ISSN 0304-9892 (Print) www.vijnanaparishadofindia.org/jnanabha Jñānābha, Vol. 53(1) (2023), 38-43 (Dedicated to Professor G. C. Sharma on His 85th Birth Anniversary Celebrations)

A STUDY ON Fuzzy SEPARATION AXIOMS $(T_i, i = 0, 1, 2)$ VIA Fuzzy gp*-OPEN SETS Firdose Habib

Department of Mathematics Maulana Azad National Urdu University Hyderabad, Andra Pradesh India-500032 Email: firdosehabib_rs@manuu.edu.in

(Received: March 20, 2022; In format: November 02, 2022; Revised: January 12, 2023; Accepted: January 24, 2023)

DOI: https://doi.org/10.58250/jnanabha.2023.53104

Abstract

In this paper we have introduced $Fuzzy gp^*$ closure, $Fuzzy gp^*$ -interior and separation axioms via $Fuzzy gp^*$ -open sets. Also we found out the relationship between Fuzzy separation axioms, $Fuzzy gp^*$ separation axioms and Fuzzy pre separation axioms.

2020 Mathematical Sciences Classification: 54A40.

Keywords and Phrases: Fuzzy gp^* - closure, $Fgp^* - T_0$ spaces, $Fgp^* - T_1$ spaces, $Fgp^* - T_2$ spaces.

1 Introduction

In this paper we introduce and study separation properties of Fuzzy topological spaces via Fuzzy gp^* closed sets and draw a valid implication between the different axioms introduced earlier. Fuzzy separation axioms were introduced and studied by Ghanim et al. [3]. Similarly Fuzzy pre separation axioms were introduced and many of their properties were established by Singal et al. [11]. In 2011 Lee and Yun [9] introduced and studied Fuzzy delta separation axioms based on Fuzzy δ -open sets. They investigated the relationship between Fuzzy separation axioms and Fuzzy δ -separation axioms and showed Fuzzy δ -separation axioms are hereditary in Fuzzy regular open subspaces. In 2018 Paul et al. [10] studied and introduced separation axioms (T_i , i = 0, 1, 2) in the light of Fuzzy γ^* -open set via quasi-coincidence, quasi-neighborhood and also established relation between Fuzzy separation axioms, Fuzzy pre-separation axioms and Fuzzy γ^* -separation axioms.

In this paper, we introduce *Fuzzy* separation axioms via *Fuzzy* gp^* -open sets and find out there relation with *Fuzzy* separation axioms and *Fuzzy* pre separation axioms introduced earlier. We find out that every FT_i space [3] is Fgp^*T_i space for i = 0, 1, 2 and every FPT_i space [11] is Fgp^*T_i space for i = 0, 1, 2. But the converse is not true for both the cases, which we proved by counter examples.

2 Preliminaries

In this paper (Z, τ) always mean *Fuzzy* topological space on which no separation axioms are mentioned unless otherwise explicitly stated. A *Fuzzy* set in topological space (X, τ) is called a *Fuzzy* point iff it takes the value 0 for all $y \in X$ except one, say $x \in X$. If its value at x is λ $(0 < \lambda \leq 1)$ we denote this *Fuzzy* point by x_{λ} , where the point x is called its support see [11]. From the previous literature, following definitions and remarks play a key role in establishing the main work of this paper.

Definition 2.1 ([5]). Suppose (Y, τ) is a Fuzzy topological space. Then a subset λ of (Y, τ) is called Fuzzy generalized pre regular weakly closed (briefly Fuzzy gp^* -closed) if $pcl(\lambda) \leq \mu$ whenever $\lambda \leq \mu$ and μ is a Fuzzy regular semi open set in (Y, τ) . Complement of Fuzzy generalized pre regular weakly closed set is called Fuzzy generalized pre regular weakly open (briefly Fuzzy gp^* -open).

