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Abstract

Impact of melting on MHD heat and mass transfer of Casson fluid flow over a stretching sheet
in porous media with thermal radiation and viscous dissipation have been investigated in this article.
Governing PDE’s are change into coupled ODE ’s using a set of proper similarity transformation.
Resultant equations are solved by efficient numerical scheme Runge kutta- 4th order allied with shooting
method. Impact of several flow parameters on flow fields are interpreted via tables and graphs. Present
outcomes compared with existing results and observed excellent validation.
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1 Introduction
Investigation of non-Newtonian fluids have diverse applications in geoscience, petroleum industry, atmo-
spheric sciences, oceanography, aeromechanics etc. Principle of fluid movement, heat and mass transmission
via porous media plays an important role in different fields. Various properties of non-Newtonian fluids make
their fundamental equations nonlinear and non-uniform. Several models have been developed to characterize
attributes of non-Newtonian fluids. One of them is the Casson model. Casson [2] introduced first Casson fluid
model to characterize flow of pigment oil suspensions of printing ink type and until today many investigations
regarding Casson fluid have been conducted. Casson fluid is shear thinning fluid. At zero shear rate it has
infinite viscosity and zero viscosity at infinite shear rate, i.e. it performs as solid if a shear stress less than
yield stress is enforced to fluid and it starts to flow when shear stress is more than yield stress. Tomato
sauce, jelly, chocolate, soup, honey, human blood etc. are considered as Casson fluid. At a very high shear
stress Casson fluid reduced to Newtonian fluid.

Currently heat and mass transfer through porous media is centre of comprehensive research because in
laminar boundary layer flow, heat-mass and momentum transfer over stretching sheet have many applications
for example in increase effectiveness of paints and lubrication, in production of fiber-glass and glass blowing, in
paper making industry, plastic shaping, crystallization, extrusion rubber sheets, aerodynamics etc. Mabood
et al. [4] studied melting heat transfer impact on MHD Casson fluid flow through porous media. Reddy et
al. [7] investigated MHD mass and heat transfer characteristic of Casson fluid over exponentially permeable
stretching surface with viscous dissipation, thermal radiation and chemical reaction. Raju et al. [5] studied
melting heat transfer effect on MHD Casson fluid flow through porous media with radiation in presence of
first order chemical reaction. Krishnamurthy et al. [3] analyzed impact of melting heat transfer and velocity
slip boundary layer flow with thermal radiation and chemical reaction on MHD nanofluid past a nonlinear
stretching sheet. Yacoob et al. [8] examine stagnation-point boundary layer flow of micropolar fluid past
a linearly shrinking/stretching sheet. Bachok et al. [1] investigate time independent two-dimensional flow
and heat transfer to melting shrinking/stretching sheet. Lorenzini et al. [6] investigate effect of melting heat
transfer in MHD Casson fluid through moving surface in porous media with radiation.

Aim of this study is to analyze impact of melting on MHD heat and mass transfer of Casson fluid flow
over a stretching sheet in porous media in presence of thermal radiation and viscous dissipation.
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2 Mathematical Formulation
In present study two-dimensional time independent stagnation point flow of Casson fluid past a linear
stretching sheet in porous media is considered. Permeability of porous media is Kp. Sheet is melting at
constant rate into warm liquid of same material, as demonstrated in figure 2.1. Transverse magnetic field B0

is applied uniformly to fluid. Let velocity of fluid is ue(x) = ax and stretching sheet velocity is uw(x) = cx,
where a and c are positive constant and x coordinate considered along the stretching sheet. Let Tm represent
melting temperature and T∞ represent free stream temperature of the fluid, where T∞ > Tm.

Figure 2.1: Sketch of physical model
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where µB represent plastic dynamic viscosity, π = eijeij and (i, j)th element of deformation rate is eij , π
represent rate of deformation, πc is critical value of Casson fluid model, yield stress of fluid is Py. Considering
above postulation the governing equations of present flow are given below:
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Boundary conditions are:

u = uw(x) = cx, T = Tm, C = Cm at y = 0, (2.6)

u→ Ue(x) = ax, T → T∞, C → C∞ as y →∞. (2.7)

and

k

(
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)
= [ρcs (Tm − T0) + ρλ] v(x, 0). (2.8)
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Here β is Casson fluid parameter, v is kinematic viscosity, µ is factor of viscosity, Kp represent
permeability of porous media, κ is thermal conductivity, σ is fluid electrical conductivity, at constant pressure
specific heat is Cp, ρ is the density of fluid, radiative heat flux is qr, D

∗ is molecular diffusivity, latent heat
of fluid is λ.

