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Abstract

We introduce, study and investigate the concepts of weakly semi -Is- open sets and some properties
of the set. We introduce weakly semi -Is- open functions and weakly semi -Is- closed functions. Also,
we introduced notion of weakly semi -Is- open sets and weakly semi -Is- closed sets. We discussed its
properties and its relationship between other sets in topological spaces as said in below introduction. We
also furnish decomposition of continuity in this paper.
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1 Introduction
Topology as a well-defined mathematical discipline dates from the early twentieth century, though some

isolated results can be traced back several centuries. An ideal topological space is a triplet ( X,τ ,I ), where
X is a nonempty set, τ is a topology on X and I is an ideal of subsets of X. Levine [13] introduced and
investigated the concept of semi-open sets and semi-continuity in 1963. In 2006, in his paper on weakly
semi-I-open sets and another decomposition of continuity via ideals, Hatir and Jafari [6] introduced the
notions of weakly semi-I-open sets and weakly semi-I-continuous functions and obtained a decomposition of
continuity. Khan and Noiri [11] introduced and investigated the concept of semilocal functions in his paper
Semi-local functions in ideal topological spaces in 2010. Santhi and Rameshkumar [16] obtained several
characterizations of semi-Is-open sets and semi-Is-continuous functions in 2013. Also, they introduce new
semi-Is-open and semi-Is-closed functions as well. In 2014, Santhi and Rameshkumar [17] presented BIs-sets,
CIs-sets, SIs-sets, α-Is-sets, semi-Is-sets, and pre-Is-sets to obtain a decomposition of continuity in ideal
topological spaces using semi-local functions.

In this paper, we are introducing some properties of weakly semi-Is-open sets and weakly semi-Is-closed
sets in ideal topological space via semilocal functions. We will study the relationship between weakly semi-
Is-open sets and weakly semi-Is-closed sets, weakly semi-Is-open sets and preopen set, weakly semi-Is-open
sets and α-Is-open set, etc,.

2 Preliminaries
Let A be the subset of a topological space (X,τ) then cl(A) and int(A) denote closure and interior of A

in (X,τ) respectively.
An Ideal I on a topological space (X,τ) is a non-empty collection of subsets of X which satisfies :
1. A ∈ I and B ⊆ A implies B ∈ I.
2. A ∈ I and B ∈ I implies A ∪ B ∈ I.

The space (X,τ ,I) is called an Ideal topological space or Ideal space.

Definition 2.1. Let P(X) be the power set of X. Then the operator ()∗ : P(X)→ P(X) called a local function
[12] of A with respect to τ and I is defined as follows : for A ⊆ X, A∗(I,τ) = {x ∈ X |U ∩ A /∈ I for every
open set U containing x }. We simply write A∗ instead of A∗(I,τ).

Definition 2.2. For A ⊆ X, A∗(I,τ) ={ x ∈ X |U ∩ A /∈ I for every U ∈ SO(X)} is called semi-local function
[11] of A with respect to I and τ , where SO(X,x) = {U ∈ SO(X) |x∈U}. We simply write A∗ instead of
A∗(I,τ).
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Definition 2.3. It is given in [4] that τ∗s(I) is a topology on X, generated by a sub basis {U – E:U ∈ SO(X)
and E ∈ I } or equivalently τ∗s(I) = {U ⊆ X:cl∗s(X – U)=X – U}.

Definition 2.4. The closure operator [4] cl∗s for a topology τ∗s(I) is defined as follows: for A⊆X, cl∗s(A)
= A ∪A∗ and int∗s denotes the interior of the set A in (X,τ∗s,I). It is known that τ⊆ τ∗(I)⊆τ∗s(I).

Definition 2.5. A subset A of (X,τ ,I) is called semi-∗-perfect [10] if A = A∗. A subset A of (X,τ ,I) is called
∗-semi dense in-itself [10] if A ⊂ A∗. A subset A of (X,τ ,I) is called semi-∗-closed in-itself [10] if A∗ ⊆ A.

