‖ ≤
[

a2

2[1− a2
(
`1 + `2k a

)
]

]
ε

where, a2
(
`1 + `2k a

)
< 1. Letting Kf =

[
a2

2[1− a2
(
`1 + `2k a

)
]

]
> 0, we obtain

∣∣y(t)− ξ(t)
∣∣ ≤ Kf ε

for all t ∈ J . As a result, ξ is a Ulam-Hyers stable local solution of the HIGDE (1.1) on J and the
sequence {xn}∞n=0 of successive approximations defined by (3.3) is monotone nondecreasing and converges
to ξ. Consequently the HIGDE (1.1) is a locally Ulam-Hyers stable on J . This completes the proof.

Remark 4.1. If the given initial condition in the equation (1.1) is such that x0 > 0, then under the conditions
of Theorem 4.1, the HIGDE (1.1) has a unique Ulam-Hyers stable local positive solution x∗ defined on J and
the sequence {xn}∞n=0 of successive approximations defined by (3.3) converges monotone nondecreasingly to
x∗.

5 The Examples
In this section, we indicate a couple of examples illustrating the abstract ideas involved in the main
approximation results, Theorems 3.1, 3.2 and 4.1 of this paper.

Example 5.1. Given a closed and bounded interval J = [0, 1] in R, consider the IVP of nonlinear first order
HIGDE,

x′′(t) = tanhx(t) +

∫ t

0

tanhx(s) ds, t ∈ [0, 1]; x(0) =
1

4
, x′(0) = 1. (5.1)
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Here, α0 = 1
4 , α1 = 1, g(t, x) = tanhx, (t, x) ∈ [0, 1] × R and f(t, x, y) = tanhx + y for (t, x, y) ∈

[0, 1] × R × R. We show that the functions g and f satisfy all the conditions of Theorem 3.1. Clearly, f is
bounded on [0, 1] × R × R with bound Mf = 2 and so the hypothesis (H1) is satisfied. Also the function
f(t, x, y) is nondecreasing in x and y for each t ∈ [0, 1]. Therefore, hypothesis (H2) is satisfied. Next,
g(t, x) is nondecreasing in x for each t ∈ [0, 1], so the hypothesis (H3) is satisfied. Moreover, f(t, α0, y) =
f(t, 1

4 , y) = tanh( 1
4 ) + y ≥ 0 and α1 ≥ 0 for each t ∈ [0, 1] and y ≥ 0, so the hypothesis (H4) holds. Finally,

g(t, α0) = tanh( 1
4 ) ≥ 0 for all t ∈ [0, 1] and hypothesis (H5) is satisfied. If we take r = 2 and M = 1, all

the conditions of Theorem 3.1 are satisfied. Hence, the HIGDE (5.1) has a local solution x∗ in the closed
ball B1

2 [ 1
4 ] of C(J,R) which is positive in view of Remark 3.2. Moreover, the sequence {xn}∞n=0 of successive

approximations defined by

x0(t) =
1

4
, t ∈ [0, 1],

xn+1(t) =
1

4
+ α1(t− t0) +

∫ t

0

tanhxn(s) ds+

∫ t

0

(t− s) tanhxn(s) ds, t ∈ [0, 1],

is monotone nondecreasing and converges to the positive solution x∗ defined on [0, 1].

Example 5.2. Given a closed and bounded interval J = [0, 1] in R, consider the IVP of nonlinear first order
HIGDE,

x′′(t) =
1

4
tan−1 x(t) +

1

4

∫ t

0

tan−1 x(s) , t ∈ [0, 1]; x(0) =
1

4
, x′(0) = 1. (5.2)

Here, α0 =
1

4
, α1 = 1, and g(t, x) = tan−1 x for (t, x) ∈ [0, 1] × R. Again, f(t, x, y) =

1

4
tan−1 x +

1

4
y

for each t ∈ [0, 1]. We show that f satisfies all the conditions of Theorem 3.2. Clearly, f is bounded on
[0, 1]× R× R with bound Mf = 11

14 and so, the hypothesis (H1) is satisfied. Next, let x, y ∈ R be such that
x ≥ y. Then there exists a constant ξ with x < ξ < y satisfying

0 ≤ g(t, x)− g(t, y) ≤ 1

1 + ξ2
(x− y) ≤ (x− y)

for all t ∈ [0, 1]. So the hypothesis (H7) holds with k = 1. Moreover, g(t, α0) = g
(
t, 1

4

)
= tan−1

(
1
4

)
≥ 0 for

each t ∈ [0, 1], and so the hypothesis (H4) holds. Similarly,

f(t, α0, y) =
1

4
tan−1 α0 +

1

4
y = tan−1

(1

4

)
+

1

4
y ≥ 0

and α1(t − t0) = t ≥ 0 for all t ∈ [0, 1] and for all positive number y, so the hypothesis (H4) is satisfied.
Next, let x1, y1, x2, y2 ∈ R with x1 ≥ y1, x2 ≥ y2. Then,

0 ≤ f(t, x1, x2)− f(t, y1, y2) ≤ 1

4
· (x1 − y2) +

1

4
(x2 − y2)

for each t ∈ [0, 1]. Therefore, hypothesis (H6) holds with `1 = 1
4 = `2. If we take r = 2, then we have

Mfa =
11

14
≤
(

1− 1

2

)
· 2 =

[
1−

(
`1a+ `2k a

2
)]
r

and so, the condition (3.6) is satisfied. Thus, all the conditions of Theorem 3.2 are satisfied. Hence, the
HIGDE (5.2) has a unique local solution x∗ in the closed ball B2[ 1

4 ] of C(J,R) and the sequence {xn}∞n=0 of
successive approximations defined by

x0(t) =
1

4
, t ∈ [0, 1],

xn+1(t) =
1

4
+

1

4

∫ t

0

tan−1 xn(s) ds+

∫ t

0

(t− s) tan−1 xn(s) ds, t ∈ [0, 1],

monotone nondecreasing converges to x∗. Moreover, the unique local solution x∗ is Ulam-Hyers stable on
[0, 1] in view of Definition 4.1. Consequently the HIGDE (5.2) is a locally Ulam-Hyers stable on the interval
[0, 1].

Remark 5.1. The local approximation results of this paper includes similar results for the nonlinear IVPs of
second order ordinary differential equations

x′′(t) = f
(
t, x(t)

)
, t ∈ J,

x(t0) = α0, x′(t0) = α1,

}
(5.3)

proved in Dhage et al. [11] as the special cases.
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Remark 5.2. The approximation results of this paper may be extended to nonlinear IVPs of higher order
ordinary differential equations

x(n)(t) = f
(
t, x(t),

∫ t

t0

g(s, x(s)) ds
)
, t ∈ J,

x(i)(t0) = α(i), i = 0, 1, 2, . . . , n− 1,





(5.4)

by using the arguments similar to Theorems 3.1 and 3.2 with appropriate modifications.

6 Concluding Remark
Finally, while concluding this paper, we remark that unlike the Schauder fixed point theorem we do not
require any convexity argument in the proof of main existence theorem, Theorem 3.1. Similarly, we do not
require the usual Lipschitz condition in the proof of uniqueness theorem, Theorem 3.2, but a weaker form of
one sided or partial Lipschitz condition is enough to serve the purpose. However, in both the cases we are able
to acHIEve the existence of local solution by convergence of the successive approximations. Moreover, the
differential equation (1.1) considered in this paper is of very simple form, however other complex nonlinear
IVPs of HIGDEs may be considered and the present study can also be extended to such sophisticated
nonlinear differential equations with appropriate modifications. These and other such problems form the
further research scope in the subject of nonlinear differential and integral equations with applications. Some
of the results in this direction will be reported elsewhere.
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Abstract

In this paper, we study and establish some results on properties of d-frames [1] and d-frame operators.
Also, we present a result on the perturbation analysis of the d-frames.
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1 Introduction
Let H be a Hilbert space and I a countable index set. A sequence {xi}i∈I in H is said to be a Bessel sequence
with Bessel bound λ2 > 0 if

∑
i∈I
|〈x, xi〉|2 ≤ λ2||x||2 for all x ∈ H. A Bessel sequence {xi}i∈I with Bessel bound

λ2 is said to be a frame for H if there exists constant λ1 > 0 such that λ1||x||2 ≤
∑
i∈I |〈x, xi〉|2 ≤ λ2||x||2,

for all x ∈ H. For frame {xi}i∈I, the positive constants λ1 and λ2 are called the lower and upper frame
bounds respectively. A frame {xi}i∈I is said to be a tight frame if λ1 = λ2.

By putting forward a landmark paper on frames [5], Daubechies, Grossmann and Meyer brought back
the attention of the researchers towards the frame theory which was introduced by Duffin and Schaeffer [7]
almost thirty years before.

In the last three decades, frames have been widely studied and applied in various fields of study viz.
sampling theory, signal processing, system modeling, data analysis, etc. (For more details see [3, 4, 6, 8, 10]).

Here, it is to be noted that every Bessel sequence is not necessarily a frame always. Motivated by this fact,
researchers generalised the concept of constructing the frames from the Bessel sequences in different ways. In
fact they used either an operator on the Bessel sequence to make it frame or they rearranged/added/scattered
the terms of the sequence to make it a frame. In the sequel, recently Mehra et al. [1] introduced d-frames
for a Hilbert space H by using the concept of double sequences and studied certain properties of d-frame,
d-frame operators and stability of d-frames. In this note, we study and establish some results on d-frame
and their properties. Some of a results are extensions and generalizations of the results of [9] for d-frames in
Hilbert spaces.

2 Preliminaries
Throughout this paper, H denotes an infinite dimensional Hilbert space and N denotes the set of all natural
numbers. To prove our main results, we use following definitions, concept of space and results from [1].

Definition 2.1 ([1]). The double sequence {xij}i,j∈N in H is said to be a d-frame for H if there exist positive
constants λ1 and λ2 such that

λ1||x||2 ≤ lim
m,n→∞

m,n∑

i,j=1

|〈x, xij〉|2 ≤ λ2||x||2, for all x ∈ H. (2.1)

The constants λ1 and λ2 are called lower and upper d-frame bounds respectively.

If λ1 = λ2, then {xij}i,j∈N is called tight d-frame, and if λ1 = λ2 = 1, then it is called Parseval d-frame.

A double sequence {xij}i,j∈N in Hilbert space H is called d-Bessel sequence with bound λ2 if it satisfies
upper d-frame inequality i.e.,

lim
m,n→∞

m,n∑

i,j=1

|〈x, xij〉|2 ≤ λ2||x||2, ∀x ∈ H.
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Consider the following spaces as defined in [1]:

l 2(N× N) = {{αij}i,j∈N : αij ∈ F, lim
m,n→∞

m,n∑

i,j=1

|αij|2 <∞}.

