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Abstract

In the present investigation, we introduce a subclass of α-convex functions defined with subordination
and associated with Cardioid domain in the open unit disc E = {z ∈ C : |z| < 1}. We establish the
bounds for |a2|, |a3| and |a4|, Fekete-Szegö inequality and bound for the Zalcman functional for this class.
The results proved earlier will follow as special cases.
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1 Introduction

By A, we denote the class of analytic functions of the form f(z) = z +
∑∞
k=2 akz

k, defined in the open unit
disc E = {z ∈ C : |z| < 1} and normalized by the conditions f(0) = f ′(0)− 1 = 0. The subclass of A, which
consists of univalent functions in E, is denoted by S.

In the theory of univalent functions, a very noted result was Bieberbach’s conjecture which was established
by Bieberbach [2]. It states that, for f ∈ S, |an| ≤ n, n = 2, 3, ... and it remained as a challenge for the
mathematicians for a long time. Finally, L. De-Branges [4], proved this conjecture in 1985. During the
course of proving this conjecture, various results related to the coefficients were established and some new
subclasses of S were developed.

For two analytic functions f and g in E, f is said to be subordinate to g (symbolically f ≺ g) if there
exists a function w with w(0) = 0 and |w(z)| < 1 for z ∈ E such that f(z) = g(w(z)). Further, if g is
univalent in E, then f ≺ g is equivalent to f(0) = g(0) and f(E) ⊂ g(E).

Before defining our main classes, firstly we review some basic and relevant classes mentioned below:

S∗ =

{
f : f ∈ A, Re

(
zf ′(z)

f(z)

)
> 0, z ∈ E

}
, the class of starlike functions.

K =

{
f : f ∈ A, Re

(
(zf ′(z))′

f ′(z)

)
> 0, z ∈ E

}
, the class of convex functions.

Mocanu [11] introduced a unifying class M(α) as below:

M(α) =

{
f : f ∈ A, Re

(
(1− α)

zf ′(z)

f(z)
+ α

(zf ′(z))′

f ′(z)

)
> 0, z ∈ E

}
.

The functions in the class M(α) are known as alpha-convex functions. In particular, M(0) ≡ S∗ and
M(1) ≡ K.

For f ∈ A, the relation f ≺ 1 + 4
3z + 2

3z
2 means that f lies in the region bounded by the cardioid given

by
(9x2 + 9y2 − 18x+ 5)2 − 16(9x2 + 9y2 − 6x+ 1) = 0.

Sharma et al. [16] introduced the classes S∗car and Kcar defined as follow:

S∗car =

{
f : f ∈ A, zf

′(z)

f(z)
≺ 1 +

4

3
z +

2

3
z2, z ∈ E

}
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and

Kcar =

{
f : f ∈ A, (zf ′(z))′

f ′(z)
≺ 1 +

4

3
z +

2

3
z2, z ∈ E

}
.

Obviously, S∗car and Kcar are the subclasses of starlike and convex functions associated with cardioid
domain, respectively. Various subclasses of analytic functions were studied by subordinating to different
kind of functions. Malik et al. [9, 10], Sharma et al. [16], Zainab et al. [18], Shi et al. [17] and Raza et al. [15]
studied certain classes af analytic functions associated with cardioid domain.

Getting inspired from the above works, now we define the following subclass of α-convex functions by
subordinating to 1 + 4

3z + 2
3z

2.

Definition 1.1. A function f ∈ A is said to be in the class Mα
car if it satisfying the condition

(1− α)
zf ′(z)

f(z)
+ α

(zf ′(z))′

f ′(z)
≺ 1 +

4

3
z +

2

3
z2.

The class Mα
car is the unification of the classes S∗car and Kcar and for particular values of α, the results

for the these classes can be obtained. In particular, we have the following observations:
(i) M0

car ≡ S∗car.
(ii) M1

car ≡ Kcar.
Fekete and Szegö [5] established the estimate |a3 − µa2

2|, where µ is real and f ∈ S. Further, the upper
bound of |a3−µa2

2| for various classes of analytic functions were extensively studied by several authors. There
is another very useful functional Jn,m(f) = anam−am+n−1, n,m ∈ N−{1}, which was investigated by Ma [8]
and it is known as generalized Zalcman functional. The functional J2,3(f) = a2a3 − a4 is a specific case of
the generalized Zalcman functional. Various authors including Khan et al. [7], Mohamad and Wahid [12]
and Cho et al. [3], computed the upper bound for the functional J2,3(f) over different subclasses of analytic
functions as it plays very important role in finding the bounds for the third Hankel determinant.

In the present paper, we establish the upper bounds for the initial coefficients, Fekete-Szegö inequality and
bound for the Zalcman functional for the class Mα

car. Also various known results follow as particular cases.