Definition 2.6. A subset A of a space (X,τ) is said to be
1. regular closed [15] if cl(int(A)) =A.
2. semi-open [13] if A ⊂ cl(int(A)). The complement of semi open set is said to be semi-closed.
3. semi-closed [13] iff int(A) = int(cl(A)).
4. semi-closure [13] if intersections of all semi-closed sets containing A and it is denoted by scl(A).

Definition 2.7 ([11]). Let (X,τ ,I) be an ideal topological space and A, B subsets of X. Then for the semi-local
function the following properties hold:

1. If A ⊆ B then A∗ ⊆ B∗.
2. If U ∈ τ then U ∩ A∗ ⊆ (U ∩ A)∗.
3. A∗ = scl(A∗) ⊆ scl(A) and A∗ is semi-closed in X.
4. (A∗)∗ ⊆ A∗.
5. (A ∪ B)∗ = A∗ ∪ B∗.
6. If I = {∅}, then A∗ = scl(A).

Definition 2.8. A subset A of a topological space X is said to be
1. α-open [14] if A ⊆ int(cl(int(A))),
2. pre-open [3] if A ⊆ int(cl(A)),
3. β-open [5] if A ⊆ cl(int(cl(A))).

Definition 2.9. A subset A of an ideal topological space (X,τ ,I) is said to be
1. α-I-open [8] if A ⊆ int(cl∗(int(A))),
2. semi-I-open [8] if A ⊆ cl∗(int(A)),
3. pre-I-open [1] if A ⊆ int(cl∗(A)),
4. almost strong I-open [7] if A ⊂ cl∗(int(A∗)),
5. almost I-open [2] if A ⊂ cl(int(A∗)),
6. β-I-open [8] if A ⊂ cl(int(cl∗(A))),
7. strong β-I-open [7] if A ⊂ cl∗(int(cl∗(A))),
8. weakly semi-I-open [15] if A ⊂ cl∗(int(cl(A))).

Definition 2.10. A subset A of an ideal topological space (X,τ ,I) is said to be
1. α-Is-open [18] if A ⊆ int(cl∗s(int(A))),
2. s-Is-set [18] if cl∗s(int(A)) = int(A),
3. α∗-Is-set [18] if int(cl∗s(int(A))) = int(A).

Corollary 2.1. A subset A of an ideal topological space (X,τ ,I) is said to be
1. Every almost strong I-open set is almost I-open but not converse [7],
2. Every almost strong I-open set is a strong β-I-open set but not converse [7],
3. Every strong β-I-open set is a β-I-open set but not converse [7],
4. Every β-I-open set is a β-open set but not converse [7],
5. Every almost I-open set is a β-I-open set but not converse [7],
6. Every weakly semi-I-open set is a β-open set but not converse [6],
7. Every strong β-I-open set is a weakly semi-I-open set but not converse [6].

Definition 2.11. Let (X,τ ,I) be an ideal space and M be a *-semi dense in itself [10] subset of X. Then
A∗ = cl(A) = cl∗s(A).

Definition 2.12. Let (X,τ ,I) be an ideal space and A ⊂ X.
Then cl∗s(int(cl∗s(int(A)))) = cl∗s(int(A)).
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Definition 2.13. A subset A of an ideal space (X,τ ,I) is said to be semi-Is-open [18] if A ⊆ cl∗s(int(A))).

Definition 2.14. A subset A of an ideal space (X,τ ,I) is said to be semi-Is-open [16] iff there exists U ∈
τ such that U ⊆ A ⊆ cl∗s(U). A subset H of an ideal space (X,τ ,I) is said to be semi-Is-closed [16] if its
complement is semi-Is-open.

Definition 2.15. A subset A of an ideal space (X,τ ,I) is said to be pre-Is-open [18] if A ⊆ (int(cl∗s(A))).

Definition 2.16. A subset F of an ideal space (X,τ ,I) is said to be pre-Is-closed [17] if its complement is
pre-Is-open.