Definition 2.2 ([2]). A Fuzzy set on X is called a Fuzzy singleton if it takes the value zero (0) for all points x in X except one point. The point at which a Fuzzy singleton takes the non-zero value is called the support and the corresponding element of (0,1] its value. A Fuzzy singleton with value 1 is called a Fuzzy crisp singleton.

Definition 2.3 ([3]). A Fuzzy topological space is said to be FT_0 iff for every pair of Fuzzy singletons P_1 and P_2 with different supports, there exists an open Fuzzy set O such that $p_1 \leq O \leq cop_2$ or $p_2 \leq O \leq cop_1$.

Definition 2.4 ([3]). A Fuzzy topological space is said to be FT_1 iff for every pair of Fuzzy singletons p_1 and p_2 with different supports, there exists open Fuzzy sets O_1 and O_2 such that $p_1 \leq O_1 \leq cop_2$ and $p_2 \leq O_2 \leq cop_1$.

Definition 2.5 ([3]). A Fuzzy topological space is said to be FT_2 (F-Hausdorff) iff for every pair of Fuzzy singletons p_1 and p_2 with different supports, there exists open Fuzzy sets O_1 and O_2 such that $p_1 \leq O_1 \leq cop_2$, $p_2 \leq O_2 \leq cop_1$ and $O_1 \leq coO_2$.

Definition 2.6 ([11]). A Fuzzy topological space is said to be Fuzzy pre- T_0 or in short FPT_0 if for every pair of Fuzzy singletons p_1 and p_2 with different supports, there exists a Fuzzy pre-open set u such that either $p_1 \leq u \leq cop_2$ or $p_2 \leq u \leq cop_1$.

Definition 2.7 ([11]). A Fuzzy topological space (X, τ) is said to be Fuzzy pre- T_1 or in short FPT_1 if for every pair of Fuzzy singletons p_1 and p_2 with different supports x_1 and x_2 , $(x_1 \neq x_2)$, there exists Fuzzy pre-open sets u and v such that $p_1 \leq u \leq cop_2$ and $p_2 \leq v \leq cop_1$.

Definition 2.8 ([11]). A Fuzzy topological space is said to be Fuzzy pre-Hausdorff or in short FPT_2 iff for every pair of Fuzzy singletons p_1 and p_2 with different supports, there exists two Fuzzy pre-open sets u and v such that $p_1 \le u \le cop_2$, $p_2 \le v \le cop_1$ and $u \le cov$.

Remark 2.1 ([5]). Suppose (Y, τ) is a Fuzzy topological space and $\lambda \leq Y$. Then we call λ Fuzzy gp^* -open if $(1 - \lambda)$ is Fuzzy gp^* closed in (Y, τ) .

Remark 2.2 ([11]). In Fuzzy topological space (Y, τ) every Fuzzy closed set is Fuzzy pre-closed.

Remark 2.3 ([5]). In Fuzzy topological space (Y, τ) , every Fuzzy open set is Fuzzy gp^* -open.

3 Fuzzy gp^* -closure

Definition 3.1. Suppose (Y, τ) is a Fuzzy topological space and $\alpha \leq Y$. Then Fuzzy gp^* -closure (briefly Fgp^* -cl) and Fuzzy gp^* -interior (briefly Fgp^* -int) of α are respectively defined as,

Fuzzy gp^* - $cl(\alpha) = \land \{\mu : \alpha \leq \mu, \mu \text{ is Fuzzy } gp^*$ - $closed \text{ set in } Y \},$ Fuzzy gp^* - $int(\alpha) = \lor \{\mu : \alpha \geq \mu, \mu \text{ is Fuzzy } gp^*$ - $open \text{ set in } Y \}.$

Theorem 3.1. In Fuzzy topological space (Y, τ) every Fuzzy pre-closed set is Fuzzy gp^* -closed.

