
ISSN 0304-9892 (Print) ISSN 2455-7463 (Online)
www.vijnanaparishadofindia.org/jnanabha
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Abstract

Applying weakly compatible for eight self-mappings in fuzzy metric space, we demonstrate common
fixed-point theorems in this analysis after already formulating the generalised ψ- weak contraction
condition, which involves third and fourth components of M(x, y, t).
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1 Introduction
The idea of fuzzy sets was developed by Zadeh [22] in 1965 as a novel approach to depict the ambiguity in
daily life. The development of fuzzy mathematics started at this point. In 1975, Kramosil and Michalek [10]
defined the fuzzy metric space with the help of continuous t-norm by using the concepts of fuzziness. Fuzzy
set theory is used in a wide range of real-world applications, including neural networks, fixed theory, health
care, image processing, and control theory. When Zadeh [22] introduced the idea of a fuzzy set, which served
as the basis for fuzzy mathematics, it marked a turning point in the history of mathematics.

Fuzzy mathematics has developed rapidly over the past three decades as a result, and recent studies have
revealed that practically all fields of mathematics, including arithmetic, topology, graph theory, probability
theory, logic, etc., have been fuzzyfied [1, 2, 4, 8, 9, 12, 13]. Communication, image processing, control theory,
mathematical programming, neural network theory, stability theory, engineering, and medical sciences are
among the applied areas where fuzzy set theory is used (medical genetics, nervous system). It makes sense
that fuzzy fixed point theory has become more popular among experts in the discipline and that fuzzy
mathematics has opened up new opportunities for fixed point theorists. For more details on this topic, one
can see [5, 11, 14, 15, 16, 17, 18, 20]

2 Preliminaries
Definition 2.1 ([19]). Let (B,M, ∗) be a fuzzy metric space and G and H be two self-mappings of this space.
When {xn} is a sequence in B such that limn→∞ Gxn = limn→∞Hxn = u for some u ∈ B, the mappings G
and H are known as compatible if limn→∞M(GHxn,HGxn, t) = 1, for all t > 0.

Jungck [6, 7] presented the idea of weakly compatible mappings in 1986 and demonstrated that weakly
compatible maps are compatible maps, despite the possibility that the opposite is also true. Later
Subrahmanyam [19] extended the definition as follows:

Definition 2.2 ([19]). If G and H commute at their coincidence sites, they are considered to be weakly
compatible.

Definition 2.3 ([3]). If B is arbitrary set, ∗ is a continuous t-norm, M is a fuzzy set in B2 × [0,∞), the
triplet (B,M, ∗) meets the following requirements for being a fuzzy metric space:
(i) M(x, y, t) > 0,
(ii) M(x, y, t) = 1 for all t > 0 if and only if x = y,
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(iii) M(x, y, t) =M(y, x, t),
(iv) (M(x, y, t) ∗M(y, z, s)) ≤M(x, z, t+ s),
(v) M(x, y, .) : [0,∞)→ [0, 1] is left continuous for all x, y, z ∈ B and s, t > 0,
(vi) limt→∞M(x, y, t) = 1, for all x, y,∈ B.
M(x, y, t) is a measure of how close together x and y are with regard to t.

Definition 2.4 ([14]). Let (B,M, ∗) be a fuzzy metric space. A sequence {xn} in B is defined as:
(i) Converge to x ∈ B if limn→∞M(xn, x, t) = 1 fo each t > 0.
(ii) Cauchy sequence if limn→∞M(xn, xp, t) = 1 for all t > 0 and p > 0.
(iii) Complete if every Cauchy sequence in B is convergent in B.

Proposition 2.1 ([6]). Let A and B be compatible mappings of a fuzzy metric space (B,M, ∗) into itself.
If At = Bt for some t in B, then ABt = AAt = BBt = BAt.

Proposition 2.2 ([6]). Let A and B be compatible mappings of a fuzzy metric space (B,M, ∗) into itself.
Suppose that limnAxn = limnBxn = t for some t in B. Then the following holds:

(i) BAxn = At if A is continuous at t;
(ii) ABxn = Bt if B is continuous at t;
(iii) ABt = BAt and At = Bt if A and B are continuous at t.

Lemma 2.1 ([19]). Let (B,M, ∗) be a fuzzy metric space. If there exists q ∈ (0, 1) such that M(x, y, qt) ≥
M(x, y, t) for all x, y ∈ B, and t > 0, then x = y.