Definition 2.17. A subset A of an ideal space (X,τ ,I) is called
1. An AIS-set [9] if A = U ∩ V, where U is open and cl∗s(int(V)) = V.
2. A B1IS-set [9] if A = U ∩ V, where U is α-Is-open and cl∗s(int(V)) = X.
3. A B2IS-set [9] if A = U ∩ V, where U is α-Is-open and cl∗s(V) = X.
4. An αAIS-set [9] if A = U ∩ V, where U is α-Is-open and
cl∗s(int(V)) = V.

5. An αCIS-set [9] if A = U ∩ V, where U is α-Is-open and
int(cl∗s(int(V))) ⊂ V.

6. A WLCIS-set [9] if A = U ∩ V, where U is open and cl∗s(V) = V.
7. A SIS-set [18] if A = U ∩ V, where U ∈ τ and V is S-Is-set.

3 Weakly semi-Is-open sets
Definition 3.1. A subset M of an ideal space (X,τ ,I) is said to be weakly semi-Is-open if M ⊆
cl∗s(int(cl(M))).

Example 3.1. Consider X = {m,n,o} in an ideal space (X,τ ,I), where τ = {∅, {m}, {m,o}, X} and
I ={∅, {m}}. Let the semi open set of τ be B = {∅, X} and M = {m,n}. Then cl∗s(int(cl(M))) =
cl∗s(int(cl({m,n}))) = cl∗s(int(X)) = cl∗s(X) = X ⊃M and so M is weakly semi-Is-open.

Example 3.2. Consider X = {1, 2, 3, 4} in an ideal space (X,τ ,I), where τ = {∅, {1}, {3},
{1, 3}, X} and I = {∅, {1}}. Let the semi open set of τ be B = {∅, {1, 2, 4}, {1, 3, 4}, X}, M = {1, 3},
M∗ = {3}. Then cl∗s(int(cl(M))) = cl∗s(int(cl({1, 3}))) = cl∗s(int(X)) = cl∗s(X) = X ⊃ M and so M is
weakly semi-Is-open.

Lemma 3.1. Every semi-Is-open set is weakly semi-Is-open set, but converse doesn’t hold.

Example 3.3. Consider X = {m,n,o} in an ideal space (X,τ ,I), where τ = {∅, {m,n}, X} and I ={∅, {o}}.
Then M = {m}, cl∗s(int(cl(M))) = cl∗s(int(cl({m}))) = cl∗s(int(X)) = cl∗s(X) = X ⊃ M and so M is
weakly semi-Is-open, but cl∗s(int(M)) = cl∗s(int{m}) = cl∗s(∅) = ∅ 6⊃M and so M is not semi-Is-open.

Theorem 3.1. Let (X,τ ,I) be an ideal topological space. If M is weakly semi-Is-open set then M is β-open,
but not conversely.

Proof. If M is weakly semi-Is-open, then M ⊂ cl∗s(int(cl(M))) = (int(cl(M)))∗ ∪ (int(cl(M)))
⊂ cl(int(cl(M))) ∪ int(cl(M)) = cl(int(cl(M))). Therefore M is β-open and converse doesn’t hold.

Example 3.4. Consider X = {m,n,o} in an ideal space (X,τ ,I), where τ = {∅, {m}, {n}, {m,n}, X} and I
={∅, {m}}. Then M = {m,o} is β-open, but not weakly semi-Is-open.

Example 3.5. Consider X = {m,n,o,p} in an ideal space (X,τ ,I), where τ = {∅, {m}, {o}, {m,o}, X} and
I ={∅, {m}}. Let the semi open set of τ be B = {∅, {m,n,p}, {m,o,p}, X}, M = {m,o}, M∗ = {c}. Then
cl∗s(int(cl(M))) = cl∗s(int(cl({m,o}))) = cl∗s(int(X)) = cl∗s(X) = X ⊃ M and so M is weakly semi-Is-open.
Also M 6= M∗, hence M is not semi-*-perfect. M 6⊂M∗, hence M is not *-semidense. M ⊆M∗, hence M is
semi-*-closed.

Corollary 3.1. Let (X,τ ,I) be an ideal space and M is *-semi dense in itself, then the following are equivalent
:

(a) M is β-open,
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(b) M is weakly semi-Is-open.

