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Abstract

In this paper, we have presented an analytical model of two electron systems consisting of a many
particle correlated wave function with some variational parameters α, λ and µ and used it to quantify
the electron-electron correlation described by the wave function containing explicitly r12 (inter atomic
distance between two electrons) dependent term. The single particle wave functions and the charge
densities have been extracted from the said correlated wave function both for the uncorrelated and
correlated systems in coordinate space and its momentum analogs have been obtained by taking the
Fourier transform of the coordinate analogs. We have computed and presented the results of the numerical
values of the theoretic information entropies of the Shannon entropy, Fisher information entropy, Shannon
power and the FisherShannon product. The numerical values are consistently found to satisfy the
Beckner, Bialynicki-Birula and Mycielski (BBM ) inequality relation; Stam-Cramer-Rao inequalities or
Fisher based uncertainty relation and Fisher-Shannon product relation for the uncorrelated and correlated
systems in both the coordinate and momentum spaces.
2020 Mathematical Sciences Classification: 62B10, 94A15, 94A17.
Keywords and Phrases: Coordinate and momentum space; uncorrelated and correlated system;
Shannon information entropy; Fisher information entropy; uncertainty relations; Fisher-Shannon
product.

1 Introduction
The electron correlation is a major problem in physics of atoms, molecules, and clusters as a consequence
of the electronelectron repulsion. The correlation effect has a major influence on measureable quantities in
atomic systems. The correlation energy (Ecorr) [9] of a many-electron system is defined by the difference
between the exact total energy (the exact non-relativistic energy) and Hartree-Fock energy, as well as by
some statistical correlation coefficients [15] which assess radial and angular correlation in both the coordinate
and momentum density distributions. The correlation energy had been used as a guide [16] for the amount
of correlation in a given system. Recently, some information-theoretic measures of the electron correlation in
atomic systems have been proposed: the so-called correlation entropy [30] which is the information entropy
of the one-particle density matrix, and the sum of the Shannon information entropies of the electron density
in coordinate and momentum spaces [20]. The entropic uncertainty relation has many applications both
in physics and chemistry [27, 28] and because of their many applications in different areas of physics and
chemistry, there have been a growing interest by many researchers in studying Shannon entropy and Fisher
information in recent years. The two most important measures of the information theories are the Shannon
entropy(S ) [25] and Fisher information entropy(I ) [10]. These two information entropies carry out a vital
role in different areas of physics and chemistry. The entropic uncertainty relations in quantum information
theory have been proved to be an alternative to the Heisenberg uncertainty relation in quantum mechanics
[14, 17]. On one hand, the Shannon entropic uncertainty relation in coordinate and momentum spaces satisfy
the Beckner, Bialynicki-Birula and Mycielski (BBM ) inequality relation as [4, 6],

ST = (Sρ + Sγ) > D(1 + lnπ), (1.1)

where D represents the spatial dimension, Sρ is the Shannon entropy in the coordinate space, Sγ is the
corresponding Shannon entropy in the momentum space and ST is the Shannon entropy sum. The entropies
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Sρ and Sγ are defined as [4,6,21,22],

Sρ = −
∫
ρ(~r)ln[ρ(~r)]d3r, (1.2)

Sγ = −
∫
γ(~p)ln[γ(~p)]d3p, (1.3)

where d3r = r2drdΩ , d3p = p2dpdΩ and dΩ = sin θdθdϕ is the solid angle with ψ(~r1, ~r2, ..., ~rN ) being the
normalized wave function in the spatial coordinate, ρ(~r) =

∫
|ψ(~r, ~r2, ..., ~rN )|2d3r2...

d3rN is the single particle charge density in the spatial coordinate and γ(~p) =
∫
|φ(~p, ~p2, ..., ~pN |2

d3p2...d
3pN is the single particle charge density in momentum space. The Shannon information entropy is

usually regarded as the measure of the spatial spread of the wave function for different states [12]. One of the
consequences of the BBM inequality is that represents the lower bound values of the Shannon entropy sum
[4,6] such that if the coordinate entropy increases, then the momentum entropy will decrease in such a way
that their sum bounds above (BBM ) inequality. On the other hand, Fisher information is a local measure
since it is sensitive to local rearrangement of the density. It has been reported that the higher the Fisher
information, the more localized is the charge density [2,18], and conversely, the smaller the uncertainty the
higher the accuracy in predicting the localization of the particles [2,18]. The Fisher information is defined
as the gradient functional of the charge density of the system and is given in the coordinate and momentum
spaces as [1,19]