Lemma 2.2 ([19] ). Let {yn} be a sequence in a fuzzy metric space (B,M, ∗). If there exists q ∈ (0, 1) such
that M(y(n+2), y(n+1), qt) ≥M(y(n+1), yn, t), t > 0, n ∈ N, then yn is a Cauchy sequence in B.

Lemma 2.3 ([20]). Let (B,M, ∗) be a fuzzy metric space. If there is a sequence {xn} ∈ X, such that for
every n ∈ N,

M(xn, x(n+1), t) ≥M(x0, x1, k
nt)

for every k > 1, then the sequence is a Cauchy sequence.

3 Main Results
Let Ψ be set of all continuous functions ψ : [0, 1]4 → [0, 1] increasing in any coordinate and ψ(t, t, t, t) > t.

Theorem 3.1. Let (B,M, ∗) be a complete fuzzy metric space. Let N ,P,Q,S, T ,K,L and W are eight
self-mappings of a complete fuzzy metric space (B,M, ∗) into itself satisfying
(C1)T K(B) ⊆ NP(B),WL(B) ⊆ QS(B),
(C2)QS = SQ,NP = PN , T K = KT ,WL = LW, (T K)S = S(T K), (WL)P = P(WL), (NP)L =
L(NP), (QS)K = K(QS)
(C3) One of NP(B),WL(B),QS(B) or T K(B) is complete ,
(C4) The pair (T K,QS) and (WL,NP) are weakly compatible,
(C5) M3(T Ku,WLv, t)

≥ ψ





M2(QSu, T Ku, ht)M(WLv,NPv, ht),
M(QSu, T Ku, ht)M2(WLv,NPv, ht),

M(QSu, T Ku, ht)M(T Ku,WLv, ht)M(WLv,NPv, ht),
M(WLv,NPv, ht)M(QSu,NPv, ht)M(QSu, T Ku, ht)





for all u, v ∈ B, h > 1 and ψ ∈ Ψ.
Then N ,P,Q,S, T ,K,L and W have a unique common fixed point in B.

Proof. Let x0 ∈ B be an arbitrary point. By (C1) we can search a point x1 such that T K(x0) = NP(x1) = y0.
For this point x1 one can search a point x2 ∈ B such that WL(x1) = QS(x2) = y1. By continuing in this
manner, a sequence {xn} can be created, such that y2n = JK(x2n) = NP(x2n+1),

y2n+1 =WL(x2n+1) = QS(x2n+2), for each n ≥ 0. (3.1)
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For simplicity, we take αm(t) =M(ym, ym+1, t).
Initially, we establish that {yn} is Cauchy sequence.

Case I. If n is even, considering u = x2n and v = x2n+1 in (C5), we get
M3(T Kx2n,WLx2n+1, t)

≥ ψ





M2(QSx2n, T Kx2n, ht)M(WLx2n+1,NPx2n+1, ht),
M(QSx2n, T Kx2n, ht)M

2(WLx2n+1,NPx2n+1, ht),
M(QSx2n, T Kx2n, ht)M(T Kx2n,WLx2n+1, ht)M(WLx2n+1,NPx2n+1, ht),
M(WLx2n+1,NPx2n+1, ht)M(QSx2n,NPx2n+1, ht)M(QSx2n, T Kx2n, ht)




.

Using (3.1), we have
M3(y2n, y2n+1, t)

≥ ψ





M2(y2n−1, y2n, ht)M(y2n+1, y2n, ht),
M(y2n−1, y2n, ht)M

2(y2n+1, y2n, ht),
M(y2n−1, y2n, ht)M(y2n, y2n+1, ht)M(y2n+1, y2n, ht),
M(y2n+1, y2n, ht)M(y2n−1, y2n, ht)M(y2n−1, y2n, ht)




.

On using α2n(t) =M(y2n, y2n+1, t) in the above inequality, we have

α3
2n(t) ≥ ψ

{
α2

2n−1(ht)α2n(ht), (α2n−1(ht)α2
2n(ht),

α2n−1(ht)α2
2n(ht), (α2n(ht)α2

2n−1(ht)

}
. (3.2)

We claim that α2n(ht) ≥ α2n−1(ht)
If α2n(ht) < α2n−1(ht), then (3.2) reduces to

α3
2n(t) ≥ ψ

{
α3

2n(ht), α3
2n(ht), α3

2n(ht), α3
2n(ht))

}
.