Then l 2(N× N) is a Hilbert space with the norm induced by the inner product which is given by,

〈
{αij}i,j∈N, {βij}i,j∈N

〉
= lim
m,n→∞

m,n∑

i,j=1

αijβij , ∀{αij}i,j∈N, {βij}i,j∈N ∈ l 2(N× N).

Remark 2.1 ([1]). Let {xij}i,j∈N be a d-Bessel sequence. Define operator T : l 2(N× N)→ H as

T ({αij}i,j∈N) = lim
m,n→∞

m,n∑

i,j=1

αijxij , ∀{αij}i,j∈N ∈ l 2(N× N).

If {xij}i,j∈N is a d-frame then operator T is called pre d-frame (synthesis) operator and the adjoint
operator T ∗ of T is called analysis operator for d-frame, and defined as

T ∗(x) = {〈x, xij〉}i,j∈N, ∀x ∈ H.

Theorem 2.1 ([1]). A double sequence {xij}i,j∈N in H is a d-Bessel sequence with d-Bessel bound λ2 if and

only if the operator T is linear, well defined and bounded with ‖T ‖ ≤
√
λ2.

Theorem 2.2 ([1]). A double sequence {xij}i,j∈N in H is a d-frame for H if and only if the operator T is
well defined, bounded, linear and surjective.

The d-frame operator S : H → H for d-frame {xij}i,j∈N defined as:

S(x) = T T ∗(x)

= T ({〈x, xij〉}i,j∈N)

= lim
m,n→∞

m,n∑

i,j=1

〈x, xij〉xij , ∀x ∈ H.

Since T and T ∗ both are linear, so S is also linear.

Theorem 2.3 ([1]). d-frame operator S is bounded, self adjoint, positive and invertible.

Definition 2.2 ([1]). A d-frame {x̃ij}i,j∈N for a Hilbert space H is called alternate dual d-frame for a given
d-frame {xij}i,j∈N, if

x = lim
m,n→∞

m,n∑

i,j=1

〈x, x̃ij〉xij , ∀ x ∈ H.

Remark 2.2 ([1]). {S−1(xij)}i,j∈N is a special type of dual d-frame for {xij}i,j∈N, called canonical dual
d-frame.

3 Main Results
Proposition 3.1. Let T , T ∗ and S are operators as defined above for a d-Bessel sequence {xij}i,j∈N. Then

(I) {xij}i,j∈N is a d-frame for H if and only if S is invertible.
(II) {xij}i,j∈N is a d-frame for H if and only if the analysis operator T ∗ is invertible.

Proof. (I) If {xij}i,j∈N is a d-frame for H then by Theorem 2.3, S is invertible.
Conversely, If S is invertible ⇒ T is surjective. By Theorem 2.2, {xij}i,j∈N is a d-frame for H.

Proof. (II) {xij}i,j∈N is a d-frame for H ⇐⇒ T is surjective ⇒ T ∗ is an isomorphism ⇒ T ∗ is invertible.
Conversely, T ∗ is invertible ⇒ T ∗ is surjective ⇒ T is an isomorphism ⇒ T is surjective ⇐⇒ {xij}i,j∈N is
a d-frame for H.

Theorem 3.1. Let {xij}i,j∈N be a d-frame for H with d-frame operator S, d-frame bounds λ1 ≤ λ2 and let
U : H → H be a bounded operator. Then {Uxij}i,j∈N is a d-frame for H if and only if U is invertible.
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Proof. Let U be invertible operator, then for each x ∈ H,

lim
m,n→∞

m,n∑

i,j=1

|〈x,Uxij〉|2 = lim
m,n→∞

m,n∑

i,j=1

|〈U∗x, xij〉|2 ≥ λ1||U∗x||2 ≥ ||U−1||2λ1||x||2

and

lim
m,n→∞

m,n∑

i,j=1

|〈x,Uxij〉|2 = lim
m,n→∞

m,n∑

i,j=1

|〈U∗x, xij〉|2 ≤ λ2||U∗x||2 ≤ ||U||2λ2||x||2.

Thus, {Uxij}i,j∈N is a d-frame for H with d-frame bounds ||U−1||2λ1, ||U||2λ2.
Conversely, If {Uxij}i,j∈N is a d-frame for H, then its d-frame operator is invertible on H.

Now, d-frame operator of {Uxij}i,j∈N is

lim
m,n→∞

m,n∑

i,j=1

〈x,Uxij〉Uxij = U
(

lim
m,n→∞

m,n∑

i,j=1

〈x,Uxij〉xij
)

= U
(

lim
m,n→∞

m,n∑

i,j=1

〈U∗x, xij〉xij
)

= USU∗(x).

USU∗ is invertible ⇒ U is surjective ⇒ U∗ is isomorphism ⇒ U∗ is surjective ⇒ U is invertible.

Corollary 3.1. If {xij}i,j∈N be a d-frame for H with d-frame operator S and U : H → H is a bounded
positive operator, then {xij+Uxij}i,j∈N is a d-frame with the d-frame operator (I+U)S(I+U∗) and d-frame
bounds ||I + U||−2λ1, ||I + U||2λ2, if and only if I + U is invertible.

Corollary 3.2. If {xij}i,j∈N is a d-frame for H and P is an orthogonal projection on H, then {xij +
αPxij}i,j∈N is a d-frame for H, where α 6= −1 is an scalar.

Theorem 3.2. Let {xij}i,j∈N and {yij}i,j∈N be d-Bessel sequences in H with analysis operators T ∗1 , T ∗2 and
d-frame operators S1, S2 respectively. Then for operators U1,U2 : H → H, {U1xij + U2yij}i,j∈N is a d-frame
for H if an only if T ∗1 U∗1 +T ∗2 U∗2 is an invertible operator. Further, d-frame operator for {U1xij +U2yij}i,j∈N
is S = U1S1U∗1 + U2S2U∗2 + U1T1T ∗2 U∗2 + U2T2T ∗1 U∗1 .

Proof. {U1xij + U2yij}i,j∈N is a d-frame for H if and only if its analysis operator say L∗ is invertible, where

L∗(x) = {〈x,U1xij + U2yij〉}i,j∈N
= {〈x,U1xij〉+ 〈x,U2yij〉}i,j∈N
= {〈U∗1x, xij〉}i,j∈N + {〈U∗2x, yij〉}i,j∈N
= T ∗1 U∗1x+ T ∗2 U∗2x.

Thus, L∗ = T ∗1 U∗1 + T ∗2 U∗2 is invertible.

And the d-frame operator for sequence {U1xij + U2yij}i,j∈N is

S = LL∗ = (T ∗1 U∗1 + T ∗2 U∗2 )∗(T ∗1 U∗1 + T ∗2 U∗2 )

= U1S1U∗1 + U2S2U∗2 + U1T1T ∗2 U∗2 + U2T2T ∗1 U∗1 .

Remark 3.1. In the above propositions, theorems and corollaries, if we consider classical frames in place of
d-frames, we get the results of [9].

To construct a sequence of alternate dual d-frames from a given d-Bessel sequence, we prove following
results.

Theorem 3.3. Let {xij}i,j∈N be a d-frame for H with d-frame operator S. Then for a given d-Bessel
sequence {uij}i,j∈N, the double sequence {yij : yij = S−1xij + uij}i,j∈N is a dual d-frame for {xij}i,j∈N if
and only if limm,n→∞

∑m,n
i,j=1〈x, uij〉xij = 0, for all x ∈ H.
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Proof. For the given d-Bessel sequence {uij}i,j∈N, we have limm,n→∞
∑m,n
i,j=1〈x, uij〉xij = 0,∀ x ∈ H. Then

lim
m,n→∞

m,n∑

i,j=1

〈x, yij〉xij = lim
m,n→∞

m,n∑

i,j=1

〈x,S−1xij〉xij + lim
m,n→∞

m,n∑

i,j=1

〈x, uij〉xij

= x
⇒ {yij}i,j∈N is a dual d-frame for {xij}i,j∈N.

Conversely, If {yij}i,j∈N is a dual d-frame for {xij}i,j∈N where yij = S−1xij + uij , then

x = lim
m,n→∞

m,n∑

i,j=1

〈x, yij〉xij , ∀ x ∈ H

= x+ lim
m,n→∞

m,n∑

i,j=1

〈x, uij〉xij

⇒ limm,n→∞
∑m,n
i,j=1〈x, uij〉xij = 0.

Theorem 3.4. If {xij}i,j∈N be a d-frame for H with d-frame operator S and dual {yij}i,j∈N. Then the
sequence {gij}i,j∈N define by gij = S−1xij − xij + Syij is also a dual for {xij}i,j∈N.

Proof.

lim
m,n→∞

m,n∑

i,j=1

〈x, gij〉xij = lim
m,n→∞

m,n∑

i,j=1

〈x,S−1xij − xij + Syij〉xij

= x− lim
m,n→∞

m,n∑

i,j=1

〈x,Sxij〉S−1xij + lim
m,n→∞

m,n∑

i,j=1

〈x,Syij〉xij

= x− lim
m,n→∞

m,n∑

i,j=1

〈S∗x, xij〉S−1xij + lim
m,n→∞

m,n∑

i,j=1

〈S∗x, yij〉xij

= x− S∗x+ S∗x
= x.

To prove our next theorem, we use following results from Casazza et al. [2].

Lemma 3.1 ([2]). Let U : H → H be a linear operator and assume that there exist constant α, β ∈ [0, 1[
such that

||Ux− x|| ≤ α||x||+ β||Ux||, ∀ x ∈ H.
Then U is a bounded linear invertible operator on H, and

1− α
1 + β

||x|| ≤ ||Ux|| ≤ 1 + α

1− β ||x||,
1− β
1 + α

||x|| ≤ ||U−1x|| ≤ 1 + β

1− α ||x||, ∀ x ∈ H.

Lemma 3.2 ([2]). Let X and Y are two Hilbert spaces, U : X → Y be a bounded operator, X0 a dense
subspace of X and V : X → Y a linear mapping. If

||Ux− Vx|| ≤ α||Ux||+ β||Vx||+ γ||x||, ∀ x ∈ X0,
where β ∈ [0, 1[, then V is a bounded linear operator on a dense subspace of X and hence has a unique
extension to a bounded linear operator (of the same norm) on X .