Iρ =

∫
1

ρ(~r)
[~∇ρ(~r)]2d3r, (1.4)

Iγ =

∫
1

γ(~p)
[~∇γ(~p)]2d3p. (1.5)

The disorder aspect of Fisher information entropy has been studied in some length by Frieden [11].
The uncertainty properties are clearly delineated by the Stam inequalities [26]. The product IρIγ has been
conjectured to exhibit a nontrivial lower bound [7] such that for three-dimensional systems it reads as:

IρIγ > 36. (1.6)

Unlike, the Shannon entropy that satisfy the BBM inequality, the Fisher information fulfills the Stam
inequalities [23], Iρ 6 4 < p2 > , Iγ 6 4 < r2 > and the Cramer-Rao inequalities [8] Iρ > 9

<r2> , Iγ > 9
<p2> .

Generally, for an arbitrary angular momentum quantum number ‘l’ of any central potential model, the two
products of the Fisher information must satisfied the relation [24],

IρIγ > 4 < r2 >< p2 > [2− 2l + 1

l(l + 1)
|m|]2, (1.7)

where m = 0,±1,±2 . . . is the magnetic quantum number. With the help of the definitions of equations
(1.1) to (1.5), we can define the Shannon power (J ) in coordinate and momentum space as

Jρ =
1

2πe
e

2Sρ
D , (1.8)

Jγ =
1

2πe
e

2Sγ
D , (1.9)

and the Fisher-Shannon product(P) in coordinate and momentum space are defined as

Pρ =
IρJρ
D

, (1.10)

and

Pγ =
IγJγ
D

, (1.11)

which must satisfy the following relation
Pργ = PρPγ > 1, (1.12)

where D is the spatial dimensions [29]. It is necessary to mention that throughout our all calculations, we
shall use D=3 and m=~=e=1. In this paper, we are going to study an analytical model of two electron
system consisting of ‘Hartree and Ingman(1933)’ [13] type correlated wave function with some variational
parameters α, λ and µ. The aim of our present work is to use the derived analytical model to quantify
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the correlation in two electron systems described by wave function containing explicitly r12 (inter atomic
distance between two electrons) dependent term and thereafter present the results of our numerical analysis
for the theoretic information entropies such as the Shannon entropy, Fisher information entropy and the
Fisher-Shannon product. To begin with, we shall take an account of the effect of correlation on two electron
systems using the ‘Hartree and Ingman (1933)’ [13] type trial wave function which can be written as

ψ(~r1, ~r2, r12) = ce−α(r1+r2)χ(r12), (1.13)

where, r12 = (~r1 − ~r2), ‘c’ is the normalization constant and the correlated function χ(r12) is written as

χ(r12) = (1− λe−µr12). (1.14)

A few years ago, attempts were made by Bhattacharyya et al [5] to find out the ground-state energy of the
two-electron system working with the ‘Hartree and Ingman(1933)’[13] type trial wave function, ψ(~r1, ~r2, r12)
= e−α(r1+r2) (1 - λe−µr12) with the variation parameters α, λ and µ. After minimizing the Hamiltonian
with respect to the variations in the parameters of ψ(~r1, ~r2, r12), they obtained the values, α = 1.8395,
λ = 0.586 and µ = 0.379. It is necessary to mention that we shall use these standard values for our
computational purposes. It is to note that when λ = 1 and r12 = 0, the wave function takes the form as
ψ(~r1, ~r2, r12) = 0 and the system becomes explicitly r12 dependent which is then referred to as the correlated
system. Physically, this implies that two electrons in the atom cannot occupy the same position. And, when
λ = 1 and r12 = ∞, the wave function leads to ψ(~r1, ~r2, r12) = c e−α(r1+r2). Mechanistically, this implies
when the inter-electronic separation is very large, the system becomes uncorrelated. The subscripts marked
with ‘uc’ and ‘c’ has been used to indicate the ‘uncorrelated’ and ‘correlated’ systems respectively in all the
sections of this paper. We shall use our model to compute the uncorrelated and correlated Shannon, Fisher
information entropies and the Fisher-Shannon product both in the coordinate and momentum spaces for the
uncorrelated and correlated systems. In applicative context it will, therefore, be quite interesting to examine
how Shannon (S ) and Fisher (I ) information entropies along with the Fisher-Shannon product respond to
important physical effects like the electron-electron correlation which plays an important role in the physics
of many electron systems. To the best of our knowledge, the Shannon entropy, Shannon information and
Fisher-Shannon product of the ‘Hartree and Ingman (1933)’ [13] type trial wave function have not been
reported before in the literature.