Proof. Suppose λ is a Fuzzy pre-closed set in (Y, τ) such that $\lambda \leq \mu$, where μ is Fuzzy generalized pre-open in (Y, τ) . Now as λ is Fuzzy pre-closed implying that $pcl(\lambda) = \lambda$. Also by Remark 2.2 every Fuzzy closed set is Fuzzy pre-closed, implying $cl(\lambda) \leq pcl(\lambda) = \lambda \leq \mu$, whenever $\lambda \leq \mu$ and μ is Fuzzy generalized pre-open in (Y, τ) . So λ is Fuzzy gp*-closed.

Theorem 3.2. Suppose λ is a Fuzzy set in Fuzzy space (Y, τ) . Then Fuzzy $gp^* - cl(1 - \lambda) = 1$ - (Fuzzy $gp^* - int(\lambda)$) and Fuzzy $gp^* - int(1 - \lambda) = 1$ -(Fuzzy $gp^* - cl(\lambda)$).

Proof. From Remark 2.1, a Fuzzy gp^* -open set $p \leq \lambda$ is the complement of Fuzzy gp^* -closed set $q \geq 1 - \lambda$. So

 $\begin{array}{l} Fuzzy \ gp^*-\mathrm{int}(\lambda) = \lor \{1-q: q \ \mathrm{is} \ fuzzy \ gp^* \ \mathrm{closed} \ \mathrm{and} \ q \ge 1-\lambda\},\\ Fuzzy \ gp^*-int(\lambda) = 1-\land \{q: q \ \mathrm{is} \ Fuzzy \ gp^* \ \mathrm{closed} \ \mathrm{and} \ q \ge 1-\lambda\},\\ Fuzzy \ gp^*-int(\lambda) = 1-\ Fuzzy \ gp^*-cl(1-\lambda)\\ \Longrightarrow \ gp^*-cl(1-\lambda) = 1-\ Fuzzy \ gp^*-int(\lambda). \end{array}$

Now, suppose r is a Fuzzy gp*-open set so for fuzzy gp*-closed set $s \ge \lambda$, $r = 1 - s \le 1 - \lambda$

Fuzzy $gp^* - cl(\lambda) = \land \{1 - r : r \text{ is } fuzzy \ gp^* \text{-open and } r \leq 1 - \lambda \},$ Fuzzy $gp^* \text{-}cl(\lambda) = 1 \cdot \lor \{r : r \text{ is } Fuzzy \ gp^* \text{-open and } r \leq 1 - \lambda \},$ Fuzzy $gp^* - cl(\lambda) = 1 \cdot Fuzzy \ gp^* - int(1 - \lambda)$ $\implies Fuzzy \ gp^* - int(1 - \lambda) = 1 \cdot Fuzzy \ gp^* - cl(\lambda).$

Theorem 3.3. Suppose (Y, τ) is a Fuzzy topological space and α , μ are Fuzzy subsets of Y. Then (a) Fuzzy $gp^* - cl(1_Y) = 1_Y$ and Fuzzy $gp^* - cl(0_Y) = 0_Y$,

(b) $\alpha \leq Fuzzy gp^* - cl(\alpha)$,

 \implies

- (c) suppose $\mu \leq \alpha$ where α is Fuzzy gp^* -closed set. Then Fuzzy gp^* -cl(μ) $\leq \alpha$,
- (d) If $\alpha \leq \mu$ then Fuzzy $gp^* cl(\alpha) \leq Fuzzy gp^* cl(\mu)$.
- *Proof.* (a) Since Fuzzy $gp^* cl(1_Y)$ is the intersection i.e. minimum of all Fuzzy gp^* -closed sets in Y containing 1_Y and since 1_Y is the minimum Fuzzy gp^* -closed set containing 1_Y . So Fuzzy $gp^* cl(1_Y) = 1_Y$. Now Fuzzy $gp^* cl(0_Y)$ is the intersection i.e. minimum of all Fuzzy gp^* -closed sets in Y containing 0_Y and since 0_Y is the minimum Fuzzy gp^* -closed set containing 0_Y , implying Fuzzy $gp^* cl(0_Y) = 0_Y$.
- (b) As Fuzzy $gp^* cl(\alpha)$ is the intersection of all Fuzzy gp^* -closed sets containing α . So $\alpha \leq Fuzzy gp^* cl(\alpha)$ is obvious.
- (c) Suppose $\mu \leq \alpha$, where α is Fuzzy gp^* -closed set. Now,