Using Roseland’s approximation for radiation, we obtain qr = −
(

4
3
σ∗

k1

)
∂T 4

∂y , where σ∗ represents Stefan-

Boltzmann constant, k1 represents mean absorption factor. By using Taylor series about the free stream
temperature, we have

T 4 = 4TT 3
∞ − 3T∞

4. (2.9)

Now eqn. (2.4) converts to
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3 Problem Solution
Introducing similarity transformation and dimensionless parameters

Ψ = x(av)
1
2 f(η), η =

(a
v

) 1
2

y, θ(η) =
T − Tm
T∞ − Tm

, φ(η) =
C − Cm
C∞ − Cm

. (3.1)

where Ψ is stream function interpreted as u = ∂Ψ
∂v and v = −∂Ψ

∂x .
Using equation 2.10 into equations 2.2− 2.5), we get
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Equation (2.6) and (2.7) reduce to
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The physical parameters of attention are skin friction factor Cf , Nusselt number Nux and Sherwood
number Shx are described as
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where τW represents surface shear stress, qW denote surface heat flux and mass flux LW are described as
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From equations (3.12) to 3.15 with applications of similarity transformations, we get
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2
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where Rex = uex
v represents Reynolds number.

It is remarkable observation that if we put M = K1 = R = Ec = Sc = 0 and β →∞ in equations (3.1)
to (3.3), our problem converts into model taken by Mabood et al. [4].

4 Numerical Solution
Equations (3.2) to (3.4) are solved numerically with boundary conditions (3.5) and (3.6) by applying the
shooting method together with RK4 scheme. For calculations we utilize MATLAB computer programming.
Appropriate estimates of f ′′, θ′ and φ′ at η = 0 are taken with shooting method to obtain boundary conditions
at η →∞ which all are one. We assume ∆η = 0.01 and value for ηmax = 5.

In Tables 4.1, 4.2 and 4.3 validation of present method is established by comparing with results of Mabood
et al. [4]

Table 4.1: For varying values of ε and Me comparison of numeric values of f ′′(0) and θ′(0), when M = K1 = R =
Ec = Sc = 0,Pr = 1, and β →∞.

Parameters Mabood et al. [4] Present outcomes
ε Me f ′′(0) −θ′(0) f ′′(0) −θ′(0)

0.0 0 1.232588 -0.570465 1.232588 -0.570465
1 1.037003 -0.361961 1.037003 -0.361961

0.5 0 0.713295 -0.692064 0.713295 -0.692064
1 0.599090 -0.438971 0.599090 -0.438971

2.0 0 -1.887307 -0.979271 -1.887307 -0.979271
1 -1.580484 -0.621187 -1.580484 -0.621187

5.0 0 -10.264749 -1.396355 -10.264749 -1.396355
1 -8.5746752 -0.886425 -8.5746752 -0.886425

6.0 0 -13.774813 -1.511165 -13.774813 -1.511165
1 -11.501531 -0.959514 -11.501531 -0.959514

Table 4.2: For varying values of ε and Me comparison of numeric values of f ′′(0), when Pr = 1, M = K1 = R =
Ec = Sc = 0 and β →∞.

ε Mabood et al. [4] Present outcomes
Me = 0 Me = 1 Me = 2 Me = 0 Me = 1 Me = 2

0.0 1.232588 1.037003 0.946851 1.232588 1.037003 0.956851
0.1 1.146561 0.964252 0.880442 1.146561 0.964252 0.880442
0.5 0.713295 0.599089 0.547021 0.713295 0.599089 0.547021
1.0 0 0 0 0 0 0
2.0 -1.887307 -1.580484 -1.442747 -1.887307 -1.580484 -1.442747
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Table 4.3: For varying values of Pr andMe comparison of numeric values of θ′(0), whenM =K1 = R = Ec = Sc = 0
and β →∞.

Parameters Mabood et al. [4] Present outcomes
Pr Me −θ′(0) −θ′(0)
1 0 -0.7978846 -0.7978846

1 -0.5060545 -0.5060545
2 -0.3826383 -0.3826383

7 0 -2.1110042 -2.1110042
1 -1.3388943 -1.3388943
2 -1.0123657 -1.0123657

5 Discussion of the Results
For computation default values are taken ε = 0.5 or 1.5,M = 0.5,K1 = 0.2,Pr = 25, R = 1, β = 1,
Me = 1, Ec = 0.2, Sc = 1.

Fig. 5.1 depicts impact of Magnetic parameter M on velocity, for ε = 1.3 velocity decreases with increasing
values of M , this is because of Lorentz force which is retarded force for velocity. Effect is opposite for ε = 0.3.
Influence of permeability parameter is illustrated in Fig. 5.2. It is concluded that with increasing values of K1

velocity profile decrease because with increasing values of K1 permeability decrease. Inverse effect found for
ε = 0.3. From Fig. 5.3 fluid velocity is a decreasing function of Casson fluid parameter β because viscosity
increased with increment in values of β and reverse results exist for ε = 0.3. Fig. 5.4 shows influence
of β on temperature profile, here we conclude that fluid temperature decreases with increasing values of
β due to the fact that increment in β signifies a reduction in yield stress. From Fig. 5.5 we observed
that temperature increase with increment in values of Pr, according to definition of Prandtl number large
values of Pr has lower thermal diffusivity. Because of the melting parameter, thickness of thermal boundary
layer increases with increasing values of Pr. From Fig. 5.6 we observed that with increasing values of
radiation parameter R temperature decrease. Fig. 5.7 depicts effect of melting parameter on temperature.
Temperature profile decrease with increasing melting parameter because plunges of cold sheet in hot fluid,
this starts to melt due to this temperature decreases. Fig. 5.8 shows the effect of Eckert number Ec on
temperature profile, temperature increase due to viscous dissipation. Effect of Schmidt number shows in
Fig. 5.9 which is analogous to effect of Prandtl number. Fig. 5.10 depicts impact of melting parameter Me
on concentration. Concentration profile decrease with increasing values of Me.