Section 2 has been focused on obtaining the expressions for single particle wave functions [ψ(~r), φ(~p)]
and single particle charge densities [ρ(~r),γ(~p)] both in coordinate and momentum space for the uncorrelated
and correlated systems.

In Section 3, we have used the expressions for single particle charge densities in both coordinate and
momentum space to calculate uncorrelated [Sρuc ,Sγuc ] and correlated [Sρc ,Sγc ] Shannon entropies. Similarly
we have calculated uncorrelated [Iρuc ,Iγuc ] and correlated [Iρc ,Iγc ] Fisher entropies. Consequently, the Fisher-
Shannon products both in coordinate and momentum space for the uncorrelated and correlated systems have
also been computed. We have also shown that the sum of correlated Shannon entropies is greater than that
of the sum of the uncorrelated Shannon entropies in coordinate and momentum space i.e. (Sρc + Sγc)
>(Sρuc + Sγuc). Each of the sums also satisfies the BBM inequality i.e. (Sρ + Sγ)> 3(1+lnπ). In case of
Fisher information entropies, it has been observed that the product of correlated Fisher information entropies
in coordinate and momentum space IρcIγc is greater than that of the product of the uncorrelated Fisher
entropies in coordinate and momentum space IρucIγuc . Both the products IρucIγuc and IρcIγc also satisfy
the Fisher based uncertainty relation Iρ Iγ > 36. The inequality relation for the Fisher-Shannon products
for the uncorrelated and correlated systems is Pργ = Pρ Pγ > 1 and the corresponding numerical results
along with the verification of the relation are presented in the Table 3.5.

Finally, Section 4 has been devoted for summarizing the present work with relevant inferences.

2 Extraction of single particle wave function and single particle charge density from the
correlated wave function

In this Section, we shall extract the expressions for the single particle wave function from the expression
of the many particle correlated wave function expressed in equation (1.13) and equation (1.14) involving
some adjustable parameters in coordinate and momentum spaces for both the correlated and uncorrelated
systems and hence the single particle charge density. In this purpose, the many particles correlated trial
wave function i.e. the ‘Hartree and Ingman (1933)’ [13] type wave function can be written as follows:

ψ(~r1, ~r2, r12) = ce−α(r1+r2)(1− λe−µr12). (2.1)

255



Now integrating the wave function of equation (2.1) over d~r2 we have,∫
ψ(~r1, ~r2, r12)d~r2 = ce−αr1

∫
e−αr2d~r2 − cλe−αr1

∫
e−αr2e−µr12d~r2.

The above integral can be written as∫
ψ(~r1, ~r2, r12)d~r2 = ce−αr1I1 − cλe−αr1I2 (2.2)

where

I1 =

∫
e−αr2d~r2 (2.3)

and

I2 =

∫
e−αr2e−µr12d~r2. (2.4)

Here ‘c’ is the normalization constant.
Finally, the complete coordinate space wave function ψ(~r) can be written as follows

ψ(~r) = ψ1(~r) + ψ2(~r)

= ce−αr1I1 − cλe−αr1I2

=
8e−rαcπ

α3
+ [

4πcλe−rα[ 8(e−rα−e−rµ)αµ
(−α2+µ2)3 − 2(e−rµ)rα

(−α2+µ2)2 −
2(e−rα)rµ
(−α2+µ2)2 ]

r
], (2.5)

where

ψ1(~r) =
8e−rαcπ

α3
(2.6)

and

ψ2(~r) = [
4πcλe−rα[ 8(e−rα−e−rµ)αµ

(−α2+µ2)3
− 2(e−rµ)rα

(−α2+µ2)2
− 2(e−rα)rµ

(−α2+µ2)2
]

r
]. (2.7)

We have used the standard values of the variational parameters (λ, α and µ) throughout our all
calculations as λ = 0.586, α = 1.8395 and µ = 0.379.