Fuzzy
$$gp^*$$
-cl $(\mu) = \wedge \{\pi : \mu \leq \pi, \pi \text{ is Fuzzy } gp^*$ -closed set in Y $\}$

i.e. Fuzzy $gp^* - cl(\mu)$ is contained in all Fuzzy gp^* -closed sets, so in particular Fuzzy $gp^* - cl(\mu) \leq \alpha$. (d) Suppose $\alpha \leq \mu$, also

Fuzzy gp^* -cl $(\mu) = \land \{\pi : \mu \leq \pi, \pi \text{ is Fuzzy } gp^*$ -closed set in Y $\} \to (d.1).$

Now if $\mu \leq \pi$, where π is Fuzzy gp^* -closed in Y, then by (c) of this theorem, Fuzzy $gp^* - cl(\mu) \leq \pi$. Now by (b) of this theorem $\mu \leq Fuzzy gp^* - cl(\mu)$ implies $\alpha \leq \mu \leq \pi$ where π is Fuzzy gp^* -closed. So Fuzzy $gp^* - cl(\alpha) \leq \pi$ (by (c) of this theorem). Therefore

Fuzzy
$$gp^*-cl(\alpha) \le \land \{\pi : \mu \le \pi, \pi \text{ is } Fuzzy \ gp^*-closed \text{ set in } Y \}$$

Fuzzy $gp^*-cl(\alpha) \le Fuzzygp^* - cl(\mu) \quad (using(d.1))$

4 Separation Axioms via $Fuzzy gp^*$ -open Set

Definition 4.1. A Fuzzy topological space (Z, τ) is $Fgp^* - T_0$ if for arbitrary Fuzzy singletons x_{λ}^1 and x_{μ}^2 , their exists a Fuzzy gp^* -open set Z such that $x_{\lambda}^1 \leq Z \leq (1 - x_{\mu}^2)$ or $x_{\mu}^2 \leq Z \leq (1 - x_{\lambda}^1)$.

Theorem 4.1. A Fuzzy topological space (Z, τ) is $Fgp^* - T_0$ iff Fuzzy-gp^{*} closure of any two Fuzzy crisp singletons with different supports is distinct.

Proof. Suppose (Z, τ) is $Fgp^* - T_0$ and x^1 , x^2 are two Fuzzy crisp singletons with different supports. Now (Z, τ) being $Fgp^* - T_0$ implies that \exists a Fuzzy-gp^{*} open set Z such that $x^1 \leq Z \leq (1 - x^2)$, implying $x^2 \leq Fgp^* - cl(x^2) \leq 1 - Z$. Since $x^1 \not\leq 1 - Z$ so $x^1 \not\leq Fgp^* - cl(x^2)$, but $x^1 \leq Fgp^* - cl(x^1)$ implies $Fgp^* - cl(x^1) \neq Fgp^* - cl(x^2)$.

Conversely, suppose x^1 and x^2 be two *Fuzzy* crisp singletons with different supports z_1 and z_2 , respectively such that $x^1(z_1) = x^2(z_2) = 1$. Also let l_1 and l_2 be *Fuzzy* singletons with different supports z_1 and z_2 , so by hypothesis $1_Z - Fgp^* - cl\{x^1\} \le 1_Z - \{x^1\}$ and so $(1_Z - Fgp^* - cl(x^1)) \le (1_Z - \{l_1\})$. Now $(1_Z - Fgp^* - cl(x^1))$ is a Fgp^* -open set such that $l_2 \le (1_Z - Fgp^* - cl(x^1) \le (1_Z - \{l_1\})$. Implying (Z, τ) is $Fgp^* - T_0$.

