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Abstract

In this paper, the non-existence of &£-projectively flat 3-dimensional f-Kenmotsu manifold with
quarter-symmetric metric connection has been established. Moreover, we prove that 3-dimensional f-
Kenmotsu manifold with the quarter-symmetric metric connection is an 7- Einstein manifold and the
Ricci soliton is given as expanding or shrinking under certain restrictions on f.
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1 Introduction

In 1924, the notion of semi-symmetric connections on a manifold was introduced by Friedman and Schouten|[7]
and the notion of quarter-symmetric connections which are generalization of the semi-symmetric connections
was defined and studied by Golab[14]. Kenmotsu, in 1972, studied a class of contact Riemannian manifold
together with some special conditions and given it a name as Kenmotsu manifold.

A manifold M, with the structure (¢,&,n,g) is called normal if [¢,d] + 2dn @ & = 0 and it is almost
cosymplectic if dn = 0 and d¢ = 0. M is cosymplectic if it is normal and almost cosymplectic. Olszak and
Rosca [12] studied f-Kenmotsu Manifolds in a geometrical aspect, and gave some curvature conditions. The
other mathematicians studied that a Ricci-symmetric f-Kenmotsu Manifold is an Einstein Manifold. Later
on, authors, in 2010, also proved that Ricci semi- symmetric a- Kenmotsu manifolds are Einstein manifolds.
By f-Kenmotsu Manifolds we mean an almost contact metric manifold which is locally conformal almost
cosymplectic and normal.

In 1983, the concept of Ricci solitons in contact geometry was studied by Sharma and Sinha [15]. Later,
in contact metric manifold Crasmareanu [4], Bejan [2] and others deeply studied Ricci solitons.

In 2012, Ricci solitons on Kenmotsu manifolds were studied exclusively by Nagraja and Premlatha [11]
and a study on quarter-symmetric metric connection were done by Sular, ézgur and De [13] and De and De
[6] in different ways.

Section 1 is introductory and in section 2, we have some fundamental notions used in this study. Section
3 deals with the introduction of f-Kenmotsu Manifold. In the next section 4, we study f-Kenmotsu manifold
with quarter-symmetric metric connection and proved that this manifold is not always £ - projective flat.
In the last section we prove that f-Kenmotsu manifold with the quarter-symmetric metric connection is 7-
Einstein manifold and the Ricci soliton defined on this manifold is classified with respect to the values of f
and .

2 Preliminaries
Let us consider a 3-dimensional differentiable manifold M with an almost contact metric structure (¢, &, 7, g),
where ¢ is a (1,1) tensor field, £ is a vecter field, n is a 1-form and ¢ is Riemannian metric, satisfying

no¢ =20,

¢ =0,

n) =1,
9(X, &) = n(X),
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for any vector fields X,Y € x(M). Then M is called an almost contact manifold. For an almost contact
manifold M, we have

(Vxo)Y = VxoY — (VxY), (22)
(Vxn)Y =VxnY —n(VxY). (2.3)

Let {e1, e, €3,...,e,} be orthonormal basis of T,(M). R be Riemannian curvature tensor, S be Ricci
curvature tensor, () be Ricci operator, then VX, Y € x(M) it follows that [5]

S(X,Y) = Zg(R(ei, X)Y,e), (2.4)
QX = — Z Rlei, X)es, (2.5)
S(X,Y) = g(QX,Y). (2.6)

In f-Kenmotsu manifold, if the Ricci tensor S satisfy the condition
S(X,Y) = ag(X,Y) + Bn(X)n(Y) (2.7)

«, B be certain scalars, then the manifold M is said to be n-Einstein manifold. If f= 0, the manifold is
Einstein manifold.
In a 3-dimensional Riemannian manifold, the curvature tensor R is defind as
RX.)Y)Z = SY,2)X -S(X,2)Y +g(Y,2)QX — g(X, Z)QY
T
oY, 2)X — g(X, Z)Y]. (28)
where S is the Ricci tensor, ) is Ricci operator and 7 is the scalar curvature.