The uncorrelated and correlated wave functions in coordinate-space are represented as

ψuc(~r) = ψ1(~r) =
8e−rαcπ

α3
, (2.8)

with normalization constant c = 0.3486
and

ψc(~r) = ψ(~r) =
8e−rαcπ

α3
+ [

4πcλe−rα[ 8(e−rα−e−rµ)αµ
(−α2+µ2)3 − 2(e−rµ)rα

(−α2+µ2)2 −
2(e−rα)rµ
(−α2+µ2)2 ]

r
], (2.9)

with normalization constant c = 0.5031.
To study the properties of Shannon information entropy (S ) and Fisher information entropy (I ) in the

momentum space, the Fourier transform of the coordinate space wave function is taken. For analytically
calculating the required transformations the following standard integrals [3] have been used,∫

e−γξei~µ·
~ξ =

8πγ

(γ2 + µ2)2
, (2.10)

∫
1

ξ
e−γξei~µ·

~ξ =
4π

(γ2 + µ2)2
. (2.11)

Taking recourse of the Fourier transform of the coordinate space wave function ψ(~r), the momentum
space wave function φ(~p) can be written as φ(~p) = φ1(~p) + φ2(~p).

The complete momentum space wave function φ(~p) can be written as follows:

φ(~p) = φ1(~p) + φ2(~p)

=
64π2c̃

(2π)
3
2α2(α2 + p2)2

+
128π2c̃λαµ

(2π)
3
2 (−α2 + µ2)3

[
1

(4α2 + p2)
− 1

((α+ µ)2 + p2)
]− 64π2c̃λα(α+ µ)

(2π)
3
2 (−α2 + µ2)2((α+ µ)2 + p2)

2
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− 128π2c̃λαµ

(2π)
3
2 (−α2 + µ2)2(4α2 + p2)

2 (2.12)

The expressions for the uncorrelated and correlated wave function in momentum space are given as
follows:

φuc(~p) = φ1(~p) =
64π2c̃

(2π)
3
2α2(α2 + p2)2

, (2.13)

with the normalization constant c̃ = 0.3486
and

φc(~p) = φ(~p) =
64π2c̃

(2π)
3
2α2(α2 + p2)2

+
128π2c̃λαµ

(2π)
3
2 (−α2 + µ2)3

[
1

(4α2 + p2)
− 1

((α+ µ)2 + p2)
]

− 64π2c̃λα(α+ µ)

(2π)
3
2 (−α2 + µ2)2((α+ µ)2 + p2)

2 −
128π2c̃λαµ

(2π)
3
2 (−α2 + µ2)2(4α2 + p2)

2 , (2.14)

with the normalization constant c̃ = 0.5031.
Now we shall find the expressions for the single particle charge densities in coordinate and momentum

spaces for both the correlated and uncorrelated systems. The uncorrelated and correlated single-particle
charge densities in coordinate space can simply be expressed as follows:

ρuc = |ψuc(~r)|2, (2.15)

and
ρc = |ψc(~r)|2. (2.16)

Similarly the uncorrelated and correlated single particle charge densities in momentum space are written
as follows:

γuc = |φuc(~p)|2, (2.17)

and
γc = |φc(~p)|2. (2.18)

3 Computation of Shannon entropy, Fisher information entropy and the Fisher-Shannon
product

In this section we present the results for the Shannon information entropy (S ), Fisher information
entropy (I ) and Fisher-Shannon product both in coordinate and momentum space for uncorrelated and
correlated systems. The expressions of uncorrelated Shannon information entropies in coordinate space
[Sρuc ] and momentum space [Sγuc ] are computed using the expressions from the equation (1.2) and equation
(1.3) respectively. Similarly the uncorrelated Fisher information entropies in coordinate space [Iρuc ] and
momentum space [Iγuc ] are computed using the expressions from the equation (1.4) and equation (1.5)
respectively. Now for computing the expressions for correlated Shannon information entropies in coordinate
space [Sρc ] and momentum space [Sγc ] the corresponding correlated wave functions have been used in the
expressions of equation (1.2) and equation (1.3) respectively. Similarly we have also done for the correlated
Fisher information entropies in coordinate space [Iρc ] and momentum space [Iγc ] respectively using the
equation (1.4) and equation (1.5).