Definition 4.2. A Fuzzy topological space (Z, τ) is $Fgp^* - T_1$ if for arbitrary Fuzzy singletons X^1_{λ} and x^2_{μ} , their exists Fuzzy gp^* open sets $Z_1 \ & Z_2$ such that $x^1_{\lambda} \leq Z_1 \leq (1 - x^2_{\mu})$ and $x^2_{\mu} \leq Z_2 \leq (1 - x^1_{\lambda})$. Obviously every $Fgp^* - T_1$ space is a $Fgp^* - T_0$ space.

Theorem 4.2. A Fuzzy topological space (Z, τ) is $Fgp^* - T_1$ iff every Fuzzy crisp singleton is Fuzzy-gp^{*} closed.

Proof. Consider (Z, τ) is $Fgp^* - T_1$ and l_1 is a Fuzzy singleton with support z_1 such that $l_1(z_1) = 1$. So for any arbitrary Fuzzy singleton l_2 with support $z_2 \neq z_1$, their exists Fuzzy-gp^{*} open sets α and β such that $l_1 \leq \alpha \leq 1_Z - l_2$ and $l_2 \leq \beta \leq 1_Z - l_1$. Now, as every Fuzzy set can be written as the union of Fuzzy singletons contained in it [2]. So $1_Z - l_1 = \bigvee_{l_2 \leq 1_Z - l_1} l_2$. From $1 - l_1(z_1) = 0$ it is clear that $1_Z - l_1 = \bigvee_{l_2 \leq 1_Z - l_1} \beta$, implying $1_Z - l_1$ is Fuzzy-gp^{*} open. Conversely suppose that l_1 and m_1 are Fuzzy singletons with support z_1 such that $m_1(z_1) = 1$ and $l_1(z_1) \neq 1$ & l_2, m_2 are Fuzzy singletons with support z_2 such that $m_2(z_2) = 1$ and $l_2(z_2) \neq 1$. Now the Fuzzy sets $1_Z - m_1$ & $1_Z - m_2$ are Fuzzy gp * open sets satisfying $l_1 \leq 1_Z - m_2 \leq 1_Z - l_2$ & $l_2 \leq 1_Z - m_1 \leq 1_Z - l_1$ implying (Z, τ) is $Fgp^* - T_1$.

Definition 4.3. A Fuzzy topological space (Z, τ) is Fgp^* -Hausdorff or $Fgp^* - T_2$ if for arbitrary Fuzzy singletons X_{λ}^1 and x_{μ}^2 , their exists Fuzzy gp^* -open sets $Z_1 \ \ Z_2$ such that $x_{\lambda}^1 \le Z_1 \le (1 - x_{\mu}^2), \ x_{\mu}^2 \le Z_2 \le (1 - x_{\lambda}^1)$ and $Z_1 \le 1 - Z_2$.

It is obvious that every $Fgp^* - T_2$ space is $Fgp^* - T_1$ space.

Definition 4.4. A Fuzzy topological space (Z, τ) is Fgp *-Uryshon or $Fgp^* - T_{2\frac{1}{2}}$ if for arbitrary Fuzzy singletons x_{λ}^1 and x_{μ}^2 , their exists Fuzzy gp *-open sets $Z_1 \& Z_2$ such that $x_{\lambda}^1 \leq Z_1 \leq (1 - x_{\mu}^2), x_{\mu}^2 \leq Z_2 \leq (1 - x_{\lambda}^1)$ and $Fgp^* - cl(Z_1) \leq 1 - (Fgp^* - cl(Z_2))$.

Remark 4.1. Every Fuzzy pre-open set in fts (Z, τ) is a Fuzzy gp^* -open set in (Z, τ) .