Using property of ψ we get
α3

2n(t) > α3
2n(ht) =⇒ α2n(t) > α2n(ht),

a contradiction.
Therefore α2n(ht) ≥ α2n−1(ht).
Like in similar manner, if n is odd, then we can achieve α2n+1(ht) ≥ α2n(ht).
It follows that the sequence αn(t) is increasing in [0, 1], thus (3.2) reduces to

α3
2n(t) ≥ ψ

{
α3

2n−1(ht), α3
2n−1(ht), α3

2n−1(ht)α3
2n−1(ht)

}
.

Using property of ψ we get
α3

2n(t) > α3
2n−1(ht)⇒ α2n(t) ≥ α2n−1(t).

Similarly for an odd integer 2n+ 1, we have α2n+1(t) ≥ α2n(ht),
Hence αn(t) ≥ αn−1(ht), that is,

M(yn, yn+1, t) ≥M(yn−1, yn, ht) ≥ ... ≥M(y0, y1, h
nt).

Hence by Lemma 2.3 {yn} is a Cauchy sequence in B.
Case II. NP(B) is complete. In this case {y2n} = {NPx2n+1} is a Cauchy sequence in NP(B), which is
complete then the sequence {y2n} converges to some point z ∈ NP(B). Consequently, the subsequences
{T Kx2n}, {QSx2n}, {NPx2n+1}, and {WLx2n+1} also converges to the same point z. As z ∈ NP(B),
there exists r ∈ B such that z = NPr.
Now we claim that z =WLr. For this putting u = x2n and v = r in (C5), we get
M3(T Kx2n,WLr, t)

≥ ψ





M2(QSx2n, T Kx2n, ht)M(WLr,NPr, ht),
M(QSx2n, T Kx2n, ht)M

2(WLr,NPr, ht),
M(QSx2n, T Kx2n, ht)M(T Kx2n,WLr, ht)M(WLr,NPr, ht)
M(WLr,NPr, ht)M(QSx2n, NPr, ht)M(QSx2n, T Kx2n, ht)




.

Taking limit n→∞ and using z = NPr in above inequality we have,

M3(z,WLr, t) ≥ ψ





M2(z, z, ht)M(WLr, z, ht),
M(z, z, ht)M2(WLr, z, ht),

M(z, z, ht)M(z,WLr, ht)M(WLr, z, ht)
M(WLr, z, ht)M(z, z, ht)M(z, z, ht)




,
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M3(z,WLr, t) ≥ ψ





1.1.M(WLr, z, ht),
1.M2(WLr, z, ht),

1.M(z,WLr, ht)M(WLr, z, ht),
M(WLr, z, ht).1.1




.

Suppose WLr 6= z, then M(z,WLr, ht) < 1, using this in above inequality we get
M3(z,WLr, t)

≥ ψ
{
M3(z,WLr, ht),M3(z,WLr, ht),M3(z,WLr, ht),M3(z,WLr, ht)

}
.

Using property of ψ we get
M3(z,WLr, t) > M3(z,WLr, ht)

=⇒ M(z,WLr, t) > M(z,WLr, ht), a contradiction.

Hence WLr = z
Thus WLr = z = NPr. Since (WL,NP) are weakly compatible, so we have WLz = NPz.
Next, we will show that Pz = z, for this putting u = x2n and v = Pr in (C5), we get
M3(T Kx2n,WLPr, t)

≥ ψ





M2(QSx2n, T Kx2n, ht)M(WLPr,NPPr, ht),
M(QSx2n, T Kx2n, ht)M

2(WLPr,NPPr, ht),
M(QSx2n, T Kx2n, ht)M(T Kx2n,WLPr, ht)M(WLPr,NPPr, ht)
M(WLPr,NPPr, ht)M(QSx2n,NPPr, ht)M(QSx2n, T Kx2n, ht)




.

From (C2) WLP = PWL and NP = PN using in above inequality we get,
M3(T Kx2n,PWLr, t) ≥

ψ





M2(QSx2n, T Kx2n, ht)M(PWLr,PNPr, ht),
M(QSx2n, T Kx2n, ht)M

2(PWLr,PNPr, ht),
M(QSx2n, T Kx2n, ht)M(T Kx2n,PWLr, ht)M(PWLr,PNPr, ht)
M(PWLr,PNPr, ht)M(QSx2n,PNPr, ht)M(QSx2n, T Kx2n, ht)




.