Moreover, the expressions for uncorrelated Fisher-Shannon product in coordinate space [Pρuc ] and
momentum space [Pγuc ] and correlated Fisher-Shannon product in coordinate space [Pρc ] and momentum
space [Pγc ] are computed from the equation (1.10) and equation (1.11) respectively with the help of the
corresponding equation (1.8) and equation (1.9) for the Shannon power in coordinate space (Jρ) and
momentum space (Jγ) for the uncorrelated and correlated systems.

The calculated values for the uncorrelated and correlated Shannon information entropies in coordinate
and momentum space at different r and p values are presented in Table 3.1 respectively as follows:
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Table 3.1: Shannon information entropies in coordinate and momentum space for uncorrelated and correlated
systems

Sl.
No.

r varies
from 0 to
(in a.u.) Coordinate space

p varies
from 0 to
(in a.u.) Momentum space (Sρuc + Sγuc) (Sρc + Sγc)

Sρuc Sρc Sγuc Sγc

1 5 2.316 2.442 5 4.134 4.024 6.450 6.466
2 10 2.316 2.442 10 4.243 4.123 6.559 6.565
3 100 2.316 2.442 100 4.250 4.130 6.566 6.572
4 1000 2.316 2.442 1000 4.250 4.130 6.566 6.572
5 5000 2.316 2.442 5000 4.250 4.130 6.566 6.572
6 10000 2.316 2.442 10000 4.250 4.130 6.566 6.572
7 100000 2.316 2.442 100000 4.250 4.130 6.566 6.572
8 1000000 2.316 2.442 1000000 4.250 4.130 6.566 6.572
9 5000000 2.316 2.442 5000000 4.250 4.130 6.566 6.572
10 Infinity 2.316 2.442 Infinity 4.250 4.130 6.566 6.572

From Table 3.1, it is observed that correlation augments the Shannon entropies in coordinate space as
Sρc > Sρuc and diminishes it in momentum space as Sγc < Sγuc. It is also evident that sum of correlated
Shannon entropies i.e. (Sρc + Sγc) is greater than the sum of uncorrelated Shannon entropies i.e. (Sρuc +
Sγuc). Thus we have verified the uncertainty relation,(Sρc + Sγc) > (Sρuc + Sγuc).

The calculated values for the uncorrelated and correlated Fisher information entropies for the coordinate
and momentum space at different r and p values are presented in Table 3.2 respectively as follows:

Table 3.2: Fisher information entropies in coordinate and momentum space for uncorrelated and correlated systems

Sl.
No.

r varies
from 0 to
(in a.u.) Coordinate space

p varies
from 0 to
(in a.u.) Momentum space Iρuc Iγuc Iρc Iγc

Iρuc Iρc Iγuc Iγc

1 5 13.535 12.588 5 3.539 3.862 47.901 48.615
2 10 13.535 12.588 10 3.546 3.868 47.995 48.690
3 100 13.535 12.588 100 3.546 3.822 47.995 48.111
4 1000 13.535 12.588 1000 3.546 3.868 47.995 48.690
5 5000 13.535 12.588 5000 3.546 3.868 47.995 48.690
6 10000 13.535 12.588 10000 3.546 3.868 47.995 48.690
7 100000 13.535 12.588 100000 3.546 3.867 47.995 48.678
8 1000000 13.535 12.588 1000000 3.546 3.861 47.995 48.602
9 5000000 13.535 12.588 5000000 3.546 3.831 47.995 48.225
10 Infinity 13.535 12.588 Infinity 3.546 3.869 47.995 48.703