Proof. Suppose α is a *Fuzzy* pre-open set in (\mathbb{Z}, τ) , so $1 - \alpha$ is *Fuzzy* pre-closed. Now by Theorem 3.1 every *Fuzzy* pre-closed set is *Fuzzy* gp^* -closed, implying $1 - \alpha$ is *Fuzzy* gp^* -closed & so α is a *Fuzzy* gp^* -open set in (\mathbb{Z}, τ) .

Theorem 4.3. Every FPT_0 space is $Fgp^* - T_0$ space.

Proof. Suppose (Z, τ) is a FPT_0 -space, so by [2] for Fuzzy singletons $l_1 \& l_2$ with supports z_1, z_2 $(z_1 \neq z_2)$ their exists a Fuzzy pre-open set ν such that $l_1 \leq \nu \leq 1_Z - l_2$ or $l_2 \leq \nu \leq 1_Z - l_1$. Now by Remark 4.1 ν is a Fuzzy gp^* -open set satisfying $l_1 \leq \nu \leq 1_Z - l_2$ or $l_2 \leq \nu \leq 1_Z - l_1$. Hence (Z, τ) is a $Fgp^* - T_0$ space. \Box

Remark 4.2. The converse of the above theorem need not be true, for proof the following example is given.

Example 4.1. If $Z = \{z_1, z_2, z_3, z_4\}$ is a space with Fuzzy topology $\tau = \{0_Z, 1_Z, l, m, n, o\}$ where $l, m, n, o : Z \to [0, 1]$ are defined as

$$l(z) = \begin{cases} 1 & \text{if } z = z_1 \\ 0 & \text{otherwise,} \end{cases}$$
$$m(z) = \begin{cases} 1 & \text{if } z = z_2 \\ 0 & \text{otherwise,} \end{cases}$$
$$n(z) = \begin{cases} 1 & \text{if } z = z_1, z_2 \\ 0 & \text{otherwise,} \end{cases}$$
$$o(z) = \begin{cases} 1 & \text{if } z = z_1, z_2, z_3 \\ 0 & \text{otherwise.} \end{cases}$$

In this space Z with such kind of topology τ , the *Fuzzy* set p defined below is Fgp^* -open but not *Fuzzy* pre-open, implying that the space (Z, τ) is $Fgp^* - T_0$ but not FPT_0 .

$$p(z) = \begin{cases} 1 & \text{if } z = z_1, z_3, z_4 \\ 0 & \text{otherwise}/ \end{cases}$$

Theorem 4.4. All FPT_1 spaces are $Fgp^* - T_1$ spaces.

Proof. Suppose (\mathbb{Z},τ) is a FPT_1 space, so by the definition of FPT_1 for arbitrary singletons l_1 and l_2 , $l_1 \leq \nu_1 \leq 1 - l_2 \& l_2 \leq \nu_2 \leq 1 - l_1$ where ν_1 and ν_2 are *Fuzzy* pre-open sets. Now by Remark 4.1 ν_1 and ν_2 are *Fuzzy* gp *-open, concluding that (Z,τ) is a $Fgp^* - T_1$ spaces.

Remark 4.3. The converse of the above theorem may not be true as shown in the following example.

Example 4.2. In the *Fuzzy* topological space defined in Example 4.1, the *Fuzzy* sets p & q defined below are Fgp *-open but not *Fuzzy* pre-open, implying that the space (Z, τ) is $Fgp^* - T_1$ but not FPT_1 .

$$p(z) = \begin{cases} 1 & \text{if } z = z_1, z_3, z_4 \\ 0 & \text{otherwise,} \end{cases}$$

$$q(z) = \begin{cases} 1 & \text{if } z = z_1, z_4 \\ 0 & \text{otherwise.} \end{cases}$$

Theorem 4.5. All FPT_2 spaces are $Fgp^* - T_2$ spaces.

Proof. From the definition of FPT_2 spaces in [11] and from Remark 4.1, the proof is obvious.