Now, let M be an n-dimensional Riemannian manifold with the Riemannian connection V. A linear
connection V is said to be a quarter-symmetric connection on M if the torsion tensor 7" of the connection
V satisfies B

T(X,Y) =n(Y)¢X —n(X)eY, (2.9)
where T' # 0 and 7 is a 1-form.

If moreover Vg = 0, then the connection is called quarter-symmetric metric connection.

If Vg # 0, the connection is called quarter-symmetric non-metric connection[17].

For n > 1, the manifold M is locally projectively flat iff the projective curvature tensor P vanishes. We
define the projective curvature tensor P as

P(X,Y)Z =R(X,Y)Z — %[S(Y’, 7)X — S(X, Z)Y]. (2.10)

for any X,Y,Z € x(M) where S is the Ricci tensor and R is the curvature tensor of M.

If P(X,Y){ =0 for any X,Y € x(M), the manifold M is called {-projective flat[16].

A Ricci Soliton is defined on a Riemannian manifold (M, g) as a natural generalization of an Einstein
metric. We define Ricci Soliton as a triple (g, V, A) with g a Riemannian metric, V' a vector field and A be a
real scalar such that

Lyg+25+2X=0 (2.11)

where Ly denotes the Lie derivative operator along the vector field V' and S is a Ricci tensor of M. The
Ricci soliton is said to be shrinking, steady and expanding according as A is negative, zero and positive
respectively.
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3 f-Kenmotsu manifolds
A 3-dimensional almost contact manifold M with the structure (¢, &, 7, g) is an f-Kenmotsu manifold if the
covariant derivative of ¢ satisfies [17],

(Vxd)Y = flg(¢X,Y)E —n(Y)oX] (3.1)
where f € C*°(M, R) such that df An = 0.
If f2+ f # 0, where f'=¢f, then M is called Regular [4]. If f = a = constant # 0, M is called

a-Kenmotsu Manifold. If f = 1, the manifold is called Kenmotsu manifold.
By (2.1) and (2.3), we have

(Vxm)Y = fg(6X,9Y). (3.2)
From (3.1), we have [15]
Vx§ = fIX —n(X)¢]. (3-3)
Also from (2.6), in 3-dimensional f-Kenmotsu manifold
RX,Y)Z = (% +2f2 4+ 2f) (X AY)Z
~(5 437+ 31X EAY)Z + (Y )(X AEZ] (3.4)
and
SOLY) = (5 + 12+ F)g(X.Y) = (5 +3f7 +3f m(X)n(Y). (3.5)
Thus from (3.5), we get
S(X,€) = —2(f + f")n(X) (3.6)
by (3.4) and (3.5),we get
RIX,Y)E = —(f2+ f)I(Y)X - n(X)Y] (3.7)
R(EX)E = —(f2+ fn(X)E - X), (3.8)
QX = (F+/7+ )X — (5 +372 43/ MX)E. (3.9)

From ( 2.10 ) and using (3.6) and (3.7), we have
Theorem 3.1. A 3-dimensional f-Kenmotsu manifold is always &-projectively flat.

4 f-Kenmotsu Manifolds with the quarter-symmetric metric connection
Let V be a Riemannian connection of f-Kenmotsu manifold and V be a linear connection then this linear
connection V defined as

VXY = V¥ — (X)oY, (4.1)

where X, Y € x(M) be any vector field and n be 1-form, is called the quarter-symmetric metric connection.
Now, using (2.2),(3.1) and (4.1) we have

(Vx9)Y = flg(6X,Y)§ — n(Y)dX], (4.2)

for any vector field X,Y € x(M), where ¢ be (1,1) tensor field, £ is a vector field, 7 is 1-form and f €
C*(M,R) so that df Anp=0. As a result of df An =0, we have

af = f', X(f) = f'n(X), (4.3)
where f'=¢f [11].
If f = 0, manifold is cosymplectic. If f = a # 0, then the manifold is a-Kenmotsu. An f-Kenmotsu
manifold with quarter -symmetric metric connection is called regular if f2 4+ f' — 2f¢ # 0.
By (2.2),(4.2) we have

Vx€ = fIX —n(X)¢]. (4.4)
Using ( 2.2 ),(2.1) and ( 3.2 ), we get
(Vxn)Y = fg(6X, ¢Y). (4.5)
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We define the curvature tensor R of f-Kenmotsu manifold M with respect to quarter-symmetric metric

connection V as ~ o o ~
R(X,Y){ =VxVy{—VyVx{—Vixy€ (4.6)