From Table 3.2 it is observed that correlation diminishes the Fisher entropies in coordinate space and
augments it in momentum space. We have also verified from Table 3.2 that the product of correlated
[IρcIγc ] and the product of uncorrelated [IρucIγuc ] Fisher entropies satisfy the inequality condition Iρc Iγc
> IρucIγuc . It is also verified in general that the products of Fisher entropies (IρcIγc and IρucIγuc) satisfy
the Fisher-based uncertainty relation
Iρ Iγ > 36.
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To calculate the values of the uncorrelated and correlated Shannon power in coordinate space (Jρuc ,Jρc)
and momentum space (Jγuc ,Jγc) following equation (1.8) and equation (1.9), we have used the values for the
Shannon information entropies of the Table 3.1 for different r and p values and presented them in Table 3.3
as follows:

Table 3.3: Shannon information entropies, Shannon power in coordinate and momentum space for uncorrelated and
correlated systems

Sl.
No.

r and p
varies from

0 to
(in a.u.) Shannon information entropies Shannon Power

Coordinate space Momentum space Coordinate space Momentum space
Sρuc Sρc Sγuc Sγc Jρuc Jρc Jγuc Jγc

1 5 2.316 2.442 4.134 4.024 0.745 0.810 2.504 2.327
2 10 2.316 2.442 4.243 4.123 0.745 0.810 2.693 2.486
3 100 2.316 2.442 4.250 4.130 0.745 0.810 2.705 2.498
4 1000 2.316 2.442 4.250 4.130 0.745 0.810 2.705 2.498
5 5000 2.316 2.442 4.250 4.130 0.745 0.810 2.705 2.498
6 10000 2.316 2.442 4.250 4.130 0.745 0.810 2.705 2.498
7 100000 2.316 2.442 4.250 4.130 0.745 0.810 2.705 2.498
8 1000000 2.316 2.442 4.250 4.130 0.745 0.810 2.705 2.498
9 5000000 2.316 2.442 4.250 4.130 0.745 0.810 2.705 2.498
10 Infinity 2.316 2.442 4.250 4.130 0.745 0.810 2.705 2.498

Moreover, to calculate the values for the uncorrelated and correlated Fisher-Shannon product in
coordinate space (Pρuc ,Pρc) and momentum space (Pγuc ,Pγc) at different r and p values following equation
(1.10) and equation (1.11), we have used the values for the Fisher information entropies and Shannon power
from Table 3.2 and Table 3.3 respectively and presented them in Table 3.4 as follows:

Table 3.4: Fisher information entropies, Shannon power and Fisher-Shannon product in coordinate and momentum
space for uncorrelated and correlated systems

Sl.
No.

r and p
varies from

0 to
(in a.u.) Fisher information entropies Shannon power Fisher-Shannon product

Coordinate
space

Momentum
space

Coordinate
space

Momentum
space

Coordinate
space

Momentum
space

Iρuc Iρc Iγuc Iγc Jρuc Jρc Jγuc Jγc Pρuc Pρc Pγuc Pγc

1 5 13.535 12.588 3.539 3.862 0.745 0.810 2.504 2.327 3.361 3.399 2.954 4.283
2 10 13.535 12.588 3.546 3.868 0.745 0.810 2.693 2.486 3.361 3.399 3.183 3.205
3 100 13.535 12.588 3.546 3.822 0.745 0.810 2.705 2.498 3.361 3.399 3.197 3.446
4 1000 13.535 12.588 3.546 3.868 0.745 0.810 2.705 2.498 3.361 3.399 3.197 3.488
5 5000 13.535 12.588 3.546 3.868 0.745 0.810 2.705 2.498 3.361 3.399 3.197 3.488
6 10000 13.535 12.588 3.546 3.868 0.745 0.810 2.705 2.498 3.361 3.399 3.197 3.488
7 100000 13.535 12.588 3.546 3.867 0.745 0.810 2.705 2.498 3.361 3.399 3.197 3.487
8 1000000 13.535 12.588 3.546 3.861 0.745 0.810 2.705 2.498 3.361 3.399 3.197 3.481
9 5000000 13.535 12.588 3.546 3.831 0.745 0.810 2.705 2.498 3.361 3.399 3.197 3.454
10 Infinity 13.535 12.588 3.546 3.869 0.745 0.810 2.705 2.498 3.361 3.399 3.197 3.489