Theorem 3.5. Let {xij}i,j∈N be a d-frame with bounds λ1, λ2,and {yij}i,j∈N be a double sequence in H and

assume that ∃ constant α, β, γ ≥ 0 such that max

(
α+ γ√

λ1
, β

)
< 1 and

lim
m,n→∞

∥∥∥∥∥∥

m,n∑

i,j=1

cij(xij − yij)

∥∥∥∥∥∥
≤ α lim

m,n→∞

∥∥∥∥∥∥

m,n∑

i,j=1

cijxij

∥∥∥∥∥∥
+ β lim

m,n→∞

∥∥∥∥∥∥

m,n∑

i,j=1

cijyij

∥∥∥∥∥∥
+ γ‖{cij}i,j∈N‖, ∀{cij}i,j∈N ∈ l 2(N× N). (3.1)

Then, {yij}i,j∈N is also a d-frame for H with bounds λ1

(
1−

α+β+ γ√
λ1

1+β

)2

and λ2

(
1 +

α+β+ γ√
λ2

1−β

)2

.
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Proof. If {xij}i,j∈N is a d-frame, then for pre d-frame operator T of {xij}i,j∈N, we have

‖T ({cij}i,j∈N)‖ = lim
m,n→∞

∥∥∥∥∥∥

m,n∑

i,j=1

cijxij

∥∥∥∥∥∥
≤
√
λ2 ‖{cij}i,j∈N‖, {cij}i,j∈N ∈ l 2(N× N). (3.2)

Define an operator U : l 2(N× N)→ H such that

U({cij}i,j∈N) = lim
m,n→∞

m,n∑

i,j=1

cijyij . (3.3)

For equations (3.2) and (3.3), the equation (3.1) gives

||T ({cij}i,j∈N)− U({cij}i,j∈N)|| ≤ α||T ({cij}i,j∈N)||+ β||U({cij}i,j∈N)||+ γ||({cij}i,j∈N)||,
∀ ({cij}i,j∈N) ∈ l 2(N× N).

Therefore, from Lemma 3.2, U is bounded linear operator on l 2(N× N).
Using triangle inequality, we have

‖U({cij}i,j∈N)‖ ≤ ‖T ({cij}i,j∈N)− U({cij}i,j∈N)‖+ ‖T ({cij}i,j∈N)‖

⇒ ‖U({cij}i,j∈N)‖ ≤ 1 + α

1− β ||T ({cij}i,j∈N)||+ γ

1− β ||({cij}i,j∈N)||

⇒ lim
m,n→∞

∥∥∥∥∥∥

m,n∑

i,j=1

cijyij

∥∥∥∥∥∥
≤ 1 + α

1− β lim
m,n→∞

∥∥∥∥∥∥

m,n∑

i,j=1

cijxij

∥∥∥∥∥∥
+

γ

1− β ||({cij}i,j∈N)||

≤
(

(1 + α)
√
λ2 + γ

1− β

)
||({cij}i,j∈N)||.

Thus, {yij}i,j∈N is a d-Bessel sequence with bound

(
(1+α)

√
λ2+γ

1−β

)2

= λ2

(
1 +

α+β+ γ√
λ2

1−β

)2

.

Since {xij}i,j∈N is a d-frame, so for d-frame operator S, the double sequence {S−1xij}i,j∈N is the dual
d-frame of {xij}i,j∈N with upper bound λ−1

1 .
define an operator T † : H → l 2(N× N) such that

T †(x) = T ∗S−1(x)

=
{〈
x,S−1(xij)

〉}
i,j∈N, ∀x ∈ H.

Hence,

∥∥T †(x)
∥∥2

= lim
m,n→∞

m,n∑

i,j=1

∣∣〈x,S−1(xij)
〉∣∣2

≤ λ1
−1
∥∥x
∥∥2
, ∀x ∈ H.

Replacing {cij}i,j∈N by T †(x), in (3.1) and using (3.3), we get

‖x− UT †(x)‖ ≤
(
α+

γ√
λ1

)
‖x‖+ β||UT †(x)||, ∀x ∈ H. (3.4)

Applying Lemma 3.1, equation (3.4) implies that the operator UT † is invertible and

||UT †|| ≤
1 + α+ γ√

λ1

1− β , ‖(UT †)−1‖ ≤ 1 + β

1− (α+ γ√
λ1

)
, ∀ x ∈ H.

For x ∈ H,

x = (UT †)(UT †)−1(x)

= lim
m,n→∞

m,n∑

i,j=1

〈
(UT †)−1(x),S−1(xij)

〉
yij .

⇒ ‖x‖4 = 〈x, x〉2 =

∣∣∣∣ lim
m,n→∞

m,n∑

i,j=1

〈
(UT †)−1(x),S−1(xij)

〉〈
yij , x

〉∣∣∣∣
2
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≤ 1

λ1

∥∥(UT †)−1(x)
∥∥2

lim
m,n→∞

m,n∑

i,j=1

∣∣〈yij , x
〉∣∣2

≤ 1

λ1

(
1 + β

1− (α+ γ√
λ1

)

)2

‖x‖2 lim
m,n→∞

m,n∑

i,j=1

∣∣〈yij , x
〉∣∣2.

⇒ lim
m,n→∞

m,n∑

i,j=1

∣∣〈yij , x
〉∣∣2 ≥ λ1

(1− (α+ γ√
λ1

)

1 + β

)2

‖x‖2

= λ1

(
1−

α+ β + γ√
λ1

1 + β

)2

‖x‖2, ∀ x ∈ H.

Thus, d-Bessel sequence {yij}i,j∈N is a d-frame with bounds λ1

(
1−

α+β+ γ√
λ1

1+β

)2

and λ2

(
1+

α+β+ γ√
λ2

1−β

)2

.

Remark 3.2. Taking β = 0, Theorem 4.1 of [1] becomes a particular case of Theorem 3.5.

4 Conclusion
In this paper, we studied cases in which new d-frames can be constructed from the existing ones and
established the results on stability of d-frame under small perturbation. Also, we proved the result to
construct an alternate dual d-frame from a given specific d-Bessel sequence. The frame theory has many
exciting applications in different areas of study. So the concept of d-frame can have many applications
specially in signal processing. This can be taken as a future scope of interdisciplinary research.

Acknowledgement. The authors are thankful to the Editors and Reviewers for their valuable suggestions
to improve the paper.
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Abstract

In this paper, the non-existence of ξ-projectively flat 3-dimensional f -Kenmotsu manifold with
quarter-symmetric metric connection has been established. Moreover, we prove that 3-dimensional f -
Kenmotsu manifold with the quarter-symmetric metric connection is an η- Einstein manifold and the
Ricci soliton is given as expanding or shrinking under certain restrictions on f .
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1 Introduction
In 1924, the notion of semi-symmetric connections on a manifold was introduced by Friedman and Schouten[7]
and the notion of quarter-symmetric connections which are generalization of the semi-symmetric connections
was defined and studied by Golab[14]. Kenmotsu, in 1972, studied a class of contact Riemannian manifold
together with some special conditions and given it a name as Kenmotsu manifold.

A manifold M , with the structure (φ, ξ, η, g) is called normal if [φ, φ] + 2dη
⊗
ξ = 0 and it is almost

cosymplectic if dη = 0 and dφ = 0. M is cosymplectic if it is normal and almost cosymplectic. Olszak and
Rosca [12] studied f -Kenmotsu Manifolds in a geometrical aspect, and gave some curvature conditions. The
other mathematicians studied that a Ricci-symmetric f -Kenmotsu Manifold is an Einstein Manifold. Later
on, authors, in 2010, also proved that Ricci semi- symmetric α- Kenmotsu manifolds are Einstein manifolds.
By f -Kenmotsu Manifolds we mean an almost contact metric manifold which is locally conformal almost
cosymplectic and normal.

In 1983, the concept of Ricci solitons in contact geometry was studied by Sharma and Sinha [15]. Later,
in contact metric manifold Crasmareanu [4], Bejan [2] and others deeply studied Ricci solitons.

In 2012, Ricci solitons on Kenmotsu manifolds were studied exclusively by Nagraja and Premlatha [11]
and a study on quarter-symmetric metric connection were done by Sular, Özgur and De [13] and De and De
[6] in different ways.

Section 1 is introductory and in section 2, we have some fundamental notions used in this study. Section
3 deals with the introduction of f -Kenmotsu Manifold. In the next section 4, we study f -Kenmotsu manifold
with quarter-symmetric metric connection and proved that this manifold is not always ξ - projective flat.
In the last section we prove that f -Kenmotsu manifold with the quarter-symmetric metric connection is η-
Einstein manifold and the Ricci soliton defined on this manifold is classified with respect to the values of f
and λ.

2 Preliminaries
Let us consider a 3-dimensional differentiable manifold M with an almost contact metric structure (φ, ξ, η, g),
where φ is a (1,1) tensor field, ξ is a vecter field, η is a 1-form and g is Riemannian metric, satisfying

φ2X = −X + η(X)ξ,

η ◦ φ = 0,

φξ = 0,

η(ξ) = 1,

g(X, ξ) = η(X),
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g(X,φY ) = −g(φX, Y ),

g(φX, φY ) = g(X,Y )− η(X)η(Y ), (2.1)

for any vector fields X,Y ∈ χ(M). Then M is called an almost contact manifold. For an almost contact
manifold M , we have

(∇Xφ)Y = ∇XφY − φ(∇XY ), (2.2)

(∇Xη)Y = ∇XηY − η(∇XY ). (2.3)

Let {e1, e2, e3, ..., en} be orthonormal basis of Tp(M). R be Riemannian curvature tensor, S be Ricci
curvature tensor, Q be Ricci operator, then ∀X,Y ∈ χ(M) it follows that [5]

S(X,Y ) =

n∑

i=1

g(R(ei, X)Y, ei), (2.4)

QX = −
n∑

i=1

R(ei, X)ei, (2.5)

S(X,Y ) = g(QX,Y ). (2.6)

In f -Kenmotsu manifold, if the Ricci tensor S satisfy the condition

S(X,Y ) = αg(X,Y ) + βη(X)η(Y ) (2.7)

α, β be certain scalars, then the manifold M is said to be η-Einstein manifold. If β= 0, the manifold is
Einstein manifold.

