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Abstract

In this paper we study heat distribution in outer parts of human body incorporating effect of blood
circulation and metabolic activities. We solve the bio heat equation of skin for steady state case using
Whittaker function and Conuent Hypergeometric function. Some parameters are taken variable. A
general model has been modified and solved mathematically for comparative study of heat flow in human
skin. The structure of human skin is taken as heterogeneous medium and attempt has been made to solve
it by analytic methods. Numerical computation has been carried out for various values of parameters.
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1 Introduction
The heat of the body is produced by a slow combustion of food; and this is taking place all the time. This
combustion goes on chiefly in the muscles and is much more active during exercise than when the body is
at rest. Yet the internal temperature of the body during rest and moderate exercise is the same, although
much more heat is produced during exercise. The loss of heat from the body takes place chiefly at the
surface, through the skin. A great deal more heat is lost from the body when the surrounding air is cold,
yet the body temperature remains the same. The process of heat-making which is carried on in the muscles
is regulated by certain nerve centers in the brain and spinal cord, which are connected with the muscles by
nerves, so that the making of heat is under constant and perfect control. When the body is exposed to cold
air or water or is in any way cooled so that the temperature of the blood is lowered, nerve centers in the
brain incite increased activity in the heat-making organs and more fuel is burned in the cells. In this way
the heat-making process is adjusted to the needs of the body. The body temperature in health that any
variation from the normal, 98.5 + degrees, gives cause for anxiety. As a result of some shock or in one who
is very feeble, the temperature may fall below normal, through insufficient heat production or too great an
escape of heat. More often there is a rise of temperature above the normal, and then one is said to have
a fever. In fevers, heat production and loss are not so perfectly controlled as in health, because the heat
centers are disturbed by the undesired substances circulating in the blood. The sweat glands are not so
active as usual, and the surplus heat does not escape.

Blood circulation plays vital role in regulating the heat in a health and the flow is regulated by heart
apparatus. However, certain subjects have abnormality due to age (above 40 yrs.) or under nervous stress,
in such case Yoga can be useful to retain the normal rate [9, 19]. Heat regulation problems in a human body
can be expressed in terms of differential equations. In this paper we generate such equations for outer body
which incorporate the influence of circulation of blood and nutrient indeed bio-chemical reactions in the cells
(cell metabolism). There are number of techniques developed for the solutions and listed in standard texts
(Murphy [14]).However, in biological processes like physiological heat transfer these techniques have several
limitations due to large number of soft parameters and the associated flexibility. Following the advent heat
equation in physiological transport by Perl [16, 17]and Pennes [15]. Trezek and Cooper [4, 5] developed
solutions of the boundary value problems pertaining to in-vivo tissue medium for heat flow in human dermal
regions. Saxena [23] gave solution for steady state case in terms of special cases of Bessel functions.
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In one dimensional boundary value problems, the differential equation can easily be transformed into an
ordinary differential equations by applying a suitable transform. The required solutions can be obtained
by solving this equations and inverting by any method. Other mathematical techniques can also be used
for boundary value problems. In this paper Laplace transform has also been used and further solutions
have been worked out in terms of special functions like Whittaker function and Confluent Hypergeometric
functions.

2 The Method and the Mathematical Model
As we know that for differential equations, we can use some analytic methods and solve them with the help
of Special functions. Some of the cases differential equations can reduced in Bessel equations, Whittakers
equations or Kummers equations and result is expressed in terms of one of the Bessel functions, Whittaker
function or in terms of Confluent Hypergeometric functions.
In this paper we use solution of Heat equation for steady state case with the help of Whittaker function which
is reduced in Confluent Hypergeometric function. We should briefly discuss about Whittakers equation and
Kummers equations.