Theorem 3.2. Let the ideal topological space be (X,τ ,I) and M, N be the subsets of X. If M is weakly
semi-Is-open set and N ∈ τ , then M ∩ N is weakly semi-Is-open.

Proof. Let M is weakly semi-Is-open and N ∈ τ . If M ⊂ cl∗s(int(cl(M))), then M ∩N ⊂ cl∗s(int(cl(M)))∩
N = ((int(cl(M)))∗∪int(cl(M)))∩N = (int(cl(M)))∗∩N∪int(cl(M))∩N ⊂ (int(cl(M))∩N∗)∪int(cl(M∩
N)) = (int(cl(M ∩N)))∗ ∪ int(cl(M ∩N)) = cl∗s(int(cl(M ∩N))). This shows that M ∩N is weakly semi-
Is-open.

Remark 3.1. In general, the finite intersection of weakly semi-Is-open sets need not be weakly semi-Is-open.

Lemma 3.2. Let the ideal topological space be (X,τ ,I), where M ⊂ X and U ∈ semiopen set of τ . Then
cl∗s(M) ∩ U = cl∗s(M ∩ U).

Proof. cl∗s(M) ∩ (U) = (M∗ ∪M) ∩ U = (M∗ ∩ U) ∪ (M ∩ U) ⊂ (M ∩ U)∗ ∪ (M ∩ U) = cl∗s(M ∩ U).

Example 3.6. Consider X = {1, 2, 3, 4} in an ideal space (X,τ ,I), where τ = {∅, {1}, {3},
{1, 3}, X} and I = {∅, {1}}. Let M = {1, 3} and M∗ = {3}. From example 3.2, M is weakly semi-Is-open.
M 6⊂M∗, hence M is not *-semidense.

Example 3.7. Consider X = {m,n,o} in an ideal space (X,τ ,I), where τ = {∅, {m}, {n}, {m,n}, X}
and I ={∅, {m}}. Let the semi open set of τ be B = {∅, {m,o}, {n,o}, X} and M = {m,o}, where
cl∗s(int(cl(M))) = cl∗s(int(cl({m, o}))) = cl∗s(int({m, o})) = cl∗s({m}) = ∅ 6⊃ M and so M is not weakly
semi-Is-open. since cl(int(cl∗s(M))) = cl(int(cl∗s({m, o}))) = cl(int(X)) = cl(X) = X ⊃ M and so M is
β − Is-open.

The above example shows that weakly semi-Is-openness and β-Is-openness are independent concepts.

Theorem 3.3. Let an ideal space be (X,τ ,I). If M is pre-open, then M is weakly semi-Is-open.

Proof. If M is pre-open, then M ⊂ int(cl(M)) and so M ⊂ cl∗s(int(cl(M))) which implies that M is weakly
semi-Is-open.

Example 3.8. Consider X = {m,n,o} in an ideal space (X,τ ,I), where τ = {∅, {m}, {m,o}, X} and
I ={∅, {m}}. Let the semi open set of τ be B = {∅, X} and M = {m,n}. Then cl∗s(int(cl(M))) =
cl∗s(int(cl({m,n}))) = cl∗s(int(X)) = cl∗s(X) = X ⊃ M and so M is weakly semi-Is-open. Also,
int(cl(M)) = int(cl({m,n})) = int(X) = X ⊃M and therefore, M is pre-open.

Theorem 3.4. Let an ideal space be (X,τ ,I). If M ⊂ N ⊂ cl∗s(M) and M is weakly semi-Is-open, then N
is weakly semi-Is-open. In particular, if M is weakly semi-Is-open, then cl∗s(M) is weakly semi-Is-open.

Proof. If M is weakly semi-Is-open, then M ⊂ cl∗s(int(cl(M))). Since N ⊂ cl∗s(M) ⊂
cl∗s(cl∗s(int(cl(M)))) = cl∗s(int(cl(M))) ⊂ cl∗s(int(cl(N))). Hence N is weakly semi-Is-open.

Theorem 3.5. Let the ideal space be (X,τ ,I). If M is α-Is-open and N is weakly semi-Is-open, then M ∩N
is weakly semi-Is-open.