Remark 4.4. The converse of the above theorem need not be true as shown in the given example.

Example 4.3. In the *Fuzzy* topological space defined in Example 4.1, the *Fuzzy* sets r & s defined below are Fgp^* -open but not *Fuzzy* pre-open, implying that the space (Z, τ) is $Fgp^* - T_2$ but not FPT_2 .

$$r(z) = \begin{cases} 1 & \text{if } z = z_3 \\ 0 & \text{otherwise,} \end{cases}$$
$$s(z) = \begin{cases} 1 & \text{if } z = z_4 \\ 0 & \text{otherwise.} \end{cases}$$

Theorem 4.6. Every FT_0 space is $Fgp^* - T_0$ space.

Proof. Suppose (Z, τ) is a FT_0 -space, so by [12] for Fuzzy singletons $l_1 \& l_2$ with different supports, their exists a Fuzzy open set ν such that $l_1 \leq \nu \leq 1_Z - l_2$ or $l_2 \leq \nu \leq 1_Z - l_1$. Now from Remark 2.3 every Fuzzy open set is Fuzzy gp *-open, implying that ν is a Fuzzy gp*-open set satisfying $l_1 \leq \nu \leq 1_Z - l_2$ or $l_2 \leq \nu \leq 1_Z - l_1$. Hence (Z, τ) is a Fgp* - T_0 space.

Remark 4.5. The converse of the above theorem need not be true as shown in the following example.

Example 4.4. If $Z = \{z_1, z_2, z_3, z_4, z_5\}$ is a space with Fuzzy topology $\tau = \{0_Z, 1_Z, \lambda_1, \lambda_2, \lambda_3\}$ where $\lambda_1, \lambda_2, \lambda_3 : Z \to [0, 1]$ are defined as

$$\lambda_{1}(z) = \begin{cases} 1 & \text{if } z = z_{1}, z_{2} \\ 0 & \text{otherwise,} \end{cases}$$
$$\lambda_{2}(z) = \begin{cases} 1 & \text{if } z = z_{3}, z_{4} \\ 0 & \text{otherwise,} \end{cases}$$
$$\lambda_{3}(z) = \begin{cases} 1 & \text{if } z = z_{1}, z_{2}, z_{3}, z_{4} \\ 0 & \text{otherwise.} \end{cases}$$

In this Fuzzy topological space, the Fuzzy set λ_4 defined below is a Fuzzy gp *-open set but not Fuzzy open, implying that the space (Z, τ) is $Fgp^* - T_0$ but not FT_0 .

$$\lambda_4(z) = \begin{cases} 1 & \text{if } z = z_1, z_2, z_4, z_5 \\ 0 & \text{otherwise.} \end{cases}$$

Theorem 4.7. Every FT_1 space is $Fgp^* - T_1$ space.

Proof. The proof is trivial from the definitions of FT_1 and $Fgp^* - T_1$ spaces and from the result that every *Fuzzy* open set is *Fuzzy* gp^* -open [5].

Remark 4.6. The converse that every $Fgp^* - T_1$ space is a FT_1 space is not true, for proof the following example is given

Example 4.5. In *Fuzzy* topological space (Z, τ) defined in Example 4.4, the *Fuzzy* sets λ_4 and λ_5 defined below are *Fuzzy gp**-open sets but not *Fuzzy* open sets, implying the *Fuzzy* space (Z, τ) is a $Fgp^* - T_1$ space but not a FT_1 .

$$\lambda_4(z) = \begin{cases} 1 & \text{if } z = z_1, z_2, z_4, z_5 \\ 0 & \text{otherwise,} \end{cases}$$
$$\lambda_5(z) = \begin{cases} 1 & \text{if } z = z_2, z_3, z_4, z_5 \\ 0 & \text{otherwise.} \end{cases}$$

Theorem 4.8. Every FT_2 space is $Fgp^* - T_2$ space.