Let us now verify the values obtained in the Table 3.4 for the Fisher-Shannon product, as per the
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requirement of the equation (1.12) the Fisher-Shannon product must satisfy the inequality relation Pργ =
Pρ Pγ > 1. Following is the Table of verification for the Fisher-Shannon product:

Table 3.5: Verification Table for Fisher-Shannon product in coordinate and momentum space for uncorrelated and
correlated systems

Sl.
No. Fisher-Shannon product

Uncorrelated
system

Correlated
system

The inequality relation to
verify Pρ Pγ > 1

Coordinate space Momentum space

Pρuc Pρc Pγuc Pγuc Pρuc Pγuc Pρc Pγc Pρuc Pγuc > 1 or Pρc Pγc > 1

1 3.361 3.399 2.954 4.283 9.928 14.558 Yes
2 3.361 3.399 3.183 3.205 10.698 10.894 Yes
3 3.361 3.399 3.197 3.446 10.745 11.713 Yes
4 3.361 3.399 3.197 3.488 10.745 11.856 Yes
5 3.361 3.399 3.197 3.488 10.745 11.856 Yes
6 3.361 3.399 3.197 3.488 10.745 11.856 Yes
7 3.361 3.399 3.197 3.487 10.745 11.852 Yes
8 3.361 3.399 3.197 3.481 10.745 11.832 Yes
9 3.361 3.399 3.197 3.454 10.745 11.740 Yes
10 3.361 3.399 3.197 3.489 10.745 11.859 Yes

4 Concluding remarks
In the present work, we have used the r12- dependent two electron ‘Hartree and Ingman(1933)’ type trial
wave function to construct a single particle wave function ψ(~r). By taking the Fourier transform of ψ(~r),
the wave function in momentum space i.e. φ(~p) has been constructed. The wave functions ψ(~r) and φ(~p)
are used to evaluate the expressions for the single particle charge densities in coordinate and momentum
spaces. These expressions have been further used to construct the analytical expressions for Shannon and
Fisher entropies, Shannon power and the Fisher-Shannon product and hence to compute their values in
both coordinate and momentum spaces. The expressions have been constructed by taking the correlation
into account as well as without it. In Table 3.1 and Table 3.2 we have provided the values of Shannon
and Fisher entropies for different values of r and p. In coordinate space, the correlation augments the
values of Shannon entropies and in momentum space the correlation plays just the opposite role. In case
of Fisher entropies, the correlation diminishes the values in coordinate space and augments in momentum
space. Thus from the data of the two Tables we observe that correlation plays just the opposite roles in
case of Shannon and Fisher information entropies. In addition to this, we have verified from Table 3.1
the uncertainty relation (Sρ + Sγ)> 3(1+lnπ)and the inequality condition (Sρc + Sγc) >(Sρuc + Sγuc) for
Shannon entropy. Simultaneously, for Fisher entropies we have verified the relations from Table 3.2 that
IρcIγc >IρucIγuc and Iρ Iγ > 36. In Table 3.3 the numerical values relating to Shannon power for the
uncorrelated and correlated systems in coordinate space (Jρuc ,Jρc) and momentum space (Jγuc ,Jγc) have
been demonstrated. And Table 3.4 depicts altogether the numerical values of Fisher information entropies
for the uncorrelated and correlated systems, Shannon power and Fisher-Shannon product in coordinate and
momentum space. Moreover, the verification of Fisher-Shannon product has been checked and confirmed by
the data presented in Table 3.5. Since our computed values of Shannon, Fisher information entropies and
Fisher-Shannon product satisfy their respective uncertainty relationships; it validates our results obtained
in a consistent way. Further the variation of information entropic measurements with coordinate (r) and
momentum (p) values give us an insight into the dynamics of evolution of the system in the coordinate
and momentum spaces respectively and that can easily be analyzed from the difference of numerical values
computed separately for the Fisher-Shannon product in respect of the uncorrelated and correlated systems.
It thus provides important evidence that the Fisher-Shannon product can be regarded as an appropriate
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measure of electron correlation. A more systematic and extensive analysis of this new correlation measure
in many other N -electron systems is needed to get a deeper insight into it. It thus remains an interesting
curiosity to investigate the efficacy of this method for studying higher electronic systems. In our further
works we shall try to investigate such systems.
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