Proof. Since M is α-Is-open, M ⊂ int(cl∗s(int(M))) and N is weakly semi-Is-open, N ⊂ cl∗s(int(cl(N))).
NowM∩N ⊂ int(cl∗s(int(M)))∩cl∗s(int(cl(N))) ⊂ cl∗s(int(cl∗s(int(M)))∩int(cl(N))) = cl∗s(int(cl∗s(int(M)∩
int(cl(N))))) ⊂ cl∗s(int(cl∗s(int(M)∩int(cl(N))))) = cl∗s(int(cl∗s(int(int(M)∩cl(N))))) ⊂ cl∗s(int(cl∗s(int(cl(int(M)∩
N))))) ⊂ cl∗s(int(cl∗s(int(cl
(M ∩N))))) = cl∗s(int(cl(M∩N))) by Definition 2.12, which implies that M∩N is weakly semi-Is-open.

Theorem 3.6. Let the ideal space be (X,τ ,I) and M ⊂ X be weakly semi-Is-open. If M is either semiclosed
or Is-locally closed, then M is semi-Is-open.
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Proof. Suppose M is Is-locally closed. M is Is-locally closed implies that M = U ∩ M∗ for some semi
open set U . M is weakly semi-Is-open implies that M ⊂ cl∗s(int(cl(M))). Now M = U ∩ M∗ ⊂ U ∩
(cl∗s(int(cl(M))))∗ ⊂ U∩cl∗s(cl∗s(int(cl(U∩M∗)))) = U∩cl∗s(int(cl(U∩M∗))) ⊂ cl∗s(U∩int(cl(U∩M∗))) =
cl∗s(int(U ∩ cl(U ∩M∗))) ⊂ cl∗s(int(U ∩ cl(U) ∩ cl(M∗))) = cl∗s(int(U ∩M∗)) = cl∗s(int(M)). Hence M
is semi-Is-open. Suppose M is semiclosed. Then int(cl(M)) = int(M). Since M is weakly semi-Is-open
implies that M ⊂ cl∗s(int(cl(M))) = cl∗s(int(M)). Hence M is semi-Is-open.

Example 3.9. Consider X = {m,n,o} in an ideal space (X,τ ,I), where τ = {∅, {m,n}, X} and I ={∅, {o}}.
Let the semi open set of τ be B = {∅, X} and M = {m}, then M∗ = X and cl∗s(int(cl(M))) = cl∗s(int(X)) =
X ⊂ M and so M is weakly semi-Is-open. Also, cl∗s(int(M)) = cl∗s(∅) = ∅. Hence M is not semi-Is-open.
Moreover, M is neither Is-locally closed nor semiclosed.

Definition 3.2. A subset M of an ideal space (X,τ ,I) is said to be weakly semi-Is-closed if M ⊆
int∗s(cl(int(M))).

Theorem 3.7. A subset M of a space (X,τ ,I) is weakly semi-Is-closed iff int∗s(cl(int(M))) ⊂ M . Also, if
M is weakly semi-Is-closed subset of X, then M is an α∗-Is-set.

Proof. Let M be weakly semi-Is-closed set of (X,τ ,I). Then X - M is weakly semi-Is-open and hence X -
M ⊂ cl∗s(int(cl(X−M))) = X− int∗s(cl(int(M))). Therefore, we have int∗s(cl(int(M))) ⊂M . Conversely,
let int∗s(cl(int(M))) ⊂ M . Then X - M ⊂ cl∗s(int(cl(X −M))) and hence X - M is weakly semi-Is-open.
Therefore, M is weakly semi-Is-closed. Also int∗s(cl(int(M))) ⊂ M and so int∗s(cl(int(M))) ⊂ int(M).
Hence it follows that int∗s(cl(int(M))) = int(M) which implies that M is α∗-Is-set.

Definition 3.3. A subset M of an ideal space (X,τ ,I) is said to be weakly SIS-set (resp. CIS-set [18]) if M
= G ∩ V where G is open and V is weakly semi-Is-closed (resp. α∗-Is-set).

Remark 3.2. Every open set is a weakly SIS-set and every weakly SIS-set is a CIS-set.