Using (4.1), (4.4) and (3.3), we obtain

VxVy& = X(f)Y =n(Y)X())E+ VXY = fa(X)eY — fn(Y)X

+(X)n(Y)E — fXn(Y)E, (4.7)
VyVxé = Y(HX —nX)Y()E+ fVyX — fn(Y)oX — fn(X)Y
+ A (Y )n(X)E — fYn(X)¢ (4.8)
and
Vixyi§ = fVxY = fVyX — fXn(Y)E+ fYn(X)E. (4.9)

Using (4.9) and (4.8) in (4.6), we have

RX,Y)E = X(N)Y =Y(HX =n(YV)X()E+n(X)Y (f)§ = fn(X)eY

+(Y)oX — fn(Y)X + f2n(X)Y. (4.10)
Now using (4.3 ) in (4.10), we have
R(X,Y)§ = =(f*+ [ (V)X —n(X)Y) + [((Y)$X — n(X)eY). (4.11)
From (4.11), we get B
REY)E=~(f*+ [)(n(Y)E~Y) — foY, (4.12)
and
R(X, 8¢ = —(f* + [)(X = n(X)§) + foX. (4.13)
In (4.11) taking inner product with Z, we get
IRX,Y)EZ) = —(fP+ f)n(Y)9(X,Z) - n(X)g(Y, Z))
+f((YV)g(¢X, Z) = n(X)g(¢Y, Z)). (4.14)

Now we have,

Lemma 4.1. Let M be 3-dimensional f-Kenmotsu manifold with the quarter-symmetric metric connection.If
S be Ricci curvature and ) be Ricci operator. Then

S(X,€) = =2(f* + [)n(X), (4.15)
and

Q¢ = -2(f* + f')&. (4.16)

Proof. Contracting (4.14) with Y and Z, taking summation over i = 1,2,3,...,n and using ( 2.4 ) the proof
of (4.15) is completed. Also by (2.6) and (2.1) in (4.15), we get (4.16).

Lemma 4.2. Let M be 3-dimensional f-Kenmotsu manifold with quarter-symmetric metric connection.If S
be Ricci tensor, T be scaler curvature tensor and @ Ricci operator. Then it follows that

SLY) = (54 24+ 19(X,Y) = (4307 + 3£ m(X)n(Y)
+f9(¢X.Y), (4.17)
and ~ - -
QX = (5 + 2+ )X = (53743 MX)¢ + foX. (4.18)
Proof. Contracting with Y in (4.13), we get
I(R(X,6)EY) = —(f2+ [)9(X,Y) =n(X)n(Y)) + fg(6X,Y). (4.19)
Putting X=¢, Y=X, Z=Y in ( 2.8 ), using (4.15) and taking contraction with £, we obtain
9(R(E X)) = SXY) = @f +2f + Dg(X.Y) + 42 + 47 + Dn(X)n(Y)
—5 (X, Y) = n(X)n(v)) (4.20)
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With the help of (4.19) and (4.20), we have (4.17) . Now using (4.17)and (2.6), we get
- T T
9(@X —[(5 + A+ X - (5+ 312+ 3 M(X)E + fX],Y) = 0. (4.21)
Since Y # 0 in (4.21), which leads the proof of (4.18).
Example 4.1 (A 3-dimensional f-Kenmotsu manifold with quarter-symmetric metric

connection). Let us consider a 3-dimensional manifold M =(z,y,2) € R3, z#0, where (x,y,2) are
the standard coordinates in R3. The vector fields

_ .20 _ .20 _ 0
€1 =z %,62—2 @,@3—@

are linearly independent at each point of M. Let g be the Riemannian metric defined as

gler,e1) = glez,e2) = gles,e3) =1, gler,ea) = glez,e3) = g(es, e1) = 0.
Considering a (1,1) tensor field ¢ defined by

d(e1) = —e2, Ple2) =e1, ¢(e3) =0,
then using linearity of g and ¢, for any Z,W € x (M), we get

77(63) = 17
¢*(Z) = —Z +n(Z)es,
9(Z, W) = g(Z, W) — n(Z)n(W).