Taking limit n −→∞ and using WLr = z = NPr in above inequality we have,

M3(z,Pz, t) ≥ ψ





M2(z, z, ht)M(Pz,Pz, ht),
M(z, z, ht)M2(Pz,Pz, ht),

M(z, z, ht)M(z,Pz, ht)M(Pz,Pz, ht)
M(Pz,Pz, ht)M(z,Pz, ht)M(z, z, ht)




.

Suppose Pz 6= z, then M(z,Pz, ht) < 1, using this in above inequality we get

M3(z,Pz, t) ≥ ψ
{
M3(z,Pz, ht),M3(z,Pz, ht),M3(z,Pz, ht),M3(z,Pz, ht)

}
.

Using property of ψ we get
M3(z,Pz, t) > M3(z,Pz, ht).

=⇒ M(z,Pz, t) > M(z,Pz, ht), a contradiction.

Hence z = Pz.
Thus Pz = NPz = z =⇒ N z = z.
Thus N z = Pz =WLz = z.

Next, we will show that Lz = z, for this putting u = x2n and v = Lr in (C5), we get
M3(T Kx2n,WLLr, t)

≥ ψ





M2(QSx2n, T Kx2n, ht)M(WLLr,NPLr, ht),
M(QSx2n, T Kx2n, ht)M

2(WLLr,NPLr, ht),
M(QSx2n, T Kx2n, ht)M(T Kx2n,WLLr, ht)M(WLLr,NPLr, ht),
M(WLLr,NPLr, ht)M(QSx2n,NPLr, ht)M(QSx2n, T Kx2n, ht).




.

From (C2) WL =WL and (NP)L = L(PN ) using in above inequality we get,
M3(T Kx2n,LWLr, t) ≥

ψ





M2(QSx2n, T Kx2n, ht)M(LWLr,LNPr, ht),
M(QSx2n, T Kx2n, ht)M

2(LWLr,LNPr, ht),
M(QSx2n, T Kx2n, ht)M(T Kx2n,LWLr, ht)M(LWLr,LNPr, ht),
M(LWLr,LNPr, ht)M(QSx2n,LNPr, ht)M(Qδx2n, T Kx2n, ht)




.
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Taking limit n −→∞ and using WLr = z = NPr in above inequality we have,

M3(z,Lz, t) ≥ ψ





M2(z, z, ht)M(Lz,Lz, ht),
M(z, z, ht)M2(Lz,Lz, ht),

M(z, z, ht)M(z,Lz, ht)M(Lz,Lz, ht),
M(Lz,Lz, ht)M(z,Lz, ht)M(z, z, ht)




.

Suppose Lz 6= z, then M(z,Lz, ht) < 1, using this in above inequality we get

M3(z,Lz, t) ≥ ψ
{
M3(z,Lz, ht),M3(z,Lz, ht),M3(z,Lz, ht),M3(z,Lz, ht)

}
.

Using property of ψ we get
M3(z,Lz, t) > M3(z,Lz, ht).

=⇒ M(z,Lz, t) > M(z,Lz, ht), a contradiction.

Hence z = Lz.
Thus, Lz = WLz = z =⇒ Wz = z.
Thus Nz = Pz = Wz = Lz = z.
As WL(B) ⊆ QS(B), there exists m ∈ B such that z = WLz = QSm.

Next, we will show that T Km = z, for this putting u = m and v = x2n+1 in (C5), we have

M3(T Km,WLx2n+1, t)

≥ ψ





M2(QSm, T Km,ht)M(WLx2n+1, NPx2n+1, ht),
M(QSm, T Km,ht)M2(WLx2n+1, NPx2n+1, ht),

M(QSm, T Km,ht)M(T Km,WLx2n+1, ht)M(WLx2n+1, NPx2n+1, ht)
M(WLx2n+1, NPx2n+1, ht)M(QSm,NPx2n+1, ht)M(QSm, T Km,ht).




.

Taking limit n −→∞ and using z = WLz = QSm in above inequality we have,

M3(T Km, z, t) ≥ ψ





M2(z, T Km,ht)M(z, z, ht),
M(z, T Km,ht)M2(z, z, ht),

M(z, T Km,ht)M(T Km, z, ht)M(z, z, ht)
M(z, z, ht)M(z, z, ht)M(z, T Km,ht).