We know that the Whittaker functions are solutions of the differential equation [24].
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It has a regular singular point at z = 0 and an irregular singular point at z =∞. Two solution are given
by the Whittaker functions Mk,z (z) and Wk,z (z) defined in terms of Kummer’s Confluent Hypergeometric
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The Kummer’s equation may be written as

z
d2w

dz2
− (b− z)dw

dz
− aw = 0, (2.4)

with a regular singular point at z = 0 and irregular singular point at z =∞. It has two linearly independent
solutions M(a, b; z) and U(a, b; z). Kummers function (of first kind) M is a generalized hypergeometric series
introduced is given by (Kummer[10]):

M(z) =

∞∑

n=0

a(n)zn

b(n)n!
= 1F1(a; b; z), (2.5)

where a(0) = 1, and a(n) = a(a + 1)(a + 2)...(a + n − 1) is the rising factorial. This function 1F1(a; b; z) is
known as Confluent Hypergeometric function.
Now we are using these functions in our problem discussed below.

In epidermis and dermis regions of human body, the temperature distribution depends on various physical
and biological quantities. These quantities are related to the local tissue temperature T through the following
Bio-Heat equation for in vivo tissue is given by Perl [16].

ρc
∂T

∂t
= div (KgradT ) +mbcb (Tb − T ) + S, (2.6)

The one dimensional equation for constant thermal conductivity is written as

ρc
∂T

∂t
= K

∂2T

∂x2
+mbcb (Tb − T ) + S, (2.7)

where ρ, c,K, t,mb, cb, Tb and S are respectively tissue density, heat capacity, thermal conductivity, time,
blood mass flow rate, heat capacity of blood and blood temperature and rate of metabolic heat generation
at a point. Here, a one dimensional form of variation of temperature is taken in x-direction, perpendicular
to the outer skin surface. The equation (2.7) is solved separately for epidermis and dermis under following
conditions:

(i) At outer skin (x = 0):

K1
∂T

∂x
= h (T − Ta) + LE, (2.8)
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where
K1 = value of K (Thermal conductivity) in epidermis,
h = heat transfer coefficient of convection and radiation,
L = latent heat of of tissue,
E = rate of sweat evaporation,
Ta = atmospheric temperature.

(ii) For epidermis (0 < x < a):
Due to lack of blood flow and no metabolic activity in epidermis we take,

mbcb = S = 0. (2.9)

(iii) Interface (x = a):

K1
∂T

∂x
= K2

∂T

∂x
, (2.10)

K2 = value of K (thermal conductivity)in dermis.
(iv) For dermis (a < x < b):

mbcb = M̄X̄, S = s(Tb − T ),

where X̄ =
[

(x−a)
(b−a)

]2
, M̄ and s are values of mbcb and S in subdermal region.

(v) At Subdermal boundary (x = b):
T = Tb where Tb is blood temperature which is almost same as body core temperature.

We simplified and solve equations (2.7) with conditions mentioned in (i), (ii), (iii), (iv) and (v) and solve
with the help of Laplace transform. The solutions for the both regions are obtained in the following form:

For Epidermis:

T̄ = A1 exp(y
√
p) +A2 exp(−y√p), (2.11)

For Dermis:
T̄ = z−1/2

[
A3M−p/4,1/4(z2) +A4M−p/4,−1/4(z2)

]
, (2.12)

where
T̄ is Laplace transform of (Tb − T )/Tb, p is parameter of the transform,
Mk,m denotes Whittaker’s function of first kind. Also A1, A2, A3 and A4 are determined with the help of
the above conditions. Thus the same are obtained as:
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1F1 denotes confluent hypergeometric funtion.
For steady state problem the solution (2.11) and (2.12) take the following form:
For Epidermis:

T = Tb(A1 − A2y). (2.13)

For Dermis:

T = Tb

[
1− e− z

2

2

{
A3z 1F1(a1, c1; z2) + A4z 1F1(a2, c2; z2)

}]
. (2.14)

Values of all the notations used in equations (2.13) and (2.14) are defined in Appendix-A.