Now by computation directly, we get

2 2
—0 S _ 2
[617 62} ’ [627 63} 262) [617 63] Zel

By the use of these above equations we have
2 2
Ve, 1 = PR Ve, €2 = PR Veses =0, Ve,e1 = Ve e9 = Veger = Vegez = 0. (4.22)

Now in this example we consider for quarter-symmetric metric connection. By using (4.1) and (4.21), we
have

= 2 - _ 2 _ _ _
Ve, € = ;63, Ve,e3 =0, Vg, €3 = —;ei, Ve,ej =0, Veser =ea, Veeo = —e (4.23)
where i # j =1, 2. We know that
R(X,Y)Z =VxVyZ—-VyVxZ—VxyZ. (4.24)
Using (4.23) and (4.24), we get
— 2 361
R =——(—
(61,63)63 Z( P +62),
— 2 362
R — g2
7(62,63)63 Z( > e1),
R(eiaej)e?) = 07 7’3] = 132
_ 4 o
R(ei;ej)ej = 27267;7 1,] = 1) 2 (425)
_ 2
R(eq,e3)es = 6
_ 2
R(ez,e3)er = —es,
z
_ 6
R(eg, 61’)61' = —?63.
where ¢ #£j=1,2.
Using ( 2.4 ) and (4.25), we verify that
_ 2 - 12
S(ei,ei) :—?, i:1,2, 5(63763) = —27. (426)
Now using ( 2.10 ),(4.25) and (4.26), we find that
_ _ 2 2e
P(er,e2)e3 =0, P(ej,e3)es = —;(71 + e2).

This leads the following Proposition:
Proposition 4.1 A 3-dimensional f-Kenmotsu manifold with the quarter-symmetric metric connection is
not necessarily &-projectively flat.
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5 Ricci Solitons in f-Kenmotsu Manifold with the quarter-symmetric metric connection
Consider a 3-dimensional f-Kenmotsu manifold with the quarter-symmetric metric connection. Let V be
pointwise collinear with £ (i.e.V = b, where b is a function). Then

(Lvg+2S +2\g)(X,Y) =0,

implies
0 = (Xb)n(Y)+bg(VxEY) + (Yb)n(X) + bg(X, VyE) + 25(X,Y)
+2X9(X,Y). (5.1)
Using (4.4 ) in (5.1), we get
2bfg(X,Y) = 2bfn(X)n(Y) + (Xb)n(Y) + (Yb)n(X) +25(X,Y) + 2)g(X,Y) = 0. (5.2)
Substitute Y with € in (5.2), we have
X0+ (Eb)n(X) = 4(f* + fIn(X) + 22 (X) = 0. (5.3)
Again substituting X with £ in (5.3)
Eb=2(f*+f)-\ (5.4)
Putting (5.4) in (4.3), we get
b=[2(f*+ f') = Nn. (5.5)
Applying d on (5.5)
0=db=[2(f*+ f') — Ndn. (5.6)
Since dn # 0,we have
22+ f)=A=0. (5.7)
Now using (5.5) and (5.7) it is obtained that b is constant. Hence from (5.2), we can verify
S(X,Y) = —(bf + Ng(X,Y) = bfn(X)n(Y). (5-8)

which results that M is n-Einstein manifold. Thus we have:

Theorem 5.1. If in a 3-dimensional f-Kenmotsu manifold M with quarter-symmetric metric connection,
the metric g is a Ricci soliton and V' is a pointwise collinear with &, then V is a constant multiple of &
and M is n-Einstein manifold of the form (5.8) and Ricci Soliton is expanding or shrinking according as
A =2(f%+ f') is positive or negative.

6 Conclusion

In this study, we have some curvature conditions for 3-dimensional f-Kenmotsu manifolds with quarter-
symmetric metric connection. We have also shown that these manifolds are not always &-projective flat.
Finally, we have that 3-dimensional f-Kenmotsu manifold with the quarter-symmetric metric connection is
also an 7n-Einstein manifold and the Ricci soliton defined expanding or shrinking on this manifold is named
with respect to the values of f and A.
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