In a 3-dimensional Riemannian manifold, the curvature tensor R is defind as

R(X,Y )Z = S(Y,Z)X − S(X,Z)Y + g(Y,Z)QX − g(X,Z)QY

−τ
2

[g(Y,Z)X − g(X,Z)Y ]. (2.8)

where S is the Ricci tensor, Q is Ricci operator and τ is the scalar curvature.
Now, let M be an n-dimensional Riemannian manifold with the Riemannian connection ∇. A linear

connection ∇̄ is said to be a quarter-symmetric connection on M if the torsion tensor T̄ of the connection
∇̄ satisfies

T̄ (X,Y ) = η(Y )φX − η(X)φY, (2.9)

where T̄ 6= 0 and η is a 1-form.
If moreover ∇̄g = 0, then the connection is called quarter-symmetric metric connection.
If ∇̄g 6= 0, the connection is called quarter-symmetric non-metric connection[17].
For n ≥ 1, the manifold M is locally projectively flat iff the projective curvature tensor P vanishes. We

define the projective curvature tensor P as

P (X,Y )Z = R(X,Y )Z − 1

2n
[S(Y, Z)X − S(X,Z)Y ]. (2.10)

for any X,Y, Z ∈ χ(M) where S is the Ricci tensor and R is the curvature tensor of M .
If P (X,Y )ξ = 0 for any X,Y ∈ χ(M), the manifold M is called ξ-projective flat[16].
A Ricci Soliton is defined on a Riemannian manifold (M, g) as a natural generalization of an Einstein

metric. We define Ricci Soliton as a triple (g, V, λ) with g a Riemannian metric, V a vector field and λ be a
real scalar such that

LV g + 2S + 2λg = 0 (2.11)

where LV denotes the Lie derivative operator along the vector field V and S is a Ricci tensor of M . The
Ricci soliton is said to be shrinking, steady and expanding according as λ is negative, zero and positive
respectively.
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3 f-Kenmotsu manifolds
A 3-dimensional almost contact manifold M with the structure (φ, ξ, η, g) is an f -Kenmotsu manifold if the
covariant derivative of φ satisfies [17],

(∇Xφ)Y = f [g(φX, Y )ξ − η(Y )φX] (3.1)

where f ∈ C∞(M,R) such that df ∧ η = 0.
If f2 + f ′ 6= 0, where f ′=ξf , then M is called Regular [4]. If f = α = constant 6= 0, M is called

α-Kenmotsu Manifold. If f = 1, the manifold is called Kenmotsu manifold.
By (2.1) and (2.3), we have

(∇Xη)Y = fg(φX, φY ). (3.2)

From (3.1), we have [15]
∇Xξ = f [X − η(X)ξ]. (3.3)

Also from (2.6), in 3-dimensional f -Kenmotsu manifold

R(X,Y )Z = (
τ

2
+ 2f2 + 2f ′)(X ∧ Y )Z

−(
τ

2
+ 3f2 + 3f ′)[η(X)(ξ ∧ Y )Z + η(Y )(X ∧ ξ)Z] (3.4)

and
S(X,Y ) = (

τ

2
+ f2 + f ′)g(X,Y )− (

τ

2
+ 3f2 + 3f ′)η(X)η(Y ). (3.5)

Thus from (3.5), we get
S(X, ξ) = −2(f2 + f ′)η(X) (3.6)

by (3.4) and (3.5),we get

R(X,Y )ξ = −(f2 + f ′)[η(Y )X − η(X)Y ] (3.7)

R(ξ,X)ξ = −(f2 + f ′)(η(X)ξ −X), (3.8)

QX = (
τ

2
+ f2 + f ′)X − (

τ

2
+ 3f2 + 3f ′)η(X)ξ. (3.9)

From ( 2.10 ) and using (3.6) and (3.7), we have

Theorem 3.1. A 3-dimensional f -Kenmotsu manifold is always ξ-projectively flat.

4 f-Kenmotsu Manifolds with the quarter-symmetric metric connection
Let ∇ be a Riemannian connection of f -Kenmotsu manifold and ∇̄ be a linear connection then this linear
connection ∇̄ defined as

∇̄XY = ∇XY − η(X)φY, (4.1)

where X,Y ∈ χ(M) be any vector field and η be 1-form, is called the quarter-symmetric metric connection.
Now, using (2.2),(3.1) and (4.1) we have

(∇̄Xφ)Y = f [g(φX, Y )ξ − η(Y )φX], (4.2)

for any vector field X,Y ∈ χ(M), where φ be (1,1) tensor field, ξ is a vector field, η is 1-form and f ∈
C∞(M,R) so that df ∧ η = 0. As a result of df ∧ η = 0, we have

df = f ′, X(f) = f ′η(X), (4.3)

where f ′=ξf [11].
If f = 0, manifold is cosymplectic. If f = α 6= 0, then the manifold is α-Kenmotsu. An f -Kenmotsu

manifold with quarter -symmetric metric connection is called regular if f2 + f ′ − 2fφ 6= 0.
By (2.2),(4.2) we have

∇̄Xξ = f [X − η(X)ξ]. (4.4)

Using ( 2.2 ),(2.1) and ( 3.2 ), we get

(∇̄Xη)Y = fg(φX, φY ). (4.5)
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We define the curvature tensor R̄ of f -Kenmotsu manifold M with respect to quarter-symmetric metric
connection ∇̄ as

R̄(X,Y )ξ = ∇̄X∇̄Y ξ − ∇̄Y ∇̄Xξ − ∇̄[X,Y ]ξ. (4.6)

Using (4.1), (4.4) and (3.3), we obtain

∇̄X∇̄Y ξ = X(f)Y − η(Y )X(f)ξ + f∇XY − fη(X)φY − f2η(Y )X

+f2η(X)η(Y )ξ − fXη(Y )ξ, (4.7)

∇̄Y ∇̄Xξ = Y (f)X − η(X)Y (f)ξ + f∇YX − fη(Y )φX − f2η(X)Y

+f2η(Y )η(X)ξ − fY η(X)ξ (4.8)

and

∇̄[X,Y ]ξ = f∇XY − f∇YX − fXη(Y )ξ + fY η(X)ξ. (4.9)

Using (4.9) and (4.8) in (4.6), we have

R̄(X,Y )ξ = X(f)Y − Y (f)X − η(Y )X(f)ξ + η(X)Y (f)ξ − fη(X)φY

+fη(Y )φX − f2η(Y )X + f2η(X)Y. (4.10)

Now using (4.3 ) in (4.10), we have

R̄(X,Y )ξ = −(f2 + f ′)(η(Y )X − η(X)Y ) + f(η(Y )φX − η(X)φY ). (4.11)

From (4.11), we get
R̄(ξ, Y )ξ = −(f2 + f ′)(η(Y )ξ − Y )− fφY, (4.12)

and
R̄(X, ξ)ξ = −(f2 + f ′)(X − η(X)ξ) + fφX. (4.13)

In (4.11) taking inner product with Z, we get

g(R̄(X,Y )ξ, Z) = −(f2 + f ′)(η(Y )g(X,Z)− η(X)g(Y,Z))

+f(η(Y )g(φX,Z)− η(X)g(φY,Z)). (4.14)

Now we have,

Lemma 4.1. Let M be 3-dimensional f -Kenmotsu manifold with the quarter-symmetric metric connection.If
S̄ be Ricci curvature and Q̄ be Ricci operator. Then

S̄(X, ξ) = −2(f2 + f ′)η(X), (4.15)

and
Q̄ξ = −2(f2 + f ′)ξ. (4.16)

Proof. Contracting (4.14) with Y and Z, taking summation over i = 1, 2, 3, ..., n and using ( 2.4 ) the proof
of (4.15) is completed. Also by (2.6) and (2.1) in (4.15), we get (4.16).

Lemma 4.2. Let M be 3-dimensional f -Kenmotsu manifold with quarter-symmetric metric connection.If S̄
be Ricci tensor, τ be scaler curvature tensor and Q̄ Ricci operator. Then it follows that

S̄(X,Y ) = (
τ

2
+ f2 + f ′)g(X,Y )− (

τ

2
+ 3f2 + 3f ′)η(X)η(Y )

+fg(φX, Y ), (4.17)

and
Q̄X = (

τ

2
+ f2 + f ′)X − (

τ

2
+ 3f2 + 3f ′)η(X)ξ + fφX. (4.18)

Proof. Contracting with Y in (4.13), we get

g(R̄(X, ξ)ξ, Y ) = −(f2 + f ′)(g(X,Y )− η(X)η(Y )) + fg(φX, Y ). (4.19)

Putting X=ξ, Y=X, Z=Y in ( 2.8 ), using (4.15) and taking contraction with ξ, we obtain

g(R̄(ξ,X)Y, ξ) = S̄(X,Y )− (2f2 + 2f ′ +
τ

2
)g(X,Y ) + (4f2 + 4f ′ +

τ

2
)η(X)η(Y )

−τ
2

[g(X,Y )− η(X)η(Y )]. (4.20)
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With the help of (4.19) and (4.20), we have (4.17) . Now using (4.17)and (2.6), we get

g(Q̄X − [(
τ

2
+ f2 + f ′)X − (

τ

2
+ 3f2 + 3f ′)η(X)ξ + fφX], Y ) = 0. (4.21)

Since Y 6= 0 in (4.21), which leads the proof of (4.18).
Example 4.1 (A 3-dimensional f-Kenmotsu manifold with quarter-symmetric metric
connection). Let us consider a 3-dimensional manifold M =(x, y, z) ∈ R3, z 6=0, where (x, y, z) are
the standard coordinates in R3. The vector fields

e1 = z2 ∂
∂x , e2 = z2 ∂

∂y , e3 = ∂
∂z

are linearly independent at each point of M . Let g be the Riemannian metric defined as

g(e1, e1) = g(e2, e2) = g(e3, e3) = 1, g(e1, e2) = g(e2, e3) = g(e3, e1) = 0.

Considering a (1,1) tensor field φ defined by

φ(e1) = −e2, φ(e2) = e1, φ(e3) = 0,

then using linearity of g and φ, for any Z,W ∈ χ (M), we get

η(e3) = 1,

φ2(Z) = −Z + η(Z)e3,

g(φZ, φW ) = g(Z,W )− η(Z)η(W ).

Now by computation directly, we get

[e1, e2] = 0, [e2, e3] = −2

z
e2, [e1, e3] = −2

z
e1.