Figure 5.1: Distribution of velocity for variations in M Figure 5.2: Distribution of velocity for variations in K1
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Figure 5.3: Distribution of velocity for variations in β
Figure 5.4: Distribution of temperature for variations in
β

Figure 5.5: Distribution of temperature for variations in
Pr

Figure 5.6: Distribution of temperature for variations in
R
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Figure 5.7: Distribution of temperature for variations in
Me

Figure 5.8: Distribution of temperature for variations in
Ec

Figure 5.9: Distribution of concentration for variations
in Sc

Figure 5.10: Distribution of concentration for variations
in Me
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Table 5.1: For variations in values of ε,M,K1, P r,R, β,Me,Ec and Sc, Values of f ′′(0), θ′(0) and φ′(0).

𝜀 𝑀 𝐾1 𝑃𝑟 𝑅 𝛽 𝑀𝑒 𝐸𝑐  𝑆𝑐 𝑓′′(0) 𝜃′(0) 𝜙′(0) 
0.3 0        0.689560 1.962200 0.571600 

 1        0.844058 2.140100 0.581800 

 2        0.974919 2.294100 0.588610 

1.3 0        -0.362260 2.536900 0.801900 

 1        -0.418174 2.553700 0.797700 

 2        -0.467735 2.569500 0.794210 

0.3  0       0.739190 2.018800 0.575110 

  1       0.885303 2.188400 0.584100 

  2       1.010939 2.337000 0.590250 

1.3  0       -0.379850 2.542000 0.800530 

  1       -0.433612 2.558400 0.796560 

  2       -0.481646 2.574100 0.793300 

0.3   20      0.768913 1.819100 0.572000 

   23      0.769968 1.963200 0.575340 

   25      0.770562 2.054900 0.577220 

1.3   20      -0.390260 2.265200 0.792670 

   23      -0.390836 2.436900 0.797180 

   25      -0.391160 2.545400 0.799670 

0.3    0     0.767515 2.459900 0.567530 

    0.5     0.769195 2.236400 0.572900 

    1     0.770562 2.054900 0.577220 

1.3    0     -0.389714 3.004400 0.788400 

    0.5     -0.390500 2.754800 0.794500 

    1     -0.391160 2.545400 0.799670 

0.3     1    0.770562 2.054900 0.577220 

     2    0.887272 2.028200 0.589700 

     ∞    1.081560 1.997400 0.606880 

1.3     1    -0.391160 2.545400 0.799670 

     2    -0.450310 2.529000 0.795800 

     ∞    -0.548753 2.505400 0.790200 

0.3      0   0.786170 2.727100 0.627570 

      0.5   0.777282 2.332700 0.598750 

      1   0.770562 2.054900 0.577220 

1.3      0   -0.399250 3.329300 0.863780 

      0.5   -0.394662 2.874700 0.827300 

      1   -0.391160 2.545400 0.799670 

0.3       0  0.775080 1.456900 0.591700 

       0.2  0.770562 2.054900 0.577220 

       0.4  0.766326 2.618400 0.563800 

1.3       0  -0.391540 2.424300 0.802700 

       0.2  -0.391160 2.545400 0.799670 

       0.4  -0.390780 2.665400 0.796700 

0.3        1 0.770562 2.054900 0.577220 

        1.5 0.770562 2.054900 0.673100 

        2 0.770562 2.054900 0.747800 

1.3        1 -0.391160 2.545400 0.799670 

        1.5 -0.391160 2.545400 0.969400 

        2 -0.391160 2.545400 1.108200 

270



6 Conclusions
In this paper a theoretical analysis of impact of melting on MHD heat and mass transfer of Casson fluid
flow over a stretching sheet in porous media in the presence of thermal radiation and viscous dissipation
have been done. We have acquired following results:

6.1 An increase in Magnetic parameter M , Casson fluid parameter β and Permeability parameter K1

causes decreases in velocity profile.
6.2 Temperature profile decrease with increasing Casson fluid parameter, Melting parameter, Radiation

parameter and reverse effect for Prandtl number and Eckert number.
6.3 Concentration profile increase for increasing Schmidt number and decrease for Melting parameter.
6.4 Increment in values of Magnetic parameter and Permeability parameter skin friction coefficient

increase.
6.5 Local Nusselt number decrease with increasing values of radiation and melting parameter.
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