3 Numerical Results
This model has been solved with some numerical assumptions. Taking two layers the solution for T is
obtained for the following values of physical and physiological constants have been taken as prescribed by
Cooper and Trezek [4, 5] and Saxena[23].

L = 579 cal/gm

Tb = 37◦C (The Core Temperature)

ρ = 1.05 gm/cm3

c = 0.83 cal/gm

h = 0.02 cal/cm2-min◦C (The Heat Transfer Coefficient).

For Epidermis

K1 = 0.040 cal/cm-min◦C

M̄1 = 0.000 cal/cm3-min◦C

s = 0.00 cal/cm3-min.

For Dermis

K2 = 0.060 cal/cm-min◦C

M̄2 = 0.030 cal/cm3-min◦C

s = 0.0357 cal/cm3-min.

The numerical calculations have been made for the following four cases of atmospheric temperature Ta
together with the respective values of rate of evaporation E.

Table 3.1: Cases for distinguish temperatures and evaporation rates.

S.No. Temperature (Ta) Evaporation (E)
(◦C) (gm/cm2-min)

(i) 15 0.00
(ii) 20 0.45 ×10−3

(iii) 25 0.79 ×10−3

(iv) 30 0.9 ×10−3

We can assign different values of the constants a and b depending on the sample of thickness of the skin
under study for different different parts of body and persons. The set of values of a and b we considered
here are as follows:

Set-I a = 0.2 cm b = 0.7 cm
Set-II a = 0.4 cm b = 1.2 cm
Set-III a = 0.6 cm b = 1.3 cm

The graphs have been plotted between temperature T and position x for different sets of the values of
Ta and E.
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These assumptions are generally based on the values taken by several researchers including Trezek and
Cooper[4, 5] who have not only carried out numerical computation of the models in simplified form but
also conducted laboratory investigations on certain mammals in in-vitro stage. Experiments have also been
conducted by Hodgson [8] extensively on human being (in-vivo) sitting in a sophisticated climatic chamber
designed by himself. He measured several parameters including sweat evaporation under different conditions.
Some values are also available in classical monographs like Ruch and Patton [18] and have been used widely
by Saxena and his subsequent workers ([1, 2, 3, 6, 7, 11, 12, 13, 20, 21, 22, 23]). Based on the above our
numerical calculations are exhibited in the graphs.
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Figure 3.1: Graph between in depth x and temperature T for Set-I
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Figure 3.2: Graph between in depth x and temperature T for Set-II
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Figure 3.3: Graph between in depth x and temperature T for Set-III

4 Discussion
Temperature profiles in epidermis and dermis for different environment conditions and anatomy. The curvi-
linear variation is clearly visible in dermis due to additional terms of blood flow and biochemical reactions.
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These graphs are only illustrations for certain sample cases and can be extended for subjects placed under
different atmospheric conditions.

As indicated above three sets of skin layers with different thicknesses have been considered for
computation and for different values of atmospheric temperature. The patterns of graph reflect both these
assumptions. In figure-3.1 and figure-3.2, the rise of temperature is more in comparison to figure-3.3 which
has rapid rise in dermis in comparison to the earlier two cases.

The mathematical solution derived in this paper provide sufficient freedom for the assumption and
occurrence of biophysical parameters namely, thermal conductivity, metabolic cell reactions and micro
circulation of blood. This aspect is vital for the theoretical study as in-vivo situation demands it. The
temperature profile thus obtained can further be use for more advanced studies pertaining to extreme climates
and thermoregulation related diseases like malignant tumor.

This study is confined to human subjects at rest. Same can be extended to persons undergoing some
physical activity or exercise like Yoga as indicated earlier [9, 19, 21]. In such cases the assumptions regarding
blood circulation rate M̄ and metabolic rate S have to be connected with practical results. Accordingly
these two parameters have to be flexible, either in steps or continuously time dependent. This will open an
opportunity for new investigations.
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Appendix-A
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,

l1 = hTa + α,
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,

R = h−m1(hā+ 1).
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