By the use of these above equations we have

∇e1e1 =
2

z
e3, ∇e2e2 =

2

z
e3, ∇e3e3 = 0, ∇e2e1 = ∇e1e2 = ∇e3e1 = ∇e3e3 = 0. (4.22)

Now in this example we consider for quarter-symmetric metric connection. By using (4.1) and (4.21), we
have

∇̄eiei =
2

z
e3, ∇̄e3e3 = 0, ∇̄eie3 = −2

z
ei, ∇̄eiej = 0, ∇̄e3e1 = e2, ∇̄e3e2 = −e1 (4.23)

where i 6= j = 1, 2. We know that

R̄(X,Y )Z = ∇̄X∇̄Y Z − ∇̄Y ∇̄XZ − ∇̄[X,Y ]Z. (4.24)

Using (4.23) and (4.24), we get

R̄(e1, e3)e3 = −2

z
(
3e1

z
+ e2),

R̄(e2, e3)e3 = −2

z
(
3e2

z
− e1),

R̄(ei, ej)e3 = 0, i, j = 1, 2

R̄(ei, ej)ej =
4

z2
ei, i, j = 1, 2 (4.25)

R̄(e1, e3)e2 = −2

z
e3,

R̄(e2, e3)e1 =
2

z
e3,

R̄(e3, ei)ei = − 6

z2
e3.

where i 6=j=1,2.
Using ( 2.4 ) and (4.25), we verify that

S̄(ei, ei) = − 2

z2
, i = 1, 2, S̄(e3, e3) = −12

z2
. (4.26)

Now using ( 2.10 ),(4.25) and (4.26), we find that

P̄ (e1, e2)e3 = 0, P̄ (ei, e3)e3 = −2

z
(
2e1

z
+ e2).

This leads the following Proposition:
Proposition 4.1 A 3-dimensional f -Kenmotsu manifold with the quarter-symmetric metric connection is
not necessarily ξ-projectively flat.
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5 Ricci Solitons in f-Kenmotsu Manifold with the quarter-symmetric metric connection
Consider a 3-dimensional f -Kenmotsu manifold with the quarter-symmetric metric connection. Let V be
pointwise collinear with ξ (i.e.V = bξ, where b is a function). Then

(LV g + 2S + 2λg)(X,Y ) = 0,

implies

0 = (Xb)η(Y ) + bg(∇̄Xξ, Y ) + (Y b)η(X) + bg(X, ∇̄Y ξ) + 2S̄(X,Y )

+2λg(X,Y ). (5.1)

Using ( 4.4 ) in (5.1), we get

2bfg(X,Y )− 2bfη(X)η(Y ) + (Xb)η(Y ) + (Y b)η(X) + 2S̄(X,Y ) + 2λg(X,Y ) = 0. (5.2)

Substitute Y with ξ in (5.2), we have

Xb+ (ξb)η(X)− 4(f2 + f ′)η(X) + 2λη(X) = 0. (5.3)

Again substituting X with ξ in (5.3)

ξb = 2(f2 + f ′)− λ. (5.4)

Putting (5.4) in (4.3), we get
b = [2(f2 + f ′)− λ]η. (5.5)

Applying d on (5.5)
0 = db = [2(f2 + f ′)− λ]dη. (5.6)

Since dη 6= 0,we have
[2(f2 + f ′)− λ] = 0. (5.7)

Now using (5.5) and (5.7) it is obtained that b is constant. Hence from (5.2), we can verify

S̄(X,Y ) = −(bf + λ)g(X,Y )− bfη(X)η(Y ). (5.8)

which results that M is η-Einstein manifold. Thus we have:

Theorem 5.1. If in a 3-dimensional f -Kenmotsu manifold M with quarter-symmetric metric connection,
the metric g is a Ricci soliton and V is a pointwise collinear with ξ, then V is a constant multiple of ξ
and M is η-Einstein manifold of the form (5.8) and Ricci Soliton is expanding or shrinking according as
λ = 2(f2 + f ′) is positive or negative.

6 Conclusion
In this study, we have some curvature conditions for 3-dimensional f -Kenmotsu manifolds with quarter-
symmetric metric connection. We have also shown that these manifolds are not always ξ-projective flat.
Finally, we have that 3-dimensional f -Kenmotsu manifold with the quarter-symmetric metric connection is
also an η-Einstein manifold and the Ricci soliton defined expanding or shrinking on this manifold is named
with respect to the values of f and λ.
Acknowledgement. The authors are thankful to the Department of Mathematics and Astronomy,
University of Lucknow, Lucknow, for giving full support for this study.
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Abstract

Applying weakly compatible for eight self-mappings in fuzzy metric space, we demonstrate common
fixed-point theorems in this analysis after already formulating the generalised ψ- weak contraction
condition, which involves third and fourth components of M(x, y, t).
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1 Introduction
The idea of fuzzy sets was developed by Zadeh [22] in 1965 as a novel approach to depict the ambiguity in
daily life. The development of fuzzy mathematics started at this point. In 1975, Kramosil and Michalek [10]
defined the fuzzy metric space with the help of continuous t-norm by using the concepts of fuzziness. Fuzzy
set theory is used in a wide range of real-world applications, including neural networks, fixed theory, health
care, image processing, and control theory. When Zadeh [22] introduced the idea of a fuzzy set, which served
as the basis for fuzzy mathematics, it marked a turning point in the history of mathematics.

Fuzzy mathematics has developed rapidly over the past three decades as a result, and recent studies have
revealed that practically all fields of mathematics, including arithmetic, topology, graph theory, probability
theory, logic, etc., have been fuzzyfied [1, 2, 4, 8, 9, 12, 13]. Communication, image processing, control theory,
mathematical programming, neural network theory, stability theory, engineering, and medical sciences are
among the applied areas where fuzzy set theory is used (medical genetics, nervous system). It makes sense
that fuzzy fixed point theory has become more popular among experts in the discipline and that fuzzy
mathematics has opened up new opportunities for fixed point theorists. For more details on this topic, one
can see [5, 11, 14, 15, 16, 17, 18, 20]

2 Preliminaries
Definition 2.1 ([19]). Let (B,M, ∗) be a fuzzy metric space and G and H be two self-mappings of this space.
When {xn} is a sequence in B such that limn→∞ Gxn = limn→∞Hxn = u for some u ∈ B, the mappings G
and H are known as compatible if limn→∞M(GHxn,HGxn, t) = 1, for all t > 0.

Jungck [6, 7] presented the idea of weakly compatible mappings in 1986 and demonstrated that weakly
compatible maps are compatible maps, despite the possibility that the opposite is also true. Later
Subrahmanyam [19] extended the definition as follows:

Definition 2.2 ([19]). If G and H commute at their coincidence sites, they are considered to be weakly
compatible.

Definition 2.3 ([3]). If B is arbitrary set, ∗ is a continuous t-norm, M is a fuzzy set in B2 × [0,∞), the
triplet (B,M, ∗) meets the following requirements for being a fuzzy metric space:
(i) M(x, y, t) > 0,
(ii) M(x, y, t) = 1 for all t > 0 if and only if x = y,
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(iii) M(x, y, t) =M(y, x, t),
(iv) (M(x, y, t) ∗M(y, z, s)) ≤M(x, z, t+ s),
(v) M(x, y, .) : [0,∞)→ [0, 1] is left continuous for all x, y, z ∈ B and s, t > 0,
(vi) limt→∞M(x, y, t) = 1, for all x, y,∈ B.
M(x, y, t) is a measure of how close together x and y are with regard to t.

Definition 2.4 ([14]). Let (B,M, ∗) be a fuzzy metric space. A sequence {xn} in B is defined as:
(i) Converge to x ∈ B if limn→∞M(xn, x, t) = 1 fo each t > 0.
(ii) Cauchy sequence if limn→∞M(xn, xp, t) = 1 for all t > 0 and p > 0.
(iii) Complete if every Cauchy sequence in B is convergent in B.

Proposition 2.1 ([6]). Let A and B be compatible mappings of a fuzzy metric space (B,M, ∗) into itself.
If At = Bt for some t in B, then ABt = AAt = BBt = BAt.

Proposition 2.2 ([6]). Let A and B be compatible mappings of a fuzzy metric space (B,M, ∗) into itself.
Suppose that limnAxn = limnBxn = t for some t in B. Then the following holds:

(i) BAxn = At if A is continuous at t;
(ii) ABxn = Bt if B is continuous at t;
(iii) ABt = BAt and At = Bt if A and B are continuous at t.

Lemma 2.1 ([19]). Let (B,M, ∗) be a fuzzy metric space. If there exists q ∈ (0, 1) such that M(x, y, qt) ≥
M(x, y, t) for all x, y ∈ B, and t > 0, then x = y.

Lemma 2.2 ([19] ). Let {yn} be a sequence in a fuzzy metric space (B,M, ∗). If there exists q ∈ (0, 1) such
that M(y(n+2), y(n+1), qt) ≥M(y(n+1), yn, t), t > 0, n ∈ N, then yn is a Cauchy sequence in B.

Lemma 2.3 ([20]). Let (B,M, ∗) be a fuzzy metric space. If there is a sequence {xn} ∈ X, such that for
every n ∈ N,

M(xn, x(n+1), t) ≥M(x0, x1, k
nt)

for every k > 1, then the sequence is a Cauchy sequence.

3 Main Results
Let Ψ be set of all continuous functions ψ : [0, 1]4 → [0, 1] increasing in any coordinate and ψ(t, t, t, t) > t.

Theorem 3.1. Let (B,M, ∗) be a complete fuzzy metric space. Let N ,P,Q,S, T ,K,L and W are eight
self-mappings of a complete fuzzy metric space (B,M, ∗) into itself satisfying
(C1)T K(B) ⊆ NP(B),WL(B) ⊆ QS(B),
(C2)QS = SQ,NP = PN , T K = KT ,WL = LW, (T K)S = S(T K), (WL)P = P(WL), (NP)L =
L(NP), (QS)K = K(QS)
(C3) One of NP(B),WL(B),QS(B) or T K(B) is complete ,
(C4) The pair (T K,QS) and (WL,NP) are weakly compatible,
(C5) M3(T Ku,WLv, t)

≥ ψ





M2(QSu, T Ku, ht)M(WLv,NPv, ht),
M(QSu, T Ku, ht)M2(WLv,NPv, ht),

M(QSu, T Ku, ht)M(T Ku,WLv, ht)M(WLv,NPv, ht),
M(WLv,NPv, ht)M(QSu,NPv, ht)M(QSu, T Ku, ht)





for all u, v ∈ B, h > 1 and ψ ∈ Ψ.
Then N ,P,Q,S, T ,K,L and W have a unique common fixed point in B.

Proof. Let x0 ∈ B be an arbitrary point. By (C1) we can search a point x1 such that T K(x0) = NP(x1) = y0.
For this point x1 one can search a point x2 ∈ B such that WL(x1) = QS(x2) = y1. By continuing in this
manner, a sequence {xn} can be created, such that y2n = JK(x2n) = NP(x2n+1),

y2n+1 =WL(x2n+1) = QS(x2n+2), for each n ≥ 0. (3.1)
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For simplicity, we take αm(t) =M(ym, ym+1, t).
Initially, we establish that {yn} is Cauchy sequence.