2 Preliminary Results
By P, we denote the class of analytic functions p of the form

p(z) = 1 +

∞∑

k=1

pkz
k,

whose real parts are positive in E.
To prove our main results, we shall make use of the following lemmas:

Lemma 2.1. [2] ([14, 6]) If p ∈ P, then
|pk| ≤ 2, k ∈ N,

∣∣∣∣p2 −
p2

1

2

∣∣∣∣ ≤ 2− |p1|2
2

,

|pi+j − µpipj | ≤ 2, 0 ≤ µ ≤ 1,

and for complex number ρ, we have

|p2 − ρp2
1| ≤ 2 max{1, |2ρ− 1|}.

Lemma 2.2. ([1]). Let p ∈ P, then

|Jp3
1 −Kp1p2 + Lp3| ≤ 2|J |+ 2|K − 2J |+ 2|J −K + L|.

In particular, it is proved in [14] that
|p3

1 − 2p1p2 + p3| ≤ 2.
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3 Main Results
Theorem 3.1. If f ∈Mα

car, then

|a2| ≤
4

3(1 + α)
, (3.1)

|a3| ≤
3α2 + 30α+ 11

9(1 + 2α)(1 + α)2
, (3.2)

and

|a4| ≤
180α3 + 940α2 + 444α+ 68

81(1 + 2α)(1 + 3α)(1 + α)3
. (3.3)

The bounds are sharp.

Proof. As f ∈Mα
car, by the principle of subordination, we have

(1− α)
zf ′(z)

f(z)
+ α

(zf ′(z))′

f ′(z)
= 1 +

4

3
w(z) +

2

3
(w(z))2. (3.4)

Define p(z) =
1 + w(z)

1− w(z)
= 1 + p1z + p2z

2 + p3z
3 + ..., which implies w(z) =

p(z)− 1

p(z) + 1
.

On expanding, we have

(1− α) zf
′(z)

f(z) + α (zf ′(z))′

f ′(z) = 1 + (1 + α)a2z +
[
2(1 + 2α)a3 − (1 + 3α)a2

2

]
z2

+
[
3(1 + 3α)a4 − 3(1 + 5α)a2a3 + (1 + 7α)a3

2

]
z3 + ... (3.5)

Also

1 +
4

3
w(z) +

2

3
(w(z))2 = 1 +

2

3
p1z +

(
2

3
p2 −

p2
1

6

)
z2 +

(
2

3
p3 −

1

3
p1p2

)
z3 + ... (3.6)

Using (3.5) and (3.6), (3.4) yields
1 + (1 + α)a2z +

[
2(1 + 2α)a3 − (1 + 3α)a2

2

]
z2

+
[
3(1 + 3α)a4 − 3(1 + 5α)a2a3 + (1 + 7α)a3

2

]
z3 + ...

= 1 +
2

3
p1z +

(
2

3
p2 −

p2
1

6

)
z2 +

(
2

3
p3 −

1

3
p1p2

)
z3 + .... (3.7)

On equating the coefficients of z, z2 and z3 in (3.7) and on simplification, we obtain

a2 =
2

3(1 + α)
p1, (3.8)

a3 =
1

2(1 + 2α)

[
2

3
p2 +

(
5 + 18α− 3α2

18(1 + α)2

)
p2

1

]
, (3.9)

and

a4 =
1

9(1 + 3α)

[
2p3 +

1 + 7α− 2α2

(1 + α)(1 + 2α)
p1p2 +

−45α3 + 37α2 − 15α− 1

18(1 + 2α)(1 + α)3
p3

1

]
. (3.10)

Using first inequality of Lemma 2.1 in (3.8), the result (3.1) is obvious.
From (3.9), we have

|a3| =
1

3(1 + 2α)

∣∣∣∣p2 −
3

2

(
3α2 − 18α− 5

18(1 + α)2

)
p2

1

∣∣∣∣ . (3.11)

Using fourth inequality of Lemma 2.1 in (3.11), the result (3.2) can be easily obtained.
Furthermore, on applying Lemma 2.2 in (3.10), the result (3.3) is obvious.

Remark 3.1. The results of Theorem 3.1 are sharp and the equality is attained in (3.1), (3.2) and (3.3) for
the function f given by

(1− α)
zf ′(z)

f(z)
+ α

(zf ′(z))′

f ′(z)
= 1 +

4

3
z +

2

3
z2.
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Proof. The expansion of (1− α)
zf ′(z)

f(z)
+ α

(zf ′(z))′

f ′(z)
= 1 + 4

3z + 2
3z

2, yields

1 + (1 + α)a2z +
[
2(1 + 2α)a3 − (1 + 3α)a2

2

]
z2 +

[
3(1 + 3α)a4 − 3(1 + 5α)a2a3 + (1 + 7α)a3

2

]
z3 + ... =

1 + 4
3z + 2

3z
2.

On equating the coefficients of z, it gives

(1 + α)a2 = 4
3 , which implies |a2| =

4

3(1 + α)
and it gives equality in (3.1).

Equating the coefficients of z2, we obtain

2(1 + 2α)a3 − (1 + 3α)a2
2 =

2

3
.