Theorem 3.8. Let (X,τ ,I) be an ideal space. Then the following are equivalent :
(a) M is open,
(b) M is α-Is-open and a weakly SIS-set,
(c) M is α-Is-open and a CIS-set.

Proof. If M is open, (a) implies (b) and (b) implies (c) are clear. Then (c) implies (a) follows from the
preposition 4.16 of [18].

Definition 3.4. A subset M of a space (X,τ ,I) is called Strong s− Is-set if cl∗s(int(cl(M))) = int(M).

Definition 3.5. A subset M of a space (X,τ ,I) is called Strong SIS-set if M = U ∩ V , where U ∈ τ and V
is Strong S − Is-set.

Remark 3.3. a) Every strong s− Is-set is S − Is-set.
b) Every strong SIS-set is SIS-set.
c) Every open set is strong SIS-set.

Proposition 3.1. For a subset M of a topological space (X,τ ,I), the following holds equivalently :
a) M is open,
b) M is weakly semi-Is-open and strong SIS-set,
c) M is semi-Is-open and strong SIS-set.

Proof. By the above remarks we prove this as follows:
If M is a semi-Is-open set and also a strong SIS-set, then M ⊆ cl∗s(int(cl(M))) = cl∗s(int(cl(U ∩ V ))),

where U ∈ τ and V is strong SIS-set. Hence M ⊂ U ∩M ⊂ U ∩ (cl∗s(int(cl(U))) ∩ cl∗s(int(cl(V )))) =
U ∩ int(V ) = int(M), shows that M is open
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4 Weakly semi-Is-open and Weakly semi-Is-closed functions
Definition 4.1. Let f : (M, τ, I) → (N, σ, J) be a function of weakly semi-Is-open if the image of every
open set in (M, τ, I) is weakly semi-Is-open in (N, σ, J).

Theorem 4.1. A function f : (M, τ, I)→ (N, σ, J) is weakly semi-Is-open iff for each point m of X and each
neighbourhood U of m, there exists a weakly semi-Is-open set V in N containing f(m) such that V ⊂ f(U).

Theorem 4.2. A function f : (M, τ, I) → (N, σ, J) is weakly semi-Is-open function such that F ⊂ N and
G ⊂M is a closed set containing f−1(F ), then there exists a weakly semi-Is-open set W ⊂ N containing F
such that f−1(W ) ⊂ G.

Definition 4.2. Let f : (M, τ, I) → (N, σ, J) be a function of weakly semi-Is-closed if the image of every
closed set in (M, τ, I) is weakly semi-Is-closed in (N, σ, J).

Theorem 4.3. A function f : (M, τ, I)→ (N, σ, J) is weakly semi-Is-closed function such that F ⊂ N and
G ⊂M is a open set containing f−1(F ), then there exists a weakly semi-Is-closed set W ⊂ N containing F
such that f−1(W ) ⊂ G.

Definition 4.3. A function f : (M, τ, I) → (N, σ, J) is said to be weakly semi-Is-continuous if for every
V ∈ σ, f−1(V ) is an ws-Is-set of (M, τ, I).

Proposition 4.1. f : (M, τ, I)→ (N, σ, J) be bijective function then the following condition holds:
(1) f−1 is weakly semi-Is-continuous,
(2) f is weakly semi-Is-open,
(3) f is weakly semi-Is-closed.

Theorem 4.4. Consider the functions f : (M, τ.I) → (N, σ, J) and g : (N, σ, J) → (O, ν,K), whre I, J
and K are ideals on M,N and O, respectively. The following statement holds:

(1) If f is open and g is weakly semi-Is-open then g ◦ f is weakly semi-Is-open,
(2) If g ◦ f is open and g is weakly semi-Is-continuous injection then f is weakly semi-Is-open.

5 Conclusion
In this paper, we obtained several characterization of weakly semi-Is-open sets. we introduced weakly
semi-Is-open sets and weakly semi-Is-closed sets using semi local functions. Also we introduced weakly
semi-Is-open functions and weakly semi-Is-closed functions. We discussed their relationship with various
sets.
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