Case I. If n is even, considering u = x2n and v = x2n+1 in (C5), we get
M3(T Kx2n,WLx2n+1, t)

≥ ψ





M2(QSx2n, T Kx2n, ht)M(WLx2n+1,NPx2n+1, ht),
M(QSx2n, T Kx2n, ht)M

2(WLx2n+1,NPx2n+1, ht),
M(QSx2n, T Kx2n, ht)M(T Kx2n,WLx2n+1, ht)M(WLx2n+1,NPx2n+1, ht),
M(WLx2n+1,NPx2n+1, ht)M(QSx2n,NPx2n+1, ht)M(QSx2n, T Kx2n, ht)




.

Using (3.1), we have
M3(y2n, y2n+1, t)

≥ ψ





M2(y2n−1, y2n, ht)M(y2n+1, y2n, ht),
M(y2n−1, y2n, ht)M

2(y2n+1, y2n, ht),
M(y2n−1, y2n, ht)M(y2n, y2n+1, ht)M(y2n+1, y2n, ht),
M(y2n+1, y2n, ht)M(y2n−1, y2n, ht)M(y2n−1, y2n, ht)




.

On using α2n(t) =M(y2n, y2n+1, t) in the above inequality, we have

α3
2n(t) ≥ ψ

{
α2

2n−1(ht)α2n(ht), (α2n−1(ht)α2
2n(ht),

α2n−1(ht)α2
2n(ht), (α2n(ht)α2

2n−1(ht)

}
. (3.2)

We claim that α2n(ht) ≥ α2n−1(ht)
If α2n(ht) < α2n−1(ht), then (3.2) reduces to

α3
2n(t) ≥ ψ

{
α3

2n(ht), α3
2n(ht), α3

2n(ht), α3
2n(ht))

}
.

Using property of ψ we get
α3

2n(t) > α3
2n(ht) =⇒ α2n(t) > α2n(ht),

a contradiction.
Therefore α2n(ht) ≥ α2n−1(ht).
Like in similar manner, if n is odd, then we can achieve α2n+1(ht) ≥ α2n(ht).
It follows that the sequence αn(t) is increasing in [0, 1], thus (3.2) reduces to

α3
2n(t) ≥ ψ

{
α3

2n−1(ht), α3
2n−1(ht), α3

2n−1(ht)α3
2n−1(ht)

}
.

Using property of ψ we get
α3

2n(t) > α3
2n−1(ht)⇒ α2n(t) ≥ α2n−1(t).

Similarly for an odd integer 2n+ 1, we have α2n+1(t) ≥ α2n(ht),
Hence αn(t) ≥ αn−1(ht), that is,

M(yn, yn+1, t) ≥M(yn−1, yn, ht) ≥ ... ≥M(y0, y1, h
nt).

Hence by Lemma 2.3 {yn} is a Cauchy sequence in B.
Case II. NP(B) is complete. In this case {y2n} = {NPx2n+1} is a Cauchy sequence in NP(B), which is
complete then the sequence {y2n} converges to some point z ∈ NP(B). Consequently, the subsequences
{T Kx2n}, {QSx2n}, {NPx2n+1}, and {WLx2n+1} also converges to the same point z. As z ∈ NP(B),
there exists r ∈ B such that z = NPr.
Now we claim that z =WLr. For this putting u = x2n and v = r in (C5), we get
M3(T Kx2n,WLr, t)

≥ ψ





M2(QSx2n, T Kx2n, ht)M(WLr,NPr, ht),
M(QSx2n, T Kx2n, ht)M

2(WLr,NPr, ht),
M(QSx2n, T Kx2n, ht)M(T Kx2n,WLr, ht)M(WLr,NPr, ht)
M(WLr,NPr, ht)M(QSx2n, NPr, ht)M(QSx2n, T Kx2n, ht)




.

Taking limit n→∞ and using z = NPr in above inequality we have,

M3(z,WLr, t) ≥ ψ





M2(z, z, ht)M(WLr, z, ht),
M(z, z, ht)M2(WLr, z, ht),

M(z, z, ht)M(z,WLr, ht)M(WLr, z, ht)
M(WLr, z, ht)M(z, z, ht)M(z, z, ht)




,
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M3(z,WLr, t) ≥ ψ





1.1.M(WLr, z, ht),
1.M2(WLr, z, ht),

1.M(z,WLr, ht)M(WLr, z, ht),
M(WLr, z, ht).1.1




.

Suppose WLr 6= z, then M(z,WLr, ht) < 1, using this in above inequality we get
M3(z,WLr, t)

≥ ψ
{
M3(z,WLr, ht),M3(z,WLr, ht),M3(z,WLr, ht),M3(z,WLr, ht)

}
.

Using property of ψ we get
M3(z,WLr, t) > M3(z,WLr, ht)

=⇒ M(z,WLr, t) > M(z,WLr, ht), a contradiction.

Hence WLr = z
Thus WLr = z = NPr. Since (WL,NP) are weakly compatible, so we have WLz = NPz.
Next, we will show that Pz = z, for this putting u = x2n and v = Pr in (C5), we get
M3(T Kx2n,WLPr, t)

≥ ψ





M2(QSx2n, T Kx2n, ht)M(WLPr,NPPr, ht),
M(QSx2n, T Kx2n, ht)M

2(WLPr,NPPr, ht),
M(QSx2n, T Kx2n, ht)M(T Kx2n,WLPr, ht)M(WLPr,NPPr, ht)
M(WLPr,NPPr, ht)M(QSx2n,NPPr, ht)M(QSx2n, T Kx2n, ht)




.

From (C2) WLP = PWL and NP = PN using in above inequality we get,
M3(T Kx2n,PWLr, t) ≥

ψ





M2(QSx2n, T Kx2n, ht)M(PWLr,PNPr, ht),
M(QSx2n, T Kx2n, ht)M

2(PWLr,PNPr, ht),
M(QSx2n, T Kx2n, ht)M(T Kx2n,PWLr, ht)M(PWLr,PNPr, ht)
M(PWLr,PNPr, ht)M(QSx2n,PNPr, ht)M(QSx2n, T Kx2n, ht)




.

Taking limit n −→∞ and using WLr = z = NPr in above inequality we have,

M3(z,Pz, t) ≥ ψ





M2(z, z, ht)M(Pz,Pz, ht),
M(z, z, ht)M2(Pz,Pz, ht),

M(z, z, ht)M(z,Pz, ht)M(Pz,Pz, ht)
M(Pz,Pz, ht)M(z,Pz, ht)M(z, z, ht)




.

Suppose Pz 6= z, then M(z,Pz, ht) < 1, using this in above inequality we get

M3(z,Pz, t) ≥ ψ
{
M3(z,Pz, ht),M3(z,Pz, ht),M3(z,Pz, ht),M3(z,Pz, ht)

}
.

Using property of ψ we get
M3(z,Pz, t) > M3(z,Pz, ht).

=⇒ M(z,Pz, t) > M(z,Pz, ht), a contradiction.

Hence z = Pz.
Thus Pz = NPz = z =⇒ N z = z.
Thus N z = Pz =WLz = z.

Next, we will show that Lz = z, for this putting u = x2n and v = Lr in (C5), we get
M3(T Kx2n,WLLr, t)

≥ ψ





M2(QSx2n, T Kx2n, ht)M(WLLr,NPLr, ht),
M(QSx2n, T Kx2n, ht)M

2(WLLr,NPLr, ht),
M(QSx2n, T Kx2n, ht)M(T Kx2n,WLLr, ht)M(WLLr,NPLr, ht),
M(WLLr,NPLr, ht)M(QSx2n,NPLr, ht)M(QSx2n, T Kx2n, ht).




.

From (C2) WL =WL and (NP)L = L(PN ) using in above inequality we get,
M3(T Kx2n,LWLr, t) ≥

ψ





M2(QSx2n, T Kx2n, ht)M(LWLr,LNPr, ht),
M(QSx2n, T Kx2n, ht)M

2(LWLr,LNPr, ht),
M(QSx2n, T Kx2n, ht)M(T Kx2n,LWLr, ht)M(LWLr,LNPr, ht),
M(LWLr,LNPr, ht)M(QSx2n,LNPr, ht)M(Qδx2n, T Kx2n, ht)




.
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Taking limit n −→∞ and using WLr = z = NPr in above inequality we have,

M3(z,Lz, t) ≥ ψ





M2(z, z, ht)M(Lz,Lz, ht),
M(z, z, ht)M2(Lz,Lz, ht),

M(z, z, ht)M(z,Lz, ht)M(Lz,Lz, ht),
M(Lz,Lz, ht)M(z,Lz, ht)M(z, z, ht)




.

Suppose Lz 6= z, then M(z,Lz, ht) < 1, using this in above inequality we get

M3(z,Lz, t) ≥ ψ
{
M3(z,Lz, ht),M3(z,Lz, ht),M3(z,Lz, ht),M3(z,Lz, ht)

}
.

Using property of ψ we get
M3(z,Lz, t) > M3(z,Lz, ht).

=⇒ M(z,Lz, t) > M(z,Lz, ht), a contradiction.

Hence z = Lz.
Thus, Lz = WLz = z =⇒ Wz = z.
Thus Nz = Pz = Wz = Lz = z.
As WL(B) ⊆ QS(B), there exists m ∈ B such that z = WLz = QSm.

Next, we will show that T Km = z, for this putting u = m and v = x2n+1 in (C5), we have

M3(T Km,WLx2n+1, t)

≥ ψ





M2(QSm, T Km,ht)M(WLx2n+1, NPx2n+1, ht),
M(QSm, T Km,ht)M2(WLx2n+1, NPx2n+1, ht),

M(QSm, T Km,ht)M(T Km,WLx2n+1, ht)M(WLx2n+1, NPx2n+1, ht)
M(WLx2n+1, NPx2n+1, ht)M(QSm,NPx2n+1, ht)M(QSm, T Km,ht).




.

Taking limit n −→∞ and using z = WLz = QSm in above inequality we have,

M3(T Km, z, t) ≥ ψ





M2(z, T Km,ht)M(z, z, ht),
M(z, T Km,ht)M2(z, z, ht),

M(z, T Km,ht)M(T Km, z, ht)M(z, z, ht)
M(z, z, ht)M(z, z, ht)M(z, T Km,ht).




.