Proof. The proof is straightforward.

Remark 4.7. The converse of the above theorem need not be true as shown in the following example.

Example 4.6. In *Fuzzy* topological space (Z, τ) defined in Example 4.4, the *Fuzzy* sets λ_4 and λ_5 defined below are *Fuzzy gp**-open sets but not *Fuzzy* open sets, implying the *Fuzzy* space (Z, τ) is a $Fgp^* - T_2$ space but not a FT_2 .

$$\lambda_4(z) = \begin{cases} 1 & \text{if } z = z_1, z_2, z_4, z_5 \\ 0 & \text{otherwise.} \end{cases}$$
$$\lambda_5(z) = \begin{cases} 1 & \text{if } z = z_2, z_3, z_4, z_5 \\ 0 & \text{otherwise} \end{cases}$$

From the above discussion, we have the following diagram of implications

$$\begin{array}{rcl} FT_{0} & \Leftarrow & FT_{1} & \Leftarrow FT_{2} \\ \Downarrow & & \Downarrow & & \Downarrow & \\ Fgp^{*}-T_{0} & \Leftarrow & Fgp^{*}-T_{1} & \Leftarrow & Fgp^{*}-T_{2} \\ \Downarrow & & \Downarrow & & \Downarrow & \\ FPT_{0} & \Leftarrow & FPT_{1} & \Leftarrow & FPT_{2} \end{array}$$

5 Conclusion

The main portion of this manuscript is dedicated to Fuzzy separation axioms via Fuzzy gp^* -open sets, We introduced these axioms and find out their relation with Fuzzy separation axioms and Fuzzy pre separation axioms introduced earlier. We can further investigate these spaces and relate the new results with the results already in trending in this area.

Acknowledgement. I am highly thankful to the Editors and anonymous Reviewers for their valuable suggestions to improve the paper in its present form.

References

- K. K. Azad, On Fuzzy semi continuity, Fuzzy almost continuity and Fuzzy weakly continuity, Journal of Mathematical Analysis and Applications, 82 (1981), 14-32.
- [2] J. A. Goguen, L-fuzzy sets, J.Math. Anal. Appl., 18 (1967), 145-174.
- [3] M. H. Ghanim, Separation axioms, subspaces and sums in *Fuzzy* Topology, *Journal of mathematical analysis and applications*, **102** (1984), 189-202.
- [4] J. A. Goguen, L-fuzzy sets, J.Math.Anal.Appl., 18 (1967), 145-174.
- [5] F. Habib and K. Moinuddin, Fuzzy gp*-closed sets in Fuzzy topological spaces, South East Asian J. of Mathematics and Mathematical Sciences, 16(2) (2019), 151-160.
- [6] F. Habib and K. Moinuddin, On Fuzzy gprw -closed sets in Fuzzy topological spaces, Journal of the Gujarat Research Society, 21, (2019), 1348-1357.
- [7] F. Habib and K. Moinuddin, On Fuzzy Generalized Pre Regular Weakly Continuity, South East Asian J. of Mathematics and Mathematical Sciences, 17(2) (2021), 181-188.
- [8] E. E. Kerre, Fuzzy Sierpinski space and its generalizations, J. Math. Anal. Appl., 74 (1980), 318-324.
- [9] S. J. Lee and S. M. Yun, *Fuzzy* delta separation axioms, *IEEE International conference on Fuzzy* systems, (2011), 545-602.
- [10] G. Paul, B. Das and B. Bhattacharya, Separation axioms $(T_i, i = 0, 1, 2)$ in the light of Fuzzy γ^* -open set, Proceedings of ICCIIT, (2018), 631-637.
- [11] M. K. Singal and N. Prakesh, Fuzzy preopen sets and Fuzzy pre separation axioms, Fuzzy sets and systems, 44 (1991), 273-281.
- [12] L. A. Zadeh. Fuzzy sets, information and control, 8 (1965), 145-174.