On sustituting the value of a2, we can easily obtain

|a3| =
3α2 + 30α+ 11

9(1 + 2α)(1 + α)2
,

which shows equality in (3.2).
Further equating the coefficients of z3, we get

3(1 + 3α)a4 − 3(1 + 5α)a2a3 + (1 + 7α)a3
2 = 0.

On substituting the values of a2 and a3 and after simplification, it is obvious to get

|a4| =
180α3 + 940α2 + 444α+ 68

81(1 + 2α)(1 + 3α)(1 + α)3
,

which shows equality in (3.3).
For α = 0, Theorem 3.1 yields the following result proved by Shi et al. [17]:

Corollary 3.1. If f ∈ S∗car, then

|a2| ≤
4

3
, |a3| ≤

11

9
, |a4| ≤

68

81
.

On putting α = 1 in Theorem 3.1, the following result due to Shi et al. [17] can be easily obtained:

Corollary 3.2. If f ∈ Kcar, then

|a2| ≤
2

3
, |a3| ≤

11

27
, |a4| ≤

17

81
.

Theorem 3.2. If f ∈Mα
car, then

|a3 − µa2
2| ≤

2

3(1 + 2α)
max

{
1,

16µ(1 + 2α)− 3α2 − 30α− 11

6(1 + α)2

}
. (3.12)

Proof. From (3.8) and (3.9), we have

|a3 − µa2
2| =

1

3(1 + 2α)

∣∣∣∣p2 −
16µ(1 + 2α) + 3α2 − 18α− 5

12(1 + α)2
p2

1

∣∣∣∣ . (3.13)

Using fourth inequality of Lemma 2.1, (3.13) yields

|a3 − µa2
2| ≤

2

3(1 + 2α)
max

{
1,

16µ(1 + 2α)− 3α2 − 30α− 11

6(1 + α)2

}
. (3.14)

Hence, the result (3.12) is obvious from (3.14).
For µ = 1, the result (3.12) yields

|a3 − a2
2| ≤

2

3(1 + 2α)
max

{
1,

5 + 2α− 3α2

6(1 + α)2

}
.

But
5 + 2α− 3α2

6(1 + α)2
≤ 1, for 0 ≤ α ≤ 1.

Hence, we have

|a3 − a2
2| ≤

2

3(1 + 2α)
. (3.15)

For α = 0, the following result is obvious from Theorem 3.2:
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Corollary 3.3. If f ∈ S∗car, then

|a3 − µa2
2| ≤

2

3
max

{
1,

16µ− 11

6

}
.

For α = 1, Theorem 3.2 agrees with the following result:

Corollary 3.4. If f ∈ Kcar, then

|a3 − µa2
2| ≤

2

9
max

{
1,

12µ− 11

6

}
.

For µ = 1, α = 0, Theorem 3.2 yields the following result:

Corollary 3.5. If f ∈ S∗car, then

|a3 − a2
2| ≤

2

3
.

For µ = 1, α = 1, Theorem 3.2 gives the following result:

Corollary 3.6. If f ∈ Kcar, then

|a3 − a2
2| ≤

2

9
.

Theorem 3.3. If f ∈Mα
car, then

|a2a3 − a4| ≤
72α3 + 216α2 + 340α+ 68

81(1 + α)2(1 + 2α)(1 + 3α)
. (3.16)

Proof. Using (3.8), (3.9) and (3.10), we have a2a3 − a4

=
1

81(1 + α)2(1 + 2α)(1 + 3α)

[
(9α2 + 49α+ 8)p3

1 − 9(1 + α)(−1 + α− 2α2)p1p2 + 18(1 + α)2(−1− 2α)p3

]
.

(3.17)
Taking modulus and on applying Lemma 2.2, the result (3.16) is obvious from (3.17).

For α = 0, Theorem 3.3 yields the following result:

Corollary 3.7. If f ∈ S∗car, then

|a2a3 − a4| ≤
68

81
.

For α = 1, Theorem 3.3 yields the following result:

Corollary 3.8. If f ∈ Kcar, then

|a2a3 − a4| ≤
29

162
.

4 Conclusion and Open Problems
Till now, many researchers have studied the coefficient problems for various fundamental subclasses of
analytic functions, but not much work has been done on the coefficients of subclasses of alpha-convex
functions as it involves some lengthy and complicated calculations. In the present investigation, a new
subclass of alpha-convex functions is introduced by subordinating to the cardioid domain. We establish the
bounds for the first three coefficients, Fekete-Szegö inequality and Zalcman functional for the class Mα

car.
The results obtained here, generalize the results of various authors. The results of this paper can be extended
towards the estimation of third and fourth Hankel determinants and also this work will motivate the other
researchers to study some more generalized classes of functions.
Acknowledgement. The authors are very much grateful to the Editor and referees for their valuable
suggestions to revise the paper.

26



References
[1] M. Arif, M. Raza, H. Tang, S. Hussain and H. Khan, Hankel determinant of order three for familiar

subsets of ananlytic functions related with sine function, Open Math., 17 (2019), 1615-1630.
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