Suppose T Km 6= z, then M(T Km, z, ht) < 1, using this in above inequality we get

M3(T Km, z, t) ≥ ψ
{
M3(T Km, z, ht)M3(T Km, z, ht),
M3(T Km, z, ht)M3(T Km, z, ht)

}
.

Using property of ψ we get
M3(T Km, z, t) > M3(T Km, z, ht).

=⇒ M(T Km, z, t) > M(T Km, z, ht), a contradiction.

Hence T Km = z.
Since (T K,QS) are weakly compatible, so T K and QS commute their coincidence point m, then we have

T Kz = QSz.
Next we will show that T Kz = z, for this putting u = z and v = x2n+1 in (C5), we have
M3(T Kz,WLx2n+1, t)

≥ ψ





M2(QSz, T Kz, ht)M(WLx2n+1, NPx2n+1, ht),
M(QSz, T Kz, ht)M2(WLx2n+1, NPx2n+1, ht),

M(QSz, T Kz, ht)M(T Kz,WLx2n+1, ht)M(WLx2n+1, NPx2n+1, ht)
M(WLx2n+1, NPx2n+1, ht)M(QSz,NPx2n+1, ht)M(QSz, T Kz, ht)




.

Taking limit n −→∞ and using T Kz = QSz in above inequality we have

M3(T Kz, z, t) ≥ ψ





M2(T Kz, T Kz, ht)M(z, z, ht),
M(T Kz, T Kz, ht)M2(z, z, ht),

M(T Kz, T Kz, ht)M(T Kz, z, ht)M(z, z, ht)
M(z, z, ht)M(T Kz, z, ht)M(T Kz, T Kz, ht)




.

Suppose T Kz 6= z, then M(T Kz, z, ht) < 1, using this in above inequality we get

M3(T Kz, z, t) ≥ ψ
{
M3(T Kz, z, ht)M3(T Kz, z, ht),
M3(T Kz, z, ht)M3(T Kz, z, ht)

}
.
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Using property of ψ, we get
M3(T Kz, z, t) > M3(T Kz, z, ht).

=⇒ M(T Kz, z, t) > M(T Kz, z, ht), a contradiction.

Hence T Kz = z.
Thus T Kz = QSz = z.
Next we will show that Sz = z, for this putting µ = Sz and v = x2n+1 in (C5), we have
M3(T KSz,WLx2n+1, t)

≥ ψ





M2(QSSz, T KSz, ht)M(WLx2n+1, NPx2n+1, ht),
M(QSSz, T KSz, ht)M2(WLx2n+1, NPx2n+1, ht),

M(QSSz, T KSz, ht)M(T KSz,WLx2n+1, ht)M(WLx2n+1, NPx2n+1, ht)
M(WLx2n+1, NPx2n+1, ht)M(QSSz,NPx2n+1, ht)M(QSSz, T KSz, ht)




.

From (C2) QS = SQ and (T K)S = S(T K) using in above inequality we have,
M3(ST Kz,WLx2n+1, t)

≥ ψ





M2(SQSz,ST Kz, ht)M(WLx2n+1, NPx2n+1, ht),
M(SQSz,ST Kz, ht)M2(WLx2n+1, NPx2n+1, ht),

M(SQSz,ST Kz, ht)M(ST Kz,WLx2n+1, ht)M(WLx2n+1, NPx2n+1, ht),
M(WLx2n+1, NPx2n+1, ht)M(SQSz,NPx2n+1, ht)M(SQSz,ST Kz, ht)




.

Taking limit n −→∞ and using T Kz = QSz = z in above inequality we have,

M3(Sz, z, t) ≥ ψ





M2(Sz,Sz, ht)M(z, z, ht),
M(Sz,Sz, ht)M2(z, z, ht),

M(Sz,Sz, kt)M(Sz, z, kt)M(z, z, ht),
M((z, z, kt)M(Sz, z, kt)M(Sz,Sz, ht)




.

Suppose Sz 6= z, then M(Sz, z, ht) < 1, using this in above inequality we get

M3(Sz, z, t) ≥ ψ
{
M3(Sz, z, ht),M3(Sz, z, ht),
M3(Sz, z, ht),M3(Sz, z, ht)

}

using property of ψ we get

M3(Sz, z, t) > M3(Sz, z, ht)
=⇒ M(Sz, z, t) > M(Sz, z, ht), a contradiction.

Hence Sz = z. Then z = QSz = Qz. Therefore z = Sz = Qz = T Kz.
Next we will show that Kz = z, for this putting u = Kz and v = x2n+1 in (C5), we have
M3(T KKz,WLx2n+1, t)

≥ ψ





M2(QSKz, T KKz, ht)M(WLx2n+1, NPx2n+1, ht),
M(QSKz, T KKz, ht)M2(WLx2n+1, NPx2n+1, ht),

M(QSKz, T KKz, ht)M(T KKz,WLx2n+1, ht)M(WLx2n+1, NPx2n+1, ht),
M(WLx2n+1, NPx2n+1, ht)M(QSKz,NPx2n+1, ht)M(QSKz, T KKz, ht)




.

From C2, using T K = KT , (QS)K = K(QS) in above inequality we have
M3(T KKz,WLx2n+1, t)

≥ ψ





M2(KQSz,KT Kz, ht)M(WLx2n+1, NPx2n+1, ht),
M(KQSz,KT Kz, ht)M2(WLx2n+1, NPx2n+1, ht),

M(KQSz,KT Kz, ht)M(KT Kz,WLx2n+1, ht)M(WLx2n+1, NPx2n+1, ht),
M(WLx2n+1, NPx2n+1, ht)M(KQSzNPx2n+1, ht)M(KQSz,KT Kz, ht)




.

Taking limit n −→∞ and using T Kz = QSz = z in above inequality we have,

M3(Kz, z, t) ≥ ψ





M2(Kz,Kz, ht)M(z, z, ht),
M(Kz,Kz, ht)M2(z, z, ht),

M(Kz,Kz, ht)M(Kz, z, ht)M(z, z, ht),
M(z, z, ht)M(Kz, z, ht)M(Kz,Kz, ht)




.

Suppose Kz 6= z, then M(Kz, z, ht) < 1, using this in above imnequality we get

M3(Kz, z, t) ≥ ψ
{
M3(Kz, z, ht),M3(Kz, z, ht),
M3(Kz, z, ht),M3(Kz, z, ht)

}
.

Using property of ψ we get

305



M3(Kz, z, t) > M3(Kz, z, ht)
=⇒ M(Kz, z, t) > M(Kz, z, ht), a contradiction,

Hence Kz = z.
Thus T Kz = T z = z.
Thus Qz = Sz = Kz = z.
Hence Nz = Pz = Qz = Sz = T z = Kz = Lz = Wz = z.
Hence z be a unique fixed point of N,P,Q,S, T ,K,L, and W .

4 Application
A fixed point theorem for a single mapping satisfies an analogue of a Banach contraction principle for an
integral type inequality was discovered by Branciari in 2002.
As an application of Theorem 3.1, we now show the following theorem.

Theorem 4.1. Let N,P,Q,S, T ,K,L and W be eight self mappings of a complete fuzzy metric space
(B,M, ∗) satisfying the conditions (C1), (C2), (C3), (C4) and the following condition.

∫ M3(x,y,t)

0

ψ(w)dw ≥
∫ σ(u,v)

0

ψ(w)dw

σ(u, v) = ψ





M2(QSu, T Ku, ht)M(WLv,NPv, ht),
M(QSu, T Ku, ht)M2(WLv,NPv, ht),

M(QSu, T KKz, ht)M(T Ku,WLv, ht)M(WLv,NPv, ht)
M(WLv,NPv, ht)M(QSu,NPv, ht)M(QSu, T Ku, ht)





for all u, v ∈ B, where ψ : [0, 1]4 → [0, 1] is increasing in any cooridanate and ψ(t, t, t, t) > t for every
t ∈ [0, 1), where ψ : [0, 1]4 → [0, 1] is a ”Lebesgue-integrable function” which is summable, nonnegative, and
such that, for each ε > 0,

∫ ε
0
ψ(ω)dω > 0. Then N ,P,Q,S, T ,K,L and W have a unique common fixed point

in W.

Proof. The theorem’s proof proceeds in a manner similar to that of Theorem 3.1.

5 Conclusion
For eight self-mappings in fuzzy metric space that contain third and fourth power of the distance measure
M(x, y, t), we demonstrate the common fixed-point theorem.
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Abstract

In this paper we study heat distribution in outer parts of human body incorporating effect of blood
circulation and metabolic activities. We solve the bio heat equation of skin for steady state case using
Whittaker function and Conuent Hypergeometric function. Some parameters are taken variable. A
general model has been modified and solved mathematically for comparative study of heat flow in human
skin. The structure of human skin is taken as heterogeneous medium and attempt has been made to solve
it by analytic methods. Numerical computation has been carried out for various values of parameters.
2020 Mathematical Sciences Classification: 33C15,33C20, 92BXX
Keywords and Phrases: Physiological Heat Flow; Differential Equation; Whittaker function;
Confluent Hypergeometric function.

1 Introduction
The heat of the body is produced by a slow combustion of food; and this is taking place all the time. This
combustion goes on chiefly in the muscles and is much more active during exercise than when the body is
at rest. Yet the internal temperature of the body during rest and moderate exercise is the same, although
much more heat is produced during exercise. The loss of heat from the body takes place chiefly at the
surface, through the skin. A great deal more heat is lost from the body when the surrounding air is cold,
yet the body temperature remains the same. The process of heat-making which is carried on in the muscles
is regulated by certain nerve centers in the brain and spinal cord, which are connected with the muscles by
nerves, so that the making of heat is under constant and perfect control. When the body is exposed to cold
air or water or is in any way cooled so that the temperature of the blood is lowered, nerve centers in the
brain incite increased activity in the heat-making organs and more fuel is burned in the cells. In this way
the heat-making process is adjusted to the needs of the body. The body temperature in health that any
variation from the normal, 98.5 + degrees, gives cause for anxiety. As a result of some shock or in one who
is very feeble, the temperature may fall below normal, through insufficient heat production or too great an
escape of heat. More often there is a rise of temperature above the normal, and then one is said to have
a fever. In fevers, heat production and loss are not so perfectly controlled as in health, because the heat
centers are disturbed by the undesired substances circulating in the blood. The sweat glands are not so
active as usual, and the surplus heat does not escape.