.

Suppose T Km 6= z, then M(T Km, z, ht) < 1, using this in above inequality we get

M3(T Km, z, t) ≥ ψ
{
M3(T Km, z, ht)M3(T Km, z, ht),
M3(T Km, z, ht)M3(T Km, z, ht)

}
.

Using property of ψ we get
M3(T Km, z, t) > M3(T Km, z, ht).

=⇒ M(T Km, z, t) > M(T Km, z, ht), a contradiction.

Hence T Km = z.
Since (T K,QS) are weakly compatible, so T K and QS commute their coincidence point m, then we have

T Kz = QSz.
Next we will show that T Kz = z, for this putting u = z and v = x2n+1 in (C5), we have
M3(T Kz,WLx2n+1, t)

≥ ψ





M2(QSz, T Kz, ht)M(WLx2n+1, NPx2n+1, ht),
M(QSz, T Kz, ht)M2(WLx2n+1, NPx2n+1, ht),

M(QSz, T Kz, ht)M(T Kz,WLx2n+1, ht)M(WLx2n+1, NPx2n+1, ht)
M(WLx2n+1, NPx2n+1, ht)M(QSz,NPx2n+1, ht)M(QSz, T Kz, ht)




.

Taking limit n −→∞ and using T Kz = QSz in above inequality we have

M3(T Kz, z, t) ≥ ψ





M2(T Kz, T Kz, ht)M(z, z, ht),
M(T Kz, T Kz, ht)M2(z, z, ht),

M(T Kz, T Kz, ht)M(T Kz, z, ht)M(z, z, ht)
M(z, z, ht)M(T Kz, z, ht)M(T Kz, T Kz, ht)




.

Suppose T Kz 6= z, then M(T Kz, z, ht) < 1, using this in above inequality we get

M3(T Kz, z, t) ≥ ψ
{
M3(T Kz, z, ht)M3(T Kz, z, ht),
M3(T Kz, z, ht)M3(T Kz, z, ht)

}
.
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Using property of ψ, we get
M3(T Kz, z, t) > M3(T Kz, z, ht).

=⇒ M(T Kz, z, t) > M(T Kz, z, ht), a contradiction.

Hence T Kz = z.
Thus T Kz = QSz = z.
Next we will show that Sz = z, for this putting µ = Sz and v = x2n+1 in (C5), we have
M3(T KSz,WLx2n+1, t)

≥ ψ





M2(QSSz, T KSz, ht)M(WLx2n+1, NPx2n+1, ht),
M(QSSz, T KSz, ht)M2(WLx2n+1, NPx2n+1, ht),

M(QSSz, T KSz, ht)M(T KSz,WLx2n+1, ht)M(WLx2n+1, NPx2n+1, ht)
M(WLx2n+1, NPx2n+1, ht)M(QSSz,NPx2n+1, ht)M(QSSz, T KSz, ht)




.

From (C2) QS = SQ and (T K)S = S(T K) using in above inequality we have,
M3(ST Kz,WLx2n+1, t)

≥ ψ





M2(SQSz,ST Kz, ht)M(WLx2n+1, NPx2n+1, ht),
M(SQSz,ST Kz, ht)M2(WLx2n+1, NPx2n+1, ht),

M(SQSz,ST Kz, ht)M(ST Kz,WLx2n+1, ht)M(WLx2n+1, NPx2n+1, ht),
M(WLx2n+1, NPx2n+1, ht)M(SQSz,NPx2n+1, ht)M(SQSz,ST Kz, ht)




.

Taking limit n −→∞ and using T Kz = QSz = z in above inequality we have,

M3(Sz, z, t) ≥ ψ





M2(Sz,Sz, ht)M(z, z, ht),
M(Sz,Sz, ht)M2(z, z, ht),

M(Sz,Sz, kt)M(Sz, z, kt)M(z, z, ht),
M((z, z, kt)M(Sz, z, kt)M(Sz,Sz, ht)




.

Suppose Sz 6= z, then M(Sz, z, ht) < 1, using this in above inequality we get

M3(Sz, z, t) ≥ ψ
{
M3(Sz, z, ht),M3(Sz, z, ht),
M3(Sz, z, ht),M3(Sz, z, ht)

}

using property of ψ we get

M3(Sz, z, t) > M3(Sz, z, ht)
=⇒ M(Sz, z, t) > M(Sz, z, ht), a contradiction.