Blood circulation plays vital role in regulating the heat in a health and the flow is regulated by heart
apparatus. However, certain subjects have abnormality due to age (above 40 yrs.) or under nervous stress,
in such case Yoga can be useful to retain the normal rate [9, 19]. Heat regulation problems in a human body
can be expressed in terms of differential equations. In this paper we generate such equations for outer body
which incorporate the influence of circulation of blood and nutrient indeed bio-chemical reactions in the cells
(cell metabolism). There are number of techniques developed for the solutions and listed in standard texts
(Murphy [14]).However, in biological processes like physiological heat transfer these techniques have several
limitations due to large number of soft parameters and the associated flexibility. Following the advent heat
equation in physiological transport by Perl [16, 17]and Pennes [15]. Trezek and Cooper [4, 5] developed
solutions of the boundary value problems pertaining to in-vivo tissue medium for heat flow in human dermal
regions. Saxena [23] gave solution for steady state case in terms of special cases of Bessel functions.

308



In one dimensional boundary value problems, the differential equation can easily be transformed into an
ordinary differential equations by applying a suitable transform. The required solutions can be obtained
by solving this equations and inverting by any method. Other mathematical techniques can also be used
for boundary value problems. In this paper Laplace transform has also been used and further solutions
have been worked out in terms of special functions like Whittaker function and Confluent Hypergeometric
functions.

2 The Method and the Mathematical Model
As we know that for differential equations, we can use some analytic methods and solve them with the help
of Special functions. Some of the cases differential equations can reduced in Bessel equations, Whittakers
equations or Kummers equations and result is expressed in terms of one of the Bessel functions, Whittaker
function or in terms of Confluent Hypergeometric functions.
In this paper we use solution of Heat equation for steady state case with the help of Whittaker function which
is reduced in Confluent Hypergeometric function. We should briefly discuss about Whittakers equation and
Kummers equations.

We know that the Whittaker functions are solutions of the differential equation [24].

d2w

dz2
−
(
−1

4
+
k

z
+

1/4− µ2

z2

)
w = 0. (2.1)

It has a regular singular point at z = 0 and an irregular singular point at z =∞. Two solution are given
by the Whittaker functions Mk,z (z) and Wk,z (z) defined in terms of Kummer’s Confluent Hypergeometric
functions M and U by

Mk,z (z) = e−z/2z(µ+ 1
2 )M

(
µ− k +

1

2
, 1 + 2µ; z

)
, (2.2)

Wk,z (z) = e−z/2z(µ+ 1
2 )U

(
µ− k +

1

2
, 1 + 2µ; z

)
, (2.3)

The Kummer’s equation may be written as

z
d2w

dz2
− (b− z)dw

dz
− aw = 0, (2.4)

with a regular singular point at z = 0 and irregular singular point at z =∞. It has two linearly independent
solutions M(a, b; z) and U(a, b; z). Kummers function (of first kind) M is a generalized hypergeometric series
introduced is given by (Kummer[10]):

M(z) =

∞∑

n=0

a(n)zn

b(n)n!
= 1F1(a; b; z), (2.5)

where a(0) = 1, and a(n) = a(a + 1)(a + 2)...(a + n − 1) is the rising factorial. This function 1F1(a; b; z) is
known as Confluent Hypergeometric function.
Now we are using these functions in our problem discussed below.

In epidermis and dermis regions of human body, the temperature distribution depends on various physical
and biological quantities. These quantities are related to the local tissue temperature T through the following
Bio-Heat equation for in vivo tissue is given by Perl [16].

ρc
∂T

∂t
= div (KgradT ) +mbcb (Tb − T ) + S, (2.6)

The one dimensional equation for constant thermal conductivity is written as

ρc
∂T

∂t
= K

∂2T

∂x2
+mbcb (Tb − T ) + S, (2.7)

where ρ, c,K, t,mb, cb, Tb and S are respectively tissue density, heat capacity, thermal conductivity, time,
blood mass flow rate, heat capacity of blood and blood temperature and rate of metabolic heat generation
at a point. Here, a one dimensional form of variation of temperature is taken in x-direction, perpendicular
to the outer skin surface. The equation (2.7) is solved separately for epidermis and dermis under following
conditions:

(i) At outer skin (x = 0):

K1
∂T

∂x
= h (T − Ta) + LE, (2.8)
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where
K1 = value of K (Thermal conductivity) in epidermis,
h = heat transfer coefficient of convection and radiation,
L = latent heat of of tissue,
E = rate of sweat evaporation,
Ta = atmospheric temperature.

(ii) For epidermis (0 < x < a):
Due to lack of blood flow and no metabolic activity in epidermis we take,

mbcb = S = 0. (2.9)

(iii) Interface (x = a):

K1
∂T

∂x
= K2

∂T

∂x
, (2.10)

K2 = value of K (thermal conductivity)in dermis.
(iv) For dermis (a < x < b):

mbcb = M̄X̄, S = s(Tb − T ),

where X̄ =
[

(x−a)
(b−a)

]2
, M̄ and s are values of mbcb and S in subdermal region.

(v) At Subdermal boundary (x = b):
T = Tb where Tb is blood temperature which is almost same as body core temperature.

We simplified and solve equations (2.7) with conditions mentioned in (i), (ii), (iii), (iv) and (v) and solve
with the help of Laplace transform. The solutions for the both regions are obtained in the following form:

For Epidermis:

T̄ = A1 exp(y
√
p) +A2 exp(−y√p), (2.11)

For Dermis:
T̄ = z−1/2

[
A3M−p/4,1/4(z2) +A4M−p/4,−1/4(z2)

]
, (2.12)

where
T̄ is Laplace transform of (Tb − T )/Tb, p is parameter of the transform,
Mk,m denotes Whittaker’s function of first kind. Also A1, A2, A3 and A4 are determined with the help of
the above conditions. Thus the same are obtained as:

A1 =
n1l3
D

, A2 =
n2l3
D

,

A3 =
n3

D
, A4 =

n3l6
D

,

D = n1l1 − n2l2, ā =
a

(b− a)
,

l1 =
√
p− h, l2 = l1 + 2h,

l3 =
−(hTa + α)

p
, l4 =

K2

K1
√
p
,

l5 =
l4(1 + p)

2
, l6 = − 1

β
1F1(a2, C2, ;β

2)

1F1(a1, C1;β2)
,

n1 = (1 +m1), n2 = (1 +m1)e2ā
√
p,

n3 = 2l3e
(−ā√p), m1 = l4l6 + l5,

where

y =
x

(b− a)
, z = (y − ā),

α =
LE(b− a)

K1Tb
, β = (mbcb + s)1/4.
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1F1 denotes confluent hypergeometric funtion.
For steady state problem the solution (2.11) and (2.12) take the following form:
For Epidermis:

T = Tb(A1 − A2y). (2.13)

For Dermis:

T = Tb

[
1− e− z

2

2

{
A3z 1F1(a1, c1; z2) + A4z 1F1(a2, c2; z2)

}]
. (2.14)

Values of all the notations used in equations (2.13) and (2.14) are defined in Appendix-A.

3 Numerical Results
This model has been solved with some numerical assumptions. Taking two layers the solution for T is
obtained for the following values of physical and physiological constants have been taken as prescribed by
Cooper and Trezek [4, 5] and Saxena[23].

L = 579 cal/gm

Tb = 37◦C (The Core Temperature)

ρ = 1.05 gm/cm3

c = 0.83 cal/gm

h = 0.02 cal/cm2-min◦C (The Heat Transfer Coefficient).

For Epidermis

K1 = 0.040 cal/cm-min◦C

M̄1 = 0.000 cal/cm3-min◦C

s = 0.00 cal/cm3-min.

For Dermis

K2 = 0.060 cal/cm-min◦C

M̄2 = 0.030 cal/cm3-min◦C

s = 0.0357 cal/cm3-min.

The numerical calculations have been made for the following four cases of atmospheric temperature Ta
together with the respective values of rate of evaporation E.

Table 3.1: Cases for distinguish temperatures and evaporation rates.

S.No. Temperature (Ta) Evaporation (E)
(◦C) (gm/cm2-min)

(i) 15 0.00
(ii) 20 0.45 ×10−3

(iii) 25 0.79 ×10−3

(iv) 30 0.9 ×10−3

We can assign different values of the constants a and b depending on the sample of thickness of the skin
under study for different different parts of body and persons. The set of values of a and b we considered
here are as follows:

Set-I a = 0.2 cm b = 0.7 cm
Set-II a = 0.4 cm b = 1.2 cm
Set-III a = 0.6 cm b = 1.3 cm

The graphs have been plotted between temperature T and position x for different sets of the values of
Ta and E.
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These assumptions are generally based on the values taken by several researchers including Trezek and
Cooper[4, 5] who have not only carried out numerical computation of the models in simplified form but
also conducted laboratory investigations on certain mammals in in-vitro stage. Experiments have also been
conducted by Hodgson [8] extensively on human being (in-vivo) sitting in a sophisticated climatic chamber
designed by himself. He measured several parameters including sweat evaporation under different conditions.
Some values are also available in classical monographs like Ruch and Patton [18] and have been used widely
by Saxena and his subsequent workers ([1, 2, 3, 6, 7, 11, 12, 13, 20, 21, 22, 23]). Based on the above our
numerical calculations are exhibited in the graphs.
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Figure 3.1: Graph between in depth x and temperature T for Set-I
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Figure 3.2: Graph between in depth x and temperature T for Set-II
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Figure 3.3: Graph between in depth x and temperature T for Set-III

4 Discussion
Temperature profiles in epidermis and dermis for different environment conditions and anatomy. The curvi-
linear variation is clearly visible in dermis due to additional terms of blood flow and biochemical reactions.
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These graphs are only illustrations for certain sample cases and can be extended for subjects placed under
different atmospheric conditions.

As indicated above three sets of skin layers with different thicknesses have been considered for
computation and for different values of atmospheric temperature. The patterns of graph reflect both these
assumptions. In figure-3.1 and figure-3.2, the rise of temperature is more in comparison to figure-3.3 which
has rapid rise in dermis in comparison to the earlier two cases.

The mathematical solution derived in this paper provide sufficient freedom for the assumption and
occurrence of biophysical parameters namely, thermal conductivity, metabolic cell reactions and micro
circulation of blood. This aspect is vital for the theoretical study as in-vivo situation demands it. The
temperature profile thus obtained can further be use for more advanced studies pertaining to extreme climates
and thermoregulation related diseases like malignant tumor.

This study is confined to human subjects at rest. Same can be extended to persons undergoing some
physical activity or exercise like Yoga as indicated earlier [9, 19, 21]. In such cases the assumptions regarding
blood circulation rate M̄ and metabolic rate S have to be connected with practical results. Accordingly
these two parameters have to be flexible, either in steps or continuously time dependent. This will open an
opportunity for new investigations.
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