Hence Sz = z. Then z = QSz = Qz. Therefore z = Sz = Qz = T Kz.
Next we will show that Kz = z, for this putting u = Kz and v = x2n+1 in (C5), we have
M3(T KKz,WLx2n+1, t)

≥ ψ





M2(QSKz, T KKz, ht)M(WLx2n+1, NPx2n+1, ht),
M(QSKz, T KKz, ht)M2(WLx2n+1, NPx2n+1, ht),

M(QSKz, T KKz, ht)M(T KKz,WLx2n+1, ht)M(WLx2n+1, NPx2n+1, ht),
M(WLx2n+1, NPx2n+1, ht)M(QSKz,NPx2n+1, ht)M(QSKz, T KKz, ht)




.

From C2, using T K = KT , (QS)K = K(QS) in above inequality we have
M3(T KKz,WLx2n+1, t)

≥ ψ





M2(KQSz,KT Kz, ht)M(WLx2n+1, NPx2n+1, ht),
M(KQSz,KT Kz, ht)M2(WLx2n+1, NPx2n+1, ht),

M(KQSz,KT Kz, ht)M(KT Kz,WLx2n+1, ht)M(WLx2n+1, NPx2n+1, ht),
M(WLx2n+1, NPx2n+1, ht)M(KQSzNPx2n+1, ht)M(KQSz,KT Kz, ht)




.

Taking limit n −→∞ and using T Kz = QSz = z in above inequality we have,

M3(Kz, z, t) ≥ ψ





M2(Kz,Kz, ht)M(z, z, ht),
M(Kz,Kz, ht)M2(z, z, ht),

M(Kz,Kz, ht)M(Kz, z, ht)M(z, z, ht),
M(z, z, ht)M(Kz, z, ht)M(Kz,Kz, ht)




.

Suppose Kz 6= z, then M(Kz, z, ht) < 1, using this in above imnequality we get

M3(Kz, z, t) ≥ ψ
{
M3(Kz, z, ht),M3(Kz, z, ht),
M3(Kz, z, ht),M3(Kz, z, ht)

}
.

Using property of ψ we get
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M3(Kz, z, t) > M3(Kz, z, ht)
=⇒ M(Kz, z, t) > M(Kz, z, ht), a contradiction,

Hence Kz = z.
Thus T Kz = T z = z.
Thus Qz = Sz = Kz = z.
Hence Nz = Pz = Qz = Sz = T z = Kz = Lz = Wz = z.
Hence z be a unique fixed point of N,P,Q,S, T ,K,L, and W .

4 Application
A fixed point theorem for a single mapping satisfies an analogue of a Banach contraction principle for an
integral type inequality was discovered by Branciari in 2002.
As an application of Theorem 3.1, we now show the following theorem.

Theorem 4.1. Let N,P,Q,S, T ,K,L and W be eight self mappings of a complete fuzzy metric space
(B,M, ∗) satisfying the conditions (C1), (C2), (C3), (C4) and the following condition.

∫ M3(x,y,t)

0

ψ(w)dw ≥
∫ σ(u,v)

0

ψ(w)dw

σ(u, v) = ψ





M2(QSu, T Ku, ht)M(WLv,NPv, ht),
M(QSu, T Ku, ht)M2(WLv,NPv, ht),

M(QSu, T KKz, ht)M(T Ku,WLv, ht)M(WLv,NPv, ht)
M(WLv,NPv, ht)M(QSu,NPv, ht)M(QSu, T Ku, ht)





for all u, v ∈ B, where ψ : [0, 1]4 → [0, 1] is increasing in any cooridanate and ψ(t, t, t, t) > t for every
t ∈ [0, 1), where ψ : [0, 1]4 → [0, 1] is a ”Lebesgue-integrable function” which is summable, nonnegative, and
such that, for each ε > 0,

∫ ε
0
ψ(ω)dω > 0. Then N ,P,Q,S, T ,K,L and W have a unique common fixed point

in W.

Proof. The theorem’s proof proceeds in a manner similar to that of Theorem 3.1.

5 Conclusion
For eight self-mappings in fuzzy metric space that contain third and fourth power of the distance measure
M(x, y, t), we demonstrate the common fixed